
Depth, Highness and DNR Degrees?

Philippe Moser1 and Frank Stephan2

1 Department of Computer Science, National University of Ireland
Maynooth, Co Kildare, Ireland

pmoser@cs.nuim.ie
2 Department of Mathematics, The National University of Singapore

10 Lower Kent Ridge Drive, S17, Singapore 119076, Republic of Singapore
fstephan@comp.nus.edu.sg

Abstract. A sequence is Bennett deep [5] if every recursive approximation of the
Kolmogorov complexity of its initial segments from above satisfies that the difference
between the approximation and the actual value of the Kolmogorov complexity of
the initial segments dominates every constant function. We study for different lower
bounds r of this difference between approximation and actual value of the initial seg-
ment complexity, which properties the corresponding r(n)-deep sets have. We prove
that for r(n) = εn, depth coincides with highness on the Turing degrees. For smaller
choices of r, i.e., r is any recursive order function, we show that depth implies either
highness or diagonally-non-recursiveness (DNR). In particular, for left-r.e. sets, order
depth already implies highness. As a corollary, we obtain that weakly-useful sets are
either high or DNR. We prove that not all deep sets are high by constructing a low
order-deep set.

Bennett’s depth is defined using prefix-free Kolmogorov complexity. We show that
if one replaces prefix-free by plain Kolmogorov complexity in Bennett’s depth def-
inition, one obtains a notion which no longer satisfies the slow growth law (which
stipulates that no shallow set truth-table computes a deep set); however, under this
notion, random sets are not deep (at the unbounded recursive order magnitude). We
improve Bennett’s result that recursive sets are shallow by proving all K-trivial sets
are shallow; our result is close to optimal.

For Bennett’s depth, the magnitude of compression improvement has to be achieved
almost everywhere on the set. Bennett observed that relaxing to infinitely often is
meaningless because every recursive set is infinitely often deep. We propose an al-
ternative infinitely often depth notion that doesn’t suffer this limitation (called i.o.
depth). We show that every hyperimmune degree contains a i.o. deep set of magnitude
εn, and construct a Π0

1 -class where every member is an i.o. deep set of magnitude
εn. We prove that every non-recursive, non-DNR hyperimmune-free set is i.o. deep
of constant magnitude, and that every nonrecursive many-one degree contains such
a set.

? P. Moser was on Sabbatical Leave to the National University of Singapore, supported in part by SFI Stokes Professorship
and Lectureship Programme. F. Stephan was supported in part by NUS grants R146-000-181-112 and R146-000-184-112.

1

1 Introduction

The concept of logical depth was introduced by C. Bennett [5] to differentiate useful information
(such as DNA) from the rest, with the key observation that non-useful information pertains
in both very simple structures (for example, a crystal) and completely unstructured data (for
example, a random sequence, a gas). Bennett calls data containing useful information logically
deep data, whereas both trivial structures and fully random data are called shallow.

The notion of useful information (as defined by logical depth) strongly contrasts with classical
information theory, which views random data as having high information content. I.e., according
to classical information theory, a random noise signal contains maximal information, whereas
from the logical depth point of view, such a signal contains very little useful information.

Bennett’s logical depth notion is based on Kolmogorov complexity. Intuitively a logically
deep sequence (or equivalently a set) is one for which the more time a compressor is given, the
better it can compress the sequence. For example, both on trivial and random sequences, even
when given more time, a compressor cannot achieve a better compression ratio. Hence trivial
and random sequences are not logically deep.

Several variants of logical depth have been studied in the past [1, 7, 11, 12, 15].
As shown in [15], all depth notions proposed so far can be interpreted in the compression

framework which says a sequence is deep if given (arbitrarily) more than t(n) time steps, a
compressor can compress the sequence r(n) more bits than if given at most t(n) time steps
only. By considering different time bound families for t(n) (e.g. recursive, polynomial time etc.)
and the magnitude of compression improvement r(n) - for short: the depth magnitude - (e.g.
O(1), O(log n)) one can capture all existing depth notions [1, 7, 11, 12, 15] in the compression
framework [15]. E.g. Bennett’s notion is obtained by considering all recursive time bounds t and
a constant depth magnitude, i.e., r(n) = O(1). Several authors studied variants of Bennett’s
notion, by considering different time bounds and/or different depth magnitude from Bennett’s
original notion [1, 2, 7, 11, 15].

In this paper, we study the consequences these changes of different parameters in Bennett’s
depth notion entail, by investigating the computational power of the deep sets yielded by each
of these depth variants.

− We found out that the choice of the depth magnitude has consequences on the computational
power of the corresponding deep sets. The fact that computational power implies Bennett
depth was noticed in [11], where it was shown that every high degree contains a Bennett deep
set (a set is high if, when given as an oracle, its halting problem is at least as powerful as
the halting problem relative to the halting problem: A is high iff A′ ≥T ∅′′). We show that
the converse also holds, i.e., that depth implies computational power, by proving that if the
depth magnitude is chosen to be “large” (i.e., r(n) = εn), then depth coincides with highness
(on the Turing degrees), i.e., a Turing degree is high iff it contains a deep set of magnitude
r(n) = εn.

− For smaller choices of r, for example, if r is any recursive order function, depth still retains
some computational power: we show that depth implies either highness or diagonally-non-
recursiveness, denoted DNR (a total function is DNR if its image on input e is different from

2

the output of the e-th Turing machine on input e). This implies that if we restrict ourselves
to left-r.e. sets, recursive order depth already implies highness. We also show that highness
is not necessary by constructing a low order-deep set (a set is low if it is not powerful when
given as an oracle).

