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Abstract. The International Surface Temperature Initiative
(ISTI) is striving towards substantively improving our abil-
ity to robustly understand historical land surface air temper-
ature change at all scales. A key recently completed first step
has been collating all available records into a comprehensive
open access, traceable and version-controlled databank. The
crucial next step is to maximise the value of the collated data
through a robust international framework of benchmarking
and assessment for product intercomparison and uncertainty
estimation. We focus on uncertainties arising from the pres-
ence of inhomogeneities in monthly mean land surface tem-
perature data and the varied methodological choices made by
various groups in building homogeneous temperature prod-
ucts. The central facet of the benchmarking process is the
creation of global-scale synthetic analogues to the real-world

database where both the “true” series and inhomogeneities
are known (a luxury the real-world data do not afford us).
Hence, algorithmic strengths and weaknesses can be mean-
ingfully quantified and conditional inferences made about the
real-world climate system. Here we discuss the necessary
framework for developing an international homogenisation
benchmarking system on the global scale for monthly mean
temperatures. The value of this framework is critically de-
pendent upon the number of groups taking part and so we
strongly advocate involvement in the benchmarking exercise
from as many data analyst groups as possible to make the
best use of this substantial effort.
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Figure 1. Station locations coloured by length of record for version1 of the ISTI Land Meteorological Databank stage 3 (recommended
merged version) version 1.0.0 (source: Fig. 8 in Rennie et al., 2014).

1 Introduction

Monitoring and understanding our changing climate requires
freely available data with good spatial and temporal cover-
age that is of high quality, with the remaining uncertain-
ties well quantified. The International Surface Temperature
Initiative (ISTI; www.surfacetemperatures.org; Thorne et al.,
2011) is striving towards substantively improving our ability
to robustly understand historical land surface air temperature
change at all scales. A key recently completed first step has
been collating all known freely available land surface me-
teorological records into an open access, traceable to known
origin where possible, and version controlled databank (Ren-
nie et al., 2014). To date the focus has been on monthly tem-
perature time series, so far achieving a database of just over
32 000 unique records in the first release version as it stood
on 20 June 2014 (Fig. 1).

There are multiple additional processes that must be
performed to transform these fundamental data holdings
into high-quality-data products that are suitable for robust
climate research, henceforth referred to as climate data
records (CDRs). These processes include: quality control,
homogenisation, averaging, and in some cases interpolation.
At present, a number of independent climate data groups
maintain CDRs of land surface air temperature. These can
range from data sets at global, regional or national/local
scales of single stations or gridded products. Each uses its
own choice of methods to process data from the raw observa-
tions to a CDR. In most cases, these methods are automated,
given the large number of stations, and purely statistical due
to poor metadata availability.

ISTI’s second programmatic focus is to set up a framework
to evaluate these methodological choices that ultimately lead
to structural uncertainties in the trends and variability from
CDRs. In particular, the ISTI focuses on homogenisation al-
gorithm skill. This can be tested using a set of synthetic
temperature records, analogous to real station networks but
where inhomogeneities have deliberately been added. As
such, the “truth” about where and what errors exist is known
a priori. The ability of the algorithm to locate the change
points and adjust for the inhomogeneity, ideally returning the
“truth”, can then be measured. This community-based vali-
dation on a realistic problem is referred to as benchmarking
henceforth.

Ideally, CDRs should represent points in space, and be
free from any non-climatic influences thereby providing a
clean, homogeneous record. The unknown degree to which
they do not represent true climatic changes hampers robust
understanding. This has consequences for informed decision
making since observational records underpin all aspects of
our understanding of climate change. With a handful of ex-
ceptions, historical measurements have not been made in
an SI (International System of units) traceable manner. This
means that instruments were not generally situated nor cal-
ibrated routinely to known international metrological stan-
dards. Even if they were, any calibration adjustment docu-
mentation is either unavailable or not easily accessible. Even
the present day standard of a screened thermometer may still
contain biases compared to the “true” WMO recommended
standard of shaded free air temperature (WMO, 1992, 1998;
Harrison, 2011, 2010). However, for analysis of changes in
climate, achieving this WMO standard is less important than
the long-term continuity of a given station and its practices.
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Unfortunately, change has been ubiquitous for the majority
of station records (e.g. Lawrimore et al., 2011; Rohde et al.,
2013). The dates of these changes (known as change points)
are in many (very likely most) cases unknown and their im-
pacts (known as inhomogeneities) either poorly quantified or
more often than not entirely unquantified at source, neces-
sitating subsequent analysis for change points and resulting
inhomogeneities by third party analysts.

Climate observations made at individual stations exhibit
multi-timescale variability made up of annual to decadal
variations, seasonality and weather, all modulated by the sta-
tion’s microclimate. Inhomogeneities can arise for a number
of reasons such as station moves, instrument changes and
changes in their exposure (shelter change), changes to the
surrounding environment and changes to observing/reporting
practices. While in the simplest cases a station may have one
abrupt inhomogeneity in the middle of its series, which is rel-
atively easy to detect, the situation can be far more complex
with multiple change points caused by a number of diverse
inhomogeneities. For example, inhomogeneities may be:

– geographically or temporally clustered due to events
which affect entire networks or regions (e.g. change in
observation time)

– close to end points of time series

– gradual or sudden

– variance-altering

– combined with the presence of a long-term background
trend

– small

– frequent

– seasonally or diurnally varying

and often a combination of the above. A good overview of in-
homogeneities in temperature and their causes can be found
in Trewin (2010). Identifying the correct date (change point)
and magnitude for any inhomogeneity against background
noise is difficult, especially if it varies seasonally. Even after
detection a series of decisions are required as to whether and
how to adjust the data. While decisions are as evidence-based
as possible, some are unavoidably ambiguous and can have
a further non-negligible impact upon the resulting data. This
is especially problematic for large data sets where the whole
process by necessity is automated.

