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Abstract— This paper describes extensions to the Kintinu-
ous [1] algorithm for spatially extended KinectFusion, incor-
porating the following additions: (i) the integration of multiple
6DOF camera odometry estimation methods for robust track-
ing; (ii) a novel GPU-based implementation of an existing dense
RGB-D visual odometry algorithm; (iii) advanced fused real-
time surface coloring. These extensions are validated with ex-
tensive experimental results, both quantitative and qualitative,
demonstrating the ability to build dense fully colored models
of spatially extended environments for robotics and virtual
reality applications while remaining robust against scenes with
challenging sets of geometric and visual features.

I. INTRODUCTION

The advent of the Microsoft Kinect and other RGB-D

sensors has resulted in great progress in dense mapping

and SLAM in recent years [2], [3], [4]. Given the low

cost of the sensor coupled with the large scale availability

of GPUs for high performance computing, dense methods

are becoming more popular in tackling some of the key

perception problems in robotics [5], [6], [7].

The KinectFusion algorithm in particular, introduced by

Newcombe et al., was one of the first systems to produce a

volumetric reconstruction of a scene in real-time with an

unprecedented level of accuracy [6]. While a volumetric

representation is useful for planning robotic tasks such as

manipulation, this algorithm has a number of limitations. In

our previous work we extended the KinectFusion algorithm

to function over an extended area [1].

A notable feature of the KinectFusion algorithm is use

of depth information alone for camera motion tracking. The

underlying odometry estimation algorithm, iterative closest

point (ICP), is prone to failure in situations where camera

displacement is large between frames or a lack of 3D depth

features poorly constrains the camera pose in the observed

scene. For example, camera tracking performance will suffer

when pointed at a flat wall or corridor with no significant 3D

features present. In our previous paper we presented some

preliminary work on remedying this problem by means of

incorporating a visual odometry method for camera pose

estimation in the KinectFusion pipeline [1].

We present results demonstrating that the combination of

various odometry estimation techniques increases the robust-

ness of camera tracking across a variety of environments,

from desk sized manipulation type environments to corridors
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Fig. 1. Orthographic projection of a triangular mesh stairwell produced
in real-time by the Kintinuous system containing over 2.6 million triangles
and 1.5 million colored vertices.

and extended scale paths. We also present a novel GPU-

implementation of the RGB-D-based visual odometry system

of Steinbruecker et al. [8], enabling real-time execution of

the algorithm.

Additionally we present a method for intelligently inte-

grating RGB color information into the KinectFusion recon-

struction process to allow high quality fully colored map

production. The method we present results in online real-time

colored volumetric surface reconstructions without the use

of keyframes. Although the original KinectFusion algorithm

was published with images and videos showing colored

surface reconstructions, this method was not documented and

only ever described as “texture mapped” [9].

II. RELATED WORK

A number of different approaches have been used to solve

the odometry estimation problem in RGB-D-based mapping

systems. Visual feature matching using various keypoint

descriptors for pose estimation have been popular in SLAM

systems [10], [11], [2]. As discussed in the previous section,

the KinectFusion system relies purely on dense ICP every

frame to determine the camera pose. Henry et al. opted to

combine ICP with visual features for a more robust pose

estimate. Less commonly an image warping method is used

in the parameterisation of a camera transformation as used

by Audras et al. [4] and Steinbruecker et al. [8].



Since the release of KinectFusion in 2011 a number

of derived works have followed, notably our own system

Kintinuous [1], the commercial ReconstructMe product [12],

the KinFu Large Scale open source PCL project [13] and the

Moving Volume KinectFusion work of Roth and Vona [14].

At the time of writing none of these works have incorporated

alternative methods of camera tracking in place of ICP. In

addition none of these works have shown results of real-time

color integration. KinFu Large Scale and ReconstructMe

have demonstrated post processed texture mapping.

In their future work Steinbruecker et al. mention im-

plementing their RGB-D odometry algorithm on GPU [8].

Such work is yet to be presented. An open sourced CPU

implementation does exist, released into the OpenCV contrib

module in March 2012 [15]. Our GPU implementation is

based off of this release. During preparation of this paper

we became aware of concurrent work by Maria Dimashova

of Itseez (author of the OpenCV contrib code) in combining

the RGB-D odometry algorithm of Steinbruecker et al. with

ICP, CPU-based however.

