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[1] Changes in the circumstances behind in situ temperature measurements often lead to
biases in individual station records that, collectively, can also bias regional temperature
trends. Since these biases are comparable in magnitude to climate change signals,
homogeneity “corrections” are necessary to make the records suitable for climate analysis.
To quantify the effectiveness of U.S. surface temperature homogenization, a randomized
perturbed ensemble of the USHCN pairwise homogenization algorithm was run against a
suite of benchmark analogs to real monthly temperature data. Results indicate that all
randomized versions of the algorithm consistently produce homogenized data closer to the
true climate signal in the presence of widespread systematic errors. When applied to the
real-world observations, the randomized ensemble reinforces previous understanding that
the two dominant sources of bias in the U.S. temperature records are caused by changes to
time of observation (spurious cooling in minimum and maximum) and conversion to
electronic resistance thermometers (spurious cooling in maximum and warming in
minimum). Error bounds defined by the ensemble output indicate that maximum
temperature trends are positive for the past 30, 50 and 100 years, and that these maximums
contain pervasive negative biases that cause the unhomogenized (raw) trends to fall below
the lower limits of uncertainty. Moreover, because residual bias in the homogenized
analogs is one-tailed under biased errors, it is likely that maximum temperature trends have
been underestimated in the USHCN. Trends for minimum temperature are also positive
over the three periods, but the ensemble error bounds encompass trends from the
unhomogenized data.
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1. Introduction

[2] Despite the relative data richness and substantial
efforts to analyze the record over several decades [Karl et
al., 1986; Karl and Williams, 1987; Karl et al., 1988;
Quayle et al., 1991; Hubbard and Lin, 2006; Menne et al.,
2009], scientific [Peterson, 2006; Pielke et al., 2007a,
2007b; Menne et al., 2010] and political (http://science.
house.gov/hearing/full-committee-hearing-climate-change)
controversy remains over estimates of the long-term rate of
temperature change reported for the conterminous United
States. Many changes in instrumentation, observing practice
and siting conditions have occurred over time, all of which
can alter the bias of surface temperature measurement.
Moreover, the nature and timing of these changes is not
always known, and overlapping measurements are rarely
available during transition periods from one observing

system to another. While the importance of this kind of
information is well known [e.g., GCOS, 2004], most surface
temperature measurements come from networks that are not
specifically managed to meet the desired standards for cli-
mate. Rather they were designed to meet the needs of agri-
culture, hydrology, weather forecasting, etc. Consequently,
there is a need to undertake statistically based adjustments
after the fact (homogenization) based upon incomplete sta-
tion history information. Because each observing network
site has its own set of unique non-climatic artifacts, identi-
fying breaks and estimating adjustments is subject to some
level of uncertainty, and it is unlikely that any single
approach will work well for every situation [Venema et al.,
2012].
[3] For the United States Historical Climatology Network

(USHCN), a fully automated homogenization algorithm has
been developed based upon pairwise neighbor comparisons
[Menne and Williams, 2009]. This automation allows for the
homogenization of the large number of surface temperature
records in the network and provides traceability and repro-
ducibility of methods. Nevertheless, creating a comprehen-
sive breakpoint identification and adjustment scheme requires
making a number of judgment calls at various decision points
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in the algorithm [Thorne et al., 2005] no matter how robust
the underlying statistical methods might be. Decisions are
required for all processing steps from how to define target and
reference series to the particular statistical breakpoint tests
applied and mechanisms for adjusting each detected break.
Seemingly innocuous choices could, in theory, have large
impacts upon the final product. A frank assessment of what
these parameters are and allowing them to take on a range of
reasonable values can reveal the algorithm’s sensitivity to
these choices [McCarthy et al., 2008; Titchner et al., 2009].
With an automated algorithm, an ensemble of solutions can
readily be produced using these values. The resulting
ensemble can then provide a measure of the parametric
uncertainty of the algorithm.
[4] Although important, this quantification of internal

algorithm uncertainty nevertheless has limited value in
informing where the output may lie with respect to the true
climate signal. Use of internal system statistics such as
spatiotemporal consistency of the resulting fields to pick an
overall winning configuration among parametric choices has
been shown to be potentially misleading in efforts to extract
the climate signal [Sherwood et al., 2009].
[5] One way forward is to create a set of plausible analogs

which share the likely principal characteristics of the raw
data such as spatiotemporal sampling structure, noise and
bias characteristics, but where, unlike the real world, the
truth is known a priori. Running the algorithm against such a
suite allows a quantifiable benchmarking of algorithm
strengths and weaknesses. When applied to real-world data,
the same algorithm settings can lead to a reappraisal of real-
world trends. These kinds of analog cases have been con-
structed and used for both paleoclimate reconstructions
[Mann and Rutherford, 2002; Mann et al., 2005; von Storch
et al., 2004] and more latterly radiosonde temperatures
[Titchner et al., 2009; Thorne et al., 2011a]. Benchmarking
has also been carried out for surface networks much smaller
than the conterminous U.S. (CONUS) network for temper-
ature and precipitation [Venema et al., 2012]. Such a para-
digm is also commonplace in other scientific areas such as
metrology (termed software testing) and has been called for
as part of the incipient global surface temperatures initiative
[Thorne et al., 2011b].
[6] This paper describes initial results from applying such

an approach to the USHCN surface temperature record. An
initial ensemble of 100 randomized versions of the Menne
and Williams [2009] algorithm is applied across eight ana-
log data sets and the real world observations, the latter both
with and without removal of time of observation biases
beforehand. This analysis concentrates solely upon large-
scale long-term trend metrics because this is currently of
greatest scientific and societal interest. However, the
ensembles result in a rich set of data including estimated
adjustments at the station level both for the analogs and the
real world data.
[7] The paper is organized as follows. The methodology

of Menne and Williams [2009] is briefly summarized in
section 2. In section 3 those methodological choices identi-
fied as decision points are outlined and the allocation of a
sensible range of values is discussed along with the ensem-
ble creation methodology. Section 4 outlines the creation of
a set of eight analog worlds – details of which were kept
from the first two authors (the algorithm developers) until

they had produced the ensembles. In section 5, ensemble
results using the analog worlds are discussed. Section 6
provides a summary of the ensembles produced using real-
world data as input in the context of implications for our
understanding of real-world changes in surface temperatures
in the lower 48 states. Finally, some discussion and con-
clusions are offered in sections 7 and 8. In addition to pro-
vision of extra analyses and information in the auxiliary
material, full data including the analogs, ensemble output,
and automated data set creation algorithm code provision
will be available at ftp://ftp.ncdc.noaa.gov/pub/data/ushcn/
v2/monthly/algorithm-uncertainty.1

2. The Automated Pairwise Breakpoint
Identification and Adjustment Algorithm

[8] To produce the USHCN version 2 monthly tempera-
ture data [Menne et al., 2009], apparent shifts in measure-
ment bias in temperature records from USHCN stations were
detected and corrected through a relative homogeneity test-
ing scheme [Conrad and Pollack, 1962] based on automated
pairwise comparisons of mean monthly maximum and
minimum temperature series. In particular, the algorithm
seeks to identify and adjust for cases in which there is a shift
in one station series relative to many others, the assumption
being that a spatially isolated and sustained shift in the mean
of the temperature series is an artifact caused by factors other
than changes in weather and climate. The specific processing
steps are briefly summarized below.

