
Accepted for the 9th IEEE Working Conference on Reverse Engineering
Richmond, Virginia, USA, October 28 - November 1, 2002, pp. 190-198

1

Program annotation in XML: a parse-tree based approach

James F. Power
Computer Science Department
National University of Ireland

Maynooth, Co. Kildare, Ireland
jpower@cs.may.ie

Brian A. Malloy
Computer Science Department

Clemson University
Clemson, SC, USA

malloy@cs.clemson.edu

Abstract

In this paper we describe a technique that can be used
to annotate source code with syntactic tags in XML for-
mat. This is achieved by modifying the parser generator
bison to emit these tags for an arbitrary LALR grammar.
We also discuss an immediate application of this technique,
a portable modification of thegcc compiler, that allows for
XML output for C, Objective C, C++ and Java programs.
While our approach is based on a representation of the
parse-tree and does not have the same semantic richness
as other approaches, it does have the advantage of being
language independent, and thus re-usable in a number of
different domains.

1. Introduction

In this paper we describe a modification of the parser
generator, GNUbison, that permits the generation of an
XML representation of its parse tree.

Program analysis tools are the keystone of good soft-
ware reverse engineering applications. Program analysis is
a key component of tasks such as program comprehension,
slicing, visualisation and metrication, and acts as a founda-
tion for more comprehensive tools that aid software main-
tenance, migration, transformation and re-engineering.

The levels at which a program can be analysed mirror the
phases of the traditional description of a compiler as found
in references [1, 15]. In particular, we can distinguish be-
tweenstatic analysis, concerning information gleaned from
the program code, anddynamic analysis, concerning infor-
mation collected from running the program. At the level of
static analysis, we can identify four main levels of informa-
tion, associated with four phases of compilation:

1. Preprocessinginvolves dealing with conditional com-
pilation and textual inclusion, and is mainly an issue

in C and C++, although C# also has a limited form of
preprocessor.

2. Lexical analysiscollects characters into words, and
eliminates comments and whitespace. Tools work-
ing at the lexical level can provide crude metrics by
analysing keywords, and can often be constructed us-
ing relatively simple tools such aslex, grep or awk.

3. Parsing-level analysisconcerns the hierarchical cate-
gorisation of program constructs into syntactical cat-
egories such as declarations, expressions, statements
etc.

4. Semantic analysisdeals with issues such as definition-
use pairs, program slicing and identifier analyses.

While information from each level is needed to build a
full view of a program, in many ways the parser is central
to this process, and is the focus of this paper. Typically, it is
the parser that drives the lexical analysis phase by request-
ing and organising tokens. A parser also acts as a founda-
tion for the semantic analysis phase either directly, through
events triggered on recognition of various constructs, or in-
directly through the generation of some form of intermedi-
ate representation.

Most of the constructs of languages such as Pascal and
Ada are context-free, and it is a straightforward matter to
generate a parser for these languages, particularly using a
parser generator. An exception to this easy-parse rule can
be found in the language C, where a context-sensitive ambi-
guity exists between a declaration and an expression. This
declaration/expression ambiguitynot withstanding, parser
front-ends for the C language have not been difficult to con-
struct. However, a parser front-end for the C++ language
has proven elusive and the difficulties involved have been
described in references [3, 11, 12, 17, 18, 19]. Many con-
structs in the C++ language cannot be recognized by syntac-
tic consideration alone; these constructs not only include the
typedefdeclaration/expression ambiguity of C, but the ISO
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C++ grammar also includes context-dependent keywords
for namespace, class, enumerationand templatedeclara-
tions (see reference [2, Appendix A]). It is not surprising
therefore that many program analysis tools use third-party
front-ends to parse the program source.

In Section 2 we present some of the issues associated
with generating XML usinggcc, the GNU compiler collec-
tion, and describe how our approach seeks to address these
issues. In Section 3 we present the algorithm and techni-
cal details behind our approach, and in section 4 we present
some results showing this approach in action. Section 5
concludes the paper, mentioning the limitations of the ap-
proach.

2. Background and Motivation

In this section we provide some of the background to
the work presented in this paper. In particular, we survey
some of the issues relating to producing program analysis
information fromgcc, the GNU compiler collection, since
this was the original goal of our work.

