Applying Software Engineering Techniques to Parser Design: The
Development of a C** Parser

BRIAN A. MALLOY

Clemson University

JAMES F. POWER

National University of Ireland, Maynooth
and

JOHN T. WALDRON

Trinity College Dublin

In this paper we describe the development of a parser for the C# programming language. We outline the development process used,
detail its application to the development of a C# parser and present a number of metrics that describe the parser’s evolution. This
paper presents and reinforces an argument for the application of software engineering techniques in the area of parser design. The
development of a parser for the C# programming language is in itself important to software engineering, since parsers form the basis
for tools such as metrics generators, refactoring tools, pretty-printers and reverse engineering tools.

Categories and Subject Descriptors: D.2.7 [Software Engineering]: Distribution, Maintenance, and Enhancement— Restructuring,
reverse engineering, and reengineering, Version control; D.2.7 [Software Engineering]: Metrics—Complezity measures; D.3.4
[Programming Languages]: Processors—Parsing

General Terms: Design, Documentation, Measurement

Additional Key Words and Phrases: C# programming language, grammars, parser design, software engineering.

1. INTRODUCTION

In this paper we describe the development of a parser for the C# programming language. What is novel to our
approach is that we treat this process as a software engineering project, subject to the same techniques and
metrication as the design of software for other areas of application. In particular we use the Code Versioning
System CVS to checkpoint the development phases, and a rigorous testing framework to guide the progression
from one phase to the next. This work is important in that it presents an argument for the application of these
techniques in the area of parser design, and describes a framework in which this application can take place. It
presents one of the first case studies of parser design, and contrasts sharply with the typical presentation of
parsers “as is”, with little associated documentation or justification.

The development of a parser for the C# programming language is in itself important to software engineering,
since parsers form the basis for many tools used by software engineers. These tools include metrics generators,
class-hierarchy browsers, refactoring tools, pretty-printers and syntax highlighters, cross-referencing tools, and
reverse engineering tools. Since the C# programming language is relatively new, it is opportune to stress the
importance of a grammar that is amenable to parsing, if these and other tools are to be built and applied with
ease. Certainly, many lessons can be learned from the increasingly complex syntax of the C++ language that,
in part, contributes to the difficulty of developing standardised tools for this language [Sutter 2001].

Author Addresses:

B A Malloy, Computer Science Department, Clemson University, Clemson, SC, USA; malloy@cs.clemson.edu

J F Power, Computer Science Department, National University of Ireland, Maynooth, Co. Kildare, Ireland; jpower@cs.may.ie

J T Waldron, Computer Science Department, Trinity College Dublin, Dublin 2, Ireland; john.waldron@cs.tcd.ie

Supported in part by an Enterprise Ireland International Collaboration, Grant, no. IC/2001/061.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that
the copies are not made or distributed for profit or commercial advantage, that the copies bear this notice and the full citation on the
first page. Copyrights for components of this work owned by others than SAICSIT or the ACM must be honoured. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission
and/or a fee

© 2002 SAICSIT

Proceedings of SAICSIT 2002, Pages 74-81

Accepted for the Conf. of the South African Inst. of Computer Scientists and Information Technologists
Port Elizabeth, South Africa, September 16-18, 2002

Applying Software Engineering Techniques to Parser Design ° 75

Section 2 presents the background, describing briefly the C# programming language as well as the area of parser
design. Section 3 outlines the development process, while section 4 details its application to the development of
a C# parser. In particular, section 4 presents a number of metrics that describe the parser’s evolution. Section
5 concludes the paper.

2. BACKGROUND AND RELATED WORK

In this section we briefly describe the C# programming language by reviewing its differences with related lan-
guages such as Java and C++. We also review the parser design process, and discuss related work in the field
of parser design.

2.1 The C¥ Programming Language

The C# programming language [Microsoft Corporation 2001] was developed specifically for programming on
Microsoft’s .NET platform, where it forms part of a suite of compilers including Visual Basic .NET and Visual
C++ .NET. Syntactically, C# is a descendant of the C programming language, as are its cousins C++ and
Java. The language supports a preprocessor, albeit in a much reduced form than the C/C++ version, providing
conditional compilation. Semantically, many features of C# will seem quite familiar to Java programmers: class-
based programming, a strong typing system and garbage-collected memory management. However, C# still has
a strong C++ flavour, using namespaces rather than packages, as well as using C++-style keywords (“const”
rather than “final”) and naming conventions (“string” rather than “String”).