1. First, target-neighbor differences are calculated
between each mean monthly maximum and minimum tem-
perature series and a number of corresponding series from
surrounding Cooperative Observer stations. Serial monthly
differences are used rather than separate series for each cal-
endar month or season. Since each station also gets treated as
a target series, pairwise differences are formed between large
fractions of all possible combinations of station series pairs
in localized regions around each station in the network.
Although not always possible, the algorithm also pairs sta-
tions to ensure that a minimum number of neighbors have
data coincident with the target series at any given time.

2. Next, the Standard Normal Homogeneity Test [SNHT;
Alexandersson, 1986] for undocumented changepoints is
used to identify breaks in each paired difference series. A
hierarchy of changepoint models is used to distinguish
whether the changepoint appears to be a change in mean
with no trend [Alexandersson and Moberg, 1997], a change
in mean within a general trend [Wang, 2003], or a change in
mean coincident with a change in trend [Lund and Reeves,
2002]. A break in any one difference series is temporarily
attributed to both station series used to calculate the differ-
ences. The result of this step is a matrix of potential chan-
gepoint dates for each station series.

3. The matrix of changepoint dates is then “uncon-
founded” by identifying the station that is a common factor
in multiple difference series that share the same changepoint
date (see Menne and Williams [2009] for more detail).

4. After the unconfounding step, breaks in the difference
series attributed to a particular station may be assigned to

1Auxiliary materials are available in the HTML. doi:10.1029/
2011JD016761.
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nearly, but not exactly, the same month. This is because
identifying the timing of undocumented breaks is subject to
some sampling uncertainty and the detected break date in a
group of target-neighbor reference series will likely cluster
around the true date. To distinguish cases in which nearby
dates represent the same break from those that are separate
breaks, a window of uncertainty is estimated as function of the
estimated break size (with smaller jumps having wider win-
dows of uncertainties than large jumps). Any cluster of
undocumented changepoint dates that falls within overlapping
windows of uncertainty is conflated to a single date according
to (1) a known change date as documented in the target sta-
tion’s history archive (meaning the discontinuity appears to be
documented), or (2) the most common undocumented chan-
gepoint date within the uncertainty window (meaning the
discontinuity appears to be truly undocumented).

5. Steps 1–4 are necessary simply to identify undocu-
mented changepoints in the USHCN temperature series. In
many cases station histories are also available. Where possi-
ble, the dates of documented change events are combined with
the undocumented breakpoint dates to ensure that any docu-
mented change not implicated in step 4 is evaluated as an
additional potential break. Adjustments are then determined
by calculating multiple pairwise estimates of the step change
using overlapping segments from neighboring series that
appear to be homogeneous for a minimal period before and
after the target breakpoint. The range of pairwise estimates for
a particular break is used to determine a confidence interval

for the size of the adjustment. When this confidence interval
includes zero, an adjustment is not made. Adjustments are
treated as seasonally invariant.

3. Identification of Algorithm Parameters
and Ensemble Settings

[9] Across the above steps we have identified a total of 17
distinct parameters associated with decision points in the
algorithm that required a judgment call. These parameters
and their allowable values are provided in Table 1, grouped
loosely by their role in the processing steps as described
below. Different permitted values effectively reflect a range
of what the authors consider to be plausible choices based
upon fundamental assumptions about data and metadata
veracity and spatiotemporal coherency of climate anomalies.
Such choices reflect the parametric uncertainty/sensitivity of
the pairwise algorithm but do not entail the creation of a
suite of completely independent algorithms. Independent
algorithms would elucidate structural uncertainty [Thorne
et al., 2005] and their development and robust evaluation
is also encouraged [Thorne et al., 2011b].

3.1. Choosing Neighbors to Test for Relative
Homogeneity

[10] In the default setting of the algorithm, neighbors are
selected using both distance from target (key word =
NEIGH_CLOSE) and correlation with target (key word =

Table 1. System Tunable Keywords Varied in the Creation of the 100 Member Ensemblea

Algorithm Step Keyword Name Permitted Values Functional Description

Choosing neighbors NEIGH_CLOSE 80, [100], 150, 200 Maximum number of neighboring series to consider
NEIGH_CORR [1diff], near, corr Method used for ranking neighbors based on degree of similarity

(1diff = calculate correlation using first differences; near = sort
by distance only; corr = use anomalies to calculate correlation)

CORR_LIM [0.1], 0.5, 0.7 Minimum correlation coefficient with target to quality as a neighbor
MIN_STNS 5, [7], 9 Minimum number neighbors with coincident data

NEIGH_FINAL 20, [40], 60, 80 Final (maximum) number of neighbors per target station

Resolving breaks
in difference series

SNHT_THRES 1, [5], 10 SNHT significance threshold (in percent)
BIC_PENALTY [BIC], AIC, none Penalty function used to determine the form of the break

(BIC = Bayesian Information Criterion;
AIC = Akaike Information Criterion; none = no model fitting)

Identify the series
causing the break

SHF_META �1, 0, [1] Toggle for metadata (�1 = only adjust when break coincides
with metadata; 0 = run without use of metadata;
1 = identify undocumented breaks and exploit metadata
when available)

AMPLOC_PCT 90, [92], 95 Confidence window table used to coalesce changepoints
CONFIRM [2],3,4,5 Number of target-neighbor difference series with coincident breaks

required to implicate the target as the source of the break

Estimating the magnitude
of the break

ADJ_MINLEN [18], 24, 36, 48 Minimum length of data period (in months) that can be adjusted
ADJ_MINPAIR [2], 3, 4, 5 Minimum number of pairwise estimates of break size required

to determine the size of adjustment
ADJ_OUTLIER 0, [1] Toggle to test and remove outliers using the Tukey outlier test
ADJ_WINDOW 0, [24], 60, 120 Minimum number of months before and after a break in the

difference series necessary to calculate breakpoint size
ADJ_FILTER bicf, [conf], both, none Outlier filtering method for the pairwise break estimates
ADJ_EST Aavg, [Medi], Qavg Method used to determine the adjustment factor from the multiple

pairwise estimates
NS_LOOP 0, [1] Toggle to merge data segments when the break size is statistically

insignificant (this loop increases the length of the homogeneous
segments available to estimate other breakpoint sizes
in data sparse periods)

aBrackets denote default values as described by Menne and Williams [2009]. Ensemble settings are available as part of the auxiliary material.
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NEIGH_CORR). Specifically, a maximum of the 40 highest
correlated among the hundred nearest neighbors are used
(key word = NEIGH_FINAL). In the randomized versions,
between 80 and 200 of the nearest station series are con-
sidered and from these a maximum of 20 to 80 of the highest
correlated series are selected. Correlation is calculated using
first differences in the default version and an effort is made
to ensure that at least seven of the selected neighbors have
data coincident with the target at any given time (key word =
MIN_STNS). In randomized versions, correlation can also
be calculated directly using monthly anomaly series rather
than first differences or only the closest neighbors are used
regardless of correlation (NEIGH_CORR). The minimum
number of neighbors is also allowed to vary in the ran-
domization, as is the minimum correlation between target
and neighbor in versions where both distance and correlation
are used (key word = CORR_LIM).