In this context attaining station homogeneity is very dif-
ficult; many algorithms exist with varying strengths, weak-
nesses and levels of skill (detailed reviews are presented in
Venema et al., 2012, Aguilar et al., 2003, and Peterson et
al., 1998). Many are already employed to build global and
regional temperature products (CDRs) routinely used in cli-
mate research (e.g. Xu et al., 2013; Trewin, 2013; Vincent et

al., 2012; Menne et al., 2009). While these algorithms can
improve the homogeneity of the data, both spatially and tem-
porally, some degree of uncertainty is extremely likely to
remain (Venema et al.,2012) depending on methodological
choices. Narrowing these bands of uncertainty is highly un-
likely to change the story of increasing global average tem-
perature since the late 19th century. However, large-scale
biases could be reduced (Williams Jr. et al., 2012) and es-
timates of temperature trends at regional and local scales,
while becoming spatially more consistent, could be greatly
affected.

The only way to categorically measure the skill of a ho-
mogenisation algorithm for realistic conditions is to test it
against a benchmark. Test data sets for previous benchmark-
ing efforts have included one or more of the following:
as homogeneous as possible real data, synthetic data with
added inhomogeneities, or real data with known inhomo-
geneities. Although valuable, station test cases are often rel-
atively few in number (e.g. Easterling and Peterson, 1995)
or lacking real-world complexity of both climate variabil-
ity and inhomogeneity characteristics (e.g. Vincent, 1998;
Ducré-Robitaille et al., 2003; Reeves et al., 2007; Wang et
al., 2007; Wang, 2008a, b). A relatively comprehensive but
regionally limited study is that of Begert et al. (2008), who
used the manually homogenised Swiss network as a test case.

The European homogenisation community (the HOME
project; www.homogenisation.org; Venema et al., 2012) is
the most comprehensive benchmarking exercise to date.
HOME used stochastic simulation to generate realistic net-
works of ∼ 100 European temperature and precipitation
records. Their probability distribution, cross- and autocorre-
lations were reproduced using a “surrogate data approach”
(Venema et al., 2006). Inhomogeneities were added such
that all stations contained multiple change points and the
magnitudes of the inhomogeneities were drawn from a nor-
mal distribution. Thus, small undetectable inhomogeneities
were also present, which influenced the detection and ad-
justment of larger inhomogeneities. Those methods that ad-
dressed the presence of multiple change points within a se-
ries (e.g. Caussinus and Lyazrhi, 1997, Lu et al., 2010; Han-
nart and Naveau, 2012; Lindau and Venema, 2013) and the
presence of change points within the reference series used in
relative homogenisation (e.g. Caussinus and Mestre, 2004;
Menne and Williams, 2005, 2009; Domonkos et al., 2011)
clearly performed best in the HOME benchmark.

Recent studies have generated synthetic data test cases
with varying degrees of real-world characteristics (e.g. vari-
ance, station autocorrelation, multiple change points within
a station record and a variety of inhomogeneity types) on
larger scales (e.g. Menne and Williams, 2005; DeGaetano,
2006; Titchner et al., 2009; Williams et al., 2012). However,
none offer sufficient complexity of test data with sufficient
comprehensiveness of inhomogeneities. Furthermore, none
are part of an internationally recognised system that could
provide universally useful results.
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The ISTI benchmarks should lead to significant advance-
ment over what is currently available. They will be global
in scale, offer a better representation of real-world complex-
ity both in terms of station characteristics and inhomogene-
ity characteristics and provide a repeatable internationally
agreed assessment system. The requirement for homogeni-
sation benchmarks is becoming increasingly important, be-
cause policy decisions of enormous societal and economic
importance are now being based on conclusions drawn from
observational data. In addition to underpinning our level of
confidence in the observations, developing and engendering
a comprehensive and internationally recognised benchmark
system would provide three key scientific benefits:

1. objective intercomparison of data-products

2. quantification of the potential structural uncertainty of
any one product

3. a valuable tool for advancing algorithm development.

The Benchmarking and Assessment Working Group
was set up during the Exeter, UK, 2010 workshop for
the ISTI to develop and oversee the benchmarking pro-
cess for homogenisation of temperature products. Further
details can be found atwww.surfacetemperatures.org/
benchmarking-and-assessment-working-groupand blog
discussions can be found athttp://surftempbenchmarking.
blogspot.com. The Benchmarking and Assessment Work-
ing Group reports to the Steering Committee and is
guided by the Benchmarking and Assessment Terms
of Reference hosted atwww.surfacetemperatures.org/
benchmarking-and-assessment-working-group.

The objective of this paper is to lay out the basic frame-
work for developing the first comprehensive benchmarking
system for homogenisation of monthly land surface air tem-
perature records on the global scale. By defining what we be-
lieve a global homogenisation benchmarking system should
look like, this paper is intended to serve multiple aims.
Firstly, it provides an opportunity for the global community
to provide critical feedback. Secondly, the document serves
as a reference for our own purposes and others wishing to
develop benchmarking systems for other parameters of prob-
lems of a similar nature. Finally, it constitutes a basis for
further improvement down the line as knowledge improves.
Future papers will provide detailed methodologies for the
various components of the benchmarking system described
herein.