− As a corollary, our results imply that weakly-useful sets introduced in [11] are either high or
DNR (set S is weakly-useful if the class of sets reducible to it within a fixed time bound s
does not have measure zero within the class of recursive sets).

− Bennett’s depth [5] is defined using prefix-free Kolmogorov complexity. Two key properties of
Bennett’s notion are the so-called slow growth law, which stipulates that no shallow set can
quickly (truth-table) compute a deep set, and the fact that neither Martin-Löf random nor
recursive sets are deep. It is natural to ask whether replacing prefix-free with plain complexity
in Bennett’s formulation yields a meaningful depth notion. We call this notion plain-depth.
We show that the random is not deep paradigm also holds in the setting of plain-depth. On
the other hand we show that the slow growth law fails for plain-depth: every many-one degree
contains a set which is not plain-deep of magnitude O(1).

− A key property of depth is that “easy” sets should not be deep. Bennett [5] showed that no
recursive set is deep. We improve this result by showing that no K-trivial set is deep (a set
is K-trivial if the complexity of its prefixes is as low as possible). We observe that our result
is close to optimal, since there exist deep ultracompressible sets [12].

− In most depth notions, the depth magnitude has to be achieved almost everywhere on the
set. Some feasible depth notions also considered an infinitely often version [7]. Bennett no-
ticed in [5] that infinitely often depth is meaningless because every recursive set is infinitely
often deep. We propose an alternative infinitely often depth notion that doesn’t suffer this
limitation (called i.o. depth). We show that little computational power is needed to compute
i.o. depth, i.e., every hyperimmune degree contains an i.o. deep set of magnitude εn (a set is
hyperimmune if it computes a function that is not bounded almost everywhere by any recur-
sive function), and construct a Π0

1 -class where every member is an i.o. deep set of magnitude
εn.
For hyperimmune-free sets we prove that every non-recursive, non-DNR hyperimmune-free
set is i.o. deep of constant magnitude, and that every nonrecursive many-one degree contains
such a set.

In summary, our results show that the choice of the magnitude for logical depth has consequences
on the computational power of the corresponding deep sets, and that “larger” depth magnitude
does not necessarily equate with “better”. We conclude with a few open questions regarding the
constant magnitude case.

2 Preliminaries

We use standard computability/algorithmic randomness theory notations see [8, 16, 18]. We use
≤+ to denote less or equal up to a constant term. We fix a recursive 1-1 pairing function
〈·〉 : N× N→ N. We use sets and their characteristic sequences interchangeably, we denote the

3

binary strings of length n by 2n, and 2ω denotes the set of all infinite binary sequences. The
join of two sets A,B is the set A ⊕ B whose characteristic sequence is A(0)B(0)A(1)B(1) . . .,
that is, (A ⊕ B)(2n) = A(n) and (A ⊕ B)(2n + 1) = B(n) for all n. An order function is an
unbounded non-decreasing function from N to N. A time bound function is a recursive order t
such that there exists a Turing machine Φ such that for every n, Φ(n)[t(n)] ↓= t(n), i.e., Φ(n)
outputs the value t(n) within t(n) steps of computation. Set A is left-r.e. iff the set of dyadic
rationals strictly below the real number 0.A (a.k.a. the left-cut of A denoted L(A)) is recursively
enumerable (r.e.), i.e., there is a recursive sequence of non-decreasing rationals whose limit is
0.A. All r.e. sets are left-r.e., but the converse fails.

We consider standard Turing reductions ≤T , truth-table reductions ≤tt (where all queries
are made in advance and the reduction is total on all oracles) and many-one reductions ≤m.
Two sets A,B are Turing equivalent (A ≡T B) if A ≤T B and B ≤T A. The Turing degree
of a set A is the set of sets Turing equivalent to A. Fix a standard enumeration of all oracle
Turing machines Φ1, Φ2, The jump A′ of a set A is the halting problem relative to A, i.e.,
A′ = {e : ΦAe (e) ↓}. The halting problem is denoted ∅′. A set A is high (that is, has high Turing
degree) if its halting problem is as powerful as the halting problem of the halting problem, i.e.,
∅′′ ≤T A′. High sets are equivalent to sets that compute dominating functions (i.e., sets A such
that there is a function f with f ≤T A such that for every computable function g and for almost
every n, f(n) ≥ g(n)), i.e., a set is high iff it computes a dominating function [18]. A set A is
low if its halting problem is not more powerful than the halting problem of a recursive set, i.e.,
A′ ≤T ∅′. Note that ∅′ is high relative to every low set.

If one weakens the dominating property of high sets to an infinitely often condition, one
obtains hyperimmune sets. A set is hyperimmune if it computes a function that dominates every
recursive function on infinitely many inputs. Otherwise the set is called hyperimmune-free.

Another characterization of computational power used in computability theory is the concept
of diagonally non-recursive function (DNR). A total function g is DNR if for every e, g(e) 6= Φe(e),
i.e., g can avoid the output of every Turing machine on at least one specified input. It is known
that every r.e. DNR set is high, actually even Turing equivalent to ∅′. [18].

If one requires the DNR function to be Boolean, one obtains the PA-complete degrees: A
degree is PA-complete iff it computes a Boolean DNR function. It is known that there exists low
PA-complete degrees [18].

