
Accepted for the 16th ACM Symposium on Applied Computing
Las Vegas, USA, March 11-14, 2001

1

Exploiting Metrics to Facilitate Grammar Transformation
into LALR Format

James F. Power
National University of Ireland, Maynooth

Computer Science Dept
County Kildare, Ireland

James.Power@may.ie

Brian A. Malloy
Clemson University

Computer Science Dept
Clemson, SC USA

malloy@cs.clemson.edu

ABSTRACT
The parser-generator yacc is one of the oldest examples of
a domain-specific language, providing significant enhance-
ments over hand-coded parsers in the area of speed, effi-
ciency and maintainability. Despite its widespread use, of-
ten in highly complex systems such as compilers or program
analysis tools, there is relatively little written about the in-
tegration of parsing, and yacc-based parsers in particular,
into the software engineering process.
We exploit software metrics as an aid toward estimating the
complexity of preparing a grammar for the ISO C++ pro-
gramming language for input to yacc. Our metrics provide
a means of assessing the relative merits of the trade-off be-
tween preserving the grammar’s structure and rearranging it
to ease implementation of the resulting parser. We see this
work as part of a larger process of designing well-engineered,
re-usable and reliable program processors, which themselves
will play an important role in the future design of code-based
software-engineering tools.

1. INTRODUCTION
The history of parser construction stretches as far back as
the establishment of software engineering as a discipline, if
not further[8]. In spite of this history, there has been rela-
tively little interaction between these two disciplines. Fur-
thermore, the typical approach to parser development relies
more on experience and ad hoc techniques than a formal,
documented engineering approach. In spite of the existence
of tools such as yacc[9], a domain-specific language for au-
tomatic generation of parsers, considerable effort is often
required to convert the language specification to a suitable
format for these tools.
Construction of a parser for a programming language, and
in particular large-scale languages such as C++[6], push the
problem into the domain of software engineering. Despite
the widespread use of yacc, one of the oldest examples of a
domain-specific language, there has been little written about

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC2001 Las Vegas, NV
Copyright 2001 ACM 1-58113-324-3/01/02...$5.00

the integration of parsing, and yacc-based parsers in partic-
ular, into the software engineering process.
In this paper, we describe an approach for integrating the
task of parser construction into the software engineering
process. We describe a prototype approach to developing
an initial parser, that preserves the structure of the gram-
mar, using backtracking parsers or parsers with extended
look-ahead. We then describe the use of software metrics
to facilitate the transition from the prototype to a working
LALR parser1. The metrics can highlight difficult parts of
the grammar that will require the most effort to transform
into LALR form, and indicate parts of the program that
will require more extensive testing to guarantee robustness
of the final product. Finally, we describe three correctness
preserving grammar transformations that not only facilitate
the transition to a working LALR parser, but that also serve
to document the correctness of the transformed grammar.
In the next section, we provide background about grammars
and parsing and in Section 3 we describe our approach for
integrating parser construction into the software engineering
process. We describe the correctness-preserving transforma-
tions in Section 4, and develop metrics in Section 5. Finally,
we draw conclusions in Section 6.

2. GRAMMARS AND PARSING
In this section we define some of the terminology associated
with context-free grammars and LALR parsing. Context-
free grammars, originally a theoretical formalism, are one of
the earliest examples of domain-specific languages. Context-
free grammars are used in the construction of editors and
other tools, and are used to describe the syntax of program-
ming and other formal languages. In the form of their im-
plementations in parser generators such as yacc, context-free
grammars are foundational in the engineering of compilers,
program analysis tools and other program processors.
A general description of languages, context-free grammars
and parsing can be found in reference [1].
Given a set of words, a language is defined as a set of valid se-
quences of these words. A grammar defines a language; any
language can be defined by a number of different grammars.
When describing formal languages such as programming lan-
guages, we typically use a grammar to describe the syntax
of that language; other aspects, such as the semantics of

1The actual algorithm used by yacc is based on LALR(1)
parsing; in this paper, for simplicity, we refer to LALR(1)
parsing as LALR parsing

