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Abstract

Recent advances in software engineering have pro-
duced a variety of well established approaches, for-
malisms and techniques to facilitate the construction
of large-scale applications. Developers interested in
the construction of robust, extensible software that is
easy to maintain should expect to deploy a range of
these techniques, as appropriate to the task. In this pa-
per, we provide o foundation for the application of es-

tablished software metrics to the measurement of context-

free grammars. The usual application of software met-
rics is to program code; we provide a mapping that al-
lows these metrics to be applied to grammars. This
allows us to interpret sixz software engineering metrics
in a grammatical context, including McCabe’s com-
plezity metric and Fenton’s impurity metric. We have
designed and implemented a tool to automatically com-
pute the six metrics; as a case study, we use these six
metrics to measure some of the properties of gram-
mars for the Oberon, ISO C, ISO C++ and Java pro-
gramming languages. We believe that the techniques
that we have developed can be applied to estimating
the difficulty of designing, implementing, testing and
maintaining parsers for large grammars.

1 Introduction

Recent advances in software engineering have pro-
duced a variety of well established approaches, for-
malisms and techniques to facilitate the construction
of large-scale applications. Developers interested in
the construction of robust, extensible software that
is easy to maintain should expect to deploy a range
of these techniques, as appropriate to the task. This

range of techniques covers a spectrum of program rep-
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resentations ranging from abstract models to concrete
models, and ultimately to the program itself. One
of the more abstract models of a program is a set of
software metrics that seek to describe quantitative as-
pects, rather than the requirements or operation of
the application.

Conventional parser implementation, as represented
by yacc[9], is a prime example of some aspects of soft-
ware engineering in that the code for a parser can be
generated automatically from a corresponding spec-
ification, expressed as a context-free grammar. De-
spite this, parser construction has not benefitted from
the application of the full range of software engineer-
ing techniques. To date, much of the research on
parser design has been theoretical in nature. However,
the construction of parsers for large programming lan-
guages is both a software engineering problem and a
theoretical problem.

In this paper, we provide a foundation for the appli-
cation of established software metrics to the measure-
ment of context-free grammars. The usual application
of software metrics is to program code; we provide a
mapping that allows these metrics to be applied to
grammars. This allows us to interpret six software
engineering metrics in a grammatical context, includ-
ing McCabe’s complexity metric and Fenton’s impu-
rity metric[10, 4]. We have designed and implemented
a tool to automatically compute the six metrics; as a
case study, we use these six metrics to measure some

of the properties of grammars for the Oberon, ISO C,
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ISO C++ and Java programming languages[11, 7, 8, 6].
We believe that the techniques that we have developed
can be applied to estimating the difficulty of design-
ing, implementing, testing and maintaining parsers for
large grammars.

The remainder of this paper is organized as follows.
In the next section we introduce grammars and the
associated terminology, and we describe the mapping
from programs to grammars. In Section 3 we define
the six metrics used in this paper and show how they
can be applied to grammars. Section 4 describes the
design and implementation of the tool that we used to
automatically compute these metrics. In Section 5 we
present the results of applying the metrics construc-
tion tool to grammars for Oberon, C, C++ and Java,
and we analyze the metrics. Finally, in Section 6, we

draw conclusions.

2 Grammars as Programs

In this section we define some of the terminology as-
sociated with context-free grammars, and we describe
the mapping from programs to grammars that forms
the basis of our approach. A general description of
languages, context-free grammars and parsing can be
found in reference [1]; the definitions of successor re-
lation and grammatical levels are found in reference
[3]-

2.1 Terminology

Given a set of words (known as a lexicon), a lan-
guage is a set of valid sequences of these words. A
grammar defines a language; any language can be de-
fined by a number of different grammars. When de-
scribing formal languages such as programming lan-
guages, we typically use a grammar to describe the
syntazx of that language; other aspects, such as the se-

mantics of the language typically cannot be described

by context-free grammars. Extended Backus-Naur Form

(EBNF) is a commonly-used notational enrichment of

context-free grammars which does not enhance their

descriptional power.

Formally a grammar is a four-tuple (N, T, S, P) where
N and T are disjoint sets of symbols known as non-
terminal and terminals respectively, S is a distinguished
element of N known as the start symbol, and P is a
relation between elements of N and the union and
concatenation of symbols from (N UT), known as the
production rules. A grammar defines a language by
specifying valid sequences of derivation steps which
produce sequences of terminals form the sentences of
the language.

