An Approach for Modeling the Name Lookup
Problem in the C++ Programming Language
(Extended Version*)

James F. Power' and Brian A. Malloy?

! Department of Computer Science, National University of Ireland, Maynooth
County Kildare, Ireland
James.Power@may.ie
2 Department of Computer Science, Clemson University
Clemson, South Carolina, USA

malloy@cs.clemson.edu

Abstract. Formal grammars are well established for specifying the syn-
tax of programming languages. However, the formal specification of pro-
gramming language semantics has proven more elusive. A recent stan-
dard, the Unified Modeling Language (UML), has quickly become estab-
lished as a common framework for the specification of large scale software
applications. In this paper, we describe an approach for using the UML
to specify aspects of the static semantics of programming languages. In
particular, we describe a technique for solving the name lookup problem
for the recently standardized C++ programming language. We apply
our approach to C++ because a solution to the name lookup problem
is required for parser construction and our solution is applicable to Java
and other programming languages.

1 Introduction

Formal grammars are well established for specifying the syntax of programming
languages. Moreover, extended Backus Naur Form (EBNF) is a popular repre-
sentation for language syntax; furthermore, many tools have been developed that
accept regular expressions and context free grammars as a basis for automat-
ing the early stages of compiler construction. However, the formal specification
of programming language semantics has proven more elusive. No single formal
technique for semantics specification has gained the wide acceptance that for-
mal grammars have attained for syntax specification. Indeed, formal semantics
specification has yet to yield convincing solutions for problems associated with
modularity, scalability and automatic implementation of semantic analyzers[6].

The Unified Modeling Language (UML), has quickly become established as
a common framework for the specification of large scale software applications|3,
9]. The UML is widely accepted by software developers and many UML CASE

* This is an extended version of the paper presented at the 15th ACM Symposium on
Applied Computing, Villa Olmo, Como, Italy, 19-21 March, 2000.

2 James Power and Brian Malloy

tools are now available. In this paper, we describe an approach for using the
UML to specify aspects of the static semantics of programming languages. In
particular, we describe a technique for solving the name lookup problem for the
recently standardized C++ programming language[1].

The name lookup problem is defined as follows: given the use of a name in a
program, find the corresponding declaration of that name. We present a struc-
tural model that captures syntactic information about where a name occurs in
a program together with semantic information about how the name occurs in
the program. We discuss various options for placement of a lookup method that,
given a program name, finds the corresponding declaration for that name; we
arrive at a placement of the lookup method that properly places responsibility
for lookup in the semantic hierarchy of the structural model. We include a pro-
gram processor in the model that assembles an object that contains contextual
information about a name encountered in a program. The program processor
than passes the newly created object to the semantic hierarchy that performs
the lookup in the enclosing scope and searches other relevant scopes if the name
is not found.

We apply our approach to C++ because a solution to the name lookup prob-
lem is required for parser construction and C++ parsers are difficult to con-
struct[2, 5,7, 8]. There is no public domain parser currently available that ac-
cepts the language described in the C++ standard. Our use of UML to specify
the semantics of C++ will provide documentation of the language to UML-
knowledgeable developers. Many aspects of our solution are applicable to lan-
guages with similar constructs, for example Java.

The remainder of this paper is organized as follows. The next section provides
background information about the name lookup problem including definitions of
terms that we use in subsequent sections. Section 3 presents the various options
that we considered in our design of the structural model and Section 4 provides
object and interaction diagrams that serve to elucidate aspects of the structural
model. In Section 5 we draw conclusions.

2 The Problem Domain

In this section we review some of the basic concepts associated with C++ pro-
grams and the name lookup problem in particular. Our presentation here is nec-
essarily informal and incomplete; the definitive description is, of course, clause
three of the standard.

A name in C++ is the use of an identifier to refer to any of the usual C++
entitles, such as objects, functions, arrays or classes. Typically, each name is
introduced by a declaration before its use, and this declaration usually gives
some additional information about that name, such as its type. A definition
performs the same function as a declaration, but in addition associates a value
with the name. Since a definition is a special kind of declaration, in this paper
we will use the word “declaration” when we mean either.

Modeling Name Lookup in C++ 3

Just a Declaration Definition

extern int a; int a;

int f(int); int f(int i) { return i; }
class A; class A { int x, y; };

Fig. 1. Declarations vs Definitions. This figure gives some simple examples of the dif-
ferences between declarations that are and are not definitions.

The name lookup problem involves associating each occurrence of a name in a
program with its corresponding declaration. This has the effect of identifying the
kind of entity to which the name refers, as well as creating an implicit association
between all occurrences of a name that refer to the same entity. Since overloading
is a feature of C++, performing name lookup for a given occurrence may in fact
return a set of possible declarations.

Since each name occurrence must have a corresponding declaration, name
lookup performs a validation function: returning an empty set of declarations
for a given usage indicates that the program is ill-formed. However, name lookup
does not consider additional restrictions that are placed on the use of a name,
such as accessibility and type-correctness; in C++ these checks are performed
after name lookup has taken place.

The scope of a name is that portion of the program within which it is valid
to refer to that name. A language such as K&R C [4] has a relatively simple
concept of scope, with each declaration being either at global scope, or at local
scope inside a function. C++ enhances this considerably by providing classes and
namespaces, and by allowing these various forms of scope to be nested inside
each other, subject to certain restrictions.

A detailed description of C++ classes and namespaces is beyond the scope
of this paper. Briefly, a namespace is a modularization construct that allows the
programmer to name the region within which a series of declarations occur, and
to control the visibility of these declarations through the use of this name. Classes
provide the object-oriented aspects of the language, implementing encapsulation
through various forms of access restriction, and re-use through inheritance.

A class may be enclosed by another class, a function or a namespace. A class
directly enclosed by another class is called a nested class, whereas a class inside
a function is called a local class. A function may be directly enclosed by either a
class or a namespace. A namespace may only be enclosed by another namespace.
Global scope encloses all other scopes, and may be regarded as a special instance
of a namespace scope.

3 The Evolution of the Structural Model

In this section we describe the design options that we considered in our approach
to solving the name lookup problem. Clause three of the recently adopted C++
standard enumerates the procedures for accomplishing name lookup; this enu-
meration forms the use cases that drive our model. We present two different

4 James Power and Brian Malloy

Scope
Sycontainedin : Scope

Mamedcurrence

bset<Declaration= lookupiy
Fset<Declaration= find()

1

LocalScope

ClassScope
@phaselist: list

FrototypeScope

MamespaceScope
FunctionScope pusingList : list
————1

GlobalMamespace

Fig. 2. Class Diagram representing the scope hierarchy. This figure enumerates the
different scoping constructs in the C++ language and the relationships between them.

approaches to the construction of a class diagram that realizes the use cases
in clause three and captures the static semantics of C++ with an explanation
of the advantages and disadvantages of each approach. In the next section we
overview the important classes in each approach and Section 3.2 follows with a
presentation of an approach that places the burden of lookup on the syntax of
the language. Finally, Section 3.3 presents an approach that places the burden
of lookup on the semantics of the language.