2.1. GNUbison and XML

Parsers are typically written using a parser generator, al-
though smaller parsers may be directly coded, using tech-
niques such as recursive descent. There is a large variety of
parser generators available, but one of the oldest, simplest,
and arguably most widely used, is theyacc parser genera-
tor, and its more modern manifestation, GNUbison.

Most parser generators, includingbison, are capable of
producing some kind of information on the progress of the
parse, typically as some kind of parse tree. The information
emitted bybison when run in debug mode consists of a list
of the production rules used; a format that is not readily
useful to other tools. More modern tools such as JavaCC
or ANTLR have more sophisticated and flexible forms of
output, but they lack the breadth of usage ofbison.

In terms of choosing a more suitable output forbison,
the XML markup language [23, 6] is the obvious choice.
The general case for XML as a data exchange language pro-
viding for modularity between tools has been widely made.
The suitability of XML and similar languages as a data for-
mat for program analysis tools has been noted in references
[10, 21, 8, 13], and their arguments will not be repeated
here. However, it is worth noting that there is an elegant
symmetry between the hierarchical classification produced
by a program parse, and the normal nested tagging used in
XML.

This paper exploits this symmetry in two ways. First, by
generating information at the parsing stage, we maximise
the amount of available information, and this information

can thus act as a basis for a variety of subsequent seman-
tic tools. Second, by utilising thebison parser generator,
we gain a technique that is generally applicable to a vari-
ety of applications and languages, and does not have to be
modified for each new type of source.

2.2. gcc - The GNU Compiler Collection

The GNU compiler collection originated as the GNU C
compiler, but has since expanded to include compilers for
Ada, Fortran, Objective C, C++ and Java. As a robust com-
piler generating efficient code, it has attained wide popular-
ity as a C and C++ compiler, and boasts a considerable code
base. As an open source compiler, released under the GNU
public licence, it seems an attractive starting point for the
development of analysis tools for these languages. How-
ever,gcc is a large and complex piece of software, that is
not immediately amenable to the production of such static
analysis information. While it would be possible to modify
the gcc compiler directly, such an approach has a number
of difficulties.

The first difficulty with modifyinggcc is the size and
complexity of the compiler itself. For example,gcc version
3.0.4 is written in C, and consists of 2958.c files and 1820
.h files. Thegcc compiler has been deliberately designed
to separate its front ends, which are specific to particular in-
put programming languages, from it back ends, which are
specific to target architectures. However, from the perspec-
tive of static program analysis tools, the level of modulari-
sation is not so helpful. In particular, there is an extremely
close coupling between the lexical analysis, parsing and se-
mantic analysis phases due, in a large part, to the aforemen-
tioned problems with parsing C and C++.

A second problem with modifying the compiler directly
is the evolving nature of the compiler itself. While the
C programming language is fairly stable at this stage, the
C++ standard is relatively new [2] andgcc, like many other
compilers [22, 14], is still undergoing a process of conver-
gence toward the standard. It is reasonable to anticipate that
new releases ofgcc will continue to increase standardisa-
tion and add functionality, creating a considerable mainte-
nance overhead for anyone developing tools based ongcc.
Conversely, a tool that could work for multiple versions of
gcc, rather than one specific version, would be valuable for
the analysis of legacy software developed using obsolete or
deprecated features from these versions.

A third disadvantage of modifying the compiler directly
is associated with one of the major advantages ofgcc: its
ability to handle multiple source languages using differ-
ent front-ends. Any technique that directly modified the
source code of one front end, would need to be modified
and adapted for other front ends. While such modification
is perhaps inevitable for language-specific applications, it
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S : expr
;

expr : expr PLUS term
| term
;

term : factor MULT term
| factor
;

factor : LBRACKET expr RBRACKET
| ID
| NUM
;

Figure 1. The expression grammar. This is a
grammar for simple expressions involving
multiplication and addition. The bison input
format is used here.

is reasonable to suggest that a more generic, language in-
dependent approach will avoid this maintenance problem,
while also providing a useful basis for many tools.

3. Implementation

In this section we describe the modification of thebison
parser generator to produce XML output. We discuss some
of the problems encountered, along with our solution.

3.1. A simple example

To focus the discussion, consider the grammar given in
Figure 1, a standard example of a simple grammar for ex-
pressions involving numbers with addition and multiplica-
tion.

Given a suitable lexical analyser, the sentence:
3 + 4 * 5

would be converted using the techniques described in this
section to the XML representation shown in Figure 2.

