
On the polynomial depth of various sets of random strings

Philippe Moser ∗

Abstract

We introduce a general framework for defining the depth of an infinite binary sequence
with respect to a class of observers. We show that our general framework captures all
depth notions introduced in computability/complexity theory so far. We review most such
notions, show how they are particular cases of our general depth framework, and review
some classical results about the different depth notions. We use our framework to define
new notions of polynomial depth (called monotone poly depth), based on a polynomial
version of monotone Kolmogorov complexity. We show that monotone poly depth satisfies
all desirable properties of depth notions. We give two natural examples of deep sets, by
showing that both the set of Levin random strings and the set of Kolmogorov random
strings are monotone poly deep.

1 Introduction

From the observation that nature contains both very simple and highly complex structures,
Bennett introduced the profound concept of logical depth [1], as a formal definition of useful
information, as opposed to (random) information in the traditional algorithmic information
theory sense. Bennett’s original idea is to categorize structures in three groups: trivial,
random and deep; where trivial structures being completely predictable contain no useful
information; random ones, being completely unpredictable, do not contain any useful infor-
mation either; both (trivial and random) being therefore shallow objects. On the other hand,
structures that are neither random nor trivial i.e., that contain intricate patterns that are
neither fully predictable nor completely unpredictable, contain useful information; they are
called deep structures. Although random sequences contain a lot of information (in the sense
of algorithmic information theory), this information is not of much value, and such sequences
are shallow.

Bennett observed that deep objects, because they contain complex well-hidden patterns,
cannot be created by easy processes. This observation was formalized in the so-called slow
growth law, which states that if a simple process (a truth table reduction) transforms some
(source) sequence into an (image) sequence that is deep, then the source sequence it started
from must be deep i.e., no easy process can transform a shallow sequence into a deep one.

Bennett’s logical depth is based on Kolmogorov complexity. Intuitively, a binary sequence
is deep, if the more time an algorithm is given, the better it can compress the sequence.
Although Bennett’s formulation is theoretically very elegant, it is uncomputable, due to the
uncomputability of Kolmogorov complexity.

∗Department of Computer Science, National University of Ireland Maynooth, Maynooth, Co. Kildare,
Ireland.

1

To overcome the uncomputability of logical depth, several notions of feasible depth have
been proposed so far. In [2] Juedes, Lathrop and Lutz proposed a computable version of
depth, called recursive computational depth. Although recursive depth gets rid of the un-
computability in Bennett’s formulation, it is still far from feasible and cannot be used in
complexity theory, as most languages of interest in complexity theory –e.g. any NP-complete
language– being computable, are neither recursive-deep nor Bennett deep. This strongly mo-
tivates the study of polynomial depth notions in complexity theory, and several such notions
have been studied so far. Antunes, Fortnow, van Melkebeek and Vinodchandran introduced a
depth notion based on polynomial distinguishing complexity in [3]. Doty and Moser studied
a depth notion based on polynomial time predictors [4]. In an attempt to reduce the com-
plexity even further, Doty and Moser [4] introduced a finite state versions of depth (based on
finite-state compressors).

As seen by the different notions of depth that were studied, depth is not an absolute but
a relative notion i.e., a deep sequence is always deep with respect to some class of observers.
As an example a book of Chinese poetry will look like a sequence of almost randomly ordered
symbols to an observer that does not read Chinese i.e., not deep from his point of view.
On the other hand, for Chinese readers, the more they read and study the book, the more
information they will be able to extract from it, therefore considering it deep from their point
of view.

In this paper we introduce a general framework for defining the depth of an infinite binary
sequence with respect to classes of competing observers G and G′. Informally we say sequence
S is deep relative to G,G′ (or (G,G′)-deep) if for any observer A from G there is an observer
A′ from G′ such that A′ can extract more information from S than A can. More formally
suppose we have two classes G,G′ of algorithms that compute on binary strings, together with
a function perf that measures (by a real between 0 and 1) how much better an algorithm A
in G performs on input string x than algorithm A′ ∈ G′. For example, if G,G′ are classes
of compression algorithms, then given compression algorithms A,A′ and string x, a possible

performance measure of A vs A′ on x is the difference of compression ratios |A(x)|−|A
′(x)|

|x| .

As another example, suppose G,G′ are classes of predictors trying to predict the bits of the
characteristic sequence of an NP-complete language like SAT. A possible performance measure
is the difference of the number of correct predictions divided by the total number of bits. The
classes G,G′ together with the performance function yields a natural notion of depth relative
to G,G′ i.e., a definition of useful information in the eye of observers drawn from classes
G,G′.

We show that our general framework actually captures all depth notions introduced in
computability/complexity theory so far [1, 2, 3, 4], which can all be seen as particular instances
of our general depth framework. We review most of these previous notions and show how
they fit into our general depth framework. We also mention some results that were obtained
for these depth notions, and some of their limitations.

Next we use our general depth framework to define new notions of polynomial depth
(called monotone-polynomial depth), with the goal of overcoming limitations of previous
feasible depth notions, namely the fact that distinguishing depth [3] could collapse (i.e. all
sets are shallow), although this is unlikely as it would imply factoring to be in P (see [3] for
more details), and that the polynomial depth of [4] is based on oblivious polynomial time
predictors that cannot read their input (predictors must predict the nth bit of a sequence
without access to the history, i.e. bits 1, 2, . . . , n− 1).

