A Dynamic Comparison of the SPEC98 and Java Grande Benchmark
Suites.

Siobhan Byrne
Telecom Management Systems, Ericsson Telecom,
Adelphi Centre, Upper Georges Street,
Dun Laoghaire, Co.Dublin, Ireland.
James Power
Department of Computer Science, NUI Maynooth, Ireland.
John Waldron
Department of Computer Science, Trinity College, Dublin 2, Ireland.

May 9, 2001

Abstract

Two of the most commonly used benchmark suites
for Java Programs are the SPEC98 and Grande Fo-
rum benchmark suites. This research uses a Plat-
form Independent Dynamic Analysis Technique to
study there suites and quantify the significant sim-
ilarities and differences in behaviour between the
suites. Dynamic frequencies adduced include method
execution divided into program, API and native cat-
egories. The most informative basis for measurement
is shown to be percentages of executed bytecodes
charged to each method, and results are reported for
the API packages.

Keywords: Java Bytecode, Intermediate Represen-
tation, Java Grande

1 Introduction

The Java programming language has evolved from
a specialist programming language designed for em-
bedded systems to a widely-used platform for mo-
bile code, and a common choice as a general-purpose
programming language. As such, it has become the
focus of a variety of software tools, right from high-
level design and analysis tools for software engineer-
ing down to low-level profiling tools for Virtual Ma-
chine development. The Java paradigm for executing
programs is a two stage process. Firstly the source
is converted into a platform independent intermedi-
ate representation, consisting of bytecode and other
information stored in class files. The second stage of
the process involves hardware specific conversions,
perhaps by a JIT compiler for the particular hard-

ware in question, followed by the execution of the
code.

As the transformation from source to machine in-
structions is more complex in Java, than say C, it
is more difficult to measure and analyse the dy-
namic execution of particular programs or bench-
mark suites. In [1] it was shown that Platform In-
dependent Dynamic Analysis (PIDA) is a powerful
methodology for characterizing the behavior of Java
Grande Applications from the Java Grande Forums
benchmark suite. In this paper, the PIDA technique
is used to study the SPEC98 [2] benchmark suite,
a standard suite of Java Programs, and the results
compared with the Grande programs.

2 PIDA Instrumentation of
Kaffe

In order to study dynamic method usage it was nec-
essary to modify the source code of a Java Virtual
Machine. Kaffe [3] is an independent implementation
of the Java Virtual Machine which was written from
scratch and is free from all third party royalties and
license restrictions. It comes with its own standard
class libraries, including Beans and Abstract Win-
dow Toolkit (AWT), native libraries, and a highly
configurable virtual machine with a JIT compiler
for enhanced performance. Kaffe is available under
the Open Source Initiative and comes with complete
source code, distributed under the GNU Public Li-
cense. Versions 1.0.6 was used for these measure-
ments.

In order to modify the Kaffe virtual machine to ac-

Accepted for the Workshop on Intermediate Representation Engineering for the Java Virtual Machine
Orlando, Florida, USA, July 22-25, 2001

cumulate dynamicC platiorm independaent statistics,
most of the alterations are made in the machine.c
file. The simplest measurement, how many of the
bytecodes are in the API, can be made in the in-
terpreter loop in the runVirtualMachine() function.
Of course since it is in the inner loop, it will im-
pact execution speed when the measurement is be-
ing performed. In order to measure dynamic method
call frequencies, it is necessary to use a hash table
dictionary with method names as keys. This can
be called once per method in the virtualMachine()
function. The best metric, however, for estimating
eventual running time is to use a cost center design
pattern to “charge” each bytecode to the appropriate
method. This would necessitates accessing an item
in the hash table dictionary each time round the in-
terpreter inner loop in the run runVirtualMachine()
function and incrementing a counter, which would
slow down execution significantly (about 8 times in-
terpreted speed) while the measurement is being per-
formed. To improve performance, when a method
is invoked, a local variable in the virtual machines
stack frame can be initialised to point to the counter
for that method, requiring only one hash table ac-
cess per method invocation and only doubling the
running time relative to interpretation.