Here, the focus is solely on monthly mean temperatures.
These concepts broadly apply to daily or subdaily scales and
additional variables (e.g. maximum temperature, minimum
temperature, diurnal temperature range). However, both de-
velopment of synthetic data and implementation of realis-
tic inhomogeneities, while maintaining physical consistency
across different variables simultaneously, requires signifi-
cantly increased levels of complexity.

The creation of spatio-temporally realistic analogue sta-
tion data is discussed in Sect. 2. The development of real-
istic, but optimally assessable error models is discussed in
Sect. 3. An assessment system that meets both the needs of
algorithm developers and data-product users is explored in
Sect. 4. A proposed benchmarking cycle to serve the needs
of science and policy is described in Sect. 5. Section 6 con-
tains concluding remarks.

2 Reproducing “real-world” data –
the analogue-clean worlds

Simple synthetic analogue-station data with simple inho-
mogeneities applied may artificially award a high perfor-
mance to algorithms that cannot cope with real-world data.
A true test of algorithm skill requires global reconstruction
of real-world characteristics including space and time sam-
pling of the observational network. Hence, the ISTI bench-
marks should replicate the spatio-temporal structure of the
∼ 32 000 stations in the ISTI databank stage 3 as far as pos-
sible (http://www.surfacetemperatures.org/databank; Rennie
et al., 2014) available fromftp://ftp.ncdc.noaa.gov/pub/data/
globaldatabank/monthly/stage3/.

The benchmark data must have realistic trends, variability,
station autocorrelation and spatial cross-correlation. Concep-
tually, we consider individual station temporal variability of
ambient temperaturex at sites and timet as being able to be
decomposed as

xt,s = ct,s + lt,s + vt,s + mt,s, (1)

where:

– c represents the unique station climatology (the deter-
ministic seasonal cycle). This will vary even locally due
to the effects of topography, land surface type and any
seasonal cycle of vegetation.

– l represents any long-term trend (not necessarily linear,
with possible seasonally varying components) that is ex-
perienced by the site due to climatic fluctuations such
as in response to external forcings of the global climate
system.

– v represents region-wide climate variability at a range
of scales (space and time). That is to say interannual
and interdecadal variability due to El Niño and La
Niña events, annular modes (AO and AAO), or multi-
decadal variations such as the Pacific Decadal Oscilla-
tion or Atlantic Multidecadal Oscillation. Such modes
have regionally distinct patterns of surface temperature
response; e.g. a positive AO (Arctic Oscillation) yields
warm winters over northern Europe.
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– m represents the station microclimate (local variability).
Such station-specific deviations are oftentimes weakly
autocorrelated and cross-correlated with nearby sta-
tions, but tend to be more distinct on a station-by-station
basis than the remaining terms in Eq. (1).

These terms are assumed to be additive in this conceptual
framework. This equation should not be considered to be a
formal mathematical representation. All four components are
deemed necessary to be able to subsequently build realistic
series ofxt,s on a network-wide basis that retain plausible
station series, neighbour series and regional series. Below,
a discursive description of the necessary steps and build-
ing blocks envisaged is given. A variety of methodological
choices could be made when building the analogue-clean
worlds. It is envisaged that the sophistication of methods will
develop over time, improving the real-world representative-
ness of the benchmarks periodically.

Station-neighbour cross-correlations depend on more than
distance, such as differences in elevation, aspect, continen-
tality and land use. If real-world data are used to formu-
late all or part of a model to synthetically recreate station
data, we need to be sure that errors within the real data (ran-
dom or systematic) are not characterised and reproduced by
the model. Ultimately, while analogue-clean world month-
to-month station temperatures need not be identical to real
station temperatures, realistic station climatology, variability,
trends, autocorrelation and cross-correlation with neighbours
should be maintained. Analogue-clean-world station tempo-
ral sampling can be degraded to varying levels of missing
data as necessary.

Most algorithms analyse the difference between a candi-
date station and a reference station (or composite). Crucially,
temperature climate anomalies (where the seasonal cycle,c,
has been removed) are used to create the difference series.
The large-scale trend,l, and variability,v, are highly corre-
lated between candidate and reference series and so mostly
removed by the differencing process. It is thus critical that
the variability, autocorrelation and spatial cross-correlations
in m are realistic, and hence the variability and autocorrela-
tion in station-reference difference series are realistic.

For the benchmarking process, global climate models
(GCMs) can provide gridded values ofl (and possiblyv)
for monthly mean temperature. GCMs simulate the global
climate using mathematical equations representing the basic
laws of physics. GCMs can therefore represent plausible esti-
mates of the short- and longer-term behaviour of the climate
system resulting from solar variations, volcanic eruptions
and anthropogenic changes (external forcings). They can
also potentially represent natural large-scale climate modes
(e.g. El Niño–Southern Oscillation – ENSO) and associated
teleconnections (internal variability). However, the gridded
nature of GCM output means that GCMs cannot give a suf-
ficiently realistic representation of fine-scale meteorological
data at point (station) scales. Hence, they cannot be used di-

rectly to provide them andc components at the point (sta-
tion) level. Thel andv components are expected to vary very
little between stations that are close (e.g. within a grid box)
and can reasonably be obtained by simple interpolation of
GCM grid box values to point location.