There are some hybrid features also. It is possible to define unsafe regions of code, where the language allows
direct access to pointers in the old C/C++ style (although not under such a liberal regime). Stack-allocated
structs as well as enums will also seem familiar to C++ programmers. The designation of method parameters as
either pass-by-value (the default), pass-by-reference or result-only via keywords “ref” and “out” will not seem
unusual to Fortran or Ada programmers.

Perhaps C#’s real strengths lie in those areas where it explicitly differs from both C++ and Java, particularly
in its support for object-oriented concepts. The primitive built-in types such as “int” are automatically boxed
(or “wrapped”) into objects as necessary, and converted back as required. This addresses a significant issue in
the Java programming language where these types work uneasily with the standard containers in the Java class
library. C#’s delegates continue in this theme by providing boxed methods, similar to function-pointers in C+4+
or method objects in Java.

An interesting feature is the provision for the definition of properties in classes, which play the role of instance
variables with associated accessor and mutator methods (so called “get” and “set” methods). Explicit support
for class attributes and event-handling brings C#’s support for these features well beyond that of C4+ or Java.

2.2 Parsers and Parser Generators

The description or specification of a programming language can be modularised in many ways, but it is typical
to distinguish between static aspects, such as syntax-, scope- and type-checking, and dynamic aspects, such
as run-time checks and the actual behaviour of the program. Within the description of the static aspects of a
programming language we can distinguish between the language’s syntaz, describing the valid words and sentences
in the language, and its (static) semantics, concerning issues such as scope and type checking. In practice, the
division between these descriptions is typically defined by the descriptive power of context-free grammars, the
specification formalism most commonly used to describe a language’s syntax.

Formally, a context-free grammar (hereafter a grammar) is a four-tuple (T, N, S, P), where T is a set of
terminal symbols, describing the allowed words in the language, IV is a set of non-terminals describing sequences
of these words, forming constructs such as declarations, statements, expressions etc. We distinguish a unique
non-terminal S, the start symbol, whose corresponding sentences describe whole programs. Finally, P, the set
of production rules, is the component most often identified with the grammar, since it describes the relationship
between the nonterminal and terminal symbols, defining the syntax of the language.

In practice, the task of describing the characters that make up the words in the language can be done separately
from the context-free grammar. A series of regular expressions can be used to describe the set of allowable words,
and acts as the basis for the description of a scanner, also called a lexical analyser. Scanners can also be used
for simple processing tasks such as counting lines, identifying comments, word-highlighting in editors and simple
metrics that do not involve structural information.

Typically, a language’s syntax is described using either a context-free grammar or EBNF, a descriptive formal-
ism with the same power of expression, but employing special notation for optionality and repetition. Parsing
is the process whereby a given program is matched against the grammar rules to determine (at least) whether
or not it is syntactically correct. As part of this process the various parts of the program are identified with

Proceedings of SAICSIT 2002

Accepted for the Conf. of the South African Inst. of Computer Scientists and Information Technologists
Port Elizabeth, South Africa, September 16-18, 2002

76 ° B A Malloy, J F Power, and J T Waldron

the corresponding constructs in the grammar, so that program elements such as declarations, statements and
expressions can then be identified.

The automatic generation of parsing programs from a context-free grammar is a well-established process,
and various algorithms such as LL (ANTLR and JavaCC) and LALR (most notably yacc [Johnson 1975]) can
be used; the “dragon book” [Aho et al. 1986] is the standard reference here. In this paper we use the bison
parser generator, a tool similar to yacc, released under the GNU public licence. However, not every context-
free grammar can be transformed to a deterministic parser. Ambiguous grammars contain structures for which
multiple parses can be given, and even unambiguous grammars can contain constructs that are not deterministic
under a given parsing algorithm.