3 Grande Programs Measured

A Grande application is one which uses large
amounts of processing, I/O, network bandwidth
or memory. The Java Grande Forum Benchmark
Suite (http://www.epcc.ed.ac.uk/javagrande/) [4] is
intended to be representative of such applications,
and thus to provide a basis for measuring and com-
paring alternative Java execution environments. It
is intended that the suite should include not only
applications in science and engineering but also, for
example, corporate databases and financial simula-
tions.

e The moldyn benchmark is a translation of a
Fortran program designed to model the inter-
action of molecular particles. Its origin as non
object-oriented code probably explains its rela-
tively unusual profile, with a few methods which
make intensive use of fields within the class, even
for temporary and loop-control variables. This
program may still represent a large number of
Grande type applications that will initially run
on the JVM

e The search benchmark solves a game of
connect-4 on a 6 x 7 board using alpha-beta
pruning. Intended to be memory and numer-

1Cally 1ntensive, this 1S also the only applica-
tion to demonstrate an inheritance hierarchy of
depth greater than 2.

e The euler benchmark solves a set of equations
using a fourth order Runge-Kutta method. This
suite demonstrates a considerable clustering of
functionality in the Tunnel class, as well as a
comparatively high percentage of methods with
very large local variable requirements.

e The raytracer measures the performance of
a 3D ray tracer rendering a scene containing
64 spheres. It is represented using a fairly
shallow inheritance tree, with functionality (as
measured in methods) fairly well distributed
throughout the classes.

e The montecarlo benchmark is a financial sim-
ulation using Monte Carlo techniques to price
products derived from the price of an under-
lying asset. Its use of classical object-oriented
get and set methods accounts for the relatively
high proportion of methods with no temporary
variables and 1 or 2 parameters (including the
this-reference).

Version 2.0 of the suite (Size A) was used. The de-
fault Kaffe maximum heap size of 64M was sufficient
for all programs except mon which needed a maxi-
mum heap size of 128 M. The ray application failed
its validation test when interpreted, but as the fail-
ure was by a small amount, it was included in the
measurements.

4 SPEC98 Programs Measured

e The compress benchmark wuses modified
Lempel-Ziv method (LZW) which finds common
substrings and replaces them with a variable size
code. This is deterministic, and can be done on
the fly.

e The JESS benchmark is the Java Expert Shell
System is based on NASA’s CLIPS expert shell
system. In simplest terms, an expert shell sys-
tem continuously applies a set of if-then state-
ments, called rules, to a set of data, called the
fact list. The benchmark workload solves a set of
puzzles commonly used with CLIPS. To increase
run time the benchmark problem interactively
asserts a new set of facts representing the same
puzzle but with different literals. The older sets
of facts are not retracted. Thus the inference
engine must search through progressively larger
rule sets as execution proceeds.

Accepted for the Workshop on Intermediate Representation Engineering for the Java Virtual Machine
Orlando, Florida, USA, July 22-25, 2001

4+ tUstalit L UVlal ML L /0 4L 4

methods native %
eul 3.34e+07 58.0 12.6
mol 5.49e+05 22.7 19.9
mon 8.07e+07 98.7 374
ray 4.58e+08 3.1 1.6
sea 7.12e+07 0.0 0.0
ave 1.29e+08 36.5 14.3

Table 1: Measurements of total number of method
calls including native calls by Grande applications
compiled using SUNs javac compiler, Standard Edi-
tion (JDK build 1.3.0-C). Also shown is the percent-
age of the total which are in the API, and percentage
of total which are in API and are native methods.

e The db benchmark performs multiple database
functions on memory resident database. reads in
a 1 MB file which contains records with names,
addresses and phone numbers of entities and a
19KB file called scr6 which contains a stream of
operations to perform on the records in the file.

e The javac benchmark is the Java compiler from
the JDK 1.0.2. As this is a commercial applica-
tion, no source code is provided.