By far the most popular method for integrating color

information into constructed maps is keyframe style colored

point clouds [4], [2], while some approaches ignore color

completely [11]. However some systems, such as work by

Henry et al. and Stückler and Behnke, make use of surfels,

angles of observation and multi-resolution color distributions

for intelligent color selection [16], [17]. With the exception

of these two approaches, none of the systems discussed

utilise any kind of fused color integration and produce

a map effectively colored by keyframe information. Such

keyframe based coloring typically results in the incorporation

of pronounced sensor noise in the mapped surface color.

III. BACKGROUND

The Kintinuous system is an extension of the KinectFusion

algorithm published by Newcombe et al. in 2011 [6]. A core

component of the KinectFusion algorithm is the truncated

signed distance function (TSDF), a volumetric surface rep-

resentation where each element stores the signed distance to

the closest surface [18]. For data integration, KinectFusion

computes a vertex and normal map from the raw depth map

which is then used to compute the camera pose via an ICP-

based registration with the predicted surface model raycast

from the current TSDF. Given this pose, the depth data is

integrated into the TSDF through a weighted running average

which over time results in a smooth surface reconstruction.

Kintinuous implements the TSDF as a cyclical buffer allow-

ing the reconstructed area to move around the real world.

Upon translation, any surface exiting the volume is extracted

by raycasting the volume only in a small slice defined by a

movement threshold, outputting a point cloud which is then

triangulated to create a mesh surface, as shown in Figure 2.

IV. GPU-BASED RGB-D ODOMETRY

As discussed in Section I, a reliance on depth information

alone for the estimation of the camera pose has a number of

Fig. 2. The four main steps of the Kintinuous algorithm are shown above;
(i) Camera motion exceeds movement threshold (black arrow); (ii) Volume
slice (red) is raycast (orthogonal directions shown in blue arrows) for point
extraction and reset; (iii) Point cloud extracted and fed into greedy mesh
triangulation algorithm [19]; (vi) New region enters volume.

well understood problems. In order to remove the suscepti-

bility to failure in environments with a lack of 3D features

we have developed a GPU implementation of an existing

dense RGB-D-based visual odometry algorithm presented

by Steinbruecker et al. and integrated it into the Kintinuous

pipeline. Given that the original ICP odometry estimator uses

dense information for camera pose estimation, we chose a

visual odometry algorithm which also used a dense method

over a sparse feature based approach. The original work

by Steinbruecker et al. documented an execution speed on

CPU of 12.5Hz [8]. Additionally, we measured the open

source CPU implementation available in the OpenCV contrib

module to operate at a speed of 20Hz on our test platform

(specifications in Section VII-C) [15]. While alone these

speeds are adequate for real-time visual odometry neither

implementation matched the speed of the original KinFu

ICP odometry estimator, which runs at over 100Hz on our

test platform. For this reason we chose to reimplement the

work by Steinbruecker et al. in CUDA for massively parallel

operation on a GPU.

A. CUDA Implementation

Given two consecutive RGB image and depth map pairs

[IRGBn ,Dn] and [IRGBn+1 ,Dn+1] with IRGB(x, y) ∈ N
3

and D(x, y) ∈ N we compute a rigid camera transforma-

tion between the two that maximises photoconsistency. As

described in the original publication we solve the transfor-

mation iteratively with a coarse-to-fine scheme in the form

of a four level image pyramid.
1) Preprocessing: For both pairs we perform preprocess-

ing on the RGB image and depth map. For each depth map

we convert raw sensor values to a metric depth map M ∈ R.

Additionally, according to the original implementation only

gray values of the color image are used thus we define an

intensity image I = (IR ∗ 0.299 + IG ∗ 0.587 + IB ∗ 0.114)
with I ∈ N. Following this a four level intensity and depth

pyramid is constructed using a 5 × 5 Gaussian kernel for

downsampling. Each of these steps is carried out on the GPU

acting in parallel with one GPU thread per pixel. For the

pair [In+1,Mn+1] the partial derivatives
∂In+1

∂x and
∂In+1

∂y
are also computed. A 3 × 3 Sobel operator is used for

this computation, coupled with a 3 × 3 Gaussian blur with

σ = 0.8. Again this step is carried out entirely on the GPU

with one thread per pixel.