Fix a universal prefix free Turing machine U , i.e., such that no halting program of U is a
prefix of another halting program. The prefix-free Kolmogorov complexity of string x, denoted
K(x), is the length of the length-lexicographically first program x∗ such that U on input x∗

outputs x. It can be shown that the value of K(x) does not depend on the choice of U up to an
additive constant. K(x, y) is the length of a shortest program that outputs the pair (x, y), and
K(x|y) is the length of a shortest program such that U outputs x when given y as an advice.
We also consider standard time bounded Kolmogorov complexity. Given time bound t (resp.
s ∈ N), Kt(x) (resp. Ks(x)) denotes the length of the shortest prefix free program p such that
U(p) outputs x within t(|x|) (resp. s) steps. Replacing U above with a plain (i.e., non prefix-

4

free) universal Turing machine yields the notion of plain Kolmogorov complexity, and is denoted
C(x). We need the following counting theorem.

Theorem 1. There exists c ∈ N such that for every r, n ∈ N, |{σ ∈ 2n : K(σ) ≤ n + K(n) −
r}| ≤ 2n−r+c.

A set A is Martin-Löf random (MLR) if none of its prefixes are compressible by more than a
constant term, i.e., ∀n K(A � n) ≥ n − c for some constant c, where A � n denotes the first n
bits of the characteristic function of A. A set A is K-trivial if its complexity is as low as possible,
i.e., ∀n K(A � n) ≤ K(n) + O(1). See [13] for more on C and K-complexity, MLR and trivial
sets.

Effective closed sets are captured by Π1
0 -classes. A Π0

1 -class P is a class of sequences such
that there is a computable relation R such that P = {S ∈ 2ω| ∀n R(S � n)}.

Definition 2. Let g(n) ≤ n be an order. A set S is g-deepK if for every recursive time bound t
and for almost all n ∈ N, Kt(S � n)−K(S � n) ≥ g(n).

A set S is O(1)-deepK (resp. order-deepK) if it is c-deepK (resp. g-deepK) for every c ∈ N (resp.
for some recursive order g). A set is said Bennett deep if it is O(1)-deepK . We denote by g-deepC
the above notions with K replaced with C. It is easy to see that for every two orders f, g such
that ∀n ∈ N f(n) ≤ g(n), every g-deepK set is also f -deepK .

Bennett’s slow growth law (SGL) states that creating depth requires time beyond a “recursive
amount”, i.e., no shallow set quickly computes a deep one.

Lemma 3 (Bennett [5]; Juedes, Lathrop and Lutz [11]). Let h be a recursive order, and
A ≤tt B be two sets. If A is h-deepK (resp. O(1)-deepK) then B is h′-deepK (resp. O(1)-deepK)
for some recursive order h′. Furthermore given indices for the truth-table reduction and for h,
one can effectively compute an index for h′.

The symmetry of information holds in the resource bounded case.

Lemma 4 (Li and Vitányi [13]). For all time bound t, there is a time bound t′ such that for
every strings x, y with |y| ≤ t(|x|), we have Ct(x, y) ≥ Ct′(x) + Ct′(y | x) − O(logCt′(x, y)).
Furthermore given an index for t one can effectively compute an index for t′.

Corollary 5. Let t be a time bound and x, a be strings. Then there exists a time bound t′ such
that for every prefix y of x we have Ct(y | a) ≥+ Ct′(x | a) − |x| + |y| − O(logCt(y | a)).
Furthermore given an index for t one can effectively compute an index for t′.

Proof. Given p a Ct-minimal program with advice a for y, |x|−|y| remaining bits, and a delimiter
after p, one can reconstruct x in time t′(·) = t(·) + O(n) steps given a. Thus Ct(y | a) + |x| −
|y|+O(logCt(y | a)) ≥+ Ct′(x | a). ut

5

3 C-Depth

Bennett’s original formulation [5] is based on K-complexity. In this section we investigate the
depth notion obtained by replacing K with C, which we call plain depth. We study the inter-
actions of plain depth with the notions of Martin-Löf random sets, many-one degrees and the
Turing degrees of deep sets.

3.1 MLR is not order-deepC

The following result is the plain complexity version of Bennett’s result that no MLR sets are
Bennett deep.

Theorem 6. For every MLR A and for every recursive order h, A is not h-deepC.

Proof. Suppose by contradiction that set A is MLR and h-deepC , for some h as above. We claim
that ∃∞n C(A � n) ≥ n − h(n)/2. To prove the claim, let N = {n ∈ N : h(n) 6= h(n − 1)}.
Then given a = h(n) with n ∈ N , the program p: “Print the smallest m such that h(m) = a.”
is a program for n of size K(a) +O(1), i.e.,

K(n) ≤ K(a) +O(1) ≤ 2 log h(n) +O(1) < h(n)/4.

Suppose q is a C-minimal program for A � n of size n−m, then appending 2 logm+K(n) bits
to q yields a prefix free program q′ for A � n of size 2 logm+K(n) + n−m.

Since A is MLR we have |q′| ≥ n − O(1), i.e., 2 logm + K(n) + n − m > n − O(1) which
implies K(n) > m − 2 logm − O(1) > 2/3m. Let n ∈ N , then 2/3m < K(n) < h(n)/4, thus
m < h(n)/2, i.e., C(A � n) > n− h(n)/2, which proves the claim.

Since for all n ∈ N we have Cn2
(A � n) ≤ n + O(1) (via a “print” program), it follows that

for every n ∈ N ,

Cn2

(A � n)− C(A � n) ≤ n+O(1)− n+ h(n)/2 ≤+ h(n)/2

which contradicts that A is h-deepC . ut

Sequences that are MLR relative to the halting problem are called 2-random. Equivalently a
sequence A is 2-random iff there is a constant c such that C(A � n) ≥ n− c for infinitely many
n [14, 17]. Since there is a constant c′ such that n + c′ is a trivial upper bound on the plain
Kolmogorov complexity of any string of length n, it is clear that no 2-random sequence can be
O(1)-deepC . Thus most MLR sequences are not O(1)-deepC .