3.2. Resolving Breaks in the Difference Series

[11] Breaks in all difference series are resolved using
SNHT with a semi-hierarchical splitting algorithm [Menne
and Williams, 2005]. In the default setting, a 5% signifi-
cance level is used (key word = SNHT_THRES) whereas in
the randomized versions the value can be 1, 5 or 10%. As
described in step 2 above, an evaluation of the nature of the
break is also conducted at this stage to determine whether a
trend may be present in addition to or instead of a step. In
the default setting, the most appropriate model is selected
using the Bayesian Information Criterion (BIC [Schwarz,
1978]; key word = BIC_PENALTY). In the randomized
versions, model selection can be evaluated using the
Akaike Information Criterion (AIC; Akaike, 1973), or not
conducted at all.

3.3. Identifying the Cause of the Break

[12] Attributing the cause of a break requires multiple
target-neighbor difference series for a particular target to
have coincident breaks. In the default algorithm setting, at
least 2 difference series must implicate the target (key word =
CONFIRM). In the randomization, this number is allowed
to range from 2 to 5. The date of the apparent break is
assigned using the most frequent breakpoint date as deter-
mined by SNHT or via a metadata event (if available) for
those dates that fall within overlapping windows of uncer-
tainty for the timing (key word = AMPLOC_PCT). Empir-
ical confidence limits are used to quantify the timing
uncertainty of a break and limits of 90, 92.5 (default) and
95% may be used. In addition, metadata dates can be used in
conjunction with undocumented changepoint detection as in
the default (key word = SHF_META), not used at all, or
used exclusively without conducting a search for undocu-
mented breaks.

3.4. Estimating the Magnitude of the Break

[13] Estimating the size of each break in a target series
requires calculating the magnitude of a jump in the target-
neighbor difference series using neighbors that appear to be
homogeneous for some number of months before and after
the target break (key word = ADJ_WINDOW). The default
value is � 24 months, but in the randomization the number
ranges from no minimum at all up to � 120 months. If the
target series appears to have successive breaks that are too

close in time to adjust (key word = ADJ_MINLEN), then an
adjustment is made for the combined effect of the two or
more breaks. The minimum interval between adjustable
breaks can range from 18 months in the default up to
48 months in the randomized versions.
[14] More than one pairwise estimate of the target break

size is required to make an adjustment (key word =
ADJ_MINPAIR) and these values are used to quantify the
uncertainty in the adjustment. In the default version at least
three estimates of break size are required whereas in the
randomization, this number may range from 2 to 5. Further,
the estimates of break size may be subject to an outlier test
where possible (key word = ADJ_FILTER). The default
setting uses a variant of the Tukey outlier test [Tukey, 1977],
but the randomized versions may also use the Bayesian
Information Criterion to determine whether a step-change is
justified, both tests, or none at all. Following the outlier test,
the median break size (default), the average break size or the
average of the inter-quartile range is used as the final
breakpoint adjustment (key word = ADJ_EST). Finally,
because there may be limitations in the number of neighbors
and the length of their homogeneous segments before and
after some target breakpoints, there is an option to increase
the length of homogeneous segments at neighboring series
by merging segments of these neighbors where the confi-
dence limits for the magnitude of a break include zero. This
step allows an increase in the number of target break size
estimates in data sparse periods or when breaks are clustered
throughout a region and in time. The default option is to
allow this merging (key word = NS_LOOP), but the ran-
domized versions may or may not do the merging step.

3.5. Creating a Set of Ensembles

[15] To create the 100 member ensemble a methodology
similar to that employed by Titchner et al. [2009] was fol-
lowed. A random number generator was used to seed the
value for each tunable parameter in each ensemble member.
This ensures that a broad range of plausible solution space is
spanned but comes at a cost vis-à-vis potential for systematic
investigation. Some keywords are inter-related and any
illogical combinations were precluded. The specific settings
for each of the 100 ensemble members are tabulated in the
auxiliary material. In addition to the randomized ensemble
the operational (default) configuration [Menne and Williams,
2009] was also run against the analogs.

4. Creation of Analog Cases

[16] To ensure plausible geographical data variability and
teleconnections across the conterminous U.S., the analog
benchmarks were derived from gridded surface temperature
output from Global Climate Models (GCMs). Six different
climate model runs were downloaded from the World Cli-
mate Research Programme’s (WCRP’s) Coupled Model
Intercomparison Project phase 3 (CMIP3) multimodel data
set [Meehl et al., 2007], each of which was sub-sampled in
space and time to an observational data mask that matches
the U.S. network. GCMs were used as the basis for gener-
ating the analogs because they reproduce many of the fun-
damental surface temperature characteristics. Sensitivity to
the choice of model fields is assessed by applying the same
error structure to four different model estimates to create one

WILLIAMS ET AL.: BENCHMARKING THE USHCN D05116D05116

4 of 16



family of analogs whose differences are a function only of
the underlying climate model evolution.
[17] The data mask applied to the GCM output replicates

the geographic distribution and periods of record for both the
USHCN stations as well as the larger U.S. Cooperative
Observer (COOP) network (Figure 1) whose stations are

used as neighbors to homogenize the USHCN subset
[Menne et al., 2009]. The total number of stations with 8 or
more years of temperature records is about 7,200 in the
COOP, of which 1218 constitute the USHCN subset. The
analogs reproduce this data record for the twentieth century.
Data for each analog station record were sampled from the
nearest grid box with no additional interpolation. Because
the models have much coarser resolution than the U.S.
COOP station density, climatological offsets and random
noise were applied to the resampled model data before
adding any errors to the generated station records. This
ensures that nearby ‘stations’ arising from the same GCM
grid point are not identical and that the analog station series
more closely resemble potential differences caused by ele-
vation and other features unique to each local environment.
[18] The efficiency of neighbor-based homogenization

algorithms depends largely on the magnitude of the covari-
ance between neighboring station series, which is generally
related to station density. If the covariance is too low in the
analogs, the test results will be overly pessimistic because
the breakpoints will be harder to identify in the analog world
than in the real-world and vice versa. The noise added to the
analog series was calibrated to have the approximately the
same characteristics as inter-station statistics following
homogenization of USHCN given by Menne et al. [2009].