Algorithm 1: Interest Point Accumulation

Input: ∂In+1
∂x

and
∂In+1

∂y
intensity image derivatives

s minimum gradient scale for pyramid level
Output: L list of interest points

kL global point count
Data: α thread block x-dimension

β thread block y-dimension
γ pixels per thread
ι shared memory local list
κ shared memory local index
blockIdx CUDA block index
threadIdx CUDA thread index

in parallel do
i ← β ∗ blockIdx.y + threadIdx.y
j ← α ∗ γ ∗ blockIdx.x + γ ∗ threadIdx.x
if threadIdx.x = 0 && threadIdx.y = 0 then

κ ← 0

syncthreads();
for l ← 0 to γ do

p ← (i, j + l)

g2 =
∂In+1

∂x
(p)2 +

∂In+1
∂y

(p)2

if g2 ≥ s then
idx ← atomicInc(κ)
ιidx ← p

syncthreads();
b ← α ∗ γ ∗ threadIdx.y + γ ∗ threadIdx.x
for l ← 0 to γ do

a ← b + l
if a < κ then

idx ← atomicInc(kL)
Lidx ← ιa

2) Precomputation: An optimisation introduced in the

open source OpenCV CPU implementation only selects point

correspondences with a minimum gradient in the intensity

image. This is implemented as a binary image mask in the

OpenCV version. Similarly we implement this optimisation

but use a list of interest points over a mask. Compiling this

list of points as a parallel operation is done using a basic

parallel reduction exploiting shared memory in each CUDA

thread block as inspired by a similar operation by van den

Braak et al. [20]. Algorithm 1 lists the operation as it would

operate for each level of the pyramid.

In the computation of the Jacobian matrix the projection

of each point in Mn is required. For each pyramid level the

3D projection Vn(p) of each point p in the depth map is

computed prior to beginning iteration with V ∈ R
3. Only

projecting certain points based on a condition results in per-

formance hindering branching and a reduction in pipelining.

Empirically it was found to be faster to simply project the en-

tire depth map rather than only project points required in cor-

respondences. Given the intrinsic camera calibration matrix

K of the camera we can obtain the principal points cx and

cy and the focal lengths fx and fy . The 3D reconstruction

of each point p is computed in parallel with one thread per

point as Vn(p) = ( (px−cx)Mn(p)
fx

,
(py−cy)Mn(p)

fy
,Mn(p))�

3) Iterative Transformation Estimation: Our iterative es-

timation process takes two main steps; (i) populating a list of

valid correspondences from the precomputed list of interest

points and (ii) solving the linear system for an incremental

transformation and concatenating these transformations. The

first step involves a reduction similar to the one documented

in Algorithm 1, but rather than reducing from a 2D array to

a 1D array it reduces from a 1D array to another 1D array.

On the first iteration for frame n we set the estimated camera

transformation matrix Tn to the identity, where

Tn =
[

Rn tn

0 0 0 1

]
(1)

with a 3 × 3 rotation matrix Rn and a 3 × 1 translation

vector tn. At the beginning of each iteration we precompute

the projection of Tn into the image before uploading to the

GPU as

RI
n = KRnK−1, tI

n = Ktn. (2)

Algorithm 2 lists the process of populating a list of point

correspondences from the list of interest points which can

then be used to construct the Jacobian.

Now with a list of valid correspondences we need only

solve a least-squares equation

arg min
ξ

‖Jrgbdξ + rrgbd‖2
(3)

to compute an improved camera transformation estimate

T′
n = exp(ξ̂)Tn (4)

ξ̂ =
[

[ω]× u
0 0 0 0

]
(5)

with ξ = [ω�u�]�, ω ∈ R
3 and u ∈ R

3. We first normalise

the intensity difference sum σ computed in Algorithm 2 to

enable a weighted optimisation σ′ =
√

σ/kC . Summation

and computation of the σ value in parallel is in fact an

optimisation exploiting the atomic arithmetic functions avail-

able in the CUDA API. From here Jrgbd and rrgbd can be

populated according to the original algorithm documented by

Steinbruecker et al. [8], including usage of σ′ for weighting.