2

Our goal is to obtains notions that satisfy the slow growth law, and for which deep objects
can be proved to exist unconditionally. The classes of observers (the classes G and G′) we
consider are based on the notion of monotone polynomial time compression [5], which is a
polynomial version of monotone Kolmogorov complexity.

We show that our notions of monotone polynomial depth have all the desired properties of
a depth notion, i.e. both trivial and random sequences are shallow, they satisfy a slow-growth
law, and deep objects can be shown to exist unconditionally.

Although logical depth is a very profound concept, there have not been many examples of
natural deep sequences in the literature so far. Bennett [1] showed that the halting language
is deep. Juedes, Lathrop and Lutz [6] generalized Bennett’s result by showing that every
weakly useful sequence (i.e. a sequence such that the set of languages that can be reduced to
it has measure non-zero) is deep, a result that was shown to hold in the context of polynomial
depth [4].

In this paper, we give two natural examples of deep languages, in the context of monotone
poly depth, namely the set of Levin random strings and the set of Kolmogorov random strings.
Levin randomness is a standard randomness notion due to Levin [7]; it is a computable
approximation of Kolmogorov complexity, that enjoys many useful properties, among others
it provides a search strategy for finding solutions of NP problems, that is optimal up to a
multiplicative constant (see [8]).

We show that in the context of polynomial monotone depth, having a test that detects
randomness (i.e the set of Levin random strings), is deeper than having access to randomness
(a random sequence), by proving the the set of Levin random string is monotone poly deep.

Several authors [9, 10, 11, 12] showed the computational power of the set of Kolmogorov
random strings by reducing (using several types of reductions) a broad range of complexity
classes to it. Our finding that the set of Kolmogorov random strings is monotone-poly deep
is consistent with the results by these authors [9, 10, 11, 12] that show this set contains a lot
of useful information.

Earlier drafts of this work appeared in [13, 14].

2 Preliminaries

We write N for the set of all nonnegative integers. Let us fix some notations for strings and
languages. A string is an element of {0, 1}n for some integer n. We denote by s0, s1, . . . , sn the
standard enumeration of strings in lexicographic order. For a string x, its length is denoted
by |x|. The empty string is denoted by λ. We say string y is a prefix of string x, denoted
y v x (resp. y < x), if there exists a string a (resp. a non null string) such that x = ya. We
write x ∼ y if x is a prefix of y or vice-versa. For a string x, dbl(x) is x with every bit doubled.
For a set of strings S, let first(S) denote the first (with respect to the lexicographical order)
string of S. A set of strings is prefix free if no string in the set is the prefix of another string
in the set.

A sequence is an infinite binary string, i.e. an element of {0, 1}∞. For S ∈ {0, 1}∞ and
i, j ∈ N, we write S[i..j] for the string consisting of the ith through jth bits of S, with the
convention that S[i..j] = λ if i > j, and S[1] is the leftmost bit of S. We write S[i] for S[i..i]
(the ith bit of S). For a sequence S divided into blocks S = S1S2S3 . . ., where Si are strings,
S � Si (resp S � Si) denotes S1 . . . Si (resp. S1 . . . Si−1). For w ∈ {0, 1}∗ and S ∈ {0, 1}∞, we
write w v S if w is a prefix of S, i.e., if w = S[1..|w|]. Unless otherwise specified, logarithms

3

are taken in base 2.

A language is a set of strings. The characteristic sequence of a language L is the sequence
χL ∈ {0, 1}∞, whose nth bit is one iff sn ∈ L. We will often use the notation L for χL.

TM stands for Turing machine. A monotone TM is a TM such that for any strings x, y,
M(xy) w M(x). A TM is called prefix free if the set of admissible programs is a prefix free
set.

Fix a prefix-free universal Turing machine U . The Kolmogorov complexity of x is the
length of the shortest program that outputs x i.e.,

K(x) = min
p
{|p| : U(p) = x}.

The definition of K does not depend on the choice of the universal TM U , up to an additive
constant (see [8]).

E denotes the standard linear exponential time complexity class E = ∪c∈NDTIME(2cn). A
time bound is a monotone time constructible function t : N → N, i.e. there is a TM that
on input any string of length n halts in exactly t(n) steps. We will consider the following
standard time bound families: Poly = ∪k∈N{t(n) = knk}, Lin = ∪k∈N{t(n) = kn}, Polylog =
∪k∈N{t(n) = k logk n} and Comp = {t| t is a time bound}.

3 A general framework for depth

Let us give the formal definition of our depth framework, based on the idea of competing
observers classes G,G′ trying to maximize the amount of information extracted from a string
x. More formally let G,G′ be two classes of algorithms computing on binary strings. Let
perf : G × G′ × {0, 1}∗ → [0, 1] be a function that measures how much better algorithm
A in G′ performs on input string x compared to A ∈ G, where 1 (resp. 0) means optimal
outperformance (resp. same performance). Usually G′ is at least as powerful (or equal to) as
G, i.e. G ⊆ G′.

Let M be a family of computable functions, where for every m ∈M and every integer n,
1 ≤ m(n) ≤ n; for example M = {c log n|c ∈ N}. M will measure by how much an algorithm
A′ performs better than algorithm A. We thus have all the tools to define depth with respect
to (G,G′,M).