Accepted for the 16th ACM Symposium on Applied Computing
Las Vegas, USA, March 11-14, 2001

1

the language typically cannot be described by context-free
grammars.
A grammar is defined over a set of vocabulary symbols, par-
titioned into terminal and non-terminal symbols, with one
distinguished non-terminal symbol called the start symbol.
The grammar defines a language using a set of production
rules, each of which consists of a non-terminal on the left,
and a sequence of vocabulary symbols on the right hand side.
These production rules, when read as left-to-right rewrite
rules, define the language consisting of all those sequences
of terminal symbols that can be generated from the start
symbol.
The procedure of using a grammar to derive a sentence in
its language, known as parsing, can proceed in a top-down
or bottom-up manner. The typical bottom-up approach,
known as a shift-reduce parser works as follows. Terminals
from the sentences are shifted onto the parser’s stack until a
sequence matching the right hand side of a production rule
is found. The production rule is then applied by replacing
the sequence corresponding to its right hand side with the
non-terminal on the left of the rule, a process known as
reduction. This process continues until all symbols have
been consumed, and the entire sequence has been reduced
to the start symbol.
Automating the process of bottom-up parsing involves con-
structing an automaton which recognizes right hand sides
and then applies the appropriate reductions. Since a gram-
mar may be ambiguous, and, indeed, some languages cannot
be represented by an unambiguous grammar, it is not always
possible to determinize this process. This nondeterminism is
reflected in a choice of actions being presented to the parser:
a choice between shifting a symbol and reducing by a rule,
known as a shift-reduce conflict, and a choice between re-
ductions using two different rules, known as a reduce-reduce
conflict.
The traditional approach to bottom up parsing uses one
symbol of lookahead from the sentence being parsed to guide
the choice of action. The most common bottom-up parsing
algorithms using one symbol of lookahead are the SLR(1),
LR(1) and LALR(1) algorithms, which are described in de-
tail in most compiler texts, including reference [1].
The parser generator yacc2 takes a context-free grammar
and generates the C source code for an LALR parser. Cen-
tral to this parser is a deterministic finite-state automaton
that recognizes right hand sides. If the grammar is ambigu-
ous, or not amenable to determinization using the LALR
algorithm, this will be manifested in terms of shift-reduce
and reduce-reduce conflicts in the states of this automaton.

3. SOFTWARE ENGINEERING APPROACH
The history of parser construction stretches as far back as
the establishment of software engineering as a discipline, if
not further. In spite of this history, there has been rela-
tively little interaction between these two disciplines. Fur-
thermore, the typical approach to parser development relies
more on experience and ad hoc techniques than a formal,
documented engineering approach. In spite of the existence
of tools such as yacc, which automate the task of parser gen-

2In this paper, we use the term yacc to cover both the origi-
nal yacc parser-generator, and more recent variants, such as
bison and byacc, which are based on the same LALR parsing
algorithm

eration, considerable effort is often required to convert the
language specification to a suitable format for these tools.
Compiler texts, due to space constraints, typically present
academic examples demonstrating particular transformations
and techniques. However, construction of a parser for pro-
gramming languages, and in particular large-scale languages
such as C++, push the problem into the domain of soft-
ware engineering. Furthermore, there are two properties of
the parser development process that make it particularly
amenable to software engineering methodology.

• First, the software engineer may not have to develop
an initial specification based on informal requirements,
but rather is provided with a full and concrete defini-
tion of the grammar, usually in the standards docu-
ment. In some cases, for example C and Java, the
grammar is already in a parsable form. However, in
the case of ansi C++, the grammar as presented in
Appendix A is not easily converted to LALR form:
containing “constructs that are hard to fit into a yacc
grammar”, as stated in reference [16, Section 3.3.2].

• Second, the specification is presented as a formal gram-
mar so that the syntax of the language is defined un-
ambiguously. This level of formality is contrary to the
usual experience of the software developer who must
typically communicate with the client to develop the
software specification towards this level of formality.
Common sense would suggest that the parser devel-
oper should exploit this advantage.