Equation 3 is then solved using a tree reduction on the GPU

followed by Cholesky factorization of the linear system on

the CPU.

V. ODOMETRY ESTIMATION

In this section we describe the various combinations of

odometry estimation algorithms we employed. We detail the

combination of the FOVIS visual odometry system with

both ICP-based and RGB-D-based pose estimators and the

combination of KinectFusion’s original ICP estimator with

Steinbruecker et al.’s RGB-D visual odometry system.

A. FOVIS Integration

The FOVIS visual odometry system of Huang et al.
relies on FAST feature correspondences within the RGB

frame [10]. Given that this is essentially using sparsely

sampled features to compute a camera pose we opted for an



Algorithm 2: Correspondence Accumulation

Input: L list of interest points
dδ maximum change in point depth
[In,Mn] previous intensity depth pair
[In+1,Mn+1] current intensity depth pair
RI

n camera rotation in image
tI

n camera translation in image
Output: C correspondence list of the form (p,p′, Δ)

kC global point count
σ global intensity difference sum

Data: α thread block x-dimension
γ pixels per thread
ι shared memory local list
κ shared memory local index
blockIdx CUDA block index
threadIdx CUDA thread index

in parallel do
i ← α ∗ γ ∗ blockIdx.x + γ ∗ threadIdx.x
if threadIdx.x = 0 then

κ ← 0

syncthreads();
for l ← 0 to γ do

p ← Li+l

z ← Mn+1(p)
if isValid(z) then

(x′, y′, z′)� ← z(RI
n(p, 1)�) + tI

n

p′ ← (x′
z′ ,

y′
z′ )

�

if isInImage(p′) then
d ← Mn(p′)
if isValid(d) && |z′ − d| ≤ dδ then

idx ← atomicInc(κ)
ιidx ← (p,p′, In+1(p) − In(p′))

syncthreads();
b ← γ ∗ threadIdx.x
for l ← 0 to γ do

a ← b + l
if a < κ then

atomicAdd(σ, ιa
2
Δ)

idx ← atomicInc(kC)
Cidx ← ιa

integration strategy that allows our system to dynamically

switch between FOVIS and any other estimator depending

on some error metric. In particular, one problem which was

quite evident was the way the ICP estimator would “slip”

along corridors and other planar areas with a lack of 3D

features. For this reason we chose a conservative switching

strategy that favors the FOVIS estimator in the event of a

disagreement in the estimate of the translation component.

The switching process for FOVIS and any other estimator

(ICP, RGB-D, etc.) is as follows:

FOVIS Switching Strategy: From an estimator (e.g. ICP)

we have an incremental camera transformation matrix T.

Where TF is the FOVIS camera transformation and TO is

the estimator’s camera transformation, if |‖tF ‖2 − ‖tO‖2| >
μ then use TF as the estimated incremental transformation,

otherwise use TO. Emperically a value of μ = 0.03m
was found to deliver adequate performance. The chosen

transformation is then used to compute the next camera pose

before the KinectFusion process continues on as normal. As

shown in Section VII, in certain environments FOVIS alone

can power a dense reconstruction when estimating odometry

using only sparse features.

B. RGB-D and ICP Integration

To combine the color and depth information in the motion

estimation we find the motion parameters ξ that minimize

the combined sum of the RGB-D and ICP cost. The cost for

ICP is the distance of each point in the current view to the

corresponding point in the model

Eicp =
∑

k

∥∥∥(
vk − exp(ξ̂)Tvk

n

)
· nk

∥∥∥2

, (6)

where vk
n is the k-th vertex in frame n, vk,nk are the cor-

responding vertex and normal respectively in the model, and

T is the current estimate of the transformation from current

frame to the model frame. If we linearize the transformation

around the identity we get

Eicp ≈
∑

k

∥∥∥(
vk − (I + ξ̂)Tvk

n

)
· nk

∥∥∥2

(7)

=
∑

k

∥∥∥(
vk − Tvk

n

) · nk − ξ̂Tvk
n · nk

∥∥∥2

(8)

=
∑

k

∥∥∥∥∥
[ −Tvk

n × nk

−nk

]�
ξ + (vk − vk

n) · nk

∥∥∥∥∥
2

(9)