3.1 Overview of the Approach

The class diagram in Figure 2 illustrates the important classes in the struc-
tural model that we use to solve the name lookup problem, and the associations
between the classes. The class on the left side of the Figure, NameOccurrence,
represents the physical occurrence of a name in the program text, where the
occurrence can be a declaration, definition or any usage of a name. Each such
occurrence of a name occurs in the context of a logically enclosing scope, which is
represented by the hierarchy on the right side of the figure. For the name lookup
problem, a scope is a list of names declared and therefore available in a logical
region of the program. As part of a typical implementation of a program parser,
these scopes are usually represented by a symbol table. Further consideration of
the representation of a name in a symbol table is not important for the prob-
lem that we consider here. We include two methods, find, a private method that
simply searches through those names defined in the current scope and lookup

Modeling Name Lookup in C++ 5

that drives the overall search procedure in the context of the current scope, and
provides a public interface to find. Since every scope other than global scope may
be logically nested within an enclosing scope, we provide a containedln attribute
to capture this relationship; the containedln attribute is shown as a private data
member of class Scope in Figure 2.

The C++ standard distinguishes five kinds of scope that we choose to repre-
sent, through subtyping. Thus, base class Scope in Figure 2 has five subclasses, Lo-
calScope, ClassScope, NamespaceScope, FunctionScope and PrototypeScope. The
first three of these classes correspond to local scope in a block of the program,
class scope and namespace scope. Both ClassScope and NamespaceScope have
specialized mechanisms for referring to other scopes that we represent using
attributes: a list of base classes for ClassScope and a list of imported names-
paces in namespace scope represented by baselist and usingList respectively.
Every program contains an implicit namespace for global attributes; we rep-
resent this implicit namespace with the singleton class GlobalNamespace derived
from NamespaceScope. Finally, classes PrototypeScope and FunctionScope, also
derived from Scope, represent two less familiar scope levels. Function prototype
scope refers to the fact that parameters in a function declaration are in scope
for the duration of that declaration. Function scope refers specifically to the use
of label declarations and goto statements within a function.

In summary, the NameOccurrence class captures local information about
where a name occurs in the program; this class represents a syntactic view of
the program that incorporates contextual information into the model. The Scope
hierarchy captures global information about how a name occurs in the program;
this hierarchy represents a semantic view of the program that incorporates in-
formation about the organization of the scopes.

Since the goal of name lookup is to associate a name in the program with its
corresponding declaration, an important consideration is where in the model is
the burden of lookup placed. In the sections that follow, we explore two options
for the placement of lookup.

3.2 A Context-Centered Approach to Lookup

Our first approach to modeling name lookup adopts a context-centered view
of the problem that places a lookup method in class NameOccurrence. In clause
three of the recently adopted C++ standard, the name lookup problem is clearly
defined including a detailed enumeration of the procedures for accomplishing
lookup. The procedural enumeration in clause three is organized by context
where the list of contexts include (1) an unqualified name, (2) an argument-
dependent name, (3) a qualified name, (4) a name that includes an elaborated
type specifier, (5) a class member name, or (6) a name that’s a target of a using
directive or namespace alias.

Figure 3 illustrates the incorporation of context into the structural model
by subtyping the class Usage with a class for each of the contexts listed in the
C++ standard. Figure 3 only lists classes ClassQualified and NamespaceQualified
as examples of further subtyping; if this approach were adopted the subclasses

6 James Power and Brian Malloy

MameQccurrence

Scope

=== SOCEUrS in- - - o

Wlookup(d

UngualifiedMarne ElaharatedMame UsedMame

QualifiedMarme ArgDephlarme ClassMemberMarme
ClazsCualified Mamespacedualified

Fig. 3. Class Diagram for the context-centered approach. This figure illustrates the class
hierarchy required representing the context in which name lookup occurs, paralleling
the structure of clause three of the C++ standard.

of NameOccurrence would themselves be subtyped by the classes enumerated in
clause three of the C++ standard.

Name lookup in the context-centered approach proceeds as follows. As the
program processor encounters a name in the program, the context in which
the name occurs is assembled into an instance of NameOccurrence. This object
encapsulates the logic of the search procedure as specified in the C++ standard
and represented by the lookup method in NameOccurrence. The lookup algorithm
choreograph the search by consulting with the current scope object, ordering a
find and, if unsuccessful, querying the scope to determine its logical parent and
subsequent target for searching.

In this context-centered approach, control of the lookup process is centered in
the NameQOccurrence hierarchy and the role of the Scope hierarchy is to provide
information about the names stored at a given scope and the identity of its
related scope, as requested. Since the procedures for name lookup are organized
by context in clause three of the C++ standard, this structural model will be
easily understood with reference to the standard. In addition, verification based
on the C++ standard can proceed in a case by case manner.

However, there are several problems in the context-centered approach. The
first problem is that partitioning control based on the structure of clause three

Modeling Name Lookup in C++ 7

ProgramProcessor
:

MameQccurrence . SEDDB
Boqualifier sting : &ycontainedin : Scope
&poccursin: Scape Blogkup()

$ Feiind(})
Declaration
Usage ByhasSpecifier : hool
&sentity : enum
Definition

&ypisinLined : hool

Fig. 4. Class diagram for the semantic-centered approach. This figure illustrates how
the diffusion of control to the Scope and ProgramProcessor classes allows us to consid-
erably simplify the NameOccurrence hierarchy. The ProgramProcessor class, illustrated
at the top of the figure, establishes the relationship between NameOccurrence and Scope
classes by passing the former as a parameter to the lookup method of the latter.

of the C++ standard induces methods that manifest a high degree of coupling
between classes. This coupling results from the fact that the single instance of a
name occurrence can incorporate features from many other classes. For example
a lookup of member name min 0.Q: :m(a) combines instances of QualifiedName
based on qualifier Q, ArgDepName based on argument a and ClassMemberName
for the object o.

A second problem with this approach is that once a lookup is initiated from a
particular object in the NameOccurrence hierarchy, the logic of control proceeds
similarly for all such objects since it effectively mirrors the structure of the Scope
hierarchy. By restricting the context to initiation of control and permitting the
Scope object to complete the search process we avoid the duplication of search
logic in each of the NameOccurrence objects and this reorganization permits
coalescing and considerable simplification of the NameOccurrence hierarchy.

Furthermore, once the context of an occurrence has been resolved and control
passed to the relevant Scope object, the object can either complete the lookup
itself or it can nominate a Scope object to continue the search until the lookup is
complete. This process of initially determining syntactic context and then pass-

8 James Power and Brian Malloy

ing control to semantic processing closely parallels the actions of a processor
based on an attribute-grammar that selects an appropriate grammar rule, deter-
mines syntactic context, and then performs the corresponding semantic action.

3.3 A Semantic-Centered Approach to Lookup

Figure 4 illustrates an alternative, semantic-centered approach to solving the
name lookup problem. Here, the lookup function that controls the search strategy
has been transferred to class Scope. The NameOccurrence class and its subclasses
are now information carriers and do not encapsulate any search capabilities of
their own. That part of the search strategy concerned with assembling context
information is now delegated to a new class ProgramProcessor, which we may
regard as an abstraction of the parser.

The class hierarchy represented by NameOccurrence, has been reorganized
based around the kind of context information required by the lookup method
of the Scope class. We are now in a position to model the categorization of
name occurrences in terms of declarations, definitions and uses as described
early in clause three of the C++ standard. The distinction between qualified
and unqualified names is now represented by an attribute in the NameOccurrence
class while more specific information, such as the presence of an elaborated type
specifier, is represented as an attribute of the Declaration class.