e The mpegaudio benchmark is an application
that decompresses audio files that conform to
the ISO MPEG Layer-3 audio specification. As
this is a commercial application only obfuscated
class files are available. The workload consists
of about 4MB of audio data.

e The mtrt benchmark is a raytracer that works
on a scene depicting a dinosaur, where two
threads each renders the scene in the input file
time-test model, which is 340KB in size.

e The jack benchmark is a Java parser generator
that is based on the Purdue Compiler Construc-
tion Tool Set (PCCTS). This is an early ver-
sion of what is now called JavaCC. The work-
load consists of a file named jack.jack, which
contains instructions for the generation of jack
itself. This is fed to jack so that the parser gen-
erates itself multiple times.

5 PIDA Comparison

Table 1 [1] and Table 2 show dynamic method
frequencies and native frequencies for Grande and
SPEC98 applications. It is interesting to note that
the SPEC benchmarks have higher frequencies than
the so-called Grande applications. The higher na-
tive frequencies shown by the Grande Applications

B lUBlalll 1LUlLal LAl 1 /0 R
methods native %
Compress 2.26e4-08 0.0 0.0
JESS 1.35e4-08 32.5 1.9
Database 1.24e+408 98.7 0.1
javac 1.53e+08 62.0 2.8
mpegaudio 1.10e+08 1.3 1.1
mtrt 2.88e+08 3.2 0.1
jack 1.16e+08 92.3 4.2
ave 1.65e+08 41.4 1.5

Table 2: Measurements of total number of method
calls including native calls by SPEC JVMY8 applica-
tions Also shown is the percentage of the total which
are in the API, and percentage of total which are in
API and are native methods.

Program Java method calls bytecodes executed
number | % in API | number | % in API
eul 2.92e+07 51.9 1.46e+10 0.5
mol 4.40e+05 3.4 7.60e4-09 0.0
mon 5.05e+07 97.9 2.63e+09 38.0
ray 4.50e4-08 1.5 1.18e+10 0.1
sea 7.12e+07 0.0 7.10e+09 0.0
ave 1.20e+08 30.9 8.75e+09 7.7

Table 3: Measurements of Java method calls exclud-
ing native calls made by Grande applications com-
piled using SUNs javac compiler, Standard Edition
(JDK build 1.3.0-C).

(14.3% against 1.5%) are due to the more math-
ematical nature of these programs, which tend to
call native methods such as java/lang/Math.sqrt and
java/lang /Math.log with high frequency.

Table 3 [1] and Table 4 compare dynamic measure-
ments of Java method call frequencies with bytecode
usage frequencies which should provide a more accu-
rate measure of execution time spent in areas of the
programs. It can be seen that 92% of the Grande
programs execution time on average is spend in the
program methods, whereas in the SPEC suite the
compiler like tools and also the database applica-
tion spend most of there time in the API methods,

Program Java method calls bytecodes executed
number | % in API | number | % in API
Compress 2.26e+-08 0.0 1.25e+10 0.0
JESS 1.32e4-08 31.2 1.91e+09 18.8
Database 1.24e+4-08 98.7 3.77e+09 70.4
javac 1.48e4-08 60.9 2.43e+09 58.3
mpegaudio 1.08e+08 0.1 1.15e+410 0.0
mtrt 2.88e+-08 3.1 2.20e+-09 3.5
jack 1.11e4-08 92.0 1.50e4-09 82.3
ave 1.62e408 40.9 5.12e+09 33.3

Table 4: Measurements of Java method calls exclud-
ing native calls made by SPEC JVM98 applications.