As well as forming the front-end of a compiler, a parser is also the foundation for many software engineering
tools, such as pretty-printing, automatic generation of documentation, coding tools such as class browsers,
metrication tools and tools that check coding style. Automatic re-engineering and maintenance tools, as well as
tools to support refactoring and reverse-engineering also typically require a parser as a front-end. The amenability
of a language’s syntax for parser generation is crucial in the development of such tools.

Many language specifications deliberately present the syntax of a language in two styles: one for descriptive
purposes, and one that is amenable to a common parsing algorithm such as LALR. Indeed, both the standard
reference on the C programming language [Kernighan and Ritchie 1988] and the Java programming language
[Gosling et al. 1996] explicitly present a LALR grammar for the language. However, this is not the case for the
C++ programming language, as described in Stroustrup [1997] or specified in ISO/TEC [1998], and the efficient
construction of parsers and analysers for C++ programs is problematic and still an active area of research [Power
and Malloy 2000b], [Willink 2001].

Since the C# programming language is relatively new, and since it is likely that a considerable body of code
will be written using this language over the coming years, we believe that it is vital that a standard parser for
C# be established at this stage, and that changes to the language be considered in the context of their impact
on the parsability of the language.

2.3 Related Work

While the area of parser design, as a subset of compiler design is well-established and documented, it is not
typically the subject of formalised software engineering techniques. This is somewhat ironic, given that the
automatic generation of code from a specification, as typified by parser generators such as yacc, could be said
to represent something of an ideal in software engineering. However, perhaps because of these early advances,
parsers are not typically considered within the modern software engineering context, and the means of derivation
of parsers from standards can often be opaque. For example, it would be notably difficult to reconstruct the
exact relationship between the C++ parser in the GNU compiler collection gee and the corresponding grammar
in the standard, a problem exacerbated by their parallel development over the last decade.

There are a number of other barriers to the deployment of software engineering techniques in parser design.
First, parsers used as compiler front-ends are a classic example of “system software”, an area not traditionally
exposed to software engineering techniques. Second, the traditional user-centered view, as represented by e.g.
use cases in the UML, is not readily applicable to such software. Third, most of the programming language
source code is generated code, and hence standard software metrics would not yield much information about the
parser itself. Indeed, since parser design and implementation is a relatively low-level process, we do not deal
with many of the more higher-level analysis and design issues in this paper.

The application of object-oriented design principles to parsers and compilers has been investigated in Reiss and
Davis [1995] and Holmes [1995]. Formal transformation techniques have been investigated in Ladmmel [2001], and
automatic test case generation has been attempted, with varying degrees of success [Malloy and Power 2001].
A rough software engineering framework for parser design was proposed in Power and Malloy [2001]. In the
remainder of this paper we extend and explicate the parser design process, and demonstrate its use in a case
study, the design of a parser for C#.

3. METHODOLOGY

In this section we describe the methodology applied to the design and development of the C# parser. Figure 1
gives an overview of the components involved in this process.

3.1 Format of the original grammar

The C# grammar as presented in appendix C of the standard [Microsoft Corporation 2001] is not directly
amenable to processing by a parser generator. First, the grammar is effectively a summary of the syntactic
constructs described in the preceding chapters and, as such, contains a degree of repetition. Second, the grammar

Proceedings of SAICSIT 2002

Accepted for the Conf. of the South African Inst. of Computer Scientists and Information Technologists
Port Elizabeth, South Africa, September 16-18, 2002

Applying Software Engineering Techniques to Parser Design ° 7

- txt Key for filetypes
LM El C source code
C# LH]
B’
S'—a”_gf’agt_e C# source code
pecification —
v0.28 versions of rograms
c# Check In CVvs prog
Version i
Grammar .sh | shell scripts
— input for Check Out Control - P
bison System .txt| documents
EBNF to CFG U
I bison input
bison parser generator
cs
e Test cases
.c
C# scanner

C-code Test txt

for C# harness

parser

.c
driver Test
rogram
prog Results

Figure 1. System overview. This Figure shows the main components used in the parser design process. The C#
Language Specification was used as the starting point for multiple versions of the C# parser, controlled using
CVS. Each version was tested using a driver and harness against a suite of C# programs.

contains a number of nonterminals and production rules included for explanatory purposes, and which cause a
degree of overlap in the description. Third, the grammar does not directly distinguish between the constructs
relevant to scanner generation and those relevant to the parser. Finally, the grammar uses EBNF-style optionality
constructs, which must be replaced by equivalent grammar rules for use in a parser generator such as bison.