The procedure of using a grammar to derive a sen-
tence in its language is as follows. We begin with the
start symbol S and apply the production rules, inter-
preted as left-right rewriting rules, in some sequence
until only non-terminals remain. This process defines
a tree whose root is the start symbol, whose nodes are
non-terminals and whose leaves are terminals. The
children of any node in the tree correspond precisely to
those symbols on the right-hand-side of a production
rule. This tree is known as a parse tree; the process
by which it is produced is known as parsing.

If there is a production rule of the form A — 3 we
say that non-terminal A derives 8. If the sequence of
symbols § contains some non-terminal B we say that
B is an immediate successor of A, and write A > B.

If we can subsequently apply production rules to
B to produce some other set of symbols v we write
A —* ~ - this is the reflexive transitive closure of
the derivation relation. If the sequence of symbols
v contains some non-terminal C' we say that C is a
successor of A, and write A >* C.

The successor relation induces an equivalence re-
lation on the non-terminals, where we say that A is
equivalent to C' if Ap* C and C >* A, and we write
A = C. Any equivalence relation on a set partitions
that set into a collection of equivalence classes, and in
the case of grammar non-terminals, these classes are

known as grammatical levels.
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2.2 From Programs to Grammars

Since any grammar defines a language and provides
a basis for deriving elements of that language, a gram-
mar may be considered as both a specification and a
program; indeed, this duality is often exploited in the
construction of recursive descent parsers[1].

Conceptually, we may think of any program as con-
sisting of a set of procedures, where each procedure is
defined by some procedure body, constructed using
the control primitives of the language. Thus a proce-
dure body may be represented as a graph whose nodes
are statements and whose edges represent the flow of
control between these statements. At a higher level of
abstraction, we may represent the interaction between
procedures by a call graph, whose nodes are procedures
and whose edges represent a call from one procedure
to another.

In order to interpret the concepts of control-flow
graph and call graph for context-free grammars we
proceed as follows. The procedures correspond to non-
terminals, and procedure bodies are the right-hand-
sides of the production rules. The control primitives
are the union and concatenation operations of con-
text free grammars, which correspond to alternation
and sequencing respectively. This mapping can be ex-
tended in a straightforward manner to the closure and
option operators used in EBNF. In line with this map-
ping we interpret the call graph of a program as the
graph of the successor relation between non-terminals.

In the following section we use the mapping de-
scribed above as a basis for the application of some

standard software metrics to context-free grammars.

3 Metrics

In this section, we first define the six metrics that
we apply in Section 5 and we then describe their appli-
cation to context-free grammars. The first four met-
rics are adaptations of standard metrics for programs
and procedures[4, 10]. The final two metrics are de-

rived from the grammatical levels described in Section

2 and these metrics were originally used to measure de-

scriptional complexity of context-free grammars[2, 3].

e Number of Non-Terminals
One of the simplest, course-grained metrics that
can be applied to a program to measure its size
is a count of the number of procedures that ap-
pear in that program. The equivalent size metric
for context-free grammars is the number of non-
terminals in that grammar(2, 3]. This size metric
is commonly reported by parser generators such

as yacc and bison.

e McCabe Complexity
McCabe’s metric measures the number of lin-
early independent paths through a flow graph[10].
This metric is typically interpreted as a mea-
sure of the number of decisions in the flow graph
and is a useful indicator of the level of difficulty
to test the measured procedure. Decisions in
a context-free grammar are represented by the
union operator. Two grammars with the same
number of non-terminals can still differ in essen-
tial complexity if one grammar has significantly
more alternatives for its non-terminals than the
other grammar. The sum of the McCabe com-
plexity measure for these alternatives will high-
light this difference. Thus, our mapping of Mc-
Cabe’s complexity to grammars is to count the
total number of alternatives in that grammar as
represented by occurrences of the union, closure
and option operators, since each of these repre-

sents exactly one decision.

e Average Size
In a procedure, the size metric is the number
of nodes in the corresponding flow graph, and is
used as a formal alternative to the common lines-
of-code (loc) measure. Since production rules
correspond to procedures, the nodes in a flow

graph correspond to terminals or non-terminals
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on the right-hand-side of a production rule. To
compute the average size, we calculate the total
of the sizes, and divide by the number of non-
terminals. This then gives us a measure of the

average “length” of the production rules.