3.2 The SGL fails for C-depth

The following result shows that the Slow Growth Law fails for plain depth.

Theorem 7. Every many-one degree contains a set which is not O(1)-deepC.

6

Proof. Given A different from N, let B = {22p : p ∈ A}. Given any k, choose m = A(0)+2A(1)+
. . . + 2kA(k) and let n be any number between 2m and 2m+1 which has C-complexity m. Now
on one hand C(B � n) ≥+ C(n) ≥ m and on the other hand, one can compute m from the
m-digit binary number representing n and one can compute A(0), A(1), . . . , A(k) from m and
using B(22p) = A(p) one can compute B � n from the binary representation of n and its length
m so that Ct(B � n) ≤ m+ c for some time bound t and some constant c independent of n and
m. This shows that A is not O(1)-deepC . Clearly A ≤m B. Furthermore, B ≤m A by mapping
all values of form 22p to p and all other values to a fixed non-element of A. ut

Note that this result shows that order-deepK does not imply order-deepC : all the sets in the
truth-table degree of any order-deepK set are all order-deepK (by the SGL), but this degree
contains a non order-deepC set by the previous result.

3.3 Depth implies highness or DNR

The following result shows that being constant deep for C implies computational power.

Theorem 8. Let A be a O(1)-deepC set. Then A is high or DNR.

Proof. We prove the contrapositive. Suppose that A is neither DNR nor high. Let f(m) be (a
coding of) A � 2m+1. Because f ≤tt A, there are infinitely many m where Φm(m) is defined and
equal to f(m). Hence there is an A-recursive increasing function g such that, for almost every
m, g(m) is the time to find an m′ ≥ m with A(0)A(1) . . . A(2m

′+1) = Φm′(m
′) and to evaluate

the expression Φm′(m
′) to verify the finding. As A is not high, there is a recursive increasing

function h with h(m) ≥ g(m) for infinitely many m. Now consider any m where h(m) ≥ g(m).
Then for the m′ found for this m, it holds that h(m′) ≥ h(m) and h(m′) is also larger than the
time to evaluate Φm′(m

′). Hence h(m) is larger than the time to evaluate Φm(m) for infinitely
many m where Φm(m) codes A � 2m+1.

For each such m, let n be a number with 2m ≤ n ≤ 2m+1 and C(n) ≥ m. Starting with
a binary description of such an n, one can compute m from n and run Φm(m) for h(m) steps
and, in the case that this terminates with a string σ of length 2m+1, output σ � n. It follows
from this algorithm that there is a resource-bounded approximation to C such that there exist
infinitely many n such that, on one hand C(A � n) ≥ log(n) while on the other hand A � n
can be described in log(n) + c bits using this resource bounded description. Hence A is not
O(1)-deepC . ut

Since there exists high non-DNR sets, the following result shows DNR is not always the case.

Theorem 9. There exists a set A such that A is (1 − ε)n-deepC (for any ε > 0) but A is not
DNR.

Proof. There is a degree which is high but not DNR [18]. Thus we can, by Theorem 10, select a
set A in this degree which is (1− ε)n-deepC for every ε < 1. ut

7

4 K-Depth

Bennett’s original depth notion is based on prefix free complexity. He made important connec-
tions between depth and truth-table degrees; In particular he proved that the O(1)-deepK sets
are closed upward under truth-table reducibility, which he called the slow growth law. In the
following section we pursue Bennett’s investigation by studying the Turing degrees of deep sets.
In the first subsection, we investigate the connections between linear depth and high Turing de-
grees. We then look at the opposite end by studying the interactions of various lowness notions
with logical depth.

4.1 Highness and depth coincide

The following result shows that at depth magnitude εn, depth and highness coincide on the
Turing degrees. The result holds for both K and C depth.

Theorem 10. For every set A the following statements are equivalent:

1. The degree of A is εn-deepC for some ε > 0.
2. The degree of A is (1− ε)n-deepC for every ε > 0.
3. A is high.

Proof. We prove (1)⇒ (3) using the contrapositive: Let ε > 0 and l ∈ N such that δ < ε/3 with
δ := 1/l. Let k be the limit inferior of the set {0, 1, . . . , l} such that there are infinitely many n
with C(A � n) ≤ n · k · δ. Now one can define, relative to A, an A-recursive function g such that
for each n there is an m with n ≤ m ≤ g(n) and Cg(n)(A � m) ≤ m · k · δ. As A is not high, there
is a recursive function h with h(n) > g(n) for infinitely many n; furthermore, h(n) ≤ h(n + 1)
for all n. It follows that there are infinitely many n with Ch(n)(A � n) ≤ n · k · δ which is also
at most n · δ away from the optimal value, hence A is not ε · n deep, which ends this direction’s
proof.

Let us show (3) ⇒ (2). Let ε > 0, A be high, and let g ≤T A be dominating. We construct
B ≡T A such that B is (1− ε)n-deepC .

By definition, if t is a time bound and i an index of t then for every m ∈ N Φi(m)[t(m)] ↓=
t(m). Since g is dominating, we have for almost every m ∈ N, t(m) = Φi(m)[g(m)] ↓.

We can thus use g to encode all time bounds that are total on all strings of length less or
equal to 2n, into a set H, where

H(〈i, j〉) = 1 iff Φi(m)[g(2j)] ↓ for all m ∈ {1, 2, . . . , 2j}.