In all of these features the grammar resembles the presentation of the C++ grammar in ISO/IEC [1998]. While
the C# language, and its corresponding documentation, is still relatively new, and while we do not suggest that
its syntax even approaches the complexity of the C++ syntax, we believe that it would be reassuring and
appropriate if future versions of the C# language documentation included a parser-compatible grammar, in the
style of the C [Kernighan and Ritchie 1988, §A13] and Java [Gosling et al. 1996, Chapter 19] language references.

3.2 Steps in the implementation of the parser

Step I: Assembling the test cases.

Testing has always played an important role in software development, and regular and frequent testing has
gained increased prominence due to its emphasis in techniques such as refactoring [Fowler 1999] and extreme
programming [Beck 1999], as well as the development of practical testing techniques relevant to modern software
design [McGregor and Sykes 2001]. Fortunately, parser design is particularly amenable to the use of test cases,
since a parser is essentially a text-processing program, easily tested in a batch-style.

The importance of the C# programming language is emphasised by the reasonably large body of code already
written in the language. For our test cases we chose a range of code, mostly from texts describing programming
in the C# language. Such texts not only tend to provide a large body of code in a single location, but can also
be expected to use a good range of the language’s features in the process of explaining them. This contrasts with
sample applications which might only concentrate on a subset of the language features, either because of their
concentration on a particular domain of application, or because of the coding style of the author. Two significant
bodies of source code were included, however. These are the Ximian C# compiler and the DotGNU framework,
two freely available preliminary versions of C# compilers.! The texts and programs used in this study are listed
in Figure 2.

Step II: Building and testing the scanner.
I Microsoft has since release the source code to their own implementation of a C# compiler under the name “Rotor”

Proceedings of SAICSIT 2002

Accepted for the Conf. of the South African Inst. of Computer Scientists and Information Technologists
Port Elizabeth, South Africa, September 16-18, 2002

78 ° B A Malloy, J F Power, and J T Waldron

No. of No. of
Source of Test Cases files non-blank lines
C# Primer: A Practical Approach by Stanley B. Lippman, ISBN: 0201729555 142 14,670
C# Primer Plus by Klaus Michelsen, ISBN: 0672321521 177 8,918
C# Unleashed by Joseph Mayo, ISBN: 067232122X 131 8,659
Teach Yourself C* Web Programming in 21 Days by Phil Syme and Peter G. 24 985
Aitken, ISBN: 0672322358
Sams Teach Yourself C* in 21 Days by Bradley Jones, ISBN: 0672320711 264 12,336
C#* and the .NET Framework by Robert Powell, Richard Weeks, ISBN: 161 11,890
067232153X
C#: A Beginners Guide by Herbert Schildt, ISBN: 0072133295 26 1,810
A Programmer’s Introduction to C# by Eric Gunnerson, ISBN: 1893115623 277 11,236
C#: How to Program by Deitel, Deitel, Listfield, Nieto, Yaeger and Zlatkina, 504 54,586
ISBN: 0130622214
MCS: The Ximian C# compiler (31-Jan-02), http://www.go-mono.com/ 1,411 161,395
DotGNU Portable. NET version 0.1.2, http://www.dotgnu.net/ 469 59,614
Total 3,586 346,099

Figure 2. Source of the sample code for the test cases. The C# programs associated with these textbooks and
programs were used in the compilation of test cases for the parser.

A correctly-functioning scanner is a sine qua non of any parser and, since this can be developed and tested
separately, it forms the first step of the development. The grammar rules relating to terminal composition were
identified and translated into appropriate regular expressions. The GNU scanner generator flez was used to
generate the scanner, and a harness program was written to lexically analyse a C# program. Since the lexical
constructs in C# are similar to those of other language such as C, C++ and Java, this stage of the development
was relatively straightforward. Only a few, easily corrected errors were detected at this point.