There are three advantages of using GCMs to providel

and v. Firstly, they provide globally consistent variability
that can be associated with ENSO-type events or other real
modes of variability with large spatial influence along with
at least broad-scale topography (elevation, aspect, proxim-
ity to the coast, etc.) and its influence. Secondly, time se-
ries from a GCM will be free from inhomogeneity. Thirdly,
there are different forcing scenarios available (e.g. no anthro-
pogenic emissions, very high anthropogenic emissions) pro-
viding opportunities to explore how different levels of back-
ground climate change affect the homogenisation algorithm
skill. Note that background trends may be seasonally variant,
further complicating seasonally varying inhomogeneity de-
tection. Such characteristics may be obtainable from a GCM.

The annually constantc component in Eq. (1) is straight-
forward to calculate for each real station and then apply to
the synthetic stations. Them andv (if not obtained from a
GCM) component can be modelled statistically from the be-
haviour of the real station data, taking care to account for sta-
tion inhomogeneity and not include it in the statistical model.
Statistical methods such as vector-autoregressive (VAR)-type
models (e.g. Brockwell and Davis, 2006) can reproduce the
spatio-temporal correlations but limitations exist where sta-
tion records are insufficiently long or stable enough to be
modelled. Balancing sophistication of methods with automa-
tion and capacity to run on∼ 32 000 stations is key. Ensuring
spatial consistency across large distances (hundreds of kilo-
metres) necessitates high-dimensional-matrix computations
or robust overlapping window techniques.

The key measures of whether benchmark clean worlds are
good enough are as follows:

– station to neighbour cross-correlation

– standard deviation and autocorrelation of station minus
neighbour difference series (of climate anomalies)

– station autocorrelation.

These measures should be compared between real networks
that we know to be of high quality (relatively free from ran-
dom and systematic error) such as NOAA’s USCRN (United
States Climate Reference Network;http://www.ncdc.noaa.
gov/crn/) and the collocated analogue-clean world stations.

3 Devising realistic but optimally assessable error
models – the analogue-error worlds

The analogue-error worlds should be created by adding the
chosen types of inhomogeneities to analogue-clean worlds.
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Ideally each analogue-error world would be based on a dif-
ferent analogue-clean world to prevent prior knowledge
of the “truth” (analogue-clean world). These error models
should be designed with the three aims of the ISTI in mind,
i.e. to aid product intercomparison, to help quantify structural
uncertainty, and to aid methodological advancement. There
should beblind benchmarks, where the answers/analogue-
clean worlds underlying the released analogue-error worlds
will not be made public for a time. Additionally, there should
be someopen benchmarks, where the answers/analogue-
clean worlds will be publicly available immediately.

Blind benchmarksshould be used for formal assessment
of algorithms and data products. By being blind they pre-
vent optimisation to specific features. While certain fea-
tures will be widely known, it should not be known which
world explores which type of features or the exact change
point/inhomogeneity magnitude. For the most part these
blind worlds should be physically plausible scenarios based
on our understanding of real-world issues. The inclusion of
a control case of a homogeneous world will enable assess-
ing the effect of false detections and the potential for algo-
rithms to do more harm than good. Ultimately, they should
be designed to lead to clear and useful results, distinguishing
strengths and weaknesses of algorithms against specific in-
homogeneity and climate data characteristics. They need to
achieve this without completely overloading algorithm cre-
ators from the outset, either with a multitude of complexities
in all cases or with too many analogue-error worlds to con-
tend with.

The open benchmarkswill enable algorithm developers
to conduct their own immediate tests comparing their ho-
mogenised efforts from the analogue-error worlds with the
corresponding analogue-clean worlds. These open worlds
will also be useful for exploring some of the more exotic
problems or alternatively those straightforward issues that do
not require a full global station database to explore.

Systematic errors are the key problem for station homo-
geneity and the prime focus for these benchmarks. These are
persistent offsets or long-term trends away from the true am-
bient temperature (metrologically speaking, an artefact that
causes the measurement to differ in a sustained manner from
the true value of the measurand). Random errors are also
prevalent in many observational records. These arise from
isolated instrument faults or observer/transmission and col-
lation mistakes. For monthly averages, random errors at ob-
servation times will often average out. Given a reasonable
level of quality control, an essential step in any CDR process-
ing, these errors are not thought to impact long-term-trend
assessment although for individual stations this may not be
the case.

To ensure focus on homogenisation methods, at least the
first benchmark cycle should include only systematic errors
and not random errors. Hence, users will not be required to
quality control the analogue-error worlds although they are
strongly recommended to quality control the real ISTI data-

bank. We note that in some cases a change point may be
preceded by a systematic increase in random error – for ex-
ample, an instrument or shelter could deteriorate gradually
until a point at which it is replaced. In future versions of the
benchmarks, specific error worlds could include known types
of random errors to test how this affects the homogenisation
algorithm skill.

Themes of different systematic inhomogeneities can be
added to the analogue-clean world stations to create in-
homogeneous analogue-error worlds. Conceptually, for any
analogue-stationx as denoted by Eq. (1) ad term can be
added to represent an inhomogeneity at timet and sites

to give an observed valuex′ which differs from the true
value (x):

x′
t,s = ct,s + lt,s + vt,s + mt,s + dt,s. (2)

At any point in time,d may be zero, a constant (possibly with
some seasonal or climate-related variation; e.g. an instrument
change may yield a warm bias in winter and a cool bias in
summer if not well ventilated) or a value that grows/declines
over time as e.g. a tree grows or urban areas encroach. A
growing d term may be smooth or jumpy. Experience with
current benchmarks over restricted regions (Williams et al.,
2012; Venema et al., 2012) suggests that several artefacts ex-
ist in most station records such that thedt,s term may change
several times during the period of record of a station (roughly
every 10–30 years or more often).