As the ProgramProcessor encounters a name, since it knows the context of
the name from the grammar, it assembles this information in an instance of the
NameOccurrence class and then passes this object, through the lookup method,
to the enclosing scope. The enclosing scope can now use the context incorporated
in the object to make suitable decisions during the lookup process, e.g., ignoring
enclosing namespaces during a qualified name lookup.

4 Behavioral Modeling of Name Lookup

While the class diagrams of the previous section provide a general framework
within which name lookup takes place, we still have not specified the actual rules
used in deciding the sequence of scopes that are searched, and which would be
encoded in the lookup method for these scopes.

As might be expected with such a complex language as C++, there are
many cases to consider, and indeed, several examples are presented in the C++
standard. In this section we present two specific cases, namespace lookup and
class-based lookup, which capture many of the fundamental decisions involved
in the lookup process.

The examples presented below are based on some of those presented in the
C++ standard. These examples typically present a series of declarations or def-
initions, and then some usages, and then describe the name lookup for these
usages. We observe here that the standard UML modeling techniques of object
diagrams and sequence diagrams fit smoothly onto this pattern, since the former
are ideal for describing the environment created by a declaration sequence, and

QO ~ O O W N

[I R N R R N N R e e R S S G e e
DO R WNRFE OO0 O W= O©

Modeling Name Lookup in C++ 9

void f(float);

namespace Y {
void f(char);
void h(double);

}

namespace Z {
void f(float);
void h(int);
namespace A {
using namespace Y;
int i;
}
}

namespace B {
using namespace Z;
void f(int);
void g(int) ;

}

namespace AB {
using namespace Z::A4;
using namespace B;
void gQ);

void h() {
AB::£(0);

}

Fig. 5. Namespace ezample. This program segment is used to demonstrate name lookup
for namespaces. We search a series of nested namespaces for the declaration correspond-
ing to name f.

the latter are ideal for describing a particular invocation of the name lookup
procedure.

4.1 Name Lookup for Namespaces

Namespaces act as a modularization construct in C++, allowing the programmer
to partition the names used in a program to prevent them from interfering with
each other. Thus, given some variable x declared in namespace A, once outside
namespace A we may refer to the variable using explicit qualification, asin A: :x.

Namespaces may be nested inside each other, in which case name occurrences
inside the inner namespace may refer to those already declared at the outer
level without the need for qualification with this process continuing recursively,
eventually reaching the global namespace where all namespaces are ultimately
nested and this is a run-on sentence that James and I must fix.

In addition to this textual relationship achieved through qualification or nest-
ing, we may establish a logical relationship between namespaces by importing

10 James Power and Brian Malloy

- GlobalNamespace | . utained in— holocalScope

/ contained in

contained in

Z:MamespaceScope

Y MamespaceScope |

contained in
contained in uses
uses
cantained in
A MamespaceScope I | B MamespaceScope
uses uses

AR MamespaceScope ‘

Fig. 6. Object diagram for the namespace example. This figure represents the two kinds
of relationships between namespaces: those established by a using directive and those
established by nesting.

one into another with a using directive. The declarations in a namespace that
are imported in this way are treated as though they were originally declared in
the importing namespace.

In Figure 5 we list a program segment to illustrate name lookup for names-
paces. Here we declare five namespaces, with various using relationships and one
nesting relationship; we also define a single function h ().

Our first step in representing this example is to construct an object diagram,
illustrated in Figure 6, showing how each scope instantiates a corresponding sub-
class of our model’s Scope class, illustrated in Figure 2 and discussed in Section
3.1. The object diagram also represents the nesting and import relationships
between the namespaces. For example, all namespaces are contained in an im-
plicitly declared global namespace; thus, namespaces Y, AB, B and Z of Figure 5
are implicitly contained in an unnamed global namespace. This nesting relation-
ship is captured in Figure 6 by the unnamed class at the top of the figure that
is an instance of GlobalNamespace, and classes Y, AB, B and Z related to the
unnamed instance of GlobalNamespace by the contained in connector. Similarly,
namespaces A and B of Figure 5 contain named using directives for Y and Z re-
spectively. This import relationship is captured in Figure 6 by the uses connector
between instances of Y and A, and between Z and B. Similar uses relationships
are shown in Figure 6 between A and AB and between B and AB.

Modeling Name Lookup in C++ 11

: Program AB ;N o ¥ : Mamespace B : Namespace
Proceszor Scope MamespaceScope Scope Scope
' ' '

o

'
i
'
loakup :

find(f)

1

loakuprfy

find(f)

lookupif)

find(f)

1

found: { ¥::fichar) })

lookupif)

find(f)

1

found: { Bofint() B

found § Bofintd, ¥ fizhar) 1

N (N

Fig. 7. Sequence diagram for the namespace example. This figure captures the flow of
control as messages are passed through the namespace hierarchy.

At the end of the program segment illustrated in Figure 5 we have function
h() at global scope, which contains a usage of the name f, with an explicit
qualification by the namespace AB. To illustrate name lookup for f, we present a
sequence diagram, illustrated in Figure 7, indicating the scopes that are searched
and the order that they are searched. The lookup proceeds as follows:

— Namespace AB is first searched unsuccessfully; we must next search its im-
ported namespaces Z: : A and then B.

— The search of namespace Z: :A yields no declaration, and so we search its
imported namespace Y. Qur search of Y is successful.

— Going back to AB we are now directed to search namespace B where we also
find a declaration, thus precluding the search of its imported namespace Z.

The search terminates, returning the two possible definitions of £ to the
program-processor, which will then proceed with the subsequent stages of pro-
cessing such as overload resolution.

Note that we do not consider the namespace Z in which A is nested in this
part of the search, nor do we search global namespace, in accordance with the
lookup rules for qualified names. The presence of a qualifier is made known to
the Scope’s Lookup method through its parameter, the NameOccurrence instance
corresponding to f.

In the sequence diagram we are able to explicitly represent the roles and
responsibilities of each scope level. For example, it is the namespace AB that

=W N =

ol B« RN,

11
12
13
14

15
16
17
18
19

12 James Power and Brian Malloy

namespace M {
int i;
class B { };

namespace N {
class Y : public M::B {
friend void foo() ;
void fun() {
class X {
int alil;
}
}
}s
}

namespace N {
void foo() {
i=05;

}

}

Fig. 8. Classes ezample. This program segment is used to demonstrate name lookup
for classes. We search a series of local and base classes for the declaration corresponding
to the two usages of name i.

causes a search of Z: : A and then B (in that order), and which is responsible for
combining the results from each of these searches.

4.2 Name Lookup for Classes

In our second example we show how name lookup proceeds in the presence of
class definitions. Classes in C++ may inherit from multiple base classes, and may
be nested inside namespaces, inside functions and inside other classes. Ignoring
access restrictions, the rules for lookup of a name used inside a class tells us
to search that class and then recursively search its enclosing scopes, unless the
class has base classes, in which case these will be searched before any enclosing
scope.

The program in Figure 8 contains a relatively intricate web of relationships
between the different scope levels, which we represent in the object diagram of
Figure 9. Class X is a local class of method fun() that belongs to class Y, and
class Y in turn has a base class B, declared in a different namespace.