Fenton’s Impurity
The call graph for a program is a directed graph
indicating the dependencies between procedures
in the program[4]. Many edges in a call graph
indicate a large number of dependencies between
procedures and this complexity complicates the
testing process and can possibly indicate poor
design. Since we regard a non-terminal as a pro-
cedure, and since the successor relation between
non-terminals defines edges in the call graph,
this metric can be applied directly to grammars.
At a minimum, the call graph will be a tree, at
a maximum it will be a fully connected graph;
hence, to calculate the impurity metric we nor-
malize the count of the number of edges between
these bounds. The formula to compute the im-
purity metric for a call graph with n nodes and
e edges is:

2(e—n+1)

(n—1)(n-2)
Levels
In this metric, we use the call graph, used in
the calculation of Fenton’s impurity metric, to
partition the non-terminals into a set of equiv-
alence classes called grammatical levels. Since
each of these grammatical levels forms a com-
plete graph, we may assume a high degree of
interdependence between the non-terminals in a
given level. The level metric counts the number
of such levels and this is a starting point for a
study of the distribution of non-terminals among

these levels.

Depth

The depth metric for a grammar measures the

number of non-terminals in the largest grammat-
ical level. If the depth value constitutes a sig-
nificant proportion of the total number of non-
terminals, then this value indicates an uneven
distribution of the non-terminals among these

levels.

Each of the above metrics can be calculated auto-
matically from a context-free grammar and a tool to

accomplish this is described in the next section.

4 The Implementation

In this section we present an overview of the im-
plementation of a tool that, given a grammar, will
automatically compute those metrics described in the
previous section. The structure of the tool is illus-
trated in Figure 1. The rectangle illustrated in the
upper left corner of the figure represents the input to
our tool, an EBNF description of the syntax of a pro-
gramming language. The output from the program is
illustrated on the right side of Figure 1 and consists of
text files listing the results for the computed metrics.
The output is generated at two stages during execu-
tion of the tool, first producing size and complexity
metrics and then producing structure metrics. The
tool was written in C++ and implemented using GNU
flex version 2.5.4, GNU bison version 1.28, and the
GNU C++ compiler version 2.91.

The input grammar is described using a superset
of the yacc syntax extended to include the full set of
EBNF operators. The input grammar is scanned and
parsed and an abstract syntax tree (AST) representing
the production rules is then generated. The AST is
constructed to correspond to the node hierarchy of the
Visitor pattern as described in reference [5]. Each of
the size and complexity metrics has its own visitor that
walks the AST collecting the information required by
that metric. This is represented in the top row of
Figure 1 by the oval containing “Visitor Instance”.

The vertical path depicted in Figure 1 represents
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Figure 1: Implementation overview. This figure provides an overview of the tool that we constructed to compute
the metrics for the four grammars. Input to the tool, indicated in the upper left corner, is the EBNF for the
grammar under consideration. Output of the tool is the results of the computed metrics that measure the size
and complexity of the grammar and structure of the grammar; the output is shown on the right side of the figure.

the construction of those data structures required to
compute the grammatical levels, as described in Sec-
tion 3. This process uses three main data structures:
a graph of the immediate successor relation, a graph
of the successor relation, and a graph of equivalence
classes representing the grammatical levels. From these
graphs we compute the structural metrics as shown at
the bottom right of Figure 1.

The immediate successor relation is represented as
a two-dimensional matrix, S, indexed by non-terminals,
where for any non-terminals A and B, the entry S[A, B]
is true precisely when A B. We next apply Warshall’s
transitive closure algorithm to this graph to produce a
matrix S*, where now S*[A, B] is true precisely when
A >* B. Fenton’s impurity metric can be calculated
directly by counting the number of nodes and edges in

S, since this graph represents the successor relation.

The final data structure required by our tool rep-
resents the graph of grammatical levels. Each gram-
matical level consists of a set of non-terminals where
two non-terminals A and B are in the same gram-
matical level when A = B, i.e., when both S*[A, B]
and S*[B, A] are true. The remaining structure met-
rics, Levels and Depth, are generated directly from this

graph of grammatical levels.