Step III: Converting the grammar to a parser.
The next stage involved converting the EBNF specification in the standard [Microsoft Corporation 2001, appendix
C] into a format suitable for the GNU bison parser generator. The optionality in rules was rewritten using separate
productions, and a number of duplicate rules were eliminated at this point. The bison parser generator is flexible
in its input format, allowing duplicate rules and a loose syntax. It was relatively easy to write a tool to check
bison grammars for strict conformance to context-free grammar syntax, and this proved useful in tidying up the
grammar.

Step IV: The development process.

Once the grammar had been translated into bison format, a driver program framework was then written, along
with some error-processing routines in the parser itself. Since the goal was just to produce a minimal working
parser the error-handling was fairly basic - on encountering unrecognised syntax, the parser just reported an
error, along with the line number and next token, and stopped processing.

Testing
A test harness was written that ran the parser over the test cases, recording failures in a log file. Some UNIX
shell scripts were used for this purpose - a scripting language such as perl or Python could have been used here
with equal ease. The ease of implementation of the test harness related directly to the batch-processing nature of
the parser: the test methodology corresponded to specification-based (or “black-box”) testing, rather than more
elaborate white-box or unit tests. Such a testing framework was quite adequate for the C# grammar, although
an investigation of the possible benefits of unit tests in relation to the development and maintenance of a larger
grammar would be interesting.

Often many checks are inserted into a grammar that cause a degree of complexity to be added, and prove
to be the source of many syntactic ambiguities. In such cases it is common practice to “widen” the grammar,
to accept some extra, incorrect, programs, and postpone the identification of such errors to a later phase. An
example of this is the use of modifiers such as public, virtual, abstract etc. in various parts of the program.
Even though only a specific subset of these modifiers may be used with a given construct (such as a delegate,
instance variable, method, constructor etc.), it proves simpler to ignore this distinction at parse-time.

This has an important implication for test-cases, since the parser cannot now be expected to reject all incorrect
programs. Thus, the tests we used were all positive tests - i.e. programs that were expected to pass the parsing
phase. In practice this is a reasonable distinction to make, since it will not hamper the development of many

Proceedings of SAICSIT 2002

Accepted for the Conf. of the South African Inst. of Computer Scientists and Information Technologists
Port Elizabeth, South Africa, September 16-18, 2002

Applying Software Engineering Techniques to Parser Design ° 79

Version 02 05 06 07 08 09 10 11 12 13 14 15 16 17 | 18 | 19

s/r 40 40 58 40 39 37 6 6 6 3 1 1 1 1 1 1
r/r 617 579 149 147 147 31 6 6 2 1 1 1 1 1 1 1
in. states 58 57 42 38 38 31 8 8 6 4 2 2 2 2 2

test fails 2826 | 2819 | 2816 | 1136 | 926 | 1613 | 1591 | 1591 | 1541 | 1264 | 1261 | 1261 | 1261 | 85 | 59 | 55

Figure 3. Quality measures during the parser’s development. This table shows the number of shift-reduce and reduce-reduce conflicts,
the number of inadequate states, and the number of test-case failures for each version.

tools designed to process correct programs. This corresponded reasonably well with the test cases used, relatively
few of which were examples of incorrect programs.

Version Tracking
It was fundamental to our approach that we sought to keep a record of all changes made to the grammar, as we
transformed it from the format given in the standard to one that could be parsed without ambiguity. To this
end the code versioning system CVS [Fogel and Bar 2001] was used. This provided for the development of the
parser to be broken into separate, recorded phases (or “releases” in CVS terminology). Alterations in moving
from one phase to the next can be recorded, thus providing a trail of all the modifications made to the grammar.
This is particularly important in grammar development, where a given set of rules may be transformed many
times during the development.

It is worth noting at this point that since the transformations are being applied to a formal instrument, a
context-free grammar, it would be possible to formally record such transformations, and to formally verify that
they preserve correctness, in that they describe a superset of the original language; such an approach is outlined
in Ladmmel [2001]. Our approach sought to apply a less rigorous model, but we note that our approach can be
seen as complimentary to the formal approach, since it provides for the documentation of the transformations,
which could be subsequently verified.