In our first example of name lookup for classes, presented in Figure 8, we
search for a declaration to match the usage of variable i on line 10. Since this
variable is used outside a method body, we first search the enclosing instance
ClassScope for class X. We then proceed through the immediate enclosing scopes:

Modeling Name Lookup in C++ 13

. GlobalNamespace

contained in cantained in
- |
contained in contained in contai|ned in
void Nifood : LocalScope | Y. ClassScope | ... | B:Class3cope
contained in contained in
woid funi) : LocalScope | | friend void foofy : PrototypeScope

contained in

ClagsScope

Fig. 9. Object Diagram for the classes example. This figure represents the containment
relationship between the functions, classes and namespaces used in the sample program
and also a derivation relationship between class Y and its base class B.

the member function fun(), and its enclosing class Y. Class Y is then responsible
for initiating the search of its base classes (in this case class M: :B), and then of its
enclosing namespace N. Finally, the name space enclosing N, GlobalNamespace,
is searched.

The second example, presented in Figure 8, shows how name lookup pro-
ceeds for the usage of i on line 17 of the program. Here the occurrence is in the
body of one of class Y’s friend functions which, since it is not declared inline, is
treated as though it were an ordinary member of the namespace in which it is
defined. Thus we carry out a standard unqualified search in the local scope cor-
responding to function foo (), in namespace N, and then its enclosing namespace
GlobalNamespace.

In both cases the contents of namespace M other than class B are ignored,
and no corresponding declaration for variable i is found.

Since the usage of i on line 10 occurs outside a member function, we search
only that part of class X declared before the usage. This contrasts with a usage
inside a member function, where the whole of the member’s class is available.!
The lookup function here can determine which type of search is appropriate by
checking the context information stored in the Usage information passed to it.

! Such a search would have to be implemented by a backpatching procedure that would
be the responsibility of the program-processor, whose details we omit.

14 James Power and Brian Malloy

: Program H: Class fun : Local ¥ : Class M::B : Class M : Global
Processor Scope Scope Scope Scope Mamespace Mamespace
' ' ' ' ' '

lookupl

findg) |
1 !

loakupil)

findgi)

le—1

loakupii)

find(i)

lookupil)

found: {} find()

laokupil)
' find(jy

loakup(l)

found: {}

find(i)

L
U |
1 '

L | |
LI ' ' |
| |

Fig. 10. Sequence Diagram for the first example of name lookup in classes. In this
figure, we search for the declaration that corresponds to the usage of name i that
occurs inside class X.

5 Concluding Remarks

In this paper we have presented an approach for modeling the name lookup prob-
lem for the C++ programming language. We have presented a structural model
that captures the syntactic and semantic aspects of name occurrence in two sep-
arate but related class hierarchies. We have included interaction diagrams that
elucidate aspects of the structural model by describing examples of name lookup
closely modeled on those found in the C++ standard. We presented two possi-
ble views of the structural model corresponding to a context-centered approach
and a semantic-centered approach to the solution of the name lookup problem.
The semantic-centered approach provides advantages over the context-centered
approach that was based on the structure described in the C++ standard. The
C++ standard is both a rule-based document and the product of many years of
C++ compiler implementations, and we may assume that the experiences gained
from the latter process contributed to the coherence of the context-centered ap-
proach.

References
1. ISO/IEC JTC 1. International Standard: Programming Languages - C++. Number

14882:1998(E) in ASC X3. American National Standards Institute, first edition,
September 1998.

Modeling Name Lookup in C++ 15

- Program Mofood) - Local M Mamespace - Global

Frocessor Scope Scope Mamespace
~ lookupdd : | |
S find(i I |
lookup !
findij :
loakupii) :

findii

found: { } :I

T

|

= 1
| |

| |

| |

| |

| |

| |

Fig. 11. Sequence Diagram for the second example of name lookup in classes. In this
figure, we search for the declaration that corresponds to the usage of name i that
occurs inside the friend function N: :foo ().

2. F. Bodin, P. Beckman, D. Gannon, J. Gotwals, S. Narayana, S. Srinivas, and B. Win-
nicka. Sage++: An object-oriented toolkit and class library for building Fortran and
C++ restructuring tools. In OON-SKI, pages 122-136, Oregon, USA, 1994.

3. G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Modeling Language User
Guide. Object Technology Series. Addison-Wesley, 1999.

4. B.W. Kernighan and D.M. Ritchie. The C Programming Language. Prentice-Hall,
1978.

5. John Lilley. PCCTS-based LL(1) C++ parser: Design and theory of operation.
Version 1.5, February 1997.

6. P.D. Mosses. Denotational semantics. In J. van Leeuwen, editor, Handbook of
Theoretical Computer Science, volume B, chapter 11, pages 575-631. Elsevier, 1990.

7. S.P. Reiss and T. Davis. Experiences writing object-oriented compiler front ends.
Technical report, Brown University, January 1995.

8. J.A. Roskind. A YACC-able C++ 2.1 grammar, and the resulting ambiguities.
Independent Consultant, Indialantic FL, 1989.

9. James Rumbaugh, Ivar Jacobson, and Grady Booch. The Unified Modeling Language
Reference Manual. Addison Wesley Longman, Inc, 1999.

16 James Power and Brian Malloy

6 Appendix

To further demonstrate the credibility of our solution to the name lookup prob-
lem, this section presents solutions to the problem for examples found in clause
three of the recently adopted C++ standard[1]. Moreover, this section presents
solutions for all examples in this clause except for those that are trivial or are
similar to those examples found in Section 4 of this paper.

It is not intended that this appendix should either act as a substitute for, or be
read independently of, clause three of the standard. We have deliberately avoided
repeating much of the explanatory information in clause three, and our comments
here are limited to those issues of relevance to a specific diagram. While the
object and sequence diagrams presented here may be seen as an illustration of
the examples, it should be noted that their construction played a vital role in
both the design and validation of the class diagram.

The information presented here is not an exact mirror of that presented in
the examples. Specifically:

— The object diagrams are an abstraction of the structure found in the ex-
amples, since they omit some of the declarations and statements, and since
they reflect the logical, rather than the physical, relationships between the
various scopes. For example, we can present the existence of a using relation-
ship between namespace scopes, but not the order in which these directives
occurred.

— The sequence diagrams often present more information that that contained
in the examples, since they show each step of the name lookup process.
While this is an advantage in terms of explicating these examples, it does on
occasion force us to commit to decisions which might more properly be left
to a given implementation. For example, in situations where more than one
scope is searched, the standard often does not specify the exact sequence in
which this must be done; however, preparing the diagrams forced us to make
a, specific choice.

We organise this appendix by the sub-clauses that appear in the C++ stan-
dard and the sections that follow parallel these sub-clauses. In particular, for
each example of the C++ standard we present an object diagram showing the
relationships between the scopes used in the example, and a sequence diagram
for each name lookup discussed in the example. We annotate each diagram with
the section and paragraph of the corresponding example in clause three: for
example, “83.4.1/3” refers to section 3.4.1, paragraph 3.

The examples in this section use the class diagrams found in Section 3; in
particular, the interested reader may refer to Figures 2 and 4.