Definition 3.1 A sequence S ∈ {0, 1}∞ is a.e. (resp. i.o.) (G,G′,M)-deep if for every
bound m ∈ M and every A ∈ G, there exists A′ ∈ G′ such that for almost every (resp.
infinitely many) n ∈ N

perf(A,A′, S[1..n]) ≥ m(n)

n
.

The difference between a.e. and i.o. depth is similar to the difference between (resource-
bounded)-packing dimension and (resource-bounded)-dimension (see e.g. [15]), where a com-
pressor is required to compress infinitely many prefixes, or almost all prefixes. Bennett’s
depth [1] is an a.e. notion. Sometimes when the observers are very weak e.g. finite-state, i.o.
is the best achievable (e.g. see [4]).

Other variations that have been considered are obtained by replacing “for all bounds
m ∈ M” by “there exists bound m ∈ M”. Both variations have been used by researchers to
define depth notions.

4

Although defining a depth notion (often) requires arbitrary choices, e.g. a.e. vs i.o., “for
all bounds” vs “there exists a bound”, choice of M , etc.; they are all variations of a same
common theme, which is captured by our general depth framework, and that in essence says
that a sequence is deep with respect to (G,G′,M) if given any algorithm in G there is an
algorithm in G′ that performs better (by a factor measured by M) on the sequence.

For readability purposes, we let our depth framework be as general as possible, not putting
any restrictions on the perf function for example. A malicious opponent can very easily define
a flawed depth notion (e.g. where all sets are deep) that still satisfies our framework. The
goal of our framework is not to defeat malicious opponents, but to help non-specialists to
quickly get a broad intuition of the notion of depth, without having to look at all existing
variations in details. The framework can help researchers define their own notion of depth,
but it doesn’t spare them the (hard) work of proving that their depth notion is meaningful and
sound. We will see such an example in Section 5, where we use our framework to construct
a new polynomial depth notion.

This general definition actually captures all depth notions introduced in computabil-
ity/complexity theory so far [1, 2, 3, 4], as we shall see in the next section, where we will
review some of these notions together with some of the results that were obtained for each of
them.

4 A review of some computational depth notion

4.1 Bennett’s logical depth

The first notion of depth, Bennett’s logical depth [1], is based on Kolmogorov complexity.
We rephrase it in our general depth framework. We need the following broad definition of
compressor.

Definition 4.1 A compressor is a one-to-one function C : {0, 1}∗ → {0, 1}∗.

A compressor is computable if there is a TM T such that for any string x, T (x) = C(x). For
the rest of this paper fix a prefix-free universal TM U . U(p, a) denotes machine U run on
program p and advice string a, U(p) denotes U(p, λ). The universal compressor is given by

CU (x) = first{p| U(p) = x}

i.e. it is the lexicographically first (hence shortest) program that makes U output x. It is
well known that the choice of U affects the size of the output of CU only up to an additive
constant. We therefore omit U in the notation and write CK (such that |CK(x)| = K(x)).
Bennett’s logical depth is obtained by letting (note: this in not Bennett’s original formulation,
but an equivalent one, as shown in [6])

G = {C| C is a computable compressor}
G′ = {CK}

perf(C,CK , x) =
|C(x)| − |CK(x)|

|x|
M = N

i.e. S is Bennett-deep if for every C ∈ G, every m ∈ N and almost every n ∈ N

|C(S[0..n])| − |CK(S[0..n])| ≥ m.

5

On inputs where perf() is greater than 1 (resp less than 0), we set its value to 1 (resp 0),
e.g. taking min(1, perf()) (resp a max with 0). For simplicity of notations we don’t write the
min (resp max) and will do this for the rest of this paper.

Among others, Bennett showed in [1] that both Martin-Löf random and computable se-
quences are shallow (i.e. not deep), logical depth satisfies a slow growth law for truth-table
reductions, and that the Halting language is deep. This was later generalized by Juedes,
Lathrop and Lutz [6] to the class of weakly useful languages –A language is weakly useful if
the set of languages reducible to it is not small (in a computable Lebesgue measure sense; see
[6] for more details)– where it was shown that every weakly useful language is Bennett-deep.

The main limitation of Bennett’s notion is that the universal compressor CK is not com-
putable. A way to overcome this was proposed by Lathrop and Lutz in [2], by replacing G′

with G, in Bennett’s formulation, which we describe next.

4.2 Recursive computational depth

Recursive computational depth was proposed in [2] as a way to overcome the uncomputability
in Bennett’s definition. It is obtained by letting

G = G′ = {C| C is a computable compressor}

perf(C,C ′, x) =
|C(x)| − |C ′(x)|

|x|
M = N

i.e. S is recursive deep if for every C ∈ G, and every m ∈ N there exists C ′ ∈ G such that for
almost every n ∈ N

|C(S[0..n])| − |C ′(S[0..n])| ≥ m.
Among others it was shown in [2] that Bennett’s depth and recursive depth are two sep-

arate notions, that recursive depth also satisfies a slow growth law for truth-table reductions
and that both Martin-Löf random and computable sequences are not recursive deep.

Although recursive depth gets rid of the uncomputable universal compressor CK , it is still
far from feasible and cannot be used in complexity theory, as most languages of interest in
complexity theory –e.g. any NP-complete language– being computable, are neither recursive-
deep nor Bennett deep. This motivates a notion of polynomial depth in the context of
complexity theory. We review the first such notion in the following section.