From these two properties, it is possible to identify at least
three main areas of application of software engineering tech-
niques. These three areas involve the use of the grammar
initially for developing a prototype of the parser, as a source
of complexity metrics to guide development and as a basis
for the application of a sequence of correctness preserving
transformations towards an LALR parser.
Typically, a prototype will implement the software specifica-
tion, not necessarily efficiently, in an effort to quickly provide
an initial working model. Two of the main functions of a
prototype are relevant for parser development. First, the
prototype can act as a yardstick against which the correct-
ness of the ultimate working version can be measured. Sec-
ond, the prototype can support modular development by al-
lowing construction of other related components to proceed,
pending the prototype’s replacement by the actual working
program.
In contrast to the transformations required to construct an
LALR parser, a prototype should involve minimal changes
to the original grammar. The use of either backtracking
parsers, such as byacc, or parsers with extended look-ahead
capabilities, such as ANTLR or javacc, allow the user to
sacrifice efficiency in the interests of preserving the origi-
nal grammar structure[2; 11; 13]. Even though these tools
can be used for the construction of efficient parsers, they do
not require one symbol lookahead, as is the case with the
yacc family of parsers.
The developer can derive confidence in the correctness of
the prototype parser from its similarity with the original
grammar, and eventually this prototype can be used as an
oracle against which the correctness of the final LALR parser
can be measured. Furthermore, semantic actions can be
added to the prototype and, as the grammar is transformed

Accepted for the 16th ACM Symposium on Applied Computing
Las Vegas, USA, March 11-14, 2001

1

during the development of the LALR parser, the resultant
impact on the semantics can be taken into account.

For a large scale software development effort, software met-
rics can facilitate the transition from the prototype towards
the working software. In particular, software metrics can
serve as an indication of areas of difficulty that may slow
the development process. Furthermore, metrics can high-
light complex parts of the program that will require more
extensive testing to guarantee robustness of the final prod-
uct. In Section 5 we discuss metrics relevant in the develop-
ment of an LALR parser.

Since both the original grammar and the final yacc source
of the LALR parser constitute a formal specification of the
language, it provides a framework for a series of correct-
ness preserving transformations from the former to the
latter. This parallels the use of formal methods in software
engineering where one can use either program derivation in
a step-by-step manner, or program verification on the final
product. Correctness preserving grammatical transforma-
tions can support either derivation or verification and serve
to reinforce confidence in the correctness of the final prod-
uct, as well as providing a source of documentation on the
development process. These points are developed further in
Section 4.

4. CORRECTNESS-PRESERVING TRANS-
FORMATIONS

Using the C grammar from reference [7], directly as input to
yacc, will produce a single conflict resulting from the well-
documented “dangling else” ambiguity. By contrast, naively
using the C++ grammar from reference [6], directly as input
to yacc, can produce as many as 1360 errors3. While yacc
will generate a parse regardless of the number of conflicts, it
is desirable to eliminate conflicts in order to have confidence
in the correct operation of the parser.

Thus, the development of LALR parsers is typically charac-
terized by the process of conflict elimination. This process
naturally directs the developer toward a strategy of trans-
formational programming where the goal of each transfor-
mation is to eliminate one or more conflicts and, preferably,
avoid introducing new ones. While this transformational ap-
proach parallels well-recognized software engineering strate-
gies, it has the additional benefit of providing a framework
for formal verification[4].

Good software engineering practice dictates that a process
consisting of a series of transformations be guided by a
change control strategy and accompanied by suitable docu-
mentation[15]. However, many completed LALR parsers are
presented “as is” without any such documentation, and thus
the series of transformations applied cannot readily be re-
verse engineered from the parser. A parser developer work-
ing from a software engineering perspective should be ex-
pected to document the complete path of transformations
from the original grammar to the resulting parser.