= ‖Jicpξ + ricp‖2
(10)

and in a similar manner we get Jrgbd and rrgbd for the

color (intensity) correspondences, according to the original

algorithm by Steinbruecker et al. [8]. For each step we

minimize the linear least-squares problem by solving the

normal equations[
Jicp

Jrgbd

]� [
Jicp

Jrgbd

]
ξ =

[
Jicp

Jrgbd

]� [
ricp

rrgbd

]
(11)

(J�
icpJicp + J�

rgbdJrgbd)ξ = J�
icpricp + J�

rgbdrrgbd. (12)

The products J�J and J�r are computed on the GPU using

a tree reduction. The normal equations are then solved on

the CPU using Cholesky factorization. Additionally the two

functions are weighted, with the total cost defined as

E = Eicp + w · Ergbd, (13)

where w is the weight and was set empirically.

VI. COLOR FUSION

As discussed in Section II the keyframe approach to

mapping color is the most popular. We extend an existing

implementation for surface color information integration in

our color estimation pipeline. The method performs a moving

average in a similar fashion to the surface reconstruction. The

result is a system for estimating color that updates surface

color in tandem with the surface itself while averaging

out noise, sensor artifacts, and other artifacts introduced by

various optical phenomena.



A. Color Integration

We extend an existing color integration technique made

available in the Point Cloud Library (PCL) developed by

Anatoly Baksheev of Itseez [21]. The technique uses a sepa-

rate color volume in GPU memory with the same dimensions

as the TSDF volume. The color volume containing the fused

set of frames from 1 to n is denoted as Cn(p) where p ∈ N
3

is the 3D coordinate of a voxel within the current volume

coordinate frame. Each element of the color volume is made

up of four 8-bit integers, packed into a single 32-bit integer

Cn(p) �→ [RGBn(p),Wn(p)], (14)

where RGBn(p) ∈ N
3 stores the red, green and blue com-

ponents of the element at p and Wn(p) stores the weight.

The implementation of this volume including the update

scheme is available in the PCL open source implementation

of KinectFusion known as KinFu [22]. In our system we

have extended the method and coupled it more tightly to the

surface reconstruction process. At the time of writing the

KinFu implementation does not provide live real-time surface

coloring or attempt to avoid the integration of unreliable

color measurements as we do.

When extracting the surface from the TSDF for live

rendering color extraction is made easy by a one-to-one

mapping maintained between the surface volume and the

color volume. After detection of a zero crossing according to

the original KinectFusion raycast at a point p [9], the color

for p on the surface can be found at Cn(p). Additionally we

trilinearly interpolate the value around this point to alleviate

some of the visual artifacts introduced to the render by the

discrete voxel structure of the TSDF.

B. Artifact Reduction

The surface coloring is often inaccurate around the edges

of objects. This can be caused by inaccuracy in the calibra-

tion between the depth and color cameras, errors in depth

measurements or light diffraction around objects. Typically

there are obvious depth discontinuities around such edges

which can cause the background to blend with the model.

This problem is addressed by not updating points on the

surface close to depth discontinuities and using the angle

between the surface and the camera to weight the color

update. A point is determined to be on a boundary if some

of its neighbors are more than a given distance away from it,

considering a neighborhood of 7x7 points. When each frame

is prepared a normal vector is computed for each point in

the depth image. The angle θ can be computed by

cos(θ) = [0 0 1] · n = nz (15)

and used to weight each color update in the color volume,

resulting in colors viewed “straight on” being weighted

higher than those viewed at an angle.

C. Coloring Results

Figure 3 shows a comparison between a model colored

without artifact reduction and a model colored with the two

enhancements listed in Section VI-B. It can be clearly seen

Fig. 3. Shown on the left is the model using plain coloring and on the
right is the same model colored using angle of observation weighting and
the discontinuity check described in Section VI-B.

in Figure 3 that the enhancements we have integrated greatly

reduce the amount of bloom and color bleed around the edges

of the model. Additional results can be seen in our video

submission available on our webpage at http://www.cs.nuim.

ie/research/vision/data/icra2013.

There is a small computational penalty for these enhance-

ments. An increase in execution time of about 2ms per frame

was measured. Additionally, the usage of a separate color

volume requires twice as much memory as is needed for an

uncolored model. This increases the GPU memory require-

ment of the system to 1GB, which in reality facilitates the

need for a 2GB GPU as there is also GPU memory required

for the operating system and visualisation components.