4.3 Distinguishers based polynomial time depth

Antunes, Fortnow, van Melkebeek and Vinodchandran introduced three depth notions in [3].
The first two – called basic computational depth – are only “half polynomial” in the sense
that G′ contains the universal compressor CK , and can be expressed in our framework. The
third notion was obtained via the notion of distinguishers. Here is a definition.

Definition 4.2 A distinguisher D for a string x is a function D : {0, 1}∗ → {0, 1}, such that
for any string z,

D(z) =

{
1 if z = x

0 otherwise.

A ni-time (i ∈ N) distinguisher for x is a distinguisher D for x that is computable in time
O(|x|i).

6

The third depth notion in [3] is obtained by letting

G =
{
Ci| i ∈ N, Ci(x) = first{p| U(p) = x in at most i|x|i steps}

}
G′ =

{
Di| i ∈ N, Di(x) = first{p| U(p,) is a ni-distinguisher for x}

}
perf(A,A′, x) =

|A(x)| − |A′(x)|
|x|

M = O(log n).

The relationship between G and G′ i.e. between distinguishing a string and producing a string
in polynomial time is not known, (beyond the fact that producing implies distinguishing). It
is possible both G and G′ are very close, which would make the notion of distinguishing depth
trivial, but this is unlikely as it would imply factoring to be in P (see [3] for more details).

Connections were demonstrated between depth and average-case complexity, nonuniform
circuit complexity, and efficient search for satisfying assignments to Boolean formulas in [3],
and the third depth notion was shown to satisfy a slow growth law for restricted polynomial
time reductions.

4.4 Predictors based polynomial depth

The depth notion from Doty and Moser [4] is based on polynomial time oblivious predictors,
that try to predict the next bit of the characteristic sequence of a language without having
access to the history of previously seen bits; here is a definition

Definition 4.3 An oblivious predictor is a function p : {0, 1}∗ × {0, 1} → [0, 1] such that,
for all x ∈ {0, 1}∗, p(x, 0) + p(x, 1) = 1.

Intuitively, when trying to predict a language L, p(x, 1) is the probability with which the
predictor predicts that x ∈ L. To measure how well a predictor p predicts L, we consider its
associated martingale (i.e. a function d : {0, 1}∗ → R+ such that d(λ) = 1 and d(w0)+d(w1) =
2d(w) for any string w) dp : {0, 1}∗ → [0,∞) given by

dp(L � n) = 2n
∏
y≤sn

P (y, L(y)).

This definition can be motivated by the following betting game in which gambler dp puts
bets on the successive membership bits of the hidden language L. The game proceeds in
infinitely many rounds where at the end of round n, it is revealed to the gambler whether
sn ∈ L or not. The game starts with capital 1. Then, in round n, dp bets a certain fraction
εwp(w) of his current capital dp(w), that the nth word sn ∈ L, and bets the remaining capital
(1 − εw)dp(w) on the complementary event sn 6∈ L. The game is fair, i.e. the amount put
on the correct event is doubled, the one put on the wrong guess is lost. The value of dp(w),
where w = χL[0..n] equals the capital of dp after round n on language L.

An oblivious polynomial predictor p is an oblivious predictor such that p(sn, b) is com-
putable in time polynomial in n. Polynomial oblivious predictors were used in [4] to define a
polynomial depth notion by letting

G = G′ = {p| p is an oblivious polynomial time predictor}

perf(p, p′, x) =
log dp′(x)− log dp(x)

|x|
M = {log logn+O(1)}

7

It was shown in [4] that this depth notion satisfies a slow growth law for restricted poly-
nomial time reductions, that similarly to Bennett’s notion, polynomial time weakly useful
languages (a polynomial version of weakly useful languages) are polynomial deep, and that
the corresponding polynomial time version of random and computable sets are not polynomial
deep.

Polynomial oblivious predictors are somehow restricted because they cannot access the
history of previously seen bits. We will overcome this limitation in Section 5 by introducing
a notion of depth based on monotone polynomial time compressors.

Secondly, although the predictors are polynomial time computable, there is no control over
the polynomial exponent. In an attempt to reduce the computational power of the algorithms
even further, a finite state version of depth was introduced by Doty and Moser in [4], which
we review next.

4.5 Finite-state Depth

Finite-state depth [4] is based on the standard model of finite-state transducer. A finite-state
transducer (FST) is a 4-tuple T = (Q, δ, ν, q0), where

• Q is a nonempty, finite set of states,

• δ : Q× {0, 1} → Q is the transition function,

• ν : Q× {0, 1} → {0, 1}∗ is the output function,

• q0 ∈ Q is the initial state.

As usual the canonical extension of the transition function δ̂ : {0, 1}∗ → Q is defined for all
x ∈ {0, 1}∗ and a ∈ {0, 1} by the recursion

δ̂(λ) = q0, and δ̂(xa) = δ(δ̂(x), a).