One additional advantage of such documented transforma-
tion is that they occur between two formal entities. Since
both the source and the product of each transformation is
a grammar rule or a series of grammar rules, it should be

3This figure represents our own experience and is subject
to variance, depending on the version of yacc used and the
strategy employed for representing optionality.

possible to formally verify the correctness of the transfor-
mation, i.e., that both the source and the product accepts
the same language. Indeed, if all transformations applied in
this process are instances of known correct transformations,
then the designer can have full confidence in the correctness
of the result.
Despite the formal basis of these transformations, there is
no general algorithm for transforming an arbitrary grammar
into an equivalent LALR parsable form. In fact, the more
general problem of proving that two context free grammars
accept the same language is undecidable[5, Theorem 8.12].
This means that the parser developer must rely on experi-
ence and known heuristics to guide the transformations.
Conflicts arise when the parser has a choice of action. Con-
flict resolution strategies thus concentrate on removing this
choice, typically by searching backward from the conflict
and introducing determinism at an earlier stage in the parse.
Central to any conflict resolution strategy will be a library
of basic transformations. Examples of some such transfor-
mations are described in general terms in reference [1] and
more specifically in reference [14].
To demonstrate these transformations we present two ex-
amples of grammar conflicts and examine some possible ap-
proaches to their resolution. These approaches are instances
of conflict resolution patterns, and they are based on exam-
ples from reference [9, Chapter 8].

rule : command opt expr ’(’ identifier list ’)’ ;
opt expr : ’(’ expr ’)’ — /* blank */ ;

Figure 1: Shift-reduce conflict. This grammar segment illus-
trates a shift-reduce conflict resulting from a choice between
regarding an open parenthesis as either the start of an op-
tional expression, represented by opt expr, or the parenthe-
sis preceding an identifier list.

4.1 Limited lookahead
Figure 1 is an instance of a shift-reduce conflict resulting
from a choice between regarding an open parenthesis as
either the start of an optional expression, represented by
opt expr, or the parenthesis preceding an identifier list.
A solution to this conflict here is to transform the rules to
those shown in Figure 2. This transformation is an instance
of inlining, where a non-terminal is replaced by some or
all of its definition. This replacement is guaranteed to be
correctness preserving since the language generated by the
transformation is unchanged. We might document such a
transformation as

inline(r1, N1, r2)

where r1 and r2 are grammar rules and where the non-
terminal N1 occurs on the right hand side of r1 and r2 is
a definition of N1.
There may be further conflicts in the resulting rules. For ex-
ample, if expr can derive an identifier then the parser will be
unable to distinguish such a parenthesized expression from
an identifier list containing a single identifier. One solution
to this conflict is to defer this choice to the semantic pro-
cessing stage, thus allowing the parser to accept a superset
of the language. This is an instance of a common transfor-
mation pattern called widening. We might document such

Accepted for the 16th ACM Symposium on Applied Computing
Las Vegas, USA, March 11-14, 2001

1

rule : command ’(’ expr ’)’ ’(’ identifier list ’)’ — command
’(’ identifier list ’)’ ;

Figure 2: Elimination of shift-reduce conflict. A grammar
transformation pattern, inlining, is used to eliminate the
shift-reduce conflict illustrated in the previous figure. The
non-terminal, opt expr, in the conflicting grammar is re-
placed by its definition.

1 person : girl
2 | boy
3 ;

4 girl : ALICE
5 | BETTY
6 | CHRIS
7 ;

8 boy : ALAN
9 | BRIAN

10 | CHRIS
11 ;

Figure 3: Reduce-reduce conflict. This figure illustrates a
reduce-reduce conflict resulting from two possible deriva-
tions of the terminal CHRIS from the non-terminal person.
This conflict pattern is referred to as overlap of alternatives,
since the alternative CHRIS occurs in both girl and boy.

a transformation as

widen(r1, N1, N2)

where r1 is a grammar rule, and where the occurrence of
non-terminal N1 on the right hand side of r1 is replaced by
non-terminal N2.