VII. RESULTS

We evaluate our system both quantitatively and qualita-

tively. We present results on frame-to-frame tracking and

overall trajectory accuracy on selected data from the Freiburg

ground truth dataset [23]. Additionally we present computa-

tional performance results. We also present qualitative results

in the associated submission video and figures.

A. Quantitative Results

Table I shows the absolute trajectory error for each algo-

rithm on each dataset. Tables II and III show the relative

frame-to-frame error in translation and rotation respectively.

From these results alone the algorithms evaluated appear to

have comparable performance with the exception of a small

set of outlier results. Thus we have derived a ranking score

that aims to rank the algorithms with the most consistent per-

formance higher than those with more sporadic performance.
1) Relative Ranking Algorithm: Given a set of m algo-

rithms A and a set of n datasets D we denote the error

achieved by a given algorithm Ai on a dataset Dj as

E(Ai,Dj) (this could be for example maximum translation

error or median rotational error, etc.). The score S for an

algorithm Ai given A and D is defined as

S(Ai,A,D) =
n∑
j

E(Ai,Dj)
n

∑m
k E(Ak,Dj)

. (16)

This ranking encapsulates the relative error each algorithm

produces compared to each other. These results show that in



Fig. 6. Shown from top to bottom are orthographic projections of the
meshes produced using FOVIS, ICP, RGB-D, and finally ICP+RGB-D for
camera tracking. Color has been removed from the models for clarity. Each
model was aligned according to the initial camera position.

Fig. 7. Shown from top to bottom are orthographic projections of the
meshes produced using ICP, RGB-D, FOVIS and finally ICP+RGB-D for
camera tracking. The fifth element shown at the bottom of the figure is
an elevation side view of all four models aligned according to the initial
camera position with ICP shown in red, RGB-D shown in yellow, FOVIS
shown in blue and ICP+RGB-D shown in green.

each of the median scores ICP + RGB-D is ranked first in

consistency and FOVIS + ICP + RGB-D is ranked second.

For maximum error consistency in each test either ICP +

RGB-D or FOVIS + ICP + RGB-D is always ranked second,

while either FOVIS or FOVIS + RGB-D is always ranked

first. The score rankings are visualised in Figures 4 and

5. These results are consistent with results observed in the

qualitative analysis.

B. Qualitative Results

Figures 6 and 7 show qualitative results for two datasets.

The first dataset, shown in Figure 6, shows the performance

of FOVIS, ICP, RGB-D and ICP+RGB-D tracking on a

TABLE IV

COMPUTATIONAL PERFORMANCE OF EACH ALGORITHM ON THE

FREIBURG1 ROOM DATASET.

Timing
Algorithm (ms)

Avg Min Max StdDev
ICP 8.780 8.450 9.210 0.077
RGB-D 10.68 5.820 15.81 1.818
FOVIS 16.18 12.66 20.80 1.584
FOVIS + ICP 15.66 7.300 27.52 3.866
FOVIS + RGB-D 16.50 15.14 19.62 0.442
ICP + RGB-D 18.48 12.79 23.52 1.790
FOVIS + ICP + RGB-D 23.81 19.65 27.77 1.354

TABLE V

COMPUTATIONAL PERFORMANCE OF THE FULL KINTINUOUS PIPELINE

ON THE FREIBURG1 ROOM DATASET.

Timing
Full Pipeline (ms)

Avg Min Max StdDev
ICP 23.93 13.38 33.55 2.463
RGB-D 25.20 19.82 36.56 2.412
FOVIS 30.80 25.83 39.36 2.305
FOVIS + ICP 25.70 16.19 42.75 4.699
FOVIS + RGB-D 26.04 21.98 34.15 2.016
ICP + RGB-D 28.44 23.10 37.73 2.481
FOVIS + ICP + RGB-D 34.62 29.18 45.56 2.628

dataset where a human carried a camera at torso level down a

corridor and a small set of steps with highly varied lighting.