5 Application to Four Programming Lan-

guages

In this section, we describe the results of our ex-
periments using the implementation described in the
previous section. Qur experiments were conducted
on grammars for four well-known programming lan-
guages: Oberon, ISO C, ISO C++ and Java[ll, 7, 8, 6].
In the cases of Oberon and C, the grammar used was

a bison-compatible adaptation of the grammar avail-
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| Size/Complexity Metric || Oberon | ISO C | ISO C++ | Java |

Number of Non-Terminals 48 64 141 149
McCabe Complexity 87 149 368 213
Average Size 6.8 7.6 6.1 4.1

Table 1: Grammar size and complexity. The results depicted in this table show the results of applying the metrics
to measure the overall size and complexity of the four grammars. The three computed metrics include the Number
of Non-Terminals metric, the McCabe Complexity metric and the Average Size metric.

able in the standards documents. In the cases of C++
and Java, the grammar used was taken directly from
the standards document. In each case, the grammars
describe the syntactic structure of the language and
no semantic attributes or actions are included in any
of the grammar. In the first section, we overview our
results for those metrics that describe the size and
complexity of the grammar. In the second section, we
overview our results for those metrics that describe the
structure of the grammar, in particular, those metrics

derived from the grammatical levels of the grammar.

5.1 Grammar Size and Complexity

Table 1 presents the results of using three metrics
that measure the overall size and complexity of the
four grammars. The first row of the table lists the
grammars and the first column of the table lists the
applied metrics. The second row of the table, our
first chosen metric, lists the number of non-terminals
in each grammar, Number of Non-Terminals. Oberon
and C contain approximately the same number of non-
terminals, 48 and 64, whereas C++ and Java contain
significantly more non-terminals, 141 and 149 respec-
tively. These numbers provide our first indication of
the relative sizes of the four grammars and correspond
to the VAR metric described in reference [3].

The third row of Table 1 lists the McCabe Com-
plexity of each of the grammars. Since McCabe’s com-
plexity measures the total number of decisions in the
grammar, this third row taken in conjunction with

the second row provides a more accurate picture of

the overall grammar size. The McCabe Complexity
numbers for Oberon, C, C++ and Java are 87, 149,
368 and 213 respectively. These numbers reinforce
and accentuate the ordering implied by the number
of non-terminals metric. In particular, there is now a
clear distinction in the complexity of our grammars for
C over Oberon, and C++ over Java. For example, the
number of non-terminals in the C++ and Java gram-
mars are quite similar, but the increased complexity
of C++ over Java is reflected by the McCabe metrics
for the two grammars: 368 versus 213.

The final row of Table 1 lists the Average Size met-
rics for the four grammars: 6.8, 7.6, 6.1 and 4.1 re-
spectively. The similarity of these numbers reflect the
notion that grammar writers typically do not allow the
right hand side of rules, on average, to grow to extreme
lengths. This breaking-up of overly-long rules parallels
the decision by programmers not to allow procedures

to grow to extreme lengths.

5.2 Grammar Structure

Table 2 presents the results of using three metrics
that measure the overall structure of the four gram-
mars. The first row of the table lists the four gram-
mars and the first column lists the structural metrics
applied. The first metric, Fenton’s Impurity metric, is
derived from the closure of the call graph generated by
the grammar, whereas the remaining metrics, Levels
and Depth are derived from the calculated grammati-
cal levels.

The metric presented in the second row of Table 2
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| Structural Metric || Oberon | ISO C | ISO C++ | Java |

Fenton’s Impurity 31.6 65.3 85.8 32.7
Levels 26 21 21 89
Depth 10/48 38/64 121/141 | 33/149

Table 2: Grammar Structure. The results depicted in this table show the results of applying the metrics to
measure the structure of the four grammars. The three computed metrics include the Fenton Impurity metric, the
Levels metric and the Depth metric. Fenton's Impurity metric is derived from the closure of the call graph generated
by the grammar. To compute the Levels and Depth metric, we partition the non-terminals in a grammar into
equivalence classes called grammatical levels. The Levels and Depth metric are computed using the grammatical

levels for each grammar.