Figure 1. Distribution of COOP stations in the CONUS
(black dots) and the U.S. HCN version 2 sites (red triangles).

Table 2. Lookup Table for Gross Characteristics of the Set of Analog Worldsa

Analog World Model
Forcings and Period
in Model Years Break and Metadata Structure Imparted

Perfect data MIROC 3.2 hires [Hasumi
and Emori, 2004]

20th Century forcings,
1900–1999, run 1

No breaks, no metadata

Big breaks,
good metadata

GFDL CM2.0 [Delworth
et al., 2006]

20th Century forcings,
1861–1960, run1

5 per station on average seeded randomly across the network
and through time, with metadata (s = 1.5, avg = 0)

Mixed break sizes,
some clustering

Same as perfect data Same as perfect data 70% of stations within 15 years starting 1930, with metadata
(s = 0.7, avg = �0.2) 70% of stations within 30 years
starting 1945, with metadata (s = 0.4, avg = �0.3) Average
one break per station randomly seeded throughout period,
with metadata (s = 0.35, avg = 0) No metadata,
more prevalent early in record, 4 per station on average
(s = 0.3, avg = �0.1) 1.5 false metadata events per station,
more prevalent later

Clustering and sign
bias – c20c1

Same as perfect data Same as perfect data 70% of stations within 7 years in 1980s, with metadata
(s = 0.7, avg = 0.35) 70% of stations within 30 years from
1945, with metadata (s = 0.4, avg = �0.2) Average one
per station in latter half of record with metadata
(s = 0.5, avg = 0.8) Average of 2 breaks per station
associated with metadata (s = 0.8, avg = 0) No metadata,
more prevalent early in record, 4 per station on average
(s = 0.8, avg = 0) Average 2 metadata events
not associated with a break.

Clustering and sign
bias – c20c2

CSIRO MK3.5
[Gordon et al., 2002]

20th Century forcings,
1871–1970, run 1

Same breaks as “clustering and sign bias c20c1”

Clustering and sign
bias – control

UKMO -HadGEM1
[Johns et al., 2006]

No changes in external
forcings, 2000–2099

Same breaks as “clustering and sign bias c20c1”

Clustering and sign
bias - committed

NCAR CCSM3.0
[Collins et al., 2006]

Stabilization run 2000–2099 Same breaks as “clustering and sign bias c20c1”

Very many mainly
small breaks

NCAR PCM
[Washington et al., 2000]

CO2 1%/yr to 2 � CO2,
0071–0170,

2 breaks on average per station seeded randomly throughout
network and over time with metadata (s = 1, avg = 0)
2 breaks on average per station but probability twice as
prevalent later in record and sign biased, with metadata
(s = 0.25, avg = �0.2) 2 breaks on average per station
but probability twice as prevalent later in record,
with metadata (s = 0.25, avg = 0) 4 breaks per station
unassociated with metadata, more prevalent early,
slight sign bias (s = 0.2, avg = �0.075)

aBreaks are added in all cases as seasonally invariant deltas to all points prior to the assigned breakpoint. Breakpoint sizes and locations were allocated by
random number generators seeded from system time at time of instigation.
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Specifically, the standard deviation of the inter-station dif-
ference series and their AR(1) autocorrelation were assessed
(Figure S1) across the network as a whole. While the real and
analog world station covariance structures were designed to
be broadly consistent, the homogenization results will reflect
any deviation in the covariance between generated series and
what occurs in the real COOP network.
[19] Four principal break structures were imposed on the

analogs by the third author, the nature of which was unknown
to the first two authors until the 100 member ensembles were
produced for each analog. The imposed errors were specifi-
cally designed to test the efficacy of the algorithm’s ability to
estimate the true long-term trend at the regional scale. The
analogs were intended to cover a range of scenarios from
overly simple to arguably too challenging to ascertain the
performance of the pairwise homogenization algorithm
under a number of scenarios. Specifically, if a homogeniza-
tion algorithm cannot cope with a simple error structure then
its use on real-world data is problematic. Likewise, creating
difficult, but not impossible benchmarks should allow algo-
rithm developers clearer goals for improvements to address
the tougher issues that may exist in the real-world.

[20] The details of the errors are provided in Table 2, but
in all cases breaks were assigned as seasonally invariant step
changes with varying degrees of associated metadata. The
real-world situation is undoubtedly more complex; however,

Figure 2. (a) Gridded trends for the period 1900–1999 for
the “Perfect data” raw input. (b) The homogenized version
of the data produced by the default version of the pairwise
homogenization algorithm.

Figure 3. Gridded trends for the period 1900–1999 for the
“Big breaks, good metadata” USHCN analog: (a) raw (unad-
justed) input data; (b) true (homogeneous) data; and (c) data
homogenized by the default version of the pairwise algorithm.
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Figure 4. Annual average contiguous U.S. (CONUS) temperature series calculated using the USHCN
monthly temperature series from the “Big breaks, good metadata” analog. Spatial averages are based on
output from the 100 randomized versions of the pairwise algorithm (in black) as well as from the default
version (in orange). CONUS averages for the non-homogenized (raw) input values with the seeded errors
are shown in red. Averages based on the true data series without errors are shown in green. Box plots
depicting the range of CONUS average trends for the three different summary periods used by
Trenberth et al. [2007] produced by the 100 randomized versions of the pairwise homogenization algo-
rithm are also shown along with the trends based on the true data, the raw input data with errors and on
the homogenized data produced by the default algorithm. Whiskers denote the full range, boxes the
inter-quartile range and horizontal line within the box the median estimator for the 100 member ensemble.

Figure 5. As in Figure 4, except for the “Mixed Break Sizes with Some Clustering” analog.
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a trade off is required in this initial analysis (where the
concept is being applied to this particular problem for
the first time) between complexity and ability to analyze
the results. Future exercises should include more complex
(realistic) error structures [e.g., Venema et al., 2012] and
global benchmarking [Thorne et al., 2011b] of this

algorithm, which is now also used to create the global GHCN
v3 product [Lawrimore et al., 2011]. The details of the ana-
logs are described in more detail below in order of the com-
plexity of the error models.

4.1. “Perfect Data”

[21] The ‘perfect data’ analog was produced solely to test
whether the algorithm can do “harm” by identifying
numerous false breaks and substantially altering the real-
world behavior in the unlikely event that the real-world raw
data are perfectly homogeneous. It consists of exactly the
same data as that for ‘Clustering and sign bias – c20c1’
(section 4.4) prior to the addition of errors.