4.2 Overlap of alternatives
Figure 3 is an instance of a reduce-reduce conflict resulting
from two possible derivations of the terminal CHRIS from the
non-terminal person. The strategy for conflict resolution
here is to eliminate this choice of derivation. We hoist CHRIS
upwards through the grammar to the right hand side of the
non-terminal person, and then amend the rules for girl

and boy accordingly. The result of this transformation is
illustrated in Figure 4.
This strategy for conflict resolution actually involves a series
of transformations. First, the non-terminals boy and girl

are inlined in the definition of person. Second, the common
productions involving the terminal CHRIS are merged into a
single production. This transformation is an instance of a
pattern referred to as factoring. Third, extraneous produc-
tions involving the other alternatives for girl and boy are
deleted.
For simple examples of factoring, we might document this
transformation as

factor(r1, r2)

where r1 and r2 are rules for the same non-terminal with
identical right hand sides. More specific forms of factoring,
such as left factoring would require a more detailed notation.
This deletion of extraneous productions, while correct in this
example, requires some care in general. Indeed this trans-

1 person : girl
2 | boy
3 | CHRIS
4 ;
5 girl : ALICE
6 | BETTY
7 ;
8 boy : ALAN
9 | BRIAN

10 ;

Figure 4: Elimination of reduce-reduce conflict. The strat-
egy for eliminating the overlap of alternatives conflict is to
hoist CHRIS upwards through the grammar to the right hand
side of the non-terminal person and amend the rules for
girl and boy accordingly.

formation can only be performed if no other rule produces
CHRIS in a derivation involving girl and boy. Clearly the
difficulty of performing this transformation is related to the
size and complexity of the grammar.

5. THE ROLE OF METRICS
The previous section presented a structured approach to the
development of an LALR parser, placing this process in a
software engineering context. In this section, we investigate
the role of software metrics in guiding the process of conflict
resolution.
In general, metrics can be used in a number of ways to
aid the software development process. At the highest level,
coarse-grained metrics can be used by project planners to
estimate the overall difficulty of the task at hand, and imple-
ment suitable planning procedures based on these metrics.
As the project proceeds, project managers can use metrics
to gauge the progress of the development in terms of the
reduction in complexity as identified by those metrics. At
a fine-grained level, metrics can help the software developer
to identify “hot spots” of program complexity requiring par-
ticular attention.
Since the process of parser development centers on grammar
transformations, appropriate metrics are those concerned
with the complexity of these transformations. The previ-
ous section identified some patterns of grammar transforma-
tions; the procedures corresponding to these patterns must
drive the measurement process. A common thread in each
of the transformations is the notion of hoisting rules and
non-terminals through the grammar toward the source of
conflict. The size of the distance of the “hoist” together
with the number of other non-terminals involved, must nec-
essarily contribute to the complexity of the transformation
process.
As with any programming project, size is an important indi-
cator of potential complexity. Reference [3] describes a wide
range of metrics that can be used to measure program size
complexity. In terms of grammars, the most obvious coarse-
grained size metric is the number of production rules in the
grammar. In terms of LALR parser construction, the most
widely used metric is the number of states in the LALR(1)
finite state machine that drives the parsing process. Some
of these coarse-grained metrics may be derived directly from
the yacc output; examples for C, C++ and Java parsers are
illustrated in table 1.

Accepted for the 16th ACM Symposium on Applied Computing
Las Vegas, USA, March 11-14, 2001

1

Coarse-grained Metric C C++ Java

Number of Non-Terminals 118 233 147
Number of Rules 404 880 502

Number of LALR states 692 1668 777

Table 1: Coarse-grained metrics for some of the GNU
parsers. The results depicted in this table list some figures
obtained from the output file generated by running GNU
bison over three of the parsers from gcc version 2.95.2

Even between grammars of comparable size complexity there
can still be measurable factors to distinguish the ease with
which grammar transformations can be applied. As can be
seen from the discussion of conflict resolution in the previ-
ous section, inter-dependencies between non-terminals can
complicate the transformation process. One existing metric
used to determine these inter-dependencies is the tree impu-
rity metric which measures the degree to which a program
call graph resembles a complete graph. The tree impurity
metric and other metrics applying directly to grammars are
presented in reference [12].
We have already seen how grammar transformations involve
hoisting non-terminals through production rules. The com-
plexity of this process is affected by two attributes of the
production rules involved:

• depth – a measure of the height of the tree rooted at
the source of the conflict, spanning the affected pro-
duction rules and terminating with the hoisted non-
terminal. Since each node in this tree will necessar-
ily be affected by the hoisting process, a hoist over a
greater depth is more likely to increase the complexity
of the transformation. This view of the hoisting pro-
cess parallels the concept of a definition-use path as
used in program optimizations and software testing[1;
10]

• breadth – a measure of the number of non-terminals
that will be affected by the hoisting process. This
breadth metric corresponds to branches of the tree not
directly involved in the hoist itself. A large number of
such branches in the tree indicates an increase in the
complexity of the transformation. This parallels the
fan-out metric discussed in reference [3] which mea-
sures the calling dependencies for a particular node in
the call graph.

Software metrics can be used not only as a guide to de-
termine the complexity of the transformation process, but
also to facilitate software testing. Parts of the grammar
of high complexity or transformations involving a high de-
gree of complexity bear an increased likelihood of generating
faults. These parts of the grammar may require a more in-
tense testing effort and thus, software metrics can play a
role in the development of a suitable test suite.

6. CONCLUDING REMARKS
In this paper we have described an approach for integrating
the task of parser construction into the software engineering
process. In particular, we have described a role for proto-
typing, correctness-preserving transformations and software
metrics in this process. We see this work as part of a larger

process of designing well-engineered, reusable and reliable
program processors. These parser-based program processors
play an important role in the software engineering process,
specifically in the construction of tools for software design,
testing, maintenance and re-engineering.

7. REFERENCES

[1] A.V. Aho, R. Sethi, and J.D. Ullman. Compilers: Prin-
ciples, Techniques and Tools. Addison-Wesley, 1986.

[2] C. Dodd and V. Maslov. Btyacc – backtracking
yacc version 3.0. Technical report, Siber Systems,
http://www.siber.com/btyacc/, 2000.

[3] Norman E. Fenton and Shari Lawrence Pfleeger. Soft-
ware Metrics: A Rigorous and Practical Approach.
Thomson Computer Press, first edition, 1996.

[4] J. P. Gibson, T. F. Dowling, and B. A. Malloy. The
application of correctness preserving transformations to
software maintenance. Proceedings of the International
Conference on Software Maintenance, page (to appear),
October 11–14 2000.

[5] J. E. Hopcroft and J. D. Ullman. Introduction to Au-
tomata Theory, Languages and Computation. Addison-
Wesley, 1979.

[6] ISO/IEC. International Standard: Programming Lan-
guages - C++. Number 14882:1998(E) in ASC X3.
American National Standards Institute, 1998.

[7] B.W. Kernighan and D.M. Ritchie. The C Programming
Language. Prentice-Hall, 1978.

[8] D. E. Knuth. On the translation of languages from left
to right. Information and Control, 8(6):607–639, 1965.

[9] J. R. Levine, T. Mason, and D. Brown. lex & yacc.
O’Reilly & Associates Inc., second edition, 1992.

[10] S. Muchnick. Advanced Compiler Design and Imple-
mentation. Morgan Kaufmann, 1997.

[11] T. Parr. Antlr version 2.7.0. Technical report, Magelang
Institute, http://www.ANTLR.org/, 2000.

[12] J. F. Power and B. A. Malloy. Metric-based analysis
of context-free grammars. Proceedings of the Interna-
tional Workshop on Program Comprehension, page (to
appear), 2000.

[13] S. Sankar, S. Viswanadha, and R. Duncan. Java com-
piler compiler version 1.1. Technical report, Metamata
Inc., http://www.metamata.com/JavaCC/, 1999.

[14] J. J. Sarbo. Grammar transformations for optimizing
backtrack parsers. Computer Languages, 20(2):89–100,
1994.

[15] S. R. Schach. Classical and Object-Oriented Software
Engineering. McGraw-Hill, fourth edition, 1998.

[16] B. Stroustrup. The Design and Evolution of C++.
Addison-Wesley, first edition, 1994.