In a perfect case, a homogenisation algorithm would de-
tect d in the analogue-error world correctly, remove it, and
adjustx′ to its true ambient temperaturex from the original
analogue-clean world (Eq. 1). By necessity, homogenisation
algorithms have to make an assumption that a given station
is at least locally representative at some point in its record.
For convenience, and because the major interest is change in
temperature rather than actual temperature, the most recently
observed period is treated as the reference period by the ma-
jority of algorithms. Any adjustments are made relative to
this period. This creates issues for a user interested in the
actual temperature because for any one station the period of
highest absolute accuracy may not be the most recent period.
However, it is not really possible to detect which period is
the most accurate for each station and having multiple refer-
ence periods in the benchmarks would make assessment far
more complex and less useful. Hence, our assessment will
assume all stations are representative in the most recent part
of their record such thatd is zero at present day and additive
backwards.

Thesed elements should be physically plausible repre-
sentations of known causes of inhomogeneity (e.g. station
moves, instrument malfunctions or changes, screen/shield
changes, changes to observing practice over time, and lo-
cal environment changes) as summarised in Table 1. A range
of frequencies and magnitudes should be explored. Ideally,
the effect on temperature, and henced, from the change in
weather (e.g. radiation, wind speed, rainfall and humidity)
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Table 1. Known inhomogeneities between observed air temperature and the ambient air temperature representative of a given location in
terms of problems, possible causes and effects, physical solutions, and possible implementations in modelling a benchmark.

Problem Possible cause Possible effect Physical solution Benchmark modelling

Reported air Errors in reporting, Abrupt change Identify error and correct Draw from past experience.
temperature is units, data that is either (difficult to adjust Apply blanket changes using
not measured transmission, constant over using an automated a constant or simple formula
air temperature etc. time or a function process because errors as a function of

of temperature may be unique) temperature alone

Measured air Instrument error Abrupt (or gradual Identify error and correct, Statistically model distributions
temperature is (malfunction or for some instrument using metadata where of typical size and frequency.
not true air change intype), malfunctions) change available Apply blanket changes using
temperature calibration error that is either constant or a constant or simple formula

a function of temperature as a function of
(or drifting for some temperature alone
instrument malfunctions)
(random errors should be
removed by quality-control
process)

True air Change in Abrupt change Identify error and correct. Statistically model
temperature instrument that is likely to Modelling energy distributions of typical
is not shield, practice vary as a function balance of shield size and frequency.
representative or microclimate of variables such and microclimatic Semi-empirical modelling
ambient air (due to move as radiation, conditions of errors based on
temperature of instrument) wind speed and assumed changes in

soil moisture radiation, wind speed
and soil moisture

Representative Changes in Gradual or abrupt Correction not desirable Statistically model
ambient air station change that is likely from a physical or distributions of typical
temperature is surroundings, to vary as a function of monitoring perspective, size and frequency.
affected by urbanisation variables such as but from a detection Semi-empirical and
local influences radiation, wind speed and attribution perspective. possibly numerical

and soil moisture Modelling energy balance modelling of resulting
of shield and trend and its high-frequency
microclimatic conditions characteristics due to changes

in radiation, wind speed and
soil moisture

Different Change in Abrupt change Unmerge (correction not Change in spatial sampling
ambient air station that is likely to desirable from a physical from the analogue-known
temperatures location vary as a function perspective, especially for world to merge series
are merged of variables such high-frequency data) or

as radiation, correct (low-frequency
wind speed and large-scale monitoring and
soil moisture detection and attribution

perspective)

Changes in Change in Abrupt change Split (correction Statistically model distributions
diurnal observation that is likely to not desirable of typical size and frequency.
sampling time vary as a function from a physical Change in temporal sampling
affect of variables such perspective) or from synthetic source data
statistics as radiation correct (low-frequency or in the case of low-frequency

large-scale monitoring GCM output use
and detection and semi-empirical modelling
attribution perspective) of errors based on

assumed changes in radiation
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should be taken into account if possible. Given the current
state of knowledge this will in many respects be an as-
sumption based on expert judgement. Many complicated ex-
amples of covariate impacts ond exist. For example, in
soil-moisture-limited regions changing vegetation between
wet years and dry years increases variability compared to
a more constant soil-moisture environment (B. Trewin, per-
sonal communication, 2013; Seneviratne et al., 2012).

Inhomogeneities added should be both abrupt and grad-
ual, including the effects of land use change, such as rural-
to-urban developments, which are important for some ap-
plications. They should explore changes that vary with sea-
son, which can result in changes in variance as well as
the mean. Some should be geographically common, reflect-
ing both region-wide changes, and others isolated. Isolated
changes may arise due to the need to replace broken equip-
ment or when stations are maintained by individual volun-
teers or groups. Region-wide changes tend to occur in net-
works that are centrally managed or owned.