4.2. “Big Breaks, Good Metadata”

[22] The ‘Big breaks, good metadata’ analog consists of
predominantly large breaks with no preferential sign bias
and the timing of each break is recorded in associated
metadata. While the imposed breaks have a large standard
deviation, they are normally distributed around zero, which
means that there are a number of very small breaks that may
not be considered statistically significant. The average
period between breaks is twenty years, but error seeding was
random (for all analogs) so there are stations with breaks in
closer succession and/or with more than the average of 5
breaks in the record (and vice versa).

4.3. “Mixed Break Sizes, Some Clustering”

[23] In the ‘Mixed breaks, some clustering’ analog a more
plausible error structure was added. It is known, for exam-
ple, that the USHCN network experienced at least two per-
vasive changes that afflicted the majority of the network
with a change in observation time and a move from liquid in
glass (LiG) thermometers in Stevenson screens to the elec-
tronic resistance thermometer known at the Maximum/
Minimum Temperature Sensor (MMTS) [Quayle et al.,
1991; Menne et al., 2009]; that the metadata is far from
perfect and may be less complete for the earlier parts of the
record; and that not all breaks will be large. In this analog
these aspects were added, but the clustering of similar breaks
is relatively relaxed in time compared to our current
knowledge of the real world data and the number of applied
breaks is still arguably lower than the likely frequency of
real-world breaks with an average return period of between
fifteen and twenty years.

4.4. “Clustering and Sign Bias” Family

[24] The error structure applied to these analogs contains
more breaks and some exhibit a much tighter degree of
clustering of similar events than in ‘Mixed breaks some
clustering’ reflecting that the majority of the LiG to MMTS
transition happened well within a decade [Menne et al.,
2009]. Many breaks have a sign bias leading to a false
warming trend in the ‘raw’ analog world data. This is
opposite to the suspected behavior in the real-world where
the raw data are apparently negatively (cool) biased [Menne
et al., 2009]. Whether the sign bias is positive or negative is
less important than adding an overall sign preference to
ascertain whether the shift between raw and adjusted series
is likely to be uncovering a real trend bias in the real-world
data or occurring solely by chance.

Figure 6. As in Figure 3 except for the “Clustering and
Sign Bias–C20C1” analog.
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[25] Four variants with this error structure were produced
using different GCMs to address whether algorithm perfor-
mance depends on the presence of an underlying signal and
the phasing and nature of the climate variations arising from
natural variability. The first two variants ‘clustering and sign
bias – c20c1’ and ‘clustering and sign bias – c20c2’ both
consider output from 20th Century climate simulations but
from different models. These are meant to sample any
potential impacts of the differences in model physics, phas-
ing and characterization of natural variability and inclusion
versus exclusion of specific forcings [Santer et al., 2005,
2006]. Nevertheless, both models have grossly the same
multidecadal characteristics of an accelerating warming
trend. If the ability to recover the true trend is impacted by
this choice then it is likely that algorithm performance is
sensitive to natural variability. The third variant of this
family, ‘clustering and sign bias – control’, again uses a
different model but in this case no external forcings are
changed so there is no forced signal component. Comparing
this to the first two analogs in the family permits exploration
as to whether algorithm performance is impacted by the
presence or absence of a real underlying climate change
signal. The final analog ‘clustering and sign bias – com-
mitted’ allows an assessment of sensitivity to shape of the
underlying signal. The c20c forcings runs approximate in
their underlying forcing an exponential increase due to
greenhouse gas increases, which is reflected in the multi-
decadal temperature changes. A committed forcings run
involves no increase in forcing but starts with the coupled
climate system substantially out of equilibrium. The forced
change component in such a run is therefore more akin to a
natural logarithm with relatively rapid changes early in the
record as faster response components catch up with the now
stable forcing, tailing off later on as slower deep ocean
responses continue.

4.5. “Very Many Mainly Small Breaks”

[26] The final analog ‘Very many mainly small breaks’
represents the most pessimistic set of assumptions about the
errors. A small percentage of the breaks are large, but most
are small. There are breaks on average once every ten years
throughout the network and forty percent of the breaks have
no metadata recorded. Furthermore, sixty percent of the
breaks have a sign tendency associated with them. Despite
not explicitly including clustering, this analog is arguably
hardest for any data set algorithm to cope with. First, any
breakpoint algorithm is going to have real trouble finding
and adjusting for small breaks without greatly inflating the
false positive count, yet these breaks constitute real units of
red noise that project most strongly onto the trend. Second,
with so many breaks having a sign bias the failure to detect a
substantial proportion of these is likely to lead to biases, on
average, in the adjustments because apparently homoge-
neous neighbor segments will not always be so and in these
cases will yield a systematic adjustment tendency. Last,
having so many breaks in the data will lead to a much greater
preponderance to have intrastation breaks in close proximity.
Any algorithm will struggle when the interval between breaks
is short relative to the time step regardless of break size
because a smaller homogeneous segment population requires
a larger test statistic value for significance to be attained.

5. Results Against Analog Cases

[27] The pairwise homogenization algorithm produces a
list of breakpoint dates and adjustments for each input series.
Although it is possible to evaluate results at the individual
station series level, the focus here is on the aggregate,
network-wide impacts as reflected in changes to the regional
mean value. We present these aggregate results beginning
with the simplest analog error structure and moving pro-
gressively to the more complex models.

Figure 7. As in Figure 4 except for the “Clustering and sign bias-c20c1” analog.

WILLIAMS ET AL.: BENCHMARKING THE USHCN D05116D05116

9 of 16



[28] Figure 2 provides a geographic perspective of the
trends in the “perfect data” analog both for the raw input
data (Figure 2a) and for the data homogenized by the default
version of the algorithm (Figure 2b). The trends were cal-
culated by interpolating the annual temperature values to a
0.25 � 0.25 degree grid and then calculating the trend for
each grid box as described by Menne et al. [2009]. The
default version of the algorithm essentially preserves the
pattern of trends although there appears to be some minor
smoothing of the spatial pattern. Nevertheless, in the case of
“perfect data,” no version of the pairwise algorithm makes
unwarranted adjustments sufficient to move the average
CONUS trend away from the true trend, and the average
series produced by the 100 randomized versions of the
algorithm are indistinguishable from those based on the raw
input data (see auxiliary material).
[29] In the “Big breaks, perfect metadata” case, the unad-

justed input data are characterized by a noisy, heterogeneous
field of trends caused by the imposition of random breaks in
the network throughout the series. As shown in Figure 3a,
the impact is a mix of trends with positive and negative

biases. In this case, the default algorithm comes close to
reproducing the true spatial pattern and magnitude of trends
(Figures 3b and 3c), which is expected given that the timing
of all breaks is known. Nevertheless, some randomized
versions of the algorithm do not make use of the metadata
and treat all breaks as undocumented. Further, the use of a
significance test when estimating the magnitude of each
break means the recovery of the true climate signal from the
input data is not necessarily perfect. However, since there is
not an overall bias associated with the imposed errors, the
randomized versions of the algorithm all produce CONUS
average trends that do not deviate substantially from the true
background trend (Figure 4) and there is no sign preference
to the potential residual error.
[30] In the “Mixed break sizes, some clustering” analog,