Thus t is a (total) time bound iff for almost every j, H(〈i, j〉) = 1 (where i is an index for t).
We have H ≤T A and we choose the pairing function 〈·〉 such that H � n2 + 1 encodes the

values
{H(〈i, j〉) : i, j ≤ n}.

Let n ∈ N and suppose B � 2n is already constructed. Given A � n + 1 and H � n2 + 1, we
construct B � 2n+1. From H � n2 + 1, we can compute the set Ln = {i ≤ n : H(〈i, n〉) = 1}, i.e.,

8

a list eventually containing all time bounds that are total on strings of lengths less or equal to
2n. Let

Tn := max{Φi(m) : i ∈ Ln,m ≤ 2n}.
Find the lex first string xn of length 2n − 1 such that

CTn(xn | (B � 2n)A(n)) ≥ 2n.

Let B � [2n, 2n+1 − 1] := A(n)xn. By construction we have B ≡T A. Also, C(B � 2n+1 | H �
n2 + 1, A � n+ 1) ≤+ C(n), i.e., C(B � 2n+1) ≤ 2n2.

Let us prove B is 2
3
n-deepC ; we then extend the argument to show B is (1− ε)n-deepC . Let

t be a time bound. Let n be large enough such that t1, t2, t3 ∈ Ln−2 and t′1, t
′
2, t
′
3, t
′
4 ∈ Ln where

the ti’s are derived from t as described below.
Let j be such that 2n < j ≤ 2n+1 and j′ = j − (2n − 1), i.e., B � j ends with the first j′ − 2

bits of xn (One bit is “lost” due to the first bit used to encode A(n)).
We consider two cases, first suppose j′ < log n. Let t1 be a time bound (obtained from t)

such that Ct(B � j) ≥+ Ct1(xn−1, B � 2n−1), where neither the constant nor t1 depends on j, n.
Let t2 be derived from t1 using Lemma 4. We have

Ct1(xn−1, B � 2n−1)

≥ Ct2(B � 2n−1) + Ct2(xn−1 | B � 2n−1)−O(log 2n)

≥ Ct2(B � 2n−1) + CTn−1(xn−1 | B � 2n−1)−O(n) because t2 ∈ Ln−1
≥ Ct2(B � 2n−1) + 2n−1 −O(n) by definition of xn−1

≥ 2n−1 + 2n−2 + Ct3(B � 2n−2)−O(n) reapplying the argument above

≥ 3

4
2n −O(n) >

2

3
(2n + j′ + 1) =

2

3
j.

For the second case, suppose j′ > log n. We have

Ct(B � j) ≥ Ct′1(xn � j′, B � 2n)

≥ Ct′2(xn � j′ | B � 2n) + Ct′2(B � 2n)−O(n) By Lemma 4

≥ Ct′3(xn| B � 2n)− 2n + j′ + Ct′2(B � 2n)−O(n) by Corollary 5

≥ CTn(xn | B � 2n)− 2n + j′ + Ct′2(B � 2n)−O(n) because t′3 ∈ Ln
≥ 2n − 2n + j′ + Ct′2(B � 2n)−O(n) by definition of xn

≥ j′ + Ct′4(xn−1, B � 2n−1)−O(n) same as in the first case

≥ j′ +
3

4
2n −O(n) same as in the first case

>
2

3
j

Note that each iteration of the argument above yields a 2n−k term (k = 1, 2, 3, . . .), therefore for
any ε > 0, there is a number I of iterations, such that B can be shown (1− ε)n-deepC , for all n
large enough such that t1, t2, . . . , t3I ∈ Ln. ut

9

Corollary 11. Theorem 10 also holds for K-depth.

Proof. Because every set A is εn-deepC (for some ε > 0) iff it is ε′n-deepK for some ε′ > 0, since
for every x, C(x) ≤ K(x) ≤ C(x) +O(log |x|). ut

4.2 Depth implies highness or DNR

An analogue of Theorem 8 holds for K.

Theorem 12. Let A be a h-deepK set for some recursive order h. Then A is high or DNR.

Proof. We prove the contrapositive. Suppose that A is neither DNR nor high. Let f(m) be (a
coding of) A � h−1(m), where h−1(m) = minn{h(n) = m}. The rest of the proof follows the
proof of Theorem 8, with 2m replaced with h−1(m). ut

As a corollary, we show that in the left-r.e. case, depth always implies highness.

Corollary 13. If A is left-r.e. and h-deepK (for some recursive order h) then A is high.

Proof. Let A be as above. By definition of A being left-r.e., the left cut L(A) of A is r.e. and
L(A) ≡tt A. By Lemma 3, L(A) is h′-deepK (for some recursive order h′). By Theorem 12, L(A)
is high or DNR. Since every r.e. DNR set is high, A is high. ut

As a second corollary, we prove that every weakly-useful set is either high or DNR. A set A
is weakly-useful if there is a time-bound s such that the class of all sets truth-table reducible
to A with this time bound s is not small, i.e., does not have measure zero within the class of
recursive sets; see [11] for a precise definition. In [11], it was shown that every weakly-useful
set is O(1)-deepK (even order-deepK as observed in [2]) thus generalising the fact that ∅′ is
O(1)-deepK , since ∅′ is weakly-useful.

Theorem 14 (Antunes, Matos, Souto and Vitányi[2]; Juedes, Lathrop and Lutz [11]).
Every weakly-useful set is order-deepK.

It is shown in [11] that every high degree contains a weakly-useful set. Our results show some
type of converse to this fact.