For x ∈ {0, 1}∗, the output of T on x is the string T (x) defined by the recursion

T (λ) = λ, and T (xa) = T (x)ν(δ̂(x), a)

for all x ∈ {0, 1}∗ and a ∈ {0, 1}.
An FST can trivially act as an “optimal compressor” by outputting λ on every transition

arrow, but this is, of course, a useless compressor, because the input cannot be recovered. An
FST T = (Q, δ, ν, q0) is information lossless (IL) if the function x 7→ (T (x), δ̂(x)) is one-to-
one; i.e., if the output and final state of T on input x ∈ {0, 1}∗ uniquely identify x. A finite
state compressor, is an information lossless finite-state transducer (ILFST). ILFST denotes
the set of all information lossless finite-state transducers.

The finite state depth notion from [4] is obtained by considering finite state compressors,
i.e. by letting

G = G′ = ILFST

perf(C,C ′, x) =
|C(x)| − |C ′(x)|

|x|
M = {m(n) = αn| α ∈ [0, 1]}

It is shown in [4] that FS-deep sequences exist, that FS-depth satisfies a slow growth
law for information lossless finite state transducers, and that the corresponding finite-state
versions of random and computable sets are not finite-state deep.

8

5 Monotone polynomial depth

To try to overcome some limitations of previous polynomial depth notions, we use our general
depth framework to define a new polynomial depth notion based on polynomial monotone
compression from [5].

Definition 5.1 [5] Let ∆ be a family of (at least linear) time bounds (e.g. Poly, Lin, etc)
and S ∈ {0, 1}∞. A ∆-compression of S is a 3-tuple (C,D, p) where C,D are monotone TMs
and p ∈ {0, 1}∞ such that there exists a time bound t ∈ ∆ such that

1. Decompression: For all j ∈ N, D(p[1..j]) outputs S[1..iD,j] in time t(iD,j + j), where
iD,j is a monotone sequence of integers.

2. Compression: For all i ∈ N, C(S[1..i]) outputs several strings in time t(i), one of which
is a prefix p′ of p, such that D(p′) w S[1..i].

The integer iD,j is the number of bits the decompressor D can output given j bits of input
i.e., the larger the difference iD,j − j the greater the compression. It is also implicit in [5]
that the decompression should not take too much time before it outputs bits, i.e. for every
k ≤ iD,j , the k-th bit of S[1..iD,j] = D(p[1..j]) is output after at most t(k) steps, where t is
the time bound of D.

When ∆ = Comp, we drop the compression requirement, i.e. a Comp-compression is a
2-tuple (D, p). This is because the compressor C may be uncomputable. When ∆ = Comp
we are in the realms of Kolmogorov complexity, where similarly there is no (computable)
compressor but only a computable decompressor (the universal TM U).

To avoid extreme decompression of the form “On input n, output 22
···2

n

zeroes”, we fix the
maximal decompression factor we allow i.e., let MD (maximal decompression) be a function

such that MD(j) is computable in O(MD(j)) time for any integer j (e.g. MD(j) = 22
2j

). We
require that for any ∆-compression (C,D, p), and for every integer j,

iD,j ≤ MD(j)

i.e. MD is the same for all compressors; and is assumed fixed for the rest of this paper. This
is not really a restriction as the equivalence between p-measure and polynomial monotone
compression of [5] still holds for MD-bounded polynomial monotone compression. The main
reason for a bounded version is to avoid trivial sequences such as S = 000 . . . to be deep by
having more and more decompression.

Let us introduce our new monotone-poly-depth notions, based on monotone poly com-
pressors.

G = G(S) = {(C,D, p)| (C,D, p) is a ∆-compression of S}
G′ = G′(S) =

{
(C ′, D′, p′)| (C ′, D′, p′) is a ∆′-compression of S

}
perf(D,D′, S[1..n]) =

iD′,jD′n
− iD,jD′n

n log iD′,jD′n

M = O(1)

where jD
′

n = maxj [iD′,j ≤ n], (n ∈ N) is the maximum number of bits of p′ that decompresses
to a prefix of S[1..n] (this guarantees perf() ≤ 1). Thus the performance is measured by

9

comparing how many bits of S D′ can extract given jD
′

n bits of program compared to D
given the same number of bits, normalized by dividing by n multiplied by a bound function
log iD′,jD′n

.

Because the important parameter for monotone compression [5] is the decompression rate
iD,j (as opposed to the compression rate), our monotone depth notion is based on this rate
also. The log iD′,jD′n

term could be moved in the definition of the bounds family M , but to

keep definitions concise, we chose to leave M independent of G,G′. We will often use the
following reformulation in terms of decompression rates.

Definition 5.2 S ∈ {0, 1}∞ is a.e. (resp i.o.) (∆,∆′)-deep if for every ∆-compression
(C,D, p) of S and any a > 0, there exists a ∆′-compression (C’,D’,p’) of S such that for
almost every (resp. infinitely many) j ∈ N

iD′,j − iD,j ≥ a log iD′,j . (1)

All our results on monotone-poly depth use the stronger a.e. formulation (which implies
an i.o. result), except Theorem 6.4.
A sequence is (∆,∆′)-shallow if it is not (∆,∆′)-deep.

The choice of the log function in Equation 1 is arbitrary. As mentioned in Section 4,
previous depth notions e.g. [1, 2], only required the difference be unbounded and the rate was
not specified, (Note that Bennett’s and recursive depth also work with a log rate function).
Most feasible depth notions published after Bennett’s paper [3, 4] used a logarithmic rate
function. We choose to do the same.