errors are clustered in time (between 1915 and 1975 and
somewhat more heavily from 1915 to 1945), and a sign
preference is present in the errors. In this case, the homog-
enized trends since 1900 and since 1950 from the ensemble
are all greater than the raw input trend (Figure 5), an indi-
cation that the algorithm is accounting for the sign bias in the
imposed errors during the periods when the errors are
concentrated.
[31] In the “Clustering and sign bias” family of analogs,

the imposed errors exhibit an even larger sign preference and
are more clustered in time, including nearer to the end of the
series, which biases average trends for all periods since
1900. The impact of the sign bias on the raw input trends for
the full period can be seen in Figure 6. Relative to the true
values (Figure 6b) a larger number of trends are too high
rather than too low in the unadjusted data (Figure 6a).
Nevertheless, the default version of the pairwise homogeni-
zation algorithm comes close to reproducing both the mag-
nitude and pattern of the underlying temperature trends
(Figure 6c) in spite of the sign preference. As shown in
Figure 7, all randomized versions of the algorithm produce
homogenized series that bring the CONUS average closer to
the true value for all trend periods, with some algorithm
configurations, including the default version, yielding results
very close to “truth” - moving the trend more than 95%
percent toward the true climate signal. In particular, the
impact of the pervasive positive errors seeded in 70% of the
analog series after 1980 is reduced by all ensemble mem-
bers. Notably, the potential residual error is essentially one-
tailed in this case; there is a low probability of over-
compensating for the bias changes by a small amount.
[32] Figure 8 provides a summary overview of the

“Clustering and sign bias” family of analogs (and additional
time series are provided as auxiliary material). Because each
of these four analogs was seeded with identical errors, any
difference in homogenization performance for a particular
ensemble member is a function only of the presence or
absence of a forced response component and the timing and
patterns of natural internal variations simulated by the vari-
ous underlying models. Results indicate that while the effi-
ciency of individual members is somewhat dependent on the
nature of the underlying climate signal and covariance
structure, the relative performance of each member mea-
sured by the degree to which the true trend is recovered
remains largely unchanged from analog to analog within the
family. In other words, the performance of any particular
version of the algorithm appears to be largely—but not

Figure 8. Box plots depicting the range of CONUS aver-
age trends for the three different summary periods used by
Trenberth et al. [2007] produced by the 100 randomized ver-
sions of the pairwise homogenization algorithm. The magni-
tude of the CONUS average trends based on the raw input
data are given by the red “X,” the magnitude of the true
(homogeneous) trends are given by the green “X.” The mag-
nitude of trends produced by the default version of the
homogenization algorithm is shown by the yellow “X.”
Whiskers denote the full range, boxes the inter-quartile
range and horizontal line within the box the median estimate
for the 100 member ensemble.
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Figure 9. Ranking from 1 (worst) to 101 (best) of the degree to which each version of the algorithm was
able to recover the true period-of-record CONUS trend in analog series seeded with errors that have a sign
bias. The default version of the algorithm is denoted as ensemble member “0” and members “1–100” are
the randomized versions. Dark shades denote high rankings and indicate versions of the algorithm that
were the most successful at recovering the CONUS average trend for each particular analog world; light
shadings denote low rankings where versions were the least successful in recovering the true trend.

Figure 10. As in Figure 2, except for the “very many mainly small breaks” analog.
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completely–invariant of underlying climate signal as shown
in Figure 9. Moreover, a comparison of Figures 4, 7, and
8 also suggests that the underlying error structure is a more
fundamental consideration in the ability of the algorithm to
retrieve the true underlying climate signal rather than the
nature of the climate signal itself. In light of this, it may be
possible to choose a number of pairwise algorithm

configurations that should be expected to be relatively good
performers under a wide variety of error characteristics.
[33] Results for the most challenging analog “Very many

small breaks with sign bias” are summarized in Figures 10
and 11. In this case, a large percentage of the breaks are
likely below the magnitude that can be efficiently detected
by the pairwise (or perhaps any) algorithm. Consequently,
the various ensembles produced by the randomized versions
of the algorithm do not move the trend far enough toward the
true trend value (Figure 10). Likewise, the geographic dis-
tribution of trends (Figure 11) indicates that the systematic
bias caused by the imposed errors are only partially removed
by the homogenization algorithm, the consequence of which
is a residual mean bias that underestimates the true CONUS
trend and a heterogeneous field of trends.
[34] Finally, we note that a 100-member randomization

was considered at the outset to be sufficient to explore the
sensitivity of the various parameters, especially since not all
of them were expected to have a substantial impact on the
results. By way of confirmation, the “clustering and sign
bias-C20C1” analog was run through 500 randomizations of
the algorithm and the results were compared to the original
100 member ensemble as well as smaller numbers of com-
binations. As Figures S6–S10 indicate, the median and
interquartile ranges are well represented with 100 members
and the worst case scenario implication from this expanded
randomization is that the range of the ensemble trends may
be underestimated by about 25%. However, it is worth not-
ing that the only outlier in the expanded 500 member
ensemble not captured by the 100-member ensemble resul-
ted from a particularly conservative set of settings that
minimized the impact of the homogenization. More gener-
ally, it is the conservative tail, which minimizes adjustments,
that is poorly quantified with smaller ensemble sizes rather
than the more aggressive tail of the distribution that samples
solutions closer to the target truth. In future the potential
exists to massively parallelize such data set creation through
citizen scientists and their IT capabilities akin to e.g., cli-
mateprediction.net [Allen, 1999] if the pairwise homogeni-
zation code can be made suitably portable and platform
independent. This could also open up new opportunities
such as derivation of a neural network algorithm tuning
approach either explicitly or through, for example, interfac-
ing with the serious gaming community [Krotoski, 2010].
[35] To summarize, based on all analog results we con-

clude that:
1. In cases where there is no sign bias to the seeded

errors, the randomized versions of the algorithm produces
results clustered around the true trend.

2. For cases in which there were errors seeded with a sign
bias, all randomized versions of the algorithm moved the
trend in the correct direction.

3. Rather than overcorrect, the randomized algorithms
generally do not correct the trend enough in the presence of
errors with a sign bias because of incomplete adjustments
that bias the underlying trends. The propensity to under-
correct is sensitive to the frequency and magnitude of
imparted breaks with more frequent and smaller breaks
leading to more incomplete corrections.

4. The algorithm is potentially capable of adjusting data
even when pervasive network wide quasi-contemporaneous
changes of a similar nature occur.

Figure 11. As in Figure 3 for the “very many, mainly small
breaks” analog.
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5. Although algorithm performance is somewhat impacted
by natural climate variations and the presence of forced
changes, this impact is secondary to that of the error structure
imparted on the raw observations. The error structure, which
is unknown in the real-world, is the primary limiting factor
on algorithm efficiency.