Modeling Name Lookup in C++ 17

3.4.1 Unqualified name lookup

Paragraph 3

This first example from section 3.4 involves a particularly intricate set of deci-
sions, many of which are tangential to the name lookup problem. The relation-
ships between the scoping levels is easily represented in the object diagram:

GlobalNamespace

contained in

A ClassScope

contained in

g LacalScope

§3.4.1/3: Object diagram.

We have omitted the function-prototype scope corresponding to the decla-
ration of the friend function here as it plays no part in the lookup process. In
future examples we will omit irrelevant function prototype scopes in order to
prevent the object diagram becoming cluttered.

Since a friend declaration doesn’t introduce a new name into the scope of the
class (section 11.4/1), the lookup for f finds the typedef at namespace scope.
This causes the expression to be interpreted as an explicit type conversion (sec-
tion 5.2.3/1), and the lookup for the name a finds the corresponding formal
parameter.

Global

Program
Namespace

Processor

giAa): Local
Seope

‘ A ClassScope

i Iookupi)

find(f)

lookup(f)

1 find

1

Iookup(f)

findefy

found {1} e |

lookun(a) L findta)

found: {3} :l

§3.4.1/6: Sequence diagram for lookup of £ (a).

18 James Power and Brian Malloy

Paragraph 6

In this paragraph we have an example of a name used inside a function, where
that function belongs to a nested namespace, but is defined outside of that
namespace. The object diagram represents the nesting of the namespaces and
the local scope corresponding to function A::N::f().

| - GlobalMamespace |
I

cantained in

| A MamespaceScope |

cantained in

| M MamespaceScope |

cantained in

f:LocalScope

§3.4.1/6: Object diagram.

The sequence diagram then shows the order in which these scopes are searched,
with each scope being responsible for conducting a search of itself and, if this is
unsuccessful, passing control to its logically enclosing scope.

Global

: Program { LocalScope MN:hMamespace A Namespace
Processar Scope Scope Narmespace
loakup(i ' ' '
findiiy
loakup(i)
findii
lookupdiy
find(i}
lookupdiy
find ()
fourd) p—
oy
'

§3.4.1/6: Sequence diagram for lookup of i.

We note here that our concept of scope is dynamic, in that we envisage the
find method returning different results at different stages of program processing.
In particular, the GlobalNamespace searched here will contain all those global
variables declared before the definition of function A::N::f(), including any
that might have been declared since the end of the definition of namespace A.

Modeling Name Lookup in C++ 19

Paragraph 7

Here we have an example of lookup for a name occurring inside a class definition,
but outside a member function definition. The object diagram represents the
logical containments between the various scopes, as well as the derivation of
class Y from its base class M: :B.

e
contained in }l\laiﬂEd in
|
contained in contained in
derwed pe
contai|ned in

88.4.1/7: Object diagram.

Derivation is represented by the derived relationship of the object diagram.
We assume here that this means “directly derived from”, and that we do not
choose to represent the transitivity of class derivation.

20 James Power and Brian Malloy

Name lookup then proceeds in a manner roughly parallelling these logical
containments. Note that the ClassScope Y is responsible for initiating two calls
to the lookup method: one to it enclosing namespace N, and one to its base class
M::B.

: Program #: ClassScape ¥ ClaszScope hi::B : Class N : Hamespace : Global
Processor Scope Scope Hamespace
' ' ' ' ' '
i lookopdy | | | |
* Y | before the , , , ,
uze of i ' ' ' '
I I I I
find() | | | |
I I I I
; : before def : : :
Hof Mo 1 1 |
lookupg) | | |
1 findg) : | |
I I I
I I I
I I I
I I I
loobeupily : : :
find(i)y I|before def !
ot Moy ,
I I
I I
| |
lookupii) : :
' findi) before def
, of N
I L
| loakupif) |
I !
! find(i
found £1 1
|
I
I
I
! (=
I T
| |

§3.4.1/7: Sequence diagram for lookup of i.

Modeling Name Lookup in C++ 21

Paragraph 8

This example shows the lookup for a name that occurs inside the definition of a
class member. As with the previous example, most of the relationships between
the scopes are logical containment, with just one other relationship representing
the derivation of class X from class B.

: GlobalMamespace
contained in contained in

M NamespaceScone
B ClassScope |

contained in

M NamespaceScope
derived /
\ contained in

H: ClassScope
[
contained in

[Locaisiore |
8§8.4.1/8: Object diagram.

One again the ClassScope X is responsible for initiating a lookup of both its
base class B and its enclosing namespace M: : N.

Pragram
Processar

1 LomiSepe X :CnaSope B.CmsSope H: Hamesmcs [TRT——— Ghiml
Scape ‘Scaps Hamerpce

[oetane e

) L[

T

Iaatunti]

fing)

Joatant

laatum) B
find)

oatastl

i

)

§3.4.1/8: Sequence diagram for lookup of i.

While the issue does not arise here, special arrangements will clearly be
required in order to deal with the use of names inside a member that is defined
inline, since all members of the owning class, and not just those declared to
date, will be in scope. While it is the responsibility of the program processor to
arrange the appropriate mechanisms for this (e.g. some form of backpatching),
we envisage that the information regarding whether all of the class should be
searched, or just the class-to-date, would be part of the context encapsulated
with i and passed via the calls to lookup.

22 James Power and Brian Malloy

Paragraph 10

Here we have a special case of a friend function definition where the logically-
enclosing scope of that function’s definition is searched for names used in the
declarator part of its declaration. (This is not to be confused with argument-
dependent name lookup, where somewhat the reverse happens).

| - GlabalMarmespace |

/N

contained in contained in
A ClassScope B:ClassScope

§8.4.1/10: Object diagram.

The sequence diagram demonstrates that the lookup message is initially
passed directly to the owning scope for each friend, and only if this fails is it
then passed to the physically enclosing scope, which in this case is the ClassScope
corresponding to struct B.

: Program A ClassScope B ClassScone
Processor
lookup(AT)
Tind(AT)
found { ACAT) ;
lookup(BT)
find(BT)
found { } ;
loakupET) ,
T I
T find(BT)
found { B:BT }
: I
'
'
'

|

§3.4.1/10: Sequence diagram for lookup of AT and BT.

Modeling Name Lookup in C++ 23

3.4.2 Argument dependent name lookup

Paragraph 2

The example in this paragraph demonstrates how the arguments in a function
call extend the set of scopes that must be considered when searching for the
corresponding function definition.

We choose to include a function-prototype scope for the declaration of f in
the object diagram to indicate its presence in namespace NS: the actual scope
plays no part in the lookup.

cGlobalMamespace

contained in contained in
| ME : MamespaceScope | | int maind : LocalScope
- N
contained in contained in
T:ClassScope | woid fiT); . PrototypeScope |

§3.4.2/2: Object Diagram.

The sequence diagram shows the argument parm being resolved first; this
allows the program processor to assemble the set of associated namespaces and
classes, which it can then use to direct the search for f.

Prograrm rnaing ; Local : Global NS : Marmespace
Processor Scope Mamespace Stope
2 lookupiparm) ¢) }
find{parm) E 3
lookupiparm) i
. I

find(parrry [Afterthis, the

found: { parm } _ namespace
AR s snzcsy -;l NSis

"7 qrecognised as
an :
"associated

e

§8.4.2/2: Sequence diagram for lookup of £ (param).