presents the results for the impurity or lack of “tree-
ness” of the grammars. There is a definite similarity
between Oberon and Java, as reflected by their impu-
rity values of 31.6% and 32.7% respectively. On the
other hand, as we move from Oberon and Java to C
and then to C++, there is a definite progression in
impurity. In particular, the impurity numbers for C
and C++, at 65.3% and 85.8% respectively, reflect a
considerable density of edges in the closure of the call
graph of these grammars. One possible consequence
of high values for impurity is a decreased potential for
modular construction of parsers from the grammar.
The metric presented in the third row of Table 2
presents the results for the Levels metric, which mea-
sures the number of grammatical levels in the gram-
mars. Since each grammatical level is formed from
equivalent non-terminals, it is reasonable to expect
a link between these values and the number of non-
terminals in the grammar. This link is reflected in the
Level values for Oberon, C and Java at 26, 21 and 89
grammatical levels respectively. However, the value of
21 grammatical levels for C++ is at variance with this
pattern and its low value is a consequence of the fact
that one of the grammatical levels contained a high
proportion of the non-terminals, as described by the
depth metric presented in the fourth row of the table.
The metric presented in the fourth and final row
of Table 2 presents the results for the Depth metric,

which measures the cardinality of the largest gram-

matical level in each grammar. Most of the computed
grammatical levels for the four grammars were sin-
gleton sets containing just one non-terminal; only 9
grammatical levels in total for the four grammars con-
tained more than one non-terminal.

There were three non-singleton grammatical levels
generated for the Oberon grammar. The largest gram-
matical level for Oberon had cardinality 10 and related
to the non-terminals for Oberon expressions and this
is the value reported as the depth metric for this gram-
mar. There were two other non-singleton grammatical
levels for Oberon: the non-terminals relating to state-
ments and types of cardinality 7 and 6 respectively.

We now consider the depth values for Java, since
these were quite similar to those for Oberon. In par-
ticular, the largest grammatical level was that for Java
expressions with a cardinality of 33 and this is the
value reported as the depth metric for this grammar.
There were two other non-singleton grammatical lev-
els for Java: one for statements of cardinality 25 and
one for types of cardinality 3.

There were just two non-singleton grammatical lev-
els generated for the C grammar. The depth metric
of 38 reflects the cardinality of the largest grammat-
ical level, which contained non-terminals for expres-
sions and declarations. The other non-singleton gram-
matical level, that contained non-terminals relating to

statements, had a cardinality of 6.

Finally, the depth metric for C++ at 121 non-terminals
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is the cardinality of the only non-singleton grammati-
cal level for this grammar. The progression exhibited
by these values is as follows. There were three cate-
gories of grammatical levels for Oberon and Java re-
flecting the non-terminals for expressions, statements
and types. In C, two of these categories are effectively
combined since the category for types is now subsumed
into a more general category of expressions and dec-
larations. This progression continues into C++ where
all three categories distinguished in Oberon and Java
are combined into a single large grammatical level con-

taining 86% of the non-terminals in the grammar.

6 Concluding Remarks

In this paper, we have described an approach for
applying metrics to the measurement of context-free
grammars. We have described a technique to map
six established metrics onto four grammars for the
Oberon, C, C++ and Java programming languages[11,
7, 8, 6]. We have described our tool for automatically
computing the metrics that take, as input, an EBNF
for a context-free grammar and produces, as output,
results for the computed metrics. Our tool uses flex
and bison to parse the input grammar and uses the
Visitor Pattern to gather the information for the met-
rics: a visitor for each of the metrics is used to walk the
AST representation of the production rules, collecting
the information required by the metric.

Our results using the Number of Non-Terminals met-
ric indicate that the overall size of the grammars for
C++ and Java are much larger than Oberon and C.
Our results using McCabe’s complexity metric indicate
that the grammar for C++ is the most complex, fol-
lowed by Java, then C, with Oberon the least complex
of the four grammars. Fenton's Impurity metric is com-
puted from the closure of the call graph derived from
the grammar; impurity indicates a lack of “tree-ness”
in the grammar and reflects a large number of depen-
dencies between non-terminals. Our results using Fen-

ton’s impurity metric indicate that the grammar for

C++ was the most “impure”, followed by C, and then
Java; Oberon was the most pure of the four grammars.
The complete results for our metrics are described in
Section 5.

We believe that the technique that we have de-
veloped can be applied to estimating the difficulty
of designing, implementing, testing and maintaining

parsers for large grammars.
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