In Figure 2, the terminals and non-terminals are repre-
sented as XML elements. The terminal symbols are rep-
resented as simple XML elements of typeTOKEN, with an
attribute,type , giving the token type. The non-terminals
are represented as compound elements, with no attributes,
enclosing the section of output to which they correspond.

3.2. The problem domain

The two basic approaches to parsing aretop-downpars-
ing which includes recursive descent and LL parsing, and
bottom-upparsing, which includes the LALR algorithm

<S><expr>
<expr>

<term>
<factor><TOKEN type="NUM"></factor>

</term>
</expr>
<TOKEN type="PLUS">
<term>

<factor><TOKEN type="NUM"></factor>
<TOKEN type="MULT">
<term>

<factor><TOKEN type="NUM"></factor>
</term>

</term>
</expr></S>
<TOKEN type="$">

Figure 2. XML output for the sentence “3 + 4 *
5” using the expression grammar. Each XML tag
represents either the start or end of a region
reduced to a non-terminal, or a single token.
Indentation has been added to clarify the pre-
sentation.

used bybison. Generation of XML output using top-
down parsing is reasonably straightforward, since typically
each non-terminal corresponds to a function in the parser.
Hence it is only necessary to add statements at the begin-
ning and end of these functions to generate the proper start
and end tags. Indeed, the production of XML output could
be avoided altogether if desired, and the parser could sim-
ply generate corresponding SAX events for the tags. (SAX
is theSimple API for XML, which allows an XML document
to be processed serially, in an event-based manner).

Generating XML for a bottom-up parser such asbison
is more problematic, however. Bottom-up parsers work by
collecting tokens until a sequence is found that corresponds
to the right-hand side of a grammar rule; these are then re-
duced by substituting the non-terminal symbol on the left-
hand side of the grammar rule, and the parse continues. The
problem here is that a non-terminal is only recognisedafter
the corresponding symbols have been processed. While this
does not cause a problem with the end XML tag, which can
be inserted directly into the output at this point, it would
be necessary to go back through the output to find the cor-
rect position for the start tag. At very least, this precludes
the possibility of generating SAX events as the input is pro-
cessed, but it also makes it difficult for simple solutions to
scale to larger inputs.

For example, one possible approach would be to store
the XML tags on a stack, so that the position for the start

3
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tag could be easily determined. In our simple expression
example shown in Figure 2 this is not really a problem, since
the input is small. However, it should be noted that even
here the last reduction is to the start symbol, so that the last
XML tags generated are actually the pair<S> and</S>
surrounding the whole program. While this may not seem a
problem here, it can scale up quite badly to real input using
C or C++. For example, a C++ program containing only the
line:

#include <iostream>
expands to some 17,616 non-blank lines of C++ code,

and yields an 14,481,357 kilobyte XML file containing
111,050 tags for terminal symbols, and 358,417 pairs of
tags for non-terminal symbols.1

Clearly, for “real-world” C and C++ programs, the entire
parse tree, or even a substantial part of it, is not easily stored
in memory during the parse, awaiting the reduction to the
start symbol. Instead it is necessary to deal with the parse
output in serial form at all times.

3.3. Bottom-up generation of XML

The strategy adopted involves three stages:

1. The parse is carried out, and a single number is written
to a temporary file for each shift and reduce action,
uniquely identifying that action.

2. The temporary file is then read inreverse, and a “back-
wards parse” is carried out, with the start tags being
inserted in the correct location

3. Since this last step reverses the order of the parse (an
LR parser conducts arightmostderivation), the tempo-
rary file it generates is reversed, producing the correct
output.

The intermediate representation of the parse actions as
single integers reduces the necessary storage, and greatly
facilitates the reversing actions. It also ties in well with
bison, where these integers can be used as indices into the
arrays containing the production rules and the terminal and
non-terminal names.

The backwards parse starts at the last action to occur, and
working back toward the first, performs the following:

1. If the action is areduce action, then output an end
tag for that non-terminal, and push it onto the stack.
Also record the number of symbols (terminal or non-
terminal) on the right-hand side of the production rule
as that element’schildren-count

1These figures were obtained usinggcc under RedHat Linux 7.2, run
on a 350MHz Intel Pentium II system.

2. If the action is ashift action, output a tag for the token,
and decrement thechildren-countfor the topmost stack
element.