L E namespace"
g lookupif i i !
find i !
lookup(f) E 3
find(f) i
= found: { } 3
L Jookup(i i
7 ' findif
' found: (NS

24 James Power and Brian Malloy

3.4.3 Qualified name lookup

Paragraph 1

This example demonstrates that the normal rules for choosing between different
declarations of the same name do not apply when that name is used as a qualifier;
instead we are looking for namespace or class names.

cGlobalMamespace

[

contained in

contained in

A ClassScope : -
int maind : LacalScape

8§8.4.3/1: Object diagram.

The sequence diagram demonstrates the different lookup procedure that is
carried out in the two cases: first where A is used as a qualifier, and then where
it is not.

- Program maind : Local A ClassScope : Global
Processor Scope Mamespace
o |DOKUpA)]
o findga) : :
i i
e | ; :
Here the lookup(a !
qualifier "A" is L !
looked up as ! find(A)
aclass or .
namespace found: { class A} ! :l
name j
i
' L
i i
Iouku:p(n) E :
T find(n) |
| — |
found: { Azn} !
T I
I I
Here the D | L '
narne "&" is _ lookup(#) i i i
looked up as - ' '
an ordinary find(A)] !
name, ; ;
resulting in an . :l ; ;
errar found: {intA} ' '
I I

§3.4.3/1: Sequence diagram for lookup of A: :n.

Note that in each case the initial method invocation appears to be the same:
the program processor passes a lookup (A) method call to the LocalScope corre-
sponding to function main(). The crucial difference here is in the parameter A,
which must contain information as to whether or not this name has been used as
a qualifier. Thus, the fact that these two lookups actually use different objects,
both of which we call “A” is not represented explicitly in our sequence diagram.

Modeling Name Lookup in C++ 25

Paragraph 3

This example shows that if a name being declared has an explicit qualifier,
then this qualification is implicitly extended to subsequent names used in the
declarator.

‘ . GlobalMamespace ‘

contained in contained in
H:ClassScope C:ClassScope
contained in

Cix ClassScope

§3.4.3/3: Object diagram.

The sequence diagram shows that whereas the lookup for names X and C
proceed as normal, as soon as we process the qualifier C, subsequent names in
the declarator (i.e. arr and number) are looked up under this qualification.

Program C:ClagsScope :Glohal
Processar Namespace
i loakup(d i
I h I
! find ()
1

found: { class ¥} ;

Iookuip(C) |
: find(zy
I
found: { cl:ass oo} :l
i
Iookupiar. 1 Here the
“““““““““““““ T declarator
“Tanisa
HOEIE gualified-id
found: { Coarr ;

MNames
fallowing “art*
are looked up
inthe cantext
ofclags"C"

laokupinumber
- find{numbery

e 1

found: { Cinumber}

L

=
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'

§3.4.3/3: Sequence diagram for lookup of X C::arr[number].

It is the responsibility of the program processor to take note of this explicit
qualification, and to ensure that the objects corresponding to both arr and
number are both marked as containing an explicit qualification.

26 James Power and Brian Malloy

Paragraph 5

This paragraph deals with the rules for pseudo-destructor names. In our presen-
tation here we have one object diagram to represent the (rather trivial) scope
containments, and one sequence diagram each to represent the lookups for names
I, I2 and AB.

CGlobalMamespace

"

cantained in ; - cantained in
contained in

. ClassScope int main : LocalScope
A ClassScope

§3.4.3/5: Object diagram.

Modeling Name Lookup in C++ 27

In the first example, the lookup of p proceeds as normal, and then the rules
from section 3.4.5 cause a lookup of C in the scope of the expression, which is
the GlobalNamespace. Next the two instances of the name I must be looked up
in the scope designated? by their qualifier, which in each case is the ClassScope
corresponding to struct C.

It is the responsibility of the program processor to make sure that the search
for I takes place as a search for a type name, and not a search for a (“real”
rather than pseudo) destructor of that name.

:Prodram C ClassScope : Global
Processor Namespace
I ! |
| . |
M Iookulp(p) !
T findip)
1
found: { :p} :l
\
T
i
i
1 L
The "C"in laokup(C) :
"o s P find(C)
looked upin L] e '
the context of found: {class C } :l
the postfix T
expression lookup()
T T and El
found:{ G} ; - ' The " in
Sral 0 "p-=Ciltis
T~ [looked upin
L ! the scope
lookup(ly 4 ! associated
. " findi ! with class C
o 1
The"~"in B !
el found: { G} ; i
is looked up in '
the scope i
associated L i
with class C 4 !

§3.4.8/5: Sequence diagram for lookup of p->C::I::~TI().

% Here we interpret the scope “designated” by a type-name to be the scope in which
it is contained

28 James Power and Brian Malloy

In the second example, since q is a pointer to a scalar type, the rules from
section 3.4.5/2 tell us to lookup I1 in the scope of the whole expression (i.e. the
GlobalNamespace). Next, the type-name I2 is looked up in the scope designated
by its qualifier I1, which is once again the GlobalNamespace.

: Program . Global
Frocessor MNamespace
! loakup{g) '
find{g)
found: { &g b
lookupil1) i
fine(1y
The"1M" of ,~" found: {1}
“p-=l1" is 2
looked upin
the context of L
the postiz laokupil2y .
expression —< = The "17" of
Toee Lﬂrjd(l?) sl 2t s
i Ty looked upin
s " the scope of
the whale
postfix
expression

§8.4.3/5: Sequence diagram for lookup of q->I1::~I2().

Modeling Name Lookup in C++ 29

In the final example, since the name AB refers to something of class-type, this
is a “real”, rather than a pseudo, destructor call. Hence the first AB is looked up
following section 3.4.5/4 as a qualifier in both the scope of the whole expression,
and in the scope of the class corresponding to p. The second AB is then looked up,
not as a type-name, but as a destructor name in the ClassScope corresponding
to struct A.

_ Program intrnaing A ClassScope - Global
Processor UcaIScug MNamespace
| loakup(p) i i
1 4 findip) i i
| |
| |
found: {p} :l } }
| |
| |
i i
lookupag) U
find (A8} ! i
i i
; i |
IDDR:UD(AEI) !
T findiAB)
|
found: { cAB Y | :'
\
i
|
| MB: tranglated
looku| [AB) ! T |iookuptar
e T find{AB) i |intoangge
i = i 1 ' via the typedef
p-=AB~AB() found'{} :l i
is now looked : !
up intthe ' : K
context ofthe I i b
class scope ; i T i B
correspandin s TR Ionkuptag) | i ;
gtoAB (e, i ! ! /
struct &) ! 1 findia)
| |
D found:{ AeAQ) | :I
| |
| |

§3.4.3/5: Sequence diagram for lookup of p->AB: : ~AB().

30 James Power and Brian Malloy

3.4.3.2 Namespace members
Paragraph 2

The examples in this paragraph demonstrate the searching of namespaces which
are connected by a uses relationship. The object diagram represents both this
relationship, and the usual logical containment.

| - GlobalNamespace ‘

contained in

woid by : LocalScope
contained in contained in

contained in contained in

Z.MamespaceScope

¥ MamespaceScope

contained in

uses

B : NamespaceScope

A MamespaceScope

uses uses

4B NamespareSeope
§3.4.3.2/2: Object diagram.