Theorem 15. Every weakly-useful set is either high or DNR.

Proof. This follows from Theorem 12, since every weakly-useful set is order-deepK by Theorem
14. ut

10

4.3 A low deep set

We showed in Theorem 10 that every εn-deepK set is high. Also Theorem 12 shows that every
order-deepK set is either high or DNR. Thus one might wonder whether there exists any non-high
order-deepK set. We answer this question affirmatively by showing there exist low order-deepK
sets.

Theorem 16. If A has PA-complete degree, then there exists a weakly-useful set B ≡T A.

Proof. Let f ≤T A be a Boolean DNR function and let g(n) := 1 − f(n). It follows that if Φe
is Boolean and total, then g(e) = Φe(e). One can thus encode g into a set B ≤T A such that
for every e such that Φe is Boolean and total and for every x, B(〈e + 1, x〉) = Φe(x). One can
also encode A into B (for example, B(〈0, x〉) = A(x)) so that A ≡T B. Thus for every recursive
set L there exists e such that for every string x, we have L(x) = B(re(x)), where re(x) = 〈e, x〉
is computable within s(n) = n2 steps (by using a lookup table on small inputs). It follows that
every recursive set is truth-table reducible to B within time s(n) = n2. Because the class of
recursive sets does not have measure zero within the class of recursive sets [11], it follows that
B is weakly-useful. ut

Corollary 17. If A has PA-complete degree, then there exists an order-deepK set B ≡T A.
Furthermore, there is a Π0

1 -class only consisting of order-deepK sets.

Proof. This follows from Theorems 14 and 16. ut

Corollary 18. There exists a low order-deepK set.

Proof. There exists low sets A of PA-complete degree [18]. By Theorem 17 there exists an
order-deepK set B ≡T A . Since A is low it follows that B is low. ut

Note that this result also implies both the existence of order-deepK sets which are low for Ω, and
the existence of order-deepK sets which are nonrecursive and hyperimmune-free, both existence
proofs are based on the corresponding basis theorems [8, 10]. A set A is said low for Ω iff Chaitin’s
Ω is Martin-Löf random relative to A. The reason one uses PA-complete sets instead of merely
Martin-Löf random sets (which also satisfy all basis theorems), is that Martin-Löf random sets
are not weakly-useful; indeed, it is known that they are not even O(1)-deepK . This stands in
contrast to the following result.

Corollary 19. There are two Martin-Löf random sets A and B such that A⊕B is order-deepK.

Proof. Barmpalias, Lewis and Ng [4] showed that every PA-complete degree is the join of two
Martin-Löf random degrees; hence there are Martin-Löf random sets A,B such that A ⊕ B is
a hyperimmune-free PA-complete set. Thus, by Theorem 16 there is a weakly-useful set Turing
reducible to A ⊕ B which, due to the hyperimmune-freeness, is indeed truth-table reducible to
A⊕B. It follows that A⊕B is itself weakly-useful and therefore order-deepK by Corollary 17. ut

11

4.4 No K-trivial is O(1)-deepK

A key property of depth is that “easy” sets should not be deep. Bennett [5] showed that no
recursive set is deep. Here we improve this result by showing that no K-trivial set is deep. As
we will see this result is close to optimal.

Theorem 20. No K-trivial set is O(1)-deepK.

Proof. Let A be K-trivial and c ∈ N such that ∀n ∈ N, K(A � n) ≤ K(n) + c. Let d be such
that for every string x, K(x) ≥ K(|x|) − d and let g(n) = n2. There exists a constant d′ such
that the set M = {n ∈ N : Kg(n) ≤ K(n) + d′} is infinite (see [8] p. 139). Note that M is
co-r.e., i.e., there exists uniformly recursive approximations M1 ⊇ M2 ⊇ . . . ⊇ M of M . Let
c′ = lim infn∈M |{σ ∈ 2n : K(σ) ≤ Kg(n) + c}|. By Theorem 1, c′ <∞. Consider the function

f(n) = min
s
{n 6∈Ms or there exists c′ σ ∈ 2n with Ks(σ) ≤ Kg(n) + c}.

By modifying f on the finitely many values before the liminf is reached, f is recursive. Wlog
f is bounded by a time bound which we also denote f . We have ∃∞n ∈ M such that Kf (A �
n) ≤ K(n) + c+ d′ thus for each of these infinitely many n’s we have Kf (A � n)−K(A � n) ≤
K(n) + c+ d′ −K(n) + d = c+ d+ d′, i.e., A is not O(1)-deepK . ut
Call a set A ultracompressible if for every recursive order g and all n, K(A � n) ≤+ K(n)+g(n).
The following theorem shows that our result is close to optimal.

Theorem 21 (Lathrop and Lutz [12]). There is an ultracompressible set A which is O(1)-deepK.

Theorem 22 (Herbert [9]). There is a set A which is not K-trivial but which satisfies that
for every ∆0

2 order g and all n, K(A � n) ≤+ K(n) + g(n).

It would be interesting to know whether such sets as found by Herbert can be O(1)-deepK . The
result of Herbert is optimal, Csima and Montalbán [6] showed that such sets do not exist when
using ∆0

4 orders and Baartse and Barmpalias [3] improved this non-existence to the level ∆0
3.

Theorem 23 (Baartse and Barmpalias [3]). There is a ∆0
3 order g such that a set A is

K-trivial iff K(A � n) ≤+ K(n) + g(n) for all n.

That is, the difference between a K-trivial and an ultracompressible set is less than the difference
of two orders of different complexity. The existence of an ultracompressible O(1)-deepK set was
proved in [12]. This shows that Theorem 20 is close to optimal.