Recall from section 4 recursive depth [2] is defined in terms of computable observers
competing against computable observers, i.e. G and G′ have the same power. The natural
polynomial version is to let ∆ = ∆′ = Poly. We call this notion monotone-Poly-depth.

As mentioned in section 4, Bennett’s depth [1] on the other hand is based on observers
of different strength i.e., computable compressors competing against noncomputable Kol-
mogorov complexity. For Bennett’s notion, there is no unique translation into the polynomial
world. We propose to study (∆ = Lin,∆′ = Poly) as a polynomial version of Bennett’s depth
(called monotone-Lin-depth), which encompasses the idea of observers of different strength
(Lin vs Poly), but keeping both in the polynomial setting. The choice (∆ = Lin,∆′ = Poly)
is actually flexible, and Poly (resp. Lin) could be replaced by anything strictly stronger (resp.
weaker) than Lin, e.g. O(n2) (resp. Polylog), without modifying our results on monotone-
Lin-depth from Section 7 (the choice ∆ =Polylog, would require a modification of the notion
of ∆-compression [5] to allow for sublinear running time, in the same way as martingales
where modified to allow sublinear time bounds in [16]). The choice Lin vs Poly reflects the
difference in power of complexity classes E and EXP, which are the complexity classes on
which ∆-compression was first introduced in [5] to define a measure notion, and which tradi-
tionally are the two complexity classes considered for measure notions based on polynomial
time martingales [17].

In [3] Antunes et al. proposed another resource-bounded version of Bennett’s depth [1]
called basic computational depth, by looking at bounded (sublinear or polynomial) Kol-
mogorov complexity vs unbounded Kolmogorov complexity. We introduce a translation of
basic computational depth [3] in the setting of polynomial monotone compressors, by setting
(∆ = Poly,∆′ = Comp). We call this notion basic-monotone-Poly-depth (bm-Poly-depth);
bm-Poly-depth captures the idea behind basic computational depth [3] but with Kolmogorov
complexity replaced by monotone compressors.

10

6 Basic properties of monotone-Poly-depth

In the next section we study the basic properties of monotone-Poly-depth. All results remain
true for both monotone-Lin-depth and bm-Poly-depth.

It is a key feature of logical depth [1] that both trivial (computable) and random sequences
are shallow. In this section we show that a similar result holds in the context of monotone-
Poly-depth. Let us define what is meant by trivial sequences in the context of polynomial
depth. Informally a sequence is trivial if its prefixes can be maximally compressed.

Definition 6.1 Let S ∈ {0, 1}∞. S is Poly-optimally-compressible if there exists a Poly-
compression (C,D, p) of S, such that iD,j = MD(j) for almost every j ∈ N.

As an example, it is easy to check that the characteristic sequences of languages in E are Poly-
optimally-compressible. The following result shows that optimally-compressible sequences are
shallow.

Theorem 6.1 Every Poly-optimally-compressible sequence is a.e. Poly-shallow.

Proof. Let S be a Poly-optimally-compressible sequence, and let (C0, D0, p0) be a Poly-
compressor witnessing this fact. By definition, S is Poly-shallow if there exists a Poly-
compression (C,D, p) of S and a > 0, such that for any Poly-compression (C ′, D′, p′) of
S, and for infinitely many j ∈ N

iD′,j − iD,j < a log iD′,j .

Letting a = 1 and (C,D, p) = (C0, D0, p0) implies that for almost every j ∈ N, iD,j = MD(j).
Let (C ′, D′, p′) be any Poly-compression of S, then for almost every j ∈ N

iD′,j − iD,j ≤ MD(j)− iD,j = MD(j)−MD(j) = 0 < log iD′,j .

ut
On the other extremity of the scale of randomness, we have random sequences. Informally

a sequence is Poly-random if it is not compressible by more than a constant.

Definition 6.2 Let S ∈ {0, 1}∞. S is Poly-random if for every Poly-compression (C,D, p)
of S, there exists c ∈ N such that for almost every j ∈ N

iD,j ≤ j + c.

The following result shows that random sequences are shallow.

Theorem 6.2 Every Poly-random sequence is a.e. Poly-shallow.

Proof. Let S be a Poly-random sequence, and let (C,D, p) be the identity compressor i.e.
p = S and C(x) = D(x) = x for any string x (in particular iD,j = j). Let a = 1. Let us show
that for any Poly-compression (C ′, D′, p′) of S, and for infinitely many j ∈ N

iD′,j − iD,j < a log iD′,j .

Let (C ′, D′, p′) be any Poly-compression of S; then there exists c ∈ N such that for almost
every j ∈ N, iD′,j − j ≤ c. Thus

iD′,j − iD,j = iD′,j − j ≤ c < log iD′,j

for almost every j ∈ N. ut

11

6.1 Slow growth law

A key property of logical depth [1], is that depth cannot be easily created. The formalization
of this idea is known as the slow-growth law. It states that if a simple process transforms
some (source) sequence into an (image) sequence that is deep, then the source sequence it
started from must be deep i.e., no easy process can transform a shallow sequence into a deep
one. Bennett proved a slow growth law for truth-table reductions (i.e. in the context of logical
depth, simple process corresponds to truth-table reductions).