3. While thechildren-countfor the topmost stack ele-
ment is zero, output its corresponding start tag, pop
it from the stack, and decrement thechildren-countfor
the next stack element.

Note that only numbers corresponding to production
rules are pushed onto the stack. Further, the stack only con-
tains references to rules for which a start tag is still out-
standing, rather than whole sections of the input program.

A side-effect of this approach is that empty start/end
XML tags are generated forε-rules that have an empty right-
hand side. These were included to maximise the informa-
tion that is made available from the parse, but such tags
could be easily filtered out.

3.4. Adapting bison

To integrate this algorithm into the operation ofbison,
it is necessary to change the C-code output produced by
the parser generator. This is considerably facilitated by the
inclusion of the--skeleton option sincebison version
1.28a (in August 2001). This allows the user to specify an
arbitrary parsing routine, whilebison will generate the nec-
essary parse tables and lists of symbols to support it.

Thus, with a suitably modified parser skeleton, it is then
straightforward to runbison over a given input grammar,
generating a parser that will produce a XML tagged version
of any valid input program. For versions ofbison which
do not support the--skeleton option, it is necessary to
recompile thebison source code, with the new code substi-
tuted for the normal parsing code.

While the modifiedbison parser can be used on any
bison-compatible grammar to generate XML output, the
immediate application was ingcc. The C, Objective C,
C++ and Java components of thegcc suite all use abison-
generated parser, and so could be used with our modified
parser generator (unfortunately, the Fortran 77 and Ada
parsers are written by hand). The only changes needed to
the entiregcc source was in the Makefile. This just involved
changing two flags; one to ensure thatbison was run with
the new skeleton, and one to ensure that the compiler flags
were turned on in order to generate the output debugging
code.

The simplicity of the changes togcc is an important fea-
ture of our approach, since it means that we are not tied to
any given version ofgcc, and can easily modify future ver-
sions. As mentioned above, this also allows us to use old
version ofgcc with equal ease; for example, we have deter-
mined that abison-generated C++ parser has been used in
gcc since at least version 1.40.3 of October 1991.
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1 int x;
2 void f(int);
3 typedef int g;
4 int main()
5 {
6 f(x); /* Expression */
7 g(x); /* Declaration */
8 }

Figure 3. An example of the declaration/expression
ambiguity in C. Both lines in the body of main()
are identical to a simple context-free syntac-
tic analysis, yet the first is an expression,
whereas the second is a declaration

4. Results

In this section we discuss some of the pragmatics of us-
ing our approach withgcc, and present some summary re-
sults to give an estimate of the overhead of using the system.

4.1. The declaration/expression ambiguity in C

Figure 3, lines 6 and 7, illustrates the declara-
tion/expression ambiguity that occurs in the C program-
ming language. The problem here is that both statements in
the body ofmain are syntactically identical at the context-
free level - an identifier, followed by another, parenthesised
identifier. Sincef is declared previously as a function, line
6 is parsed as a call tof with the global variablex as the
argument. However, because of the declaration ofg, line 7
is parsed as a declaration of a local variablex of type int ,
with redundant parentheses around the declarator. This type
of ambiguity complicates the production of parsers and re-
verse engineering tools for C, and bedevils efforts to pro-
duce tools for C++, where the problems are considerably
exacerbated - see reference [2,§6.8].

Figure 4 and Figure 5 are excerpts from the XML gener-
ated for this program by our modifiedbison-produced out-
put, working as a part of thegcc compiler, version 3.0.4.
It can clearly be seen that in Figure 4 the first statement is
being parsed as an<expr> , whereas in Figure 5 the sec-
ond is parsed as a<decl> . While the XML output is just
a parser tree, we note that the tags effectively encode the
context-sensitive information that was derived bygcc dur-
ing the parse.

4.2. Modifying the output for C and C++

One other point of note from Figures 4 and 5 is that the
tags for terminal symbols are carrying an extra attribute, la-

beledattrib . This is also a relatively new feature ofbi-
son which allows users to enhance debugging information
by defining a macroYYPRINTshowing how to print these.
Fortunately, the GNU C and C++ compilers take advantage
of this, thus allowing variable names to appear in the XML
output.

It should be noted that this feature is not specific to the
C and C++ components ofgcc, and will work for allbison
parsers that define theYYPRINTmacro. The Java compiler
from gcc does not, unfortunately, use this at present. It is
relatively easy to add this facility to thegcc Java compiler,
but it does require modification of thegcc source code.