Some inhomogeneities are reasonably well understood
and apply to a given period and region, e.g.:

– change from north wall measurements to Stevenson
screens in the 19th century in Austria (Böhm et al.,
2001)

– change from open stands (French, Montsouris,
Glaisher) to Stevenson screens around the early 1900s
in Spain (Brunet et al., 2006)

– change from Wild screens to Stevenson screens in
the mid-20th century in Switzerland (Auchmann and
Brönnimann, 2012) and in central and eastern Europe
(Parker, 1994)

– change from Stevenson screens with liquid in glass
thermometers to electronic thermistors (maxi-
mum/minimum temperature system) in the USA
in the mid-1980s (Quayle et al., 1991; Menne et al.,
2009)

– change from tropical thatched sheds to Stevenson
screens in the tropics during the early 20th century
(Parker, 1994)

– time of observation change from afternoon (sunset) to
morning in USA stations over the 20th century (Karl et
al., 1986).

These (or similar) could be included in one or more of
the analogue-error worlds. However, more commonly,
inhomogeneities are undocumented and unknown and could
be of any magnitude, frequency, clustering or sign and are
likely a combination of all these. Current efforts are ongoing
to collect together times and types of changes known to have
occurred for each country (http://www.surfacetemperatures.
org/benchmarking-and-assessment-working-group#

Working%20Group%20Documents). It is envisaged to
replicate what we believe to be realistic regional distribu-
tions of inhomogeneities within at least some subset of the
analogue-error worlds.

Metadata have been used to improve the detection of
change points. Substantive metadata are digitally available
for the US Cooperative Observer Network which comprises
the bulk of US station data. Elsewhere, digital holdings are
rare but will likely be made available in the future. In terms
of improving homogenisation, the need to digitise metadata
is arguably as critical as the need for digitising more sta-
tion records. Therefore, alongside the analogue-error worlds
some change points should be documented, some should
not be and some should have documented changes where
no actual temperature change is effected. The latter could
relate either to an inconsequential change in instrumen-
tation/procedure/location or a false metadata event in the
record.

A selection of error models should be chosen to ex-
plore different features of both the type of inhomogeneity
(e.g. size, frequency, seasonality, and geographic pervasive-
ness) and characteristics of the real-world observing systems
(e.g. variability, trends, missing data, station sparsity, and
availability of metadata). Worlds should incorporate a mix
of the inhomogeneity types discussed above and the set of
worlds should be broad, covering a realistic range of possi-
bilities so as not to unduly penalise or support any one type
of algorithm or too narrowly confine us to one a priori hy-
pothesis as to real-world error structures. They should me-
thodically address key questions by testing skill under these
situations (e.g. change-point clustering versus sparsity, prox-
imity of change points to the end versus the middle of station
records, large versus small inhomogeneities, a combination
of both, and the presence of strong versus no background
trend).

Periodic versions of the benchmarks should explore dif-
ferent issues but also improve the error worlds where neces-
sary. Evaluation of the benchmarks themselves is discussed
as level 4 assessment in Sect. 4.

4 Developing an assessment system that meets all needs

Any data-product creators utilising the ISTI databank and un-
dertaking homogenisation will be encouraged to take part in
the benchmarking as a means of improving the uncertainty
estimation (specifically homogenisation uncertainty) of their
product. This will involve running their homogenisation al-
gorithms on the blind analogue-error worlds to create ad-
justed analogue-error worlds, just as they have done for the
real ISTI databank stations. To take part they must submit
homogenised benchmark data and results to the Benchmark-
ing and Assessment Working Group for assessment. In time
this process could be automated through a web page which
would also assist users of the open benchmarks.
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There are two components of assessment: how well are
individual change points located and their inhomogeneity
characterised; and how similar is the adjusted analogue-error
world to its corresponding analogue-clean world? An algo-
rithm may do very well at retrieving the climatology or trend
behaviour without necessarily performing well in detecting
individual change points/inhomogeneities, or vice versa. Al-
gorithms may perform well at characterising long-term re-
gional trends but have markedly different performance char-
acteristics at subregional and interannual to multidecadal
timescales.

The assessment can be split into four different levels:

– Level 1 – difference between analogue-clean world and
homogenised series analogue-error world climatology,
variance and trends.

– Level 2 – measures such as hit and false alarm rates for
correct detection of change points and inhomogeneity
character.

– Level 3 – detailed assessment of strengths and weak-
nesses against specific types of inhomogeneity and ob-
serving system issues.

– Level 4 – reality of the various analogue-error worlds
assessed by comparing characteristics of inhomo-
geneities found in real data to that found in the
analogue-error worlds. This will help improve future
benchmarks.

For level 1 assessment of large-scale features (i.e.c, l andv in
Eq. 1), a perfect algorithm would return the analogue-clean
world features. Algorithms should, ideally, at least make the
analogue-error worlds more similar to their analogue-clean
worlds. Climatology, variability and long-term trends can be
calculated for stations, regional averages or global averages
from each adjusted analogue-error world. Similarity can be
measured in terms of proximity in degrees Celsius for the cli-
matology and linear-trend approximations and standard devi-
ation as a measure of variability. This can be presented as per-
centage recovery (after Williams et al., 2012). An example
is shown in Fig. 2 for linear trend approximations with fur-
ther explanation. Although linear trends do not describe the
data perfectly, they provide a simple measure of long-term
tendency that can be compared. This method does not indi-
cate algorithms that result in a linear trend of the wrong sign
(positive or negative). This may be seen as a more serious
problem than a linear trend being over- or underestimated.
Other scores, such as the squared error or the absolute error,
could also be used to measure differences between adjusted
analogue-error worlds and analogue-clean worlds.