6. Reassessment of Likely Real-World Trends

[36] We applied the same 100 randomized versions of the
algorithm (as well as the default version) to the real-world
monthly mean maximum and minimum temperature data.
Both the raw temperature data and data first corrected for
changes in the time of observation [Karl et al., 1986] were
used as input to the pairwise algorithm. (Note that the pair-
wise algorithm is run operationally on data already de-biased
for changes in the time of observation [Menne et al., 2009]).
This correction relies solely upon intrastation statistics and
metadata and accounts for the specific systematic impact that
changes in the time of observation bias (TOB) have on
monthly mean temperatures. Although TOB changes are
small at many locations, there is no a priori reason why the
pairwise algorithm cannot be applied to data without this
step, especially since many changes in time of observation
coincide with other station changes that are evaluated by the
pairwise algorithm following the TOB adjustment. Running

the pairwise algorithm on both raw and TOB-debiased input
data provides a useful quasi-independent check on the TOB
adjustment itself and is also a test of the skill of the pairwise
algorithm independent of the benchmarks.
[37] Trends in monthly maximum and minimum tem-

peratures for three separate sub-periods and for all ensemble
members are shown in Figure 12 (time series for the
ensemble are provided as auxiliary material). Unlike for the
analog data the true trend in the real data is unknown. While
there is considerable spread in the ensemble, all versions of
the pairwise algorithm produced adjusted maximum tem-
perature data with trends higher than in the raw data
(Figure 12a). The default (operational) version of the algo-
rithm produced trends above the median of all solutions, but
not close to the highest. In these respects, results for the real
world U.S maximum temperatures have some resemblance
to the “clustering and sign bias” family and the “very many
mainly small breaks” analog results.
[38] Homogenization results for maximum temperature

data with the prior correction for TOB are shown in
Figure 12b. Because the TOB impact is negative for both
maximum and minimum temperatures [Vose et al., 2003],
mean monthly maximum temperatures adjusted for TOB
have higher trends than the raw data [Menne et al., 2009].
Nevertheless, even with this prior correction, all versions of
the pairwise homogenization algorithm still yield CONUS
average maximum temperature trends that exceed the TOB-
only adjusted input data for all periods. We can therefore
infer that other network changes (e.g., instrument changes)
have artificially reduced maximum temperature trends like
the TOB. Not surprisingly, the greatest differences between
the input data (raw or de-biased for TOB) and the pairwise
adjusted data occur in the post-1979 period, when the
widespread installation of the MMTS led to an artificial
decrease in maximum temperatures [Quayle et al., 1991;
Hubbard and Lin, 2006; Menne et al., 2010]. Notably,
trends from the operational (default) version for maximum
temperatures are almost identical whether TOB adjustments
are applied prior to instigation or left to the algorithm to
adjust for.
[39] Given that all ensemble members move the maximum

temperature trend away from the raw and TOB-adjusted
values in the same manner as the analog data with sign bias
errors, uncertainty estimates for maximum temperatures can
be considered as essentially one-tailed with the raw data
forming an absolute lower bound for confidence limits defin-
ing the true magnitude of maximum temperature trends.
Realistically, the TOB-only corrected data very likely form
this lower boundary since all algorithm versions move the raw
input trend in the same direction as the TOB- only adjusted
data, and all versions further increase the TOB-only adjusted
trends when these data are used as input. Regarding the upper
bound, it is quite possible that the operational version of the
homogenization algorithm is underestimating the true magni-
tude of U.S. average maximum temperature trends, in agree-
ment with Menne et al. [2010] and Fall et al. [2011].
[40] For minimum temperatures, the impact of homoge-

nization depends largely on the period over which the trend
is calculated (Figure 12c). In the long term (1900–2010), the
randomized algorithms are divided between increasing and
decreasing the U.S. trend relative to the raw value. In con-
trast, members tend to increase the trend for the period

Figure 12. As in Figure 7, except for the observed USHCN
version 2 monthly temperature series using the following as
input to the adjustment algorithm: (a) raw monthly maximum
temperatures; (b) time of observation adjusted maximum
temperatures; (c) raw minimum monthly temperatures; and
(d) time of observation adjusted minimum temperatures.
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1950–2010, but reduce it for the period 1979–2010. This
suggests that the magnitude of the time of observation bias
likely dominates the period after 1950, but not necessarily
after 1979. With the prior TOB correction (Figure 12d), all
members reduce the 1979–2010 trend, consistent with evi-
dence that the widespread transition from liquid-in-glass
thermometers to electronic thermistors led to an artificial
increase in minimum temperatures, which likely over-
whelms the impact of any TOB changes during this period.
Again, the operational algorithm version is broadly similar
for all trend periods regardless of whether TOB adjustments
are applied first.
[41] For the longer-term trends (1900 and 1950 onwards),

the ensembles encompass the raw data, even when first
corrected for TOB. This suggests that there are factors
causing breaks with a negative sign bias before 1979 (in
addition to the TOB) that are offsetting the largely positive
shifts caused by the transition to MMTS afterwards. For
example, there may have been a preference for station relo-
cations to cooler sites within the network, that is, away from
city centers to more rural locations especially around the
middle of the twentieth century [Hansen et al., 2001].
Detecting undocumented breaks in the pre-1979 minimum
temperature data may also play a role since there appears to
be a bias in favor of undocumented negative shifts [Menne
et al., 2009]. However, short of a more thorough analysis
into the cause of the non-TOB related breaks prior to 1979,
uncertainty estimates for the long-term minimum tempera-
ture trends must include the raw data. For the period after
1979, we can be confident that the TOB-corrected data likely
form an absolute upper bound for minimum temperature
trends with the lower bound being less than the trends pro-
duced by the default version of the algorithm. Likewise for
the period after 1950, the raw data are likely an absolute
lower bound for trend estimates because of the TOB.
[42] Finally, it is interesting to note that the ensemble

ranges for maximum and minimum temperatures overlap
across all trend periods (Table 3) when the raw data are used
as input. This suggests that much of the observed difference

in maximum and minimum temperature trends in the con-
tiguous U.S. is linked to changes in observing practices, and
that the true difference is likely much smaller than the
network-wide raw data suggest as noted also by Fall et al.
[2011].