In the next section we provide a detailed description of this process of transforming the initial version of the
parser corresponding to the C# standard, to one that minimises the ambiguity and conflicts.

4. CASE STUDY

In this section we describe the details of the construction of the C# parser, and present some metrics measuring
its evolution.

The task of developing a parser for a predictive algorithm such as LALR is one of conflict elimination. An
LALR parser works by matching the input with the right-hand sides of grammar rules. Conflicts arise when
the input matches two different right-hand sides (a reduce-reduce conflict), or when the input appears to match
one full right-hand side and part of another (a shift-reduce conflict). While conflicts do not necessarily mean
an incorrect parser, it is desirable to eliminate as many as possible, and to fully predict the behaviour of the
remainder.

Thus, developing a parser is quite similar to refactoring a program - the constructs must be rearranged to
eliminate duplication and overlaps, while preserving the overall behaviour of the program. Figure 3 shows this
process in action. There were 16 major versions of the parser, numbered in Figure 3 from version 02 to version
19 (the omitted versions reflect only minor modifications). As can be seen, the original grammar of version 02
contained 40 shift-reduce and 617 reduce-reduce conflicts.

Such a high number of conflicts is not unusual for a grammar not explicitly designed for a particular parsing
algorithm. It should be noted that not all of these conflicts represent different problems with the grammar -
many are multiple reflections of the same problems. Perhaps a better measure of the number of grammatical
problems that need to be dealt with is the number of inadequate states - those states in the parsing machine that
contain one or more conflicts. The number of these states is also given in Figure 3 and, as can be seen, reflects
a much less dramatic, and more realistic, picture of the development.

The changes from versions 02 to 05 reflect some minor alterations relating to the over-specification of identifiers,
as namespace or type names. It is notable that C# differs from C++ and (to a lesser extent) from C in that it
does not require context-sensitive identifiers, which would distinguish between identifiers used to represent types
and those used to represent ordinary variable names. This feature, reflecting C#’s Java ancestry, is a welcome
development, since it means that parser and tool developers do not need to construct a symbol table in order to
parse the language.

Versions 06 through 09 also reflect C#’s similarity with Java, since they correspond to the elimination of
ambiguities almost exactly as described in Gosling et al. [1996, Chapter 19]. These ambiguities include the
over-specification of modifiers and types (including the return type of methods and the types of fields). The

Proceedings of SAICSIT 2002

Accepted for the Conf. of the South African Inst. of Computer Scientists and Information Technologists
Port Elizabeth, South Africa, September 16-18, 2002

80 ° B A Malloy, J F Power, and J T Waldron

Version | 02 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19
|T| 138 | 138 | 138 | 138 | 138 | 138 | 138 | 138 | 138 | 142 | 142 | 142 | 142 | 142 | 142 | 142
|N| 293 | 291 | 256 | 256 | 254 | 243 | 233 | 233 | 232 | 230 | 232 | 232 | 234 | 240 | 241 | 241
|P| 414 | 412 | 314 | 316 | 313 | 304 | 298 | 298 | 299 | 288 | 289 | 290 | 293 | 293 | 294 | 295
R 4.1 4.1 | 42 | 42 | 42 | 43 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44

Figure 4. Grammar metrics charting the parser’s development. This table shows the number of terminals, non-terminals, rules and
the average RHS length for each version.

changes between versions 09 and 10 are specific to the C# grammar - overlaps in the definition of catch clauses,
attribute arguments and expression lists.

Versions 11 and 12 moved the use of identifiers up through the definition of expressions to eliminate a conflict
between qualified names and member access, both of which use a’.” as a separator. Again, this reflects a problem
found and disambiguated in the Java grammar. Version 13 reflects a problem specific to C# - the use of rank
specifiers to specify the number of dimensions of a rectangular array. A “ragged” 2-D array of integers is declared
to have type “int [J[]” (as in Java), but C# uses “int [,]” to describe a rectangular array. This creates
problems for a parser using just a single token of lookahead (the “[” in this case). We chose to solve this by
tokenising the entire rank specifier in the scanner. This is a (very mild) example of the approach of increasing
the power of the scanner in preference to rearrangement of the grammar.