Levels 2 and 3 are important for the developers of ho-
mogenisation methods. They can be split into accuracy of
change-point location detection and the accuracy of inhomo-
geneity adjustments applied. In the case of gradual or season-
ally varying inhomogeneities, the slope and seasonal cycle of

Figure 2. Example summary graph of algorithm skill for five hy-
pothetical methods across six analogue-error worlds measured as
trend-percentage recovery. This uses the trends calculated from
an adjusted analogue-error world scaled against the difference be-
tween the analogue-error world and its corresponding analogue-
clean world. A 100 % trend recovery would indicate a perfect algo-
rithm. Greater than 100 % would be moving the trend too far in the
right direction. Less than 100 % would be an algorithm that does
not move the trend far enough towards the analogue-clean world.
A negative percentage would indicate an algorithm that moves the
trend in the wrong direction. This method does not indicate algo-
rithms that result in a trend of the wrong sign (positive or negative).
This may be seen as a more serious problem than a trend being over-
or underestimated and so would need to be identified separately.

the adjustments should also be assessed. Furthermore, a slid-
ing scale may be used to penalise close but not exact hits
rather than assigning them as misses. Care should be taken
though considering that some algorithms may adjust the in-
homogeneous data well, performing highly in the level 1
assessment, while not locating change points accurately or
vice versa. For example, many small inhomogeneities may
be homogenised by locating a single change point and ap-
plying a single large amplitude inhomogeneity adjustment or
vice versa. Similarly, a gradual inhomogeneity may be ho-
mogenised by applying multiple small adjustments. Large
inhomogeneities are easier to detect than small ones so as-
sessment could be split into inhomogeneity size categories
(e.g. Zhang et al., 2012). This information is of importance
to algorithm developers.

Arguably, adjusting for detected inhomogeneities that are
not actual inhomogeneities (false detection) adds error to the
data and so could be scored more negatively than missing
a real inhomogeneity. However, this critically depends upon
the size of the adjustments applied. If adjustments for false
detections are small there will be little change in climatol-
ogy and trend statistics, hence the cost of false detection
diminishes.

Such assessments of detection and adjustment skill could
be done through contingency tables (Table 2) where numbers
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Table 2. Example contingency table for assessing change-point location detection and inhomogeneity adjustment skill (option shown in
brackets) of homogenisation algorithms. Potential detections are the number of potential change points within the time period minus the total
number of detections and misses. These are used to quantify those occasions where no change point is found and none is present. One way
to do this is to assume that there is potentially a maximum of 1 change point every 6 months (some algorithms can only search for change
points with 6 months of data on either side) such that a 26-year period will have 52 potential change points.

Change point No. change points present Totals

Change point detected Hits: False alarms: 8 (7)
within ±3 months 5 (4) 3 (3)
(inhomogeneity adjustment
with the correct sign (±)
and within±1◦C)

Change point not detected Misses: Correct non-detections: 44 (45)
within ±3 months 2 (3) 42 (42)
(inhomogeneity adjustment (potential detections)
value with the incorrect
sign or not within±1◦C)

Totals 7 (7) 45 (45) 52 (52)

Heidke skill score 61 % (50 %)
Probability of detection hit rate 71 % (57 %)
False alarm rate 7 % (7 %)

of hits, misses, false alarms and “correct non-detections” are
counted and used to construct various skill scores (Menne
and Williams, 2005). Defining the number of “correct non-
detections” is not straightforward, especially where a sliding
scale is used to define a “hit”. A method for doing this needs
to be investigated. Alternatively, measures that consider only
hits, misses and false alarms may be used. The ideas used to
assess detection skill can be adapted to investigate size-of-
adjustment skill, as shown in red in Table 2. This could be
visualised for each data product using a scatter plot where
each analogue-error world result is positioned according to
its hit rate and false alarm rate. Users can quickly see on
which worlds that particular data product/algorithm scores
highly (high hit rate and low false alarm rate), and which
worlds are problematic. This can be used to infer applicabil-
ity of data products for a specific use or intercomparison with
data products created from different algorithms.

Level 4 assessment should help inform us which analogue-
error world is most similar to reality (if any) in terms of de-
tected change points for each algorithm. This is useful for
two reasons. Firstly, assuming the error structure is realistic,
it may help to tell us something about uncertainty due to in-
homogeneities remaining in the data. Secondly, it helps to
improve later versions of benchmarks in terms of developing
realistic error models.

Levels 1 and 2 are of primary focus for assessing uncer-
tainty and comparing data products. Level 3 is of more im-
portance to algorithm developers than data-product users, in-
forming where best to focus future algorithm improvements.
Level 4 is mainly aimed at the working group. For the first
benchmark cycle, assessment should focus on levels 1 and 2

to provide a quick response to the benchmark users. Ulti-
mately, all worlds and results from the assessment will be
made publicly available, ideally alongside any associated
data products. This will allow for further bespoke assessment
as required by interested analysts.

It is important that this process is made easy to encour-
age participation. Ideally, all participants would submit a
homogenised version of all stations in each analogue-error
world. Additionally, a list should be provided of detected
change points. Optionally, submission of information about
the adjustments applied could also be encouraged (e.g. mag-
nitude, slope/non-linear-trend function, and seasonal cycle).
This would enable the assessment of all levels. However, it
is more likely that different groups will select different sta-
tions based on their desired end product. These may be lim-
ited to long stations only or limited to specific regions. This
could be problematic for contingency table assessment given
the inherent tendency for false alarm rates/miss rates to grow
with increasing numbers of test events (i.e. number of sta-
tions). Some groups may wrap their homogenisation into a
fully gridded product such that they are unable to provide in-
dividual homogenised stations or a list of adjustments. This
would prevent any level 2 and 3 assessment.