One further problem with the default output frombison
is the amount of data generated from even relatively simple
programs. While some of this can be attributed to the com-
plexity of the grammar, it is due mostly to the inclusion of
various header files in programs, which expands the amount
of code seen by the parser quite considerably. Needless to
say, this is not an issue with the Java compiler fromgcc
which does not use a preprocessor.

The solution we have implemented at the moment is an
attempt to minimise the modifications that needed to be
made togcc, so that they will be portable over multiple
versions of the compiler. To this end, we have added a fa-
cility to the compiler to process a new type of#pragma
directive, one that has the effect of turning XML generation
on and off. This has the disadvantage of meaning that the
source programs need to be modified to insert the pragma
directive, but has the advantage of minimising the impact on
gcc. It is relatively simple to write a script to insert these di-
rectives automatically around all system file inclusions, and
the modification togcc required only a dozen lines of code.

It is arguable that the solution to place pragma direc-
tives around the system include files is somewhat messy,
but it represents a compromise between the application-
independence of our modifications tobison, and the need
to produce realistic amounts of output for C and C++ pro-
grams. Further work is required to see if a more elegant
solution may be found here.

4.3. Some Results

In order to test the output of our XML-enhanced version
of gcc, we ran the compiler over a number of programs
from a benchmark suite designed as part of a study to com-
pare several C++ fact generators [20]. While our use of the
benchmark suite is not strictly in keeping with its intent, we
chose this suite as the source programs are freely available,
and likely to be familiar to the reverse-engineering commu-
nity.

We used the “Accuracy” section of the suite, since our
version ofgcc would not be capable of dealing with the
“Robustness” section. Figures 6 and 7 summarise the
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<simple stmt>
<expr><expr no commas><cast expr><unary expr><primary>

<notype unqualified id>
<TOKEN type="IDENTIFIER" attrib=" ‘f’">

</notype unqualified id>
<TOKEN type="’(’">
<nonnull exprlist><expr no commas><cast expr><unary expr><primary>

<notype unqualified id>
<TOKEN type="IDENTIFIER" attrib=" ‘x’">

</notype unqualified id>
</primary></unary expr></cast expr></expr no commas></nonnull exprlist>
<TOKEN type="’)’">

</primary></unary expr></cast expr></expr no commas></expr>
<TOKEN type="’;’">

</simple stmt>

Figure 4. The XML output for the expressionf(x) . This XML corresponds to line 6 of the C program
representing the declaration/expression ambiguity.

<simple stmt>
<decl>

<typespec><complete type name><nonnested type><type name>
<TOKEN type="TYPENAME" attrib=" ‘g’">

</type name></nonnested type></complete type name></typespec>
<initdecls><initdcl0>

<declarator><notype declarator><direct notype declarator>
<TOKEN type="’(’">
<expr or declarator intern><expr or declarator><notype unqualified id>

<TOKEN type="IDENTIFIER" attrib=" ‘x’">
</notype unqualified id></expr or declarator></expr or declarator intern>
<TOKEN type="’)’">

</direct notype declarator></notype declarator></declarator>
<maybeasm></maybeasm><initdcl0 innards><maybe attribute></maybe attribute></initdcl0 innards>

</initdcl0></initdecls>
<TOKEN type="’;’">

</decl>
</simple stmt>

Figure 5. The XML output for the declarationg(x) .This XML corresponds to line 7 of the C program
representing the declaration/expression ambiguity.

6
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results of running the modifiedgcc. Four of the pro-
grams,classmember.cpp , Mover.C , Sayer.C and
animals.C had to be modified slightly, to deal with
gcc’s insistence on qualifying names from included system
header files with thestd:: qualifier. Other than this, all
the files were processed without error.

The data in Figure 6 seeks to determine the overhead
caused by the production of XML usinggcc, including the
reverse parsing and file writing. For each file we give the
time taken in seconds2 to process the file without and with
XML generation, and in the last column, show the degree
of slowdown. The last column is calculated by dividing the
time with XML generation by the time without XML gen-
eration. As can be seen from this table, XML generation
slows the parsing process by an average of 25 times over
ordinary parsing.