Versions 14 through 16 were attempts to disambiguate the conflict between a parenthesised expression and a
cast expression. These become difficult to separate when the type/expression involved is a simple identifier e.g.
“(x)”. This is a problem shared with Java, and is amenable to the same solution of deferring the choice until
more information becomes available. However, the problem is exacerbated in C# as this language allows for
the use of explicit pointers, and thus an extra level of ambiguity is involved between the pointer operator and
multiplication. For example, a line beginning “(x *” might be the start of a declaration of a pointer to type x,
or the start of an expression involving multiplication by variable x.

Versions 18 and 19 reflect minor changes to the parser as mistakes reflected by the test cases were fixed.
We have already noted the similarity between the parser development process and refactoring. However, test
cases are crucial in refactoring to test that the software’s functionality has not changed, whereas the parser’s
development is necessarily driven by conflict elimination. Indeed the parser, while exhibiting fewer conflicts from
version to version, actually exhibits an increase in the number of failed test cases between versions 08 and 09,
and a relatively small decrease until version 17. These changes are really secondary to the development of the
parser - the change from version 08 to 09 reflected the uncovering of a deeper problem in the grammar which
was not solved until much later. Indeed, apart from causing an anxious re-examination of the parser for version
09, the test cases did not begin to play a significant role in the development until after version 17, where they
could be dealt with on an individual basis.

Finally, versions 17 through 19 deal with another problem specific to C* - the use of context-sensitive keywords.
C# has a small set of these words used for attribute targets (e.g. assembly), the accessor types get and set, as
well as event accessor specifiers add and remove. Unusually for a modern programming language, these words
are not defined as keywords in general, but act like keywords in the relevant context. While not difficult to deal
with at the moment, the use of such context-sensitive keywords seems a retrogressive step in language design.
Indeed a number of the test cases were already using these words as identifiers, which may provide maintenance
headaches should the C# language change in future versions.

As can be seen from Figure 3, the final version of the parser still has two conflicts and fails some 55 test cases.
One of these conflicts is the harmless “dangling-else” conflict. The other conflict relates to an ambiguity between
types and expressions which we believe to be benign, but we will need to investigate this further. The 55 failed
test cases have been examined by hand and we are happy that our parser correctly rejects these as erroneous
programs.

Another view of the parser development process is given by the metrics shown in Figure 4. Here we measure
|T|, the number of terminals in the grammar, |N| the number of non-terminals in the grammar, and |P| the
number of production rules. Also measured is R, the average number of symbols on the right-hand sides of the
grammar rules. A more comprehensive treatment of the role of metrics in parser development can be found in
Power and Malloy [2000a).

As can be seen from Figure 4, the development process is largely one of consolidation of the production rules,
with a gradual decrease in the number of non-terminals, a sharper decrease in the number of production rules,
and a corresponding increase in the average size of the grammar rules (as reflected by R). The slight increase
in the number of non-terminals and rules at the end reflects the introduction of special productions to deal with
the context-sensitive keywords.

Proceedings of SAICSIT 2002

Accepted for the Conf. of the South African Inst. of Computer Scientists and Information Technologists
Port Elizabeth, South Africa, September 16-18, 2002

Applying Software Engineering Techniques to Parser Design ° 81

5. CONCLUSIONS

In this paper we have presented the design of a parser for the C# programming language in the context of a
software engineering project. We have demonstrated that some of the standard low-level software engineering
techniques such as code versioning and metrication can provide a useful track of the evolution of a parser, as
well as enhancing confidence in its correctness.

We believe that it is of vital importance that simple, reliable parsers exist for commonly-used programming
languages, since parsers form the basis for many software engineering tools. While such parsers form part of the
specification of languages like C and Java, the task of writing a parser for C++ is considerably more complex.
We hope that this work will contribute toward the development of a standard parser for C#, ensuring that the
development of tools for this language is not unnecessarily hindered.