At some points in this dataset the RGB image is pure black

due to very low overhead lighting. As expected, both the

FOVIS and RGB-D tracking suffer from the lack of visual

features at some points, while the ICP tracking fails in areas

where there are no obvious 3D features like door frames

and radiators. The ICP+RGB-D tracking is strong and robust

throughout, showing no signs of failure anywhere along the

trajectory. Additionally ICP+RGB-D shows significantly less

signs of drift than the other tracking algorithms.

Figure 7 shows the second dataset. This dataset was again

captured by a human operating a camera at torso level. The

trajectory begins facing the corner of a building, rotating

around and moving forward across a large room until reach-

ing the bottom of a staircase. The most notable feature of

this dataset is the fact that only the floor is visible for almost

all of the trajectory, which contains only a moderate amount

of visual features. As expected, ICP fails as soon as the floor

is reached. RGB-D performs slightly better but produces a

very bad elevation estimate. FOVIS performs much better

but again produces a bad elevation estimate. The ICP+RGB-

D tracker performs best out of all four algorithms with a

very strong trajectory estimate in all dimensions, evident

by the floor pattern texture and side on elevation views

in Figure 7. A number of additional qualitative results are

presented in our video submission available on our webpage

at http://www.cs.nuim.ie/research/vision/data/icra2013.

C. Computational Performance

Tables IV and V show execution time statistics for each

algorithm on the freiburg1 room dataset. The test platform

used was a standard desktop PC running Ubuntu 12.04 with

an Intel Core i7-3960X CPU at 3.30GHz, 16GB of RAM



TABLE I

RESULTS OF ABSOLUTE TRAJECTORY ERROR FOR GROUND TRUTH DATA SHOWING MEDIAN AND MAXIMUM TRANSLATIONAL ERRORS. BEST RESULTS

MARKED IN BOLD AND SECOND BEST IN SCORE IN ITALICS.

Dataset
freiburg1 desk freiburg2 desk freiburg1 room freiburg2 large no loop Rank Score

Median Max Median Max Median Max Median Max Median Max
ICP 0.028m 0.396m 0.087m 0.456m 0.326m 0.719m 3.298m 5.639m 0.2143 0.2409
RGB-D 0.094m 0.138m 0.132m 0.372m 0.447m 0.872m 0.261m 0.466m 0.1423 0.1120
FOVIS 0.221m 0.799m 0.112m 0.217m 0.238m 0.508m 0.273m 0.897m 0.1443 0.1383
FOVIS + ICP 0.284m 1.062m 0.095m 0.463m 0.193m 0.547m 1.225m 2.097m 0.1893 0.2121
FOVIS + RGB-D 0.094m 0.137m 0.121m 0.318m 0.279m 0.551m 0.582m 0.904m 0.1283 0.0959
ICP + RGB-D 0.069m 0.234m 0.119m 0.362m 0.158m 0.421m 0.256m 0.878m 0.0904 0.0997
FOVIS + ICP + RGB-D 0.068m 0.231m 0.118m 0.346m 0.152m 0.419m 0.309m 1.032m 0.0911 0.1010

TABLE II

RESULTS OF RELATIVE FRAME-TO-FRAME ERROR FOR GROUND TRUTH DATA SHOWING MEDIAN AND MAXIMUM TRANSLATIONAL ERRORS. BEST

RESULTS MARKED IN BOLD AND SECOND BEST IN SCORE IN ITALICS.

Dataset
freiburg1 desk freiburg2 desk freiburg1 room freiburg2 large no loop Rank Score

Median Max Median Max Median Max Median Max Median Max
ICP 0.0043m 0.3039m 0.0019m 0.0681m 0.0037m 0.2178m 0.0372m 0.2912m 0.1592 0.3160
RGB-D 0.0066m 0.0296m 0.0043m 0.0162m 0.0054m 0.2261m 0.0174m 0.2669m 0.1739 0.1557
FOVIS 0.0059m 0.0419m 0.0024m 0.0122m 0.0051m 0.0763m 0.0112m 0.1056m 0.1300 0.0752
FOVIS + ICP 0.0058m 0.2915m 0.0019m 0.0368m 0.0041m 0.0762m 0.0154m 0.2043m 0.1245 0.2067
FOVIS + RGB-D 0.0065m 0.0297m 0.0043m 0.0187m 0.0053m 0.0762m 0.0164m 0.1078m 0.1703 0.0813
ICP + RGB-D 0.0056m 0.0655m 0.0025m 0.0108m 0.0045m 0.0892m 0.0087m 0.1101m 0.1194 0.0851
FOVIS + ICP + RGB-D 0.0057m 0.0652m 0.0026m 0.0107m 0.0045m 0.0763m 0.0094m 0.1056m 0.1228 0.0800