5 Infinitely Often Depth and Conditional Depth

Bennett observed in [5] that being infinitely often Bennett deep is meaningless, because all
recursive sets are infinitely often deep. A possibility for a more meaningful notion of infinitely
often depth, is to consider a depth notion where the length of the input is given as an advice.
We call this notion i.o. depth.

12

Definition 24. A set A is i.o. O(1)-deepK if for every c ∈ N and for every time bound t ∃∞n
such that Kt(A � n | n)−K(A � n | n) ≥ c.

If we replace K with C in the above definition, we call the corresponding notion i.o. O(1)-deepC .
The fact that all recursive sets are infinitely often deep in Bennett’s appraoch does no longer
hold for i.o. depth as defined above.

Lemma 25. Let A be recursive. Then A is neither i.o. O(1)-deepC nor i.o. O(1)-deepK.

Proof. Let A be recursive and t be a time bound. Wlog A is recursive in time t, i.e., for every
n ∈ N we have Ct(A � n | n) ≤ c for some constant c, thus ∀n Ct(A � n | n)−C(A � n | n) < c.
The K case is similar. ut
The following shows that very little computational power is needed to compute an i.o. deep set.

Theorem 26. 1. There is a Π0
1 -class such that every member is i.o. εn-deepC for all ε < 1. In

particular there is such a set of hyperimmune-free degree. Furthermore, every hyperimmune
Turing degree contains such a set.

2. Every nonrecursive many-one degree contains an i.o. O(1)-deepC set.
3. If A is not recursive, not DNR and hyperimmune-free, then A is i.o. O(1)-deepC.

Proof. This result is obtained by splitting the natural numbers recursively into intervals In =
{an, . . . , bn} such that bn = (2 + an)2. Now one defines the Π0

1 -class such that for each n =
〈e, k〉 where t = Φe is defined up to bn, a string τ ∈ {0, 1}bn−an+1 is selected such that for
all σ ∈ {0, 1}an , Ct(στ) ≥ bn − 2an − 2 and then it is fixed that all members A of the Π0

1 -
class have to satisfy A(x) = τ(x − an) for all x ∈ In. Since there are 2bn−an+1 strings τ and
for each program of size below bn − 2an − 2 can witness that only 2an many τ are violating
Ct(στ) ≥ |τ | − |σ| for some σ ∈ {0, 1}an , there will be less than 2bn−an+1 − 2bn−an many τ
that get disqualified and so the search finds such a τ whenever Φe is defined up to bn. Hence,
for every total t = Φe, there are infinitely many intervals In with n of the form 〈e, k〉 such
that on these In, Ct(A(0)A(1) . . . A(bn) |n) ≥ Ct(A(0)A(1) . . . A(bn)) − log(n) ≥ bn − 3an and
C(A(0)A(1) . . . A(bn)|n) ≤ an + c for a constant c, as the program only needs to know how A
behaves below an and can fill in the values of τ on In. So the complexity improves after time t(bn)
from bn − 3an to an and, to absorb constants, one can conservatively estimate the improvement
by bn − 5an. By the choice of an, bn, the ratio (bn − 5an)/bn tends to 1 and therefore every A in
the Π0

1 -class is εn-deepC for every ε < 1. Note that there are hyperimmune-free sets inside this
Π0

1 -class, as it has only nonrecursive members.
Furthermore, one can see that the proof also can be adjusted to constructing a single set in a

hyperimmune Turing degree rather than constructing a full Π0
1 -class. In that case one takes some

function f in this degree which is not dominated by any recursive function and then one permits
for each n = 〈e, k〉 the time Φe(bn) in the case that Φe(bn) < f(k) and chooses τ accordingly and
one takes τ = 0bn−an+1 in the case that Φe does not converge on all values below bn within time
f(k) otherwise. This construction is recursive in the given degree and a slight modification of
this construction would permit to code the degree into the set A.

13

For the second item, consider a set A ⊆ {4n : n ∈ N}. Every many-one degree contains such a
set. For each binary string σ, let

Sσ = {τ ∈ {0, 1}∗ : 4|σ|−1 < |τ | ≤ 4|σ| and τ(4n) = σ(n) for all n < |σ| and τ(n) = 0 for
all n < |τ | which are not a power of 4}.

In other word, for every A ⊆ {4n : n ∈ N}, SA(1)A(4)A(16)...A(4n) contains those τ which are a
prefix of A and for which τ(4n) is defined but not τ(4n+1). For each e, k, n where Φe is a total
function t, we now try to find inductively for m = 4n + 1, 4n + 2, . . . , 4n+1 strings σm ∈ {0, 1}n+1

such that whenever σm is found then it is different from all those σm′ which have been found
for some m′ < m and the unique τ ∈ Sσm ∩ {0, 1}m satisfies Ct(τ |m) ≥ e + 3k. Note that due
to the resource-bound on Ct one can for each m′ < m check whether σm′ exists and take this
information into account when trying to find σm. Therefore, for those m where σm exists, the
τ ∈ Sσm ∩ {0, 1}m can be computed from m, e and k and hence C(τ |m) ≤ e + k + c for some
constant c independent of e, k, n,m.