The data in Figure 7 gives an estimate of the “size” of
the generated files. The second and third columns give an
estimate of the length of each file, in terms of the number of
lines of code before preprocessing, and the number of non-
blank lines of code after preprocessing. The fourth and fifth
columns show the number of tags for terminal symbols, and
the number of pairs of start/end tags for non-terminal sym-
bols respectively. The last column, calculated by dividing
the previous two, shows that on average there are three non-
terminal start/end pairs for each non-terminal tag.

5. Related Work

While we have presented our work in terms of its ability
to tag C and C++ programs with syntactic information in
XML, it should be noted that the technique is not limited
to a single programming language or compiler. By linking
XML production to thebison parser generator we provide
for a greater range of application of our approach, but sacri-
fice the ability to include language-specific semantic infor-
mation. In this context, our approach is most readily com-
parable to that of reference [16], which outlines a rough
framework for XML production from top-down parsers. It
is mentioned that this technique could also be applied to
bottom-up parsers, but it is not evident from the paper that
this has actually been fully worked out or implemented.

While our approach is not specifically linked to C or
C++, it is useful to compare it with other approaches in this
area. There has already been considerable work done on
developing schemas for representing facts about programs;
some of the more prominent include schemas such as Datrix
[9], Columbus [7] and Harmonia [4]. More generic schemas
include those based on GXL [10], as well as the WoSEF ef-
fort [21] to develop a standard exchange format. Each of
these approaches produces a program representation with

2All programs were run under Redhat Linux 7.2 on a PC with a
350MHz Pentium II processor and 128MB of RAM.

more semantic information than ours. We see our approach
as being useful in producing an initial XML representation
of a program, that may then be transformed into a schema
with semantic content.

At the opposite end of the scale is the work on srcML
[13], which notes that information regarding file position
and comments is often important for fact extraction. Thus,
this approach seeks to retain information even from the pre-
processing stage; a non-trivial issue given the complexity of
the preprocessor for C and C++. While such information is
clearly useful, it is not obvious how to integrate this into our
language-independent approach, although file position can
now be handled inbison using the@$and@nattributes.

The CPPX tool [5] is similar to our work in that it uses
gcc as a front-end. It differs in that it dumps information
from a later phase of the compiler’s operation. This has
the advantage of including more semantic information, but
involves a tighter coupling with thegcc sources.

Reference [20] measures four fact extractors for C++
in terms of their robustness and accuracy. Each of these
four tools produces significantly more semantic information
than our approach, and the tests applied analyse their per-
formance based on their ability to retrieve semantic facts.
From the perspective of our work here, it is notable that
each of these extractors employs a third-party front end, and
thus focuses on the “back-end” schema and fact generation.
We hope that our work can contribute to the provision of a
lightweight front end for C++ and other languages. We see
the XML syntax tree produced by our approach as a basis
for transformation into more complex schemas, helping to
decouple the “compiler” related parsing issues from those
issues more directly related to the field of reverse engineer-
ing.

6. Conclusion

In this paper we have outlined a general algorithm for
the modification of thebison parser generator, so that it
can produce a parse tree in XML format. We have also
discussed an immediate application of this technique, a
portable modification of thegcc compiler, that then allows
for XML output for C, Objective C, C++ and Java programs.

By modifying bison rather thangcc directly, we have
produced a tool that is applicable in any domain that uses
the bison parser generator and, in particular, is directly
applicable to multiple versions ofgcc. While our ap-
proach does not have the same semantic richness as other
approaches, it does have the advantage of being language
independent, and thus re-usable in a number of different
domains. We do not envisage it as a stand-alone product,
but believe that it will be useful as a starting point for more
language-specific tools.