The four sequence diagrams that follow illustrate the lookups caused by pro-
cessing the expressions in the body of function h(). In each case the variables
used are explicitly qualified by the namespace AB, and hence the lookup is re-
stricted to this namespace, and those transitively related to it via the uses rela-
tionship. Thus neither the GlobalNamespace, and the LocalScope corresponding
to h() are searched in any example.

In all cases the searches are straightforward. We have chosen to make each
namespace responsible for dispatching the relevant lookup calls to the names-
paces it uses, and for collating the results of these calls. Note that each namespace
must also be capable of choosing not to search further when a find is successful.

Modeling Name Lookup in C++

: Prograrm AB:Mamespace A Mamespace B:Mamespace
Processaor Scope Scope Scope
i lnokup(g) : | "
findgo) ' i
found: { AB:Q(0 B ; | !
i Jaokupih | i '
find(f) | i
lookupif) E E
findf)
found: { &:fint 1 :l
|
laokudif |
! findify

found: { Afiint), Bofichan }

found: { EI:::f(char)}

5|

§8.4.8.2/2: Sequence diagram for lookup of AB::g() and AB::f(1).

_ Program AR Mamespace Names ace :Mamespace B MWamespace || ¥:MNamespace | | Z:Mamespace
Processor Scope Scope Scope Scope
lookupix) ' ' ' ! !
find{x) i i i i
loakupd i i i i
find i i | i
- 1 i i i
lookup) | !
| findie E
found: {} : :I]
I I
i H i
lookupog i i i
i findox) ! !
] :I lookup (e !
i i findi)
1 found: § } 1 (:l
| |
i i
found: § i |
I I
I I

§8.4.8.2/2: Sequence diagram for lookup of AB: :x++

31

32 James Power and Brian Malloy

(Program || AB: Namespace || A: MNamespace | | B: Namespace
Processor Scope Scope Scope

E lookup() ! . .
find | 1
e 1 : !
lnokup(h
findiy !
found: { Az} E
Joakup) :
i findiy
found!{ B:i } ;
found: { Azl B E '

L
|
'
i
|
|
'

§3.4.3.2/2: Sequence diagram for lookup of AB: :i++.

:Program | | AB: Mamespace | | A:MNamespace B:MNamespace Y¥:Mamespace | [Z:MNamespace
Processor Scope Scope Scope Scope Scope

found: { ¥:hiinfy, Z:h{double) }

| ooupry | s e e e
fiindhy ! ! : |
— ! i i |

lookupih) ! ; ; f
firnd (i 7 ; \
— lookup(h) i i
: findihy .
found: { ¥:hiint 3) <:| i
looH Joih i K !
find(h)
E :l IookL:p(h) E
findin
| found: { Z:hidouble) }]

§3.4.3.2/2: Sequence diagram for lookup of AB::h(16.8).

Modeling Name Lookup in C++ 33

Paragraph 3

The examples in this paragraph deal with the situation where the same decla-
ration is found more than once in a namespace search; this occurs when there
are two or more routes from the namespace mentioned in the qualifier to the
namespace in which the declaration occurs.

Our object diagram here explicitly illustrates this possibility by showing the
web of uses relationships between the namespaces. Note, however, that since
individual declarations are not shown, we cannot tell from the diagram that there
is likely to be a clash between the use of A: :a in namespace B and namespace D.
Perhaps a uses-a-member-of relationship might be employed to draw attention
to this, if necessary.

| GlobalNamesnace |

. N
contained in I contained in
.

: vold af): LocalScape
vaid f0) - LacalScope void ol LocalScope

here are contained in the

All ofthe namespaces shown
Globalamespace

A MamespaceScope

™

uses uses

C :MamespaceScape B :NamespaceScope D :NamespaceScope

uses uses uses uses

| BC :MamespaceScope | | BD :hamespaceScope |

§3.4.3.2/3: Object diagram .

Both of the searches are fairly straightforward. In each case the search starts
at the namespace used as a qualifier (BC and BD respectively), and follows back
along the path indicated by the using directive. We note that in each case the
namespace A is only searched once, as specified in section 3.4.3.2/2.

34

James Power and Brian Malloy

:Program | |BC: Mamespace ||B: Mamespace C:MNamespace | | A:MNamespace
Processor Scope Scope Scope Scope

lookupia)

found: { Aza, Aca}

§3.4.3.2/3: Sequen

find(a) i i i
lookup{a) E E E
findal
e 1 lookup(a) :
found: { Aza} |

Iook:up(a) E E
] findia))
E lookup(a) :

| found: { Aza}

findia)

Already

:Program | |BD : Mamespace || B: MNamespace | [D Namespace A Mamespace
Processor Scope Scope Scope Scope

lookup(a)

found: { Aca, Azal

find(a)

findia) I I i
| : : :
lookupia) ! !)
find(a)
; Iookin(a) E

found: { Azat E

|DDkL:Ip(a) E
' findia)--------

found:f Aa }

e A A)y T

R R

T
|
'
'
'
'
'
'
+
'
|
'
'
'
'
'
'
|
'
|
'
'
'
'
'
'
|
'
|

findia) here, so
don't da it again!

done a

ce diagram for lookup of BC: :a++.

Assuming that
Azais foundin
D, without

reference here

§3.4.3.2/3: Sequence diagram for lookup of BD: : a++.

Modeling Name Lookup in C++ 35
Paragraph 4

The examples in this paragraph show how being restricted to searching each
namespace just once prevents possible ambiguities in those situations where we
have a circular uses relationship between namespaces. This circularity is clearly
shown in the object diagram.

. GlohalMamespace

contained in contained in contained in

AusesB

A MamespaceScope

B . MamespaceScope |:\roid ffy: LocalScope

Buses A
§3.4.3.2/4: Object diagram .

The similarities between the searches can easily be seen by comparing the
two sequence diagrams here. There is a clear similarity between the search for
A::a and B::b, and also between B::a and A: :b.

B Mamespace A Mamespace
Scope Scope
Qualifieris A'j: :
1
1
1

: Prograrm
Processar

fii - Local
Scope

'
1
A

| Iookyp(a) .

: i find(a)

v found:{Acal, :I
o
|DDklle(a) ; '
' ind(a)

lookupia)

find(a)

found: { Aza Y :I

L
1

8§8.4.8.2/4: Sequence diagram for lookup of A: :a++ and B: :a++.

36 James Power and Brian Malloy

. Program i) : Loeal A Mamespace || B: Mamespace
FProcessaor Scope Scope Scope
& Qualifigr is A B : !
lookup(b)
; findih i
| 1 '
! “lockuply !
i find(hy
I ' found:{B:h } ;
\|Rualifieris B5y, 1
o lookupdy ;
i ; find(h)
v found:{Bib Y

§3.4.3.2/4: Sequence diagram for lookup of A: :b++ and B: :b++.

Modeling Name Lookup in C++ 37

Paragraph 5

The rules in this paragraph are an elaboration of those in section 3.3.7/2 dealing
with re-declarations of the same name, to restrict the validity of such declarations
to single namespaces.

| GlobalMamespace |

contained in cantained in

contained in

& NamaspaceScope B NamespaceScope

| uses uses ‘

contained in contained in
C . MamespaceScope

¥ ClagsScaope i ClassSeope

83.4.8.2/5: Object diagram .