Two particular areas merit further investigation. First, the transformations applied to a grammar can be
formalised and thus verified in the manner of Lammel [2001]. As with all formal methods, the challenge here is
in integrating the formal approach with a more pragmatic programming approach in a realistic manner. Second,
refactoring tools, such as exist for object-oriented software engineering languages [Fowler 1999] could be very
useful in transforming a grammar into a parser. Much of the work involved in parser design involves assessing
the impact of local modifications on the grammar as a whole - this process could be considerably eased by a
good grammar-specific editor.

Trademarks

Visual Basic, Visual C++, Visual C* and/or other Microsoft products referenced herein are either registered
trademarks or trademarks of Microsoft Corporation in the U.S. and/or other countries. Java and all Java-based
marks are registered trademarks of Sun Microsystems Inc. in the United States and other countries.

REFERENCES

AHO, A., SETHI, R., AND ULLMAN, J. 1986. Compilers: Principles, Techniques and Tools. Addison-Wesley, Reading, Massachusetts,
USA.

Beck, K. 1999. Eztreme Programming Explained: Embrace Change. Addison Wesley, Reading, Massachusetts, USA.

FoGeL, K. AND BAR, M. 2001. Open Source Development with CVS. Coriolis Group, Scottsdale, AZ, USA.

FOwWLER, M. 1999. Refactoring: Improving the Design of Existing Code. Addison-Wesley, Reading, Massachusetts, USA.

GOSLING, J., Joy, B., AND STEELE, G. 1996. The Java Language Specification. Addison-Wesley, Reading, Massachusetts, USA.

HowLMEs, J. 1995. Object-Oriented Compiler Construction. Prentice-Hall, Englewood Cliffs, New Jersey, USA.

ISO/IEC. 1998. International Standard: Programming Languages - C++. Number 14882:1998(E) in ASC X3. American National
Standards Institute, New York, NY, USA.

JOHNSON, S. C. 1975. YACC — yet another compiler compiler. Computer Science Technical Report 32, AT&T Bell Laboratories,
Murray Hill, NJ, USA.

KERNIGHAN, B. AND RiITCHIE, D. 1988. The C Programming Language, second ed. Prentice-Hall, Englewood Cliffs, New Jersey,
USA.

LAMMEL, R. 2001. Grammar Adaptation. In Formal Methods Europe. LNCS, vol. 2021. Springer-Verlag, Berlin, Germany, 550-570.

MALLOY, B. AND POWER, J. 2001. An interpretation of Purdom’s algorithm for automatic generation of test cases. In International
Conference on Computer and Information Science. International Association for Computer and Information Science, Orlando,
Florida, USA.

MCcGREGOR, J. D. AND SYKES, D. A. 2001. A Practical Guide To Testing Object-Oriented Software. Addison-Wesley, Reading,
Massachusetts, USA.

MICROSOFT CORPORATION. 2001. C# language specification. Version 0.28.

POWER, J. AND MALLOY, B. 2000a. Metric-based analysis of context-free grammars. In 8th International Workshop on Program
Comprehension. IEEE Computer Society, Limerick, Ireland.

PoOweER, J. AND MALLOY, B. 2000b. Symbol table construction and name lookup in ISO C++. In Technology of Object-Oriented
Languages and Systems. IEEE Computer Society, Sydney, Australia.

PoOweR, J. AND MALLOY, B. 2001. Exploiting metrics to facilitate grammar transformation into LALR format. In 16th ACM
Symposium on Applied Computing. ACM, Las Vegas, USA.

REIss, S. AND Davis, T. 1995. Experiences writing object-oriented compiler front ends. Tech. rep., Brown University. January.

STROUSTRUP, B. 1997. The C++ Programming Language, Third ed. Addison-Wesley, Reading, Massachusetts, USA.

SUTTER, H. 2001. C++ conformance roundup. C/C++ User’s Journal 19, 4 (April), 3-17.

WILLINK, E. D. 2001. Meta-compilation for C++. Ph.D. thesis, Computer Science Research Group, University of Surrey, U.K.

Proceedings of SAICSIT 2002

Accepted for the Conf. of the South African Inst. of Computer Scientists and Information Technologists
Port Elizabeth, South Africa, September 16-18, 2002