In the following section, we prove a slow growth law in the context of monotone-Poly-
depth. As the power of polynomial monotone compressors is much smaller than the un-
bounded time case considered for Bennett’s logical depth, we need to reduce the power of
“simple processes” accordingly. We consider honest m-to-one polynomial time reductions;
similarly, honest m-to-one reductions were considered in [3, 4] Here is a definition.

Definition 6.3 Let S, T ∈ {0, 1}∞. S is Poly-monotone reducible to T , if there exist Poly-
compression (N,M, p) of S with p = T such that

1. M is d-to-one for some integer d.

2. Honesty: There exists a > 0 such that for every n ∈ N

n− a log n ≤ |M(T [1..n])| ≤ n+ a log n

and the same honesty property holds for N .

The following result is a slow-growth law for monotone-Poly-depth. A similar result holds for
both monotone-Lin-depth and bm-Poly-depth (provided the reduction is linear-time bounded
for monotone-Lin-depth).

Theorem 6.3 Let S, T ∈ {0, 1}∞, such that S is a.e. monotone-Poly-deep and Poly-monotone
reducible to T . Then T is a.e. monotone-Poly-deep.

Proof. Let S, T be as above, and let M,N denote the Poly-monotone reduction. Let c be the
honesty constant (for both M,N). Let us show that T is Poly-deep; let a > 0 and (C,D, p) be
a Poly-compression of T . This induces a Poly-compression (C1, D1, p) for S, with D1 = M ◦D
and C1 = C ◦N . C1, D1 run in Poly-time. For any j, n ∈ N we have

D1(p[1..j]) = M(T [1..iD,j]) w S[1..iD,j − c log iD,j]

by honesty of M , which implies

iD1,j ≥ iD,j − c log iD,j . (2)

Also

C1(S[1..n]) = C ◦N(S[1..n])

where N(S[1..n]) outputs several strings one of which is a prefix x of T (i.e. x = T [1..m]),
such that

M(x) = S[1..n′] with n′ ≥ n

12

and C(T [1..m]) outputs several strings one of which is a prefix y of p, such that

D(y) = T [1..m′]

with m′ ≥ m. Thus

D1(y) = M(D(y)) = M(T [1..m′]) wM(T [1..m]) = S[1..n′] w S[1..n].

This shows that (C1, D1, p) is a Poly-compression for S.
Let b = 2a + 3c > 0. Since S is Poly-deep, there exists a Poly-compression (C2, D2, p2)

for S such that for every j ∈ N

iD2,j − iD1,j > b log iD2,j . (3)

We construct a Poly-compression (C ′, D′, p2) of T with D′ = N ◦D2 and C ′ = C2 ◦M . C ′, D′

run in Poly-time. For any j, n ∈ N we have

D′(p2[1..j]) = N(S[1..iD2,j]) w T [1..iD2,j − c log iD2,j]

by honesty of N , which implies

iD′,j ≥ iD2,j − c log iD2,j (4)

and
C ′(T [1..n]) = C2(M(T [1..n])) = C2(S[1..n′])

where n′ is an integer such that M(T [1..n]) = S[1..n′], and C2(S[1..n′]) outputs several strings
one of which is a prefix x′ of p2, such that

D2(x
′) = S[1..n′′]

with n′′ ≥ n′. Thus
D′(x′) = N(S[1..n′′])

where N(S[1..n′′]) outputs several strings one of which is a prefix y of T , such that

M(y) w S[1..n′′] w S[1..n′].

If y < T [1..n], then because M is both monotone and d-to-one (for some constant d), we have
n ≤ |y|+ d, thus y can be output together with all its possible 2d+1 extensions of total length
at most |y| + d (i.e. all ya with a ∈ {0, 1}≤d), one of which will be T [1..n]. This shows that
(C ′, D′, p2) is a Poly-compression for T .

By Equation 2 we have

log iD1,j ≥ log(iD,j − c log iD,j) ≥
1

2
log iD,j . (5)

Similarly Equation 3 yields
log iD1,j ≤ log iD2,j (6)

and since D′ = N ◦D2

log iD′,j ≤ 2 log iD2,j . (7)

13

Thus for almost every j

iD′,j − iD,j ≥ iD2,j − iD,j − c log iD2,j by Equation 4

≥ iD2,j − iD1,j − c log iD2,j − c log iD,j by Equation 2

≥ iD2,j − iD1,j − c log iD2,j − 2c log iD1,j by Equation 5

≥ iD2,j − iD1,j − c log iD2,j − 2c log iD2,j by Equation 6

≥ (b− 3c) log iD2,j by Equation 3

≥ b− 3c

2
log iD′,j by Equation 7

= a log iD′,j by definition of b

i.e. T is deep. ut
A similar proof shows that the result holds for both monotone-Lin-depth and bm-Poly-

depth (provided the reduction is linear-time bounded for monotone-Lin-depth).

6.2 A Poly deep sequence

The following result shows that our notion admits the existence of deep sequences. Similarly
to other feasible depth notions with restricted power [4], our result is an i.o. result.

The proof uses the equivalence between compressors and martingales from [5]. A direct
proof can be given without martingales, but using martingales makes the proof easier. It is
also interesting to see the correspondence martingales-compressor in the context of depth.

Theorem 6.4 There exists an i.o. monotone-Poly-deep sequence.