7. Discussion

[43] Over past few decades a great deal of effort has been
devoted to collate, prepare and analyze historical surface
temperature data. More recently, fully automated homoge-
nization methods have started to emerge that are designed to
remove the impacts of artifacts that bias the records of large
networks. Moreover, these automated methods have been
shown to be capable of achieving comparable skill to manual
methods [Venema et al., 2012]. This opens up the possibility
of more readily exploring the sensitivities of climate data
homogenization to fundamental methodological choices and
parametric decisions.
[44] Here we have assessed the sensitivity of USHCN

trend estimates to the parametric choices used in the auto-
mated pairwise homogenization algorithm [Menne and
Williams, 2009]. A brute force style, Monte Carlo simula-
tion type ensemble has been created by identifying decision
points in the algorithm and allowing each to take on a range
of values in random combinations. To benchmark the per-
formance of the algorithm, eight analogs to U.S. temperature
record were created that share many of the fundamental
characteristics of the observed data, except that, unlike
the real world, the underlying climate signal is known.
The analog cases and perturbed ensemble build upon the
assessment described by Menne and Williams [2009] and
provide further evidence that pairwise algorithm has a low
false alarm for truly homogeneous input data and that it
yields unbiased regional trends when network-wide errors
are themselves unbiased. In cases where the analog world
data contained biased errors clustered in time, all random-
ized versions of the homogenization algorithm moved the
average trend for the conterminous U.S. closer to the true

Table 3. Summary of Maximum and Minimum Homogenized Temperature Trends (�C/decade) From the 101 Member Ensemblea

Maximum Temperature
(Raw Input)

Minimum Temperature
(Raw Input)

Maximum Temperature
(Input First Corrected for TOB)

Minimum Temperature
(Input First Corrected for TOB)

1900–2010
Lowest 0.0148 0.0027 0.0256 0.0142
Highest 0.0548 0.0852 0.0613 0.0989
Median 0.0393 0.0585 0.0504 0.0738
Average 0.0379 0.0568 0.0474 0.0704
Original input data 0.0008 0.0474 0.0212 0.0741

1950–2010
Lowest 0.0322 0.1082 0.0583 0.1294
Highest 0.1165 0.1622 0.1289 0.1988
Median 0.0823 0.1402 0.1058 0.1676
Average 0.0808 0.1395 0.1019 0.1681
Original input data �0.0049 0.1163 0.0473 0.1755

1979–2010
Lowest 0.1538 0.1633 0.1970 0.1962
Highest 0.2962 0.2267 0.3070 0.2875
Median 0.2374 0.2130 0.2698 0.2523
Average 0.2327 0.2110 0.2635 0.2523
Original Input Data 0.1059 0.2241 0.1791 0.3081

aTrends for the pre-homogenization input data are also shown.

WILLIAMS ET AL.: BENCHMARKING THE USHCN D05116D05116

14 of 16



trend, though generally not far enough. This most likely
reflects a twofold problem – first, the breaks that are not
detected by the algorithm are likely to share the sign bias
and thus their impact will not be accounted for; second, the
unidentified breaks also may be aliased onto adjustment
estimates for the detected breaks leading to biased estimates
on average. Nevertheless, the consistency of the analog
world results leads to additional confidence in interpreting
the homogenization results for the real world data.
[45] When applied to the real-world USHCN observa-

tions, the ensemble essentially reaffirms earlier conclusions
regarding the pervasive biases in the raw USHCN tempera-
ture record. In the case of maximum temperature, there is
strong evidence that there are widespread negative (cool)
biases that artificially depress the true rate of temperature
increase for all periods since 1900. These biases are the sum
of time of observation change effects after 1950 as well as
other changes, primarily the transition to electronic resis-
tance thermometers beginning in the middle 1980s. Notably,
the raw maximum temperature trend for the USHCN is
below the range of confidence limits defined by parametric
uncertainty of the algorithm for all trend periods.
[46] Benchmarking results for minimum temperature

records appear to be somewhat more complicated, especially
for the period before 1950 when parametric uncertainty is
large. Since 1950, results are in agreement with earlier stud-
ies that the competing biases of changes in observation time
(spurious cooling) and installation of electronic resistance
thermometers (spurious warming) dominate. This competi-
tion among biases leads to raw data that underestimate the
true USHCN trends since 1950 and overestimate the trends
since 1979. Estimates of parametric uncertainty overlap for
trends in maximum and minimum temperatures for all trend
periods and suggest that some asymmetry in these trends may
be due to residual biases in the adjusted data.
[47] The analog results also revealed that the ensemble

was far from equi-probable. Certain ensemble members
were consistently worse than others regardless of the error
structure or underlying spatiotemporal variations arising
from model estimated natural variability. A supposedly equi-
probable solution approach such as used in HadSST3
[Kennedy et al., 2011a, 2011b] may, however, be viable.
Additional evaluation may allow further optimization and
the selection of set of parameters that can produce a more
equi-probable solution set. This allows any potential non-
linear interdependencies between such uncertain choices to
be explicitly represented.

8. Concluding Remarks

[48] The benchmarking experiment described here was
carried out as a proof of concept. In this way, the sensitivity
analysis is limited to parametric (internal) uncertainty sour-
ces. We encourage more benchmarking efforts like Venema
et al. [2012] so that multiple homogenization algorithms can
be run against a common set of global analogs as proposed by
the surface temperatures initiative [Thorne et al., 2011a]. In
particular, the proposed double blind nature would be a dis-
tinct advantage, although it should be stressed that our anal-
ysis was blind in that the nature of the errors was only made
available to the first two authors after the ensembles were
completed. Blind studies avoid potential pitfalls associated

with tuning an algorithm to perform well under certain, spe-
cific error assumptions when in reality the true error structure
is unknown. In future it would be useful to consider more
complex error structures with, for example, seasonal cycles
or local temporary trends in addition to step-like changes.
[49] The creation of an ensemble of pairwise algorithm

solutions to assess parametric uncertainty and its application
to both the real observations and eight analogs of those
observations has served to strengthen our existing under-
standing of U.S. temperature records. The analogs indicate
that the homogenization algorithm does not add spurious
trends to the spatial temperature average and adjusts the data
in the right direction in the presence of network-wide sys-
tematic biases, although not necessarily far enough. The
benchmarking reaffirms that the dominant systematic and
network-wide biases in the U.S. are caused by changes in time
of observation from the mid-twentieth Century onwards
(spurious cooling to both maximum and minimum tempera-
tures) and conversion from liquid in glass to electronic resis-
tance thermometers, primarily during the mid-1980s (spurious
cooling in maximum and warming in minimum). Results for
the real-world are similar regardless of whether time of
observation adjustments are applied in advance or left to the
pairwise algorithm to adjust directly, building confidence both
in the reality of this effect and the capabilities of the algorithm.
[50] We conclude that raw maximum temperatures are

outside the assessed range of plausible trends - the real U.S.
trends are very likely greater than the raw data imply. Raw
minimum temperatures are not as obviously biased, at least
at the centennial timescale. Internal uncertainty for the
homogenized maximum and minimum trends over the per-
iods 1900–2010, 1951–2010 and 1979–2010 does not
encompass zero so there is high confidence in the conclusion
that the conterminous U.S. temperature trends are positive at
these time scales. However, the internal algorithm uncer-
tainty for the rate of temperature change indicates that the
default settings used of the pairwise algorithm used to pro-
duce the USHCN Version 2 adjusted temperature data is
likely underestimating maximum temperature trends.
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