Here the lookup proceeds as usual, except now when multiple declarations
are found we must be able to distinguish between them.

In the case of the lookup for x it is the job of namespace A to apply the
name-hiding rules and return only the non-class definition of x.

. Program C . Mamespace A Mamespace B:Mamespace
Processor Scope Scope Scope
i laakup : ; i
find) ; !
|ookup(d : Here both Ly

find(["int®' and

found: {intAx) |- asrgl-;gmd
hut the "int
¥'is chosen

lookupd :

1 find)

fDurI]d:{} :|

found: § int Ao} !

--—d
——m e]

L
1
]
]
]
]

§8.4.3.2/5: Sequence diagram for lookup of C: :x.

38 James Power and Brian Malloy

The search for y however yields declarations from different namespaces, and
it is now the job of the namespace C to realise that these are incompatible.
Presumably this forms an adjunct to the collation that namespaces must oc-
casionally perform, as demonstrated in section 3.4.3.2/2. Note, however, that
this is restricted to collation and distinguishing incompatible declarations; dis-
tinguishing between compatible declarations is the job of overload-resolution,
which takes place after name lookup, and is not dealt with here.

: Program C:Mamespace A MNamespace B:Mamespace
Frocessor Scope Scope Scope

i lookup(y) i i i
findgy) i i
lookupdy) E E
findiy) |
found: {int Ay} ; E
Iook'up(y) E

findy)

—

faund: { siruct By}

Error atthis
paint, since
definitions are
from different
namespaces

'

|

T '

' '

aa ' '
' ' '
' ' '
' ' ' '

§3.4.3.2/5: Sequence diagram for lookup of C: :y.

Modeling Name Lookup in C++ 39

Paragraph 6

This paragraph contains two separate examples, and hence we have an object
diagram and a sequence diagram for each.

In the first case the relationship between the scoping levels is represented
by a simple object digram. We represent the logical nesting between the scope
levels, including the (correct) nesting of function £1 in namespace B.

| : GlobalNamespace |

contained in

A:NamespaceScope

PusesH contained in

B NamespaceScane

cantained in

woid Bft {inf) : LocalScope

§3.4.3.2/6: Object diagram for the first example.

We have chosen not to represent the incorrect scope corresponding to the
definition of A: : £1 in the example, which is presumably contained in namespace
A. Tt is not clear at this point whether it would be useful to include a facil-
ity in these object diagrams to represent associations resulting from incorrect
programs.

The sequence diagram then is the simpler of the two, since we need simply
verify that £1 does not indeed belong to namespace A.

.Program Al B, . Global
Processor Mamespace Mamespace Mamespace
lookupis)
i find(a)
! found: { A} ;
: The by
M lookupdfly o namespace

findif1) Bis not
searched,

found: { } Z since AXf1 s

an explicithy

gualified
declaration

s A
mmmmmoog

§3.4.3.2/6: Sequence diagram for lookup of A::£1(int).

40 James Power and Brian Malloy

The second example of this paragraph is similar to the first, except now the
using directive for namespace A means that the definition of B: : £1 is correct.

The object diagram is not particularly helpful to us here, since the potential
problem resulting from the physical location of the definition of B::f1 in the
GlobalNamespace is not indicated in any way.

. GlobalMamespace

contained in / contained in

uses A
| A MNamespaceScope | | C:MNamespaceScope |
uses D
contained in contained in
D MWamespaceScope
B MNamespaceScope ‘
contained in contained in
‘ woid BUfl (infr : LocalScope ‘ woid Deofl {ind) @ LocalScope

§3.4.3.2/6: Object diagram for the second example.

The sequence diagram does, however, demonstrate exactly why the definition
is correct. We can see that the reference to B is resolved in the usual manner,
and then subsequent reference to £1 then finds the correct declaration.

Modeling Name Lookup in C++ 41

: Prograrm A Mamespace cD: : Global AcB:Mamespace
Processar Scope NamespaceScape Hamespace Scope
! | | ! !
o lookup(E)
T T findi{B) I
| I I
! found: { } ! ; !
: - |
| i I
lookupiB) !] !
find¢g) ;] }
I | |
found: (A8} | [«
| i i
| i i
(] i] 1
lookup(B) ;] i
. I I |
; find(g)] :
| | |
i 1 i
found:{ } | i
I I
| | |
I I I
i H i i
= i lookupif)] i
find(f1)
I I I
found: { B-F1 (ind } :l
T T T
I I I
I I I
I I I L

§3.4.3.2/6: Sequence diagram for lookup of B: :£1(int).

42 James Power and Brian Malloy

3.4.5 Class member access

Paragraph 4

The examples in this paragraph deal with the use of an explicit qualifier imme-
diately after a class member access. The example consists of a class hierarchy,
with the ultimate base class being the virtually-inherited struct A.

:GlobalMamespace

contained in caontained in

A" ClassScope fid: LocalScope
derived vitually derived - ATAeAEn tlassEa o
_ |Aare also contained
- - in the Global
[8. classscope | [Ficlassscoge N nephes stuge
(hat shown here for
clatity)
detived dertived
| C: ClassScope | | D ClagsScope |

derived derived

E . ClassScope

§3.4.5/4: Object Diagram.

The sequence diagrams show how the lookup for what is essentially the vari-
able a of struct A proceeds under two different contexts. In each case the class
qualifier after the . operator (B and A respectively) is looked up firstly starting
in the local scope corresponding to function f (), and then in the scope of the
relevant class - E and F respectively.

Note that in the second search in each case we are looking to see if the
qualifier represents a viable “view” of the following member. How precisely this
is achieved is an implementation matter, and we have chosen in our sequence
diagrams to simply show a lookup call being directed at the appropriate derived
class. We thus assume that the class can check the validity of the view (either
internally or by traversing back up the inheritance hierarchy), and we choose
not to represent any further detail in this process.

It is, once again, the responsibility of the program processor to mark the
object corresponding to the qualifier (B and A) to indicate that this is a base-
class search, and not an ordinary member lookup.

Modeling Name Lookup in C++

- Program fiy: Local - 5lobal ‘
Brocessaor Scope Marnespace

E_: Class B : Class A Class
S Scope Scope

cope

ﬁljund' { struct B)

lookup(B)
findfE) "L
- ;
lookup(B) _ !
found: {

struct B} —]

-

Iuoku;p(a)

find(B)- -

e]

Here twe search for B !

as a hase class of E,

not as a member
|

Next we search for B "in the
context of the Entire postfix-
expression” |

found: { Aza)

find{a)

lookup(a)

S S A

PR s (SRS e S S S S o

i

|

l_
'
'
'
'
'

§3.4.5/4: Sequence diagram for lookup of e.B: :a.

. Program i : Local : Global F:Class A:Class
Processor Scope MNamespace Scope Scope

i
i
lookupy---F=------

found: § struct A,
I

||'|nd(A)

L .
finciA) {
I
lookugp(a) '
found: { struct A}

1

N

lookupia)

find(A)

—

Lookup Aasa
______ hase class of F

find(a)

Mow lookup Ain the context

qof the postiix expression
.

7

found

:I{A::a}

find{a)

1

§3.4.5/4: Sequence diagram for

lookup of £.A: :a.

43