Given the above, while it is important to specify an ideal
set of items to submit as part of the benchmarking assess-
ment, it is also important to have the capacity to accept a
wide variety of submissions. This may be done for level 1
by performing assessment both at the station scale and also
at the regional-average scale, accepting that some compo-
nent of differences found will be due to station selection
and gridding methods. For stations and regional averages,
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Figure 3. Schematic of the benchmarking assessment and benchmark cycle (source: Fig. 3 in Thorne et al., 2011).

participants could be asked to submit their best estimates
of specified statistics such as the climatology, variance and
linear trend. A set of regions could be specified such as the
Giorgi regions commonly used within many aspects of cli-
mate science (Giorgi and Francisco, 2000) in addition to
hemispheric and global averages. A more accurate compar-
ison could be done if groups submit lists of the stations in-
cluded in gridded/regional products. It would also be pos-
sible to specify a minimum subset of stations to be ho-
mogenised to allow for a fair comparison across the region-
ally focussed products, some of which may use manual ho-
mogenisation methods and therefore unable to tackle global-
scale homogenisation (cf. Venema et al., 2012). An important
distinction could be made between best estimates of clean-
world regional statistics and statistics calculated on all sta-
tions within that region. In some cases it would be a wise
decision to remove a station that has too many missing data
or that is too poor in quality; however comparisons using all
stations in the analogue-clean world compared to a partici-
pant’s best estimate may penalise such approaches.

5 Providing a working cycle of benchmarking to serve
the needs of science and policy

To ensure that homogenisation benchmarking achieves its
full potential in terms of usefulness, the benchmarks need to
be easily accessible and the assessment process timely with
results that are easy to use. We envisage making the bench-
mark worlds available alongside the ISTI databank in identi-
cal format (Fig. 3) such that data-product creators can easily
process them in addition to the real data.

A repeatable cycle of blind benchmark release (analogue-
error worlds), homogenisation period, assessment period,
release of the underlying analogue-clean worlds/answers
(change-point locations, size and shape of inhomogeneities
added) and a wrap-up workshop would encourage people to
use the benchmarks and allow for sequential improvement of
the benchmarks and investigation of different homogenisa-
tion issues. Not all issues will be able to be covered in the first
cycle. This could be a 3-year cycle, overseen by the Bench-
marking and Assessment Working Group (Fig. 3).
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If the cycle is too short then there are risks that not enough
people will get involved, reducing the usefulness of product
intercomparison. If the cycle is too long then the benchmarks
become out of date and the assessment is too slow to be used
alongside the CDR. Additionally, much may be learned about
each analogue-error world from homogenising even without
release of the underlying analogue-clean world. This runs the
risk of second or third versions of algorithms becoming over-
tuned to these specific worlds.

The wrap up would bring together users and creators of
the benchmarks to assess how they were useful and how they
can be improved for the next cycle. This will likely be in
the form of a workshop and overview analysis paper. The
databank will develop over time as will algorithms and the
benchmarks will need to be updated both in terms of station
coverage and methodologically.

The focus here is limited to monthly mean temperature
data but it is envisaged that maximum and minimum temper-
atures and, subsequently, daily temperature records will be
included in the future. Also, the current framework is only
set up to assess the homogenisation algorithm skill. There
are many different aspects of data-product creation including
quality-control processes, station selection and interpolation
and gridding methods. The benchmarks created here could
also be used to assess some of these, but at this time it was
thought advantageous to focus only on the homogenisation
element in order to make faster progress. We hope that the
provision of this benchmarking framework will broaden in
the future to include these other important aspects of data-
product creation.

6 Concluding remarks

An international and comprehensive benchmarking system
for homogenisation of global surface temperature data is es-
sential for constraining the uncertainty in climate data arising
from changes made to our observing system. The Interna-
tional Surface Temperature Initiative is in a unique position
to undertake this work and provide testing alongside the pro-
vision of the raw climate data. A repeating cycle of bench-
marking assessment has been proposed including concepts
for creation of benchmark data and their assessment. The task
is large and will take time to accomplish. However, this will
for the first time enable global-scale quantification of uncer-
tainty in station inhomogeneity, which is one of the least un-
derstood areas of uncertainty associated with the land surface
air temperature record.

The assessment of skill against the benchmarks will enable
meaningful intercomparisons of surface temperature prod-
ucts and assessment of fitness for purpose for a broad range
of end users from large-scale climate monitoring to local-
scale societal impacts analysis. Such a detailed and global
testing of homogenisation algorithms will also be a signifi-
cant aid to algorithm developers, hopefully resulting in vastly

improved algorithms for the future. These benchmarks can
also be used to test other aspects of climate data record pro-
duction such as station selection and interpolation. If suc-
cessful, this work should significantly improve the robust-
ness of monthly surface temperature climate data records on
a range of spatial scales. This will improve the accuracy of
assessment of recent changes in surface temperature and as-
sociated uncertainties to end users.

Ultimately, the value of these benchmarks will only be
as great as the number of groups participating in the exer-
cise. The authors therefore strongly advocate development of
new approaches and climate data records by new groups. The
value of the new records will be greatly enhanced by under-
taking benchmark testing as well as by using ISTI databank
data.
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