Accepted for the Workshop on Intermediate Representation Engineering for the Java Virtual Machine
Orlando, Florida, USA, July 22-25, 2001

AULLIpPLTOO J IO TJavaivaot
io 3.9 0.5 0.0
lang 52.4 37.9 73.4
net 0.7 0.0 0.0
util 43.0 61.5 26.6

31.0

32.4
0.0

36.6

Hiptyauidiyu 44ivli v Jah avic
8.9 56.6 2.7 14.8
59.4 43.1 | 19.5 | 45.4
0.3 0.0 0.0 0.1
31.3 0.3 77.8 | 39.6

Table 6: Breakdown of Java (non-native) API bytecode percentages by package for SPEC JVM98 applications..
None of the applications used methods from the applet, awt, beans, math, security or sql packages.

eul mol | mon | ray sea ave
io 7.6 1.2 0.3 0.0 1.2 2.1
lang || 92.2 | 69.5 2.0 99.3 | 69.6 | 66.5
net 0.0 1.1 0.0 0.0 1.3 0.5
text 0.0 0.6 0.0 0.0 0.0 0.1
util 0.1 27.6 | 97.7 0.7 28.0 | 30.8

Table 5: Breakdown of Java (non-native) API byte-
code percentages by package for Grande applications
compiled using SUNs javac compiler, Standard Edi-
tion (JDK build 1.3.0-C). None of the applications
used methods from the applet, awt, beans, math, se-
curity or sql packages.

giving an average figure of 67% of time in the pro-
gram bytecodes. The total bytecodes executed by
the Grande applications are only slightly higher than
the SPECO8 figure.

Table 5 and Table 6 compare dynamic measurements
of bytecode usage frequencies for the different API
packages, which should provide a measure of execu-
tion time spent in areas of those parts of the libraries.
In both case all the time is concentrated in lang, wutil
and 7o, with the Grande applications having high
lang and lower ¢0 usage. It is surprising that the
standard benchmarking programs do not exercise a
greater variety of API packages.

6 Conclusions

Two of the most commonly used benchmark suites
for Java Programs are the SPEC98 and Grande Fo-
rum benchmark suites. This research set out to use
the Platform Independent Dynamic Analysis Tech-
nique [1] to study these suites and quantify the sig-
nificant similarities and differences in behaviour be-
tween the suites. Dynamic frequencies adduced in-
clude method execution divided into program, API
and native categories. It is interesting to note that
the SPEC benchmarks have higher frequencies than
the so-called Grande applications.

The most informative measurement is shown to be
percentages of executed bytecodes charged to each
method, and it has been shown that 92% of the
Grande programs execution time on average is spend

in the program methods, whereas in the SPEC suite
the compiler like tools and also the database appli-
cation spend most of their time in the API meth-
ods, giving an SPEC98 average figure of 67% of time
in the program bytecodes. It is surprising that the
standard benchmarking programs do not exercise a
greater variety of API packages.

References

[1] C. Daly, J Horgan, J Power and J. T. Wal-
dron, Platform Independent Dynamic Java Vir-
tual Machine Analysis: the Java Grande Fo-
rum Benchmark Suite, Proceedings of Joint ACM
Java Grande - ISCOPE (International Sympo-
sium on Computing in Object-oriented Parallel
Environments) 2001 Conference, Stanford Uni-
versity, June 2-4, 2001

[2] SPEC JVMY98 Benchmarks
<http://www.spec.org/osg/jvm98>
URL last accessed on 2/4/2001

[3] T.J. Wilkinson, KAFFE, A Virtual Machine to
run Java Code,
<www.kaffe.org>
URL last accessed on 20/10/2000

[4] Bull M, Smith L, Westhead M, Henty D and
Davey R. Benchmarking Java Grande Applica-
tions, Second International Conference and Ex-
hibition on the Practical Application of Java,
Manchester, UK, April 12-14, 2000.

[5] J. Waldron, C. Daly, D. Gray and J. Horgan,

Comparison of Factors Influencing Bytecode Us-
age in the Java Virtual Machine, Second Inter-
national Conference and Exhibition on the Prac-
tical Application of Java, Manchester, UK, April
12-14, 2000.

Accepted for the Workshop on Intermediate Representation Engineering for the Java Virtual Machine
Orlando, Florida, USA, July 22-25, 2001