Having outlined some of the features and advantages of
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Time in seconds Rate of
Filename standard With XML slowdown
preproc/1/preproc1.C 5.43 136.86 25.2
preproc/2/preproc2.C 4.82 140.39 29.1
preproc/pragma/a04.cpp 4.74 121.20 25.6
syntax/array/main.C 6.40 124.77 19.5
syntax/array/poly.C 5.15 129.45 25.1
syntax/enum/enum.c 0.63 2.46 3.9
syntax/enum/enum.cpp 0.20 3.46 17.0
syntax/exceptions/exception.cpp 4.87 133.60 27.5
syntax/fcns/main.C 3.71 125.19 33.8
syntax/fcns/multiply.C 0.07 0.13 1.7
syntax/fcns/sort.C 4.80 121.31 25.3
syntax/fcns/squared.C 0.06 0.06 1.0
syntax/inherit/Mover.C 6.23 125.46 20.1
syntax/inherit/Sayer.C 5.23 124.52 23.8
syntax/inherit/animals.C 5.33 125.34 23.5
syntax/namespace/main.C 4.83 123.78 25.7
syntax/namespace/ns.C 3.49 175.21 50.2
syntax/namespace/ns2.C 0.05 0.09 1.9
syntax/operators/addition.cpp 5.01 124.97 24.9
syntax/operators/fcall.cpp 5.09 124.95 24.5
syntax/struct/struct.C 5.17 123.81 24.0
syntax/templates/classmember.cpp 7.24 148.88 20.6
syntax/templates/function.cpp 5.71 145.13 25.4
syntax/union/union.cpp 5.04 124.67 24.7
syntax/vars/vars.C 4.84 120.77 24.9
average 4.17 105.06 25.2

Figure 6. Timing results the analysis of C++ programs.Here we show each of the programs tested, along
with the time taken to parse the program with and without XML generation. The final column shows
the slowdown factor caused by XML generation.

Filename orig LOC nb, pp LOC Terminals Non-Terms. T/NT
preproc/1/preproc1.C 88 17934 117111 376499 3.2
preproc/2/preproc2.C 28 17641 111204 358821 3.2
preproc/pragma/a04.cpp 110 17679 111309 359212 3.2
syntax/array/main.C 34 17671 111386 359420 3.2
syntax/array/poly.C 58 17975 117438 377442 3.2
syntax/enum/enum.cpp 19 515 3429 11710 3.4
syntax/enum/enum.c 18 407 2428 8000 3.3
syntax/exceptions/exception.cpp 49 17658 111231 358918 3.2
syntax/fcns/main.C 23 17944 117243 376876 3.2
syntax/fcns/multiply.C 16 12 66 237 3.6
syntax/fcns/sort.C 62 17703 111711 360413 3.2
syntax/fcns/squared.C 3 3 14 55 3.9
syntax/inherit/animals.C 52 17740 111642 360424 3.2
syntax/inherit/Mover.C 83 17729 111652 360384 3.2
syntax/inherit/Sayer.C 64 17692 111446 359736 3.2
syntax/namespace/main.C 25 17656 111245 359081 3.2
syntax/namespace/ns2.C 18 13 44 153 3.5
syntax/namespace/ns.C 17 17640 111140 358793 3.2
syntax/operators/addition.cpp 33 17634 111161 358801 3.2
syntax/operators/fcall.cpp 31 17633 111126 358680 3.2
syntax/struct/struct.C 18 17646 111289 359124 3.2
syntax/templates/classmember.cpp 41 19553 128305 412119 3.2
syntax/templates/function.cpp 29 19545 128247 411946 3.2
syntax/union/union.cpp 47 17659 111255 359020 3.2
syntax/vars/vars.C 64 17682 111366 359441 3.2

Figure 7. Size data from the analysis of C++ programs.This table lists the number of original lines-of-code
and the number of non-blank, preprocessed lines-of-code in each file. It then shows the number of
terminal XML tags and non-terminal pairs of XML tags. The final column is calculated by dividing the
number of non-terminal pairs of tags by terminal tags.
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our approach above, it is worth noting some drawbacks.
First, the output format is necessarily dependent on the non-
terminals used in the correspondingbison input file. As
well as not being directly in conformance with the standard
grammars (e.g. for thegcc C++ parser), these are subject
to change as the parser is modified. Second, the tagging
is not generic between languages as, again, it is grammar
dependent. Thus a language construct shared between e.g.
C, C++ and Java may be tagged differently if the grammar-
writer chooses to use different names for the non-terminals.
Finally, our approach does not, of course, work for hand-
coded parsers; in particular, the Ada and Fortran compil-
ers from gcc use a hand-coded parser, and thus are not
amenable to our approach.

However, we believe that despite these caveats, the ap-
proach described here can still prove useful in the develop-
ment of program analysis tools. Our goal here was not to
replace more semantically-rich schemas and tools, such as
those described in the last section, but to facilitate their in-
tegration with more accurate front-ends, as exemplified by
the GNU compiler collection. We hope to extend this work
to provide mappings between our outputs for C++ and some
of the more standard schemas described above.
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