TABLE III

RESULTS OF RELATIVE FRAME-TO-FRAME ERROR FOR GROUND TRUTH DATA SHOWING MEDIAN AND MAXIMUM ROTATIONAL ERRORS. BEST

RESULTS MARKED IN BOLD AND SECOND BEST IN SCORE IN ITALICS.

Dataset
freiburg1 desk freiburg2 desk freiburg1 room freiburg2 large no loop Rank Score

Median Max Median Max Median Max Median Max Median Max
ICP 0.0103◦ 9.9997◦ 0.0039◦ 2.6484◦ 0.0066◦ 16.4409◦ 0.0079◦ 7.3459◦ 0.1828 0.3094
RGB-D 0.0077◦ 1.8041◦ 0.0037◦ 1.3458◦ 0.0055◦ 8.4932◦ 0.0051◦ 3.4535◦ 0.1425 0.1300
FOVIS 0.0071◦ 8.0873◦ 0.0032◦ 1.2952◦ 0.0053◦ 1.9648◦ 0.0043◦ 1.4295◦ 0.1278 0.1187
FOVIS + ICP 0.0092◦ 5.3246◦ 0.0039◦ 1.2601◦ 0.0066◦ 9.6321◦ 0.0051◦ 5.7109◦ 0.1581 0.1853
FOVIS + RGB-D 0.0076◦ 1.8010◦ 0.0038◦ 1.3778◦ 0.0055◦ 2.7109◦ 0.0051◦ 1.5468◦ 0.1430 0.0781
ICP + RGB-D 0.0070◦ 2.8915◦ 0.0032◦ 1.3137◦ 0.0050◦ 3.0983◦ 0.0039◦ 2.4962◦ 0.1227 0.0972
FOVIS + ICP + RGB-D 0.0070◦ 2.8658◦ 0.0031◦ 1.2775◦ 0.0051◦ 2.4799◦ 0.0040◦ 1.4224◦ 0.1230 0.0812

Fig. 4. Ranking score for each algorithm’s median error. Fig. 5. Ranking score for each algorithm’s maximum error.

and an nVidia GeForce 680GTX GPU with 2GB of memory.

The results in Table IV show that each algorithm is more

than capable of operating at the sensor frame rate of 30Hz,

with the maximum execution times well below 33ms. From

a robotics and control stand point the results in Table V are

more interesting. On average all algorithms except FOVIS

+ ICP + RGB-D are capable of functioning in the full

mapping pipeline at the sensor frame rate of 30Hz. In our

previous work we demonstrated that a capture rate of 15Hz

is sufficient to produce high quality dense meshes [1]. Using

66ms as the target execution time our pipeline is capable

of functioning at 15Hz with at least 20ms spare execution

time each frame. Such a low latency system is crucial for

real-time closed loop controlled robotic platforms.



Fig. 8. Sample models shown in our video submission available on our webpage at http://www.cs.nuim.ie/research/vision/data/icra2013. Left: dinosaur
model from the Australian Museum, Sydney. Middle: PR2 lab on the fourth floor of the MIT Stata Center. Right: hotel room.

VIII. CONCLUSIONS

This paper has presented a system for improved RGB-D

camera pose tracking that yields high quality color surface

models with low visual artifacts. Our system is based on

a novel GPU implementation of an existing RGB-D visual

odometry algorithm, which is evaluated against and in com-

bination with ICP and FOVIS. Our results demonstrate the

ability of the Kintinuous system to produce high quality

dense color maps with robust tracking in challenging en-

vironments while still executing in low latency real-time.

While the system can be made to fail in extreme conditions,

such as very high camera velocity or a lack of both visual

and depth features, in general the system has performed well

in extensive testing in a variety of indoor scenes. In ongoing

work, we are addressing: (1) updating areas of the map we

are returning to that have exited the TSDF volume; and (2)

closing large loops via SLAM pose-graph optimisation.
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