Now assume that A is not infinitely often O(1)-deepC . Then there is a total function t = Φe
and a k > c such that C(τ | |τ |) ≥ Ct(τ | |τ |)−k for all prefixes τ of A. It follows that in particular
never a σm with Sσm consisting of prefixes of A is selected in the above algorithm using e, k.
This then implies that for almost all n and the majority of the m in the interval from 4n to 4n+1

(which are those for which σm does not get defined) it holds that Ct(τ |m) ≤ e + 3k for the
unique τ ∈ SA(1)A(4)A(16)...A(4n) ∩ {0, 1}m. There are at most 2e+3k+2 many strings σ ∈ {0, 1}n+1

such that at least half of the members τ of Sσ satisfy that C(τ | |τ |) ≤ e + 3k and there is a
constant c′ such that for almost all n the corresponding σ satisfy C(σ|n) ≤ e+ 3k+ c′. It follows
that C(τ | |τ |) ≤ e+3k+c′′ for some constant c′′ and almost all n and all τ ∈ SA(1)A(4)A(16)...A(4n);
in other words, C(τ | |τ |) ≤ e+3k+c′′ for some constant c′′ and almost all prefixes τ of A. Hence
A is recursive [13, Exercise 2.3.4 on page 131].

For the third item, let A be as above, and let t be a time bound. Let h̃(n) = minm>n{Ct(A �
m | m) > n}. Since h̃ ≤T A and A is hyperimmune-free, there exists a recursive h such that
∀n ∈ N h(n) > h̃(n). Wlog we can choose h such that ∀n ∈ N h(n + 1) > h̃(h(n)). Let g ≤T A
be defined by g(n) = A � h(n+ 1). Because A is not DNR, we have ∃∞n Φn(n) = A � h(n+ 1).
Thus, ∀n∃m h(n) ≤ m < h(n+ 1) and Ct(A � m | m) ≥ h(n).

Let e be an index of a program such that Φe(m) = Φn(n) � m with n satisfying h(n) ≤ m <
h(n+1). Thus ∃∞n∃m h(n) ≤ m < h(n+1) and Ct(A � m |m) ≥ h(n) and C(A � m |m) ≤ O(1),
i.e., A is i.o. O(1)-deepC . ut

6 Conclusion

We conclude that the choice of the depth magnitude has consequences on the computational
power of the corresponding deep sets, and that “larger” magnitudes is not necessarily “better”.
Therefore choosing the appropriate depth magnitude for one’s purpose is delicate, as the corre-
sponding depth notions might be very different. When the depth magnitude is large, we proved

14

that depth and highness coincide. We showed that this is not the case for smaller depth magni-
tude by constructing a low order deep set, but the set is not r.e. We therefore ask whether there
is a low O(1)-deepK r.e. set.

From our results, for magnitudes of order O(1), K-depth behaves better than C-depth. To
further strengthen that observation we ask whether there is an MLR O(1)-deepC set.

References

1. Luis Filipe Coelho Antunes, Lance Fortnow, Dieter van Melkebeek and N. Variyam Vinod-
chandran. Computational depth: Concept and applications. Theoretical Computer Science,
354:391–404, 2006.

2. Luis Filipe Coelho Antunes, Armando Matos, Andre Souto and Paul M. B. Vitányi. Depth
as randomness deficiency. Theory of Computing Systems, 45(4):724–739, 2009.

3. Martijn Baartse and George Barmpalias. On the Gap Between Trivial and Nontrivial Initial
Segment Prefix-Free Complexity. Theory of Computing Systems, 52(1):28–47, 2013.

4. George Barmpalias, Andy E. M. Lewis and Keng Meng Ng. The importance of Π0
1 -classes

in effective randomness. The Journal of Symbolic Logic, 75(1):387–400, 2010.
5. Charles H. Bennett. Logical depth and physical complexity. The Universal Turing Machine,

A Half-Century Survey, pages 227–257, 1988.
6. B.F. Csima and A. Montalbán. A minimal pair of K-degrees. Proc. of the American Math-

ematical society, 134:1499–1502, 2006.
7. David Doty and Philippe Moser. Feasible depth. In S. Barry Cooper, Benedikt Löwe, and

Andrea Sorbi, editors, Computability in Europe, volume 4497 of Lecture Notes in Computer
Science, pages 228–237. Springer, 2007.

8. Rodney G. Downey and Denis R. Hirschfeldt. Algorithmic Randomness and Complexity.
Springer, 2010.

9. Ian-Cadoc Herbert. Weak Lowness Notions for Kolmogorov Complexity. University of Cali-
fornia at Berkeley, 2013.

10. Carl G. Jockusch and Robert I. Soare. Π0
1 classes and degrees of theories. Transactions of

the American Mathematical Society, 173:33–56, 1972.
11. David W. Juedes, James I. Lathrop and Jack H. Lutz. Computational depth and reducibility.

Theoretical Computer Science, 132:37–70, 1994.
12. James I. Lathrop and Jack H. Lutz. Recursive computational depth. Information and

Computation, 153(1):139–172, 1999.
13. Ming Li and Paul M. B. Vityányi. An Introduction to Kolmogorov Complexity and its

Applications. Springer Verlag, New York, 2008.
14. Joseph S. Miller. Every 2-random real is Kolmogorov random. The Journal of Symbolic

Logic, 69(3):907–913, 2004.
15. Philippe Moser. On the polynomial depth of various sets of random strings. Theoretical

Computer Science, 477:96–108, 2013.
16. André Nies. Computability and Randomness. Oxford University Press, 2009.

15

17. André Nies, Sebastiaan A. Terwijn and Frank Stephan. Randomness, relativization and
Turing degree. The Journal of Symbolic Logic, 70(2):515–535, 2005.

18. Piergiorgio Odifreddi. Classical Recursion Theory: The Theory of Functions and Sets of
Natural Numbers, volume 1. Elsevier, 1989.

16