Proof. As shown in [5] polynomial compression yields an alternative characterization of
resource-bounded measure zero sets. Resource-bounded measure is a measure theory within
the complexity class E developed by Lutz [17], which is obtained by imposing polynomial
resource-bounds on a game theoretical characterization of classical Lebesgue measure, via
martingales. A martingale is a function d : {0, 1}∗ → R+ such that, for every w ∈ {0, 1}∗,
2d(w) = d(w0) + d(w1), and d(λ) = 1. This definition can be motivated by the following
betting game in which a gambler puts bets on the successive membership bits of a hidden
language A. The game proceeds in infinitely many rounds where at the end of round n, it is
revealed to the gambler whether sn ∈ A or not. A polynomial (computable) martingale is a
martingale computable in time polynomial in the input size.

In [5] the following equivalence between polynomial martingales and monotone compres-
sion was shown.

Lemma 6.1 Given a polynomial computable martingale d, and a sequence w, there exists a
Poly-compression (C,D) for w such that for any j ∈ N

iD,j − j ≥ log d(w[1..iD,j])− 4.

Alternatively given a Poly-compression (C,D) for w, there exists a polynomial martingale d
such that for any j ∈ N

log d(w[1..iD,j]) ≥ iD,j − j − 2.

14

It was shown in [17] that for every k ∈ N there exists a nk-universal martingale dk computable
in polynomial time, such that for any martingale d computable in time nk, there exists c ∈ N,
such that for any w ∈ {0, 1}∗

dk(w) ≥ 1

c
· d(w).

The sequence S = S1
1S

2
1S

2
2 . . . S

l
1 . . . S

l
l is constructed by induction, where |S1

1 | = 1, |Slk| =
MD(|S � Slk|)−|S � Slk|, and Slk diagonalizes against dk (i.e. dk does not increase on Slk); more
precisely, define Slk by induction, where for every t ∈ {0, . . . , |Slk| − 1}, the next bit b ∈ {0, 1}
of Slk is chosen such that

dk((S � Slk)S
l
k[0..t]b) ≤ dk((S � Slk)S

l
k[0..t]).

We need the following lemma.

Lemma 6.2 Let (C,D) be a Poly-compression of S. There exists k ∈ N such that for every
l ≥ k, and j = |S � Slk| it holds

iD,j ≤ 2j + k.

Proof. Let us prove the lemma. Let (C,D) be a Poly-compression of S. By Lemma 6.1 there
exists a polynomial martingale d such that for every j ∈ N

log d(w[1..iD,j]) ≥ iD,j − j − 2.

Suppose d runs in time nk (for some k ∈ N), thus there exists c ∈ N such that dk(w) ≥ 1
cd(w)

for any string w, i.e.

log dk(w[1..iD,j]) ≥ iD,j − j − 2− log c.

Let l ≥ k and j = |S � Slk|. We have

iD,j ≤ MD(j) = MD(|S � Slk|) = |S � Slk|.

By construction of Slk, dk does not increase on it; as dk can at most double its capital on
every bit of S � Slk, we have

log dk(w[1..iD,j]) ≤ |S � Slk|

which implies

iD,j ≤ 2j + 2 + log c.

Replacing k and c by max(k, c) + 2 proves the lemma.

Let us show that S is monotone-Poly-deep. Let (C,D) be a Poly-compression of S, and
let a > 0. Let k be given by Lemma 6.2, l ≥ k, and j = |S � Slk|.

Consider the following Poly-compression (C ′, D′, p) for S. Informally D′ reconstructs Slk
using dk. Program p is equal to S, except blocks Slk (for every l ∈ N) are omitted, i.e more
formally

p = S1
1S

2
1S

2
2 . . . S

l
1 . . . S

l
k−1S

l
k+1 . . . S

l
l .

Since it is easy to compute the sizes of the blocks Slk, it is easy to determine where each
block starts and stops in p. D′ on input a prefix p′ of p, can reconstruct the parts in S
not in an Slk (l ∈ N) block, by just reading p′. The parts in S in an Slk (l ∈ N) block, can

15

be reconstructed using dk. On input prefix p′ of p of length j, D′ can output S � Slk, i.e.
iD′,j = |S � Slk| = MD(j). Thus Lemma 6.2 implies

iD′,j − iD,j ≥ MD(j)− 2j − k

>
1

2
MD(j)

=
1

2
iD′,j

> a log iD′,j .

Since there are infinitely many j = |S � Slk| (one for every l ≥ k), S is i.o. monotone-Poly-
deep. ut

7 The set of Levin random strings is deep

We show that the characteristic sequence of the set of random strings is deep. Our result
holds for the standard randomness notion due to Levin [7]; Levin’s notion is a computable
approximation of Kolmogorov complexity, that enjoys many useful properties, among others
it provides a search strategy for finding solutions of NP problems, that is optimal up to a
multiplicative constant (see [8]). Here is a definition.

Definition 7.1 Fix a prefix-free universal Turing machine U . The Levin complexity of a
string x is

Kt(x) = min
p
{|p|+ log t : U(p) = x in at most t steps}.

The definition of Kt does not depend on the choice of the universal TM U , up to an additive
constant (see [8]).

The set of Levin random strings is

RKt = {x ∈ {0, 1}∗ : Kt(x) ≥ |x|+ log |x|}. (8)

By a standard program counting argument, it is easy to see that RKt 6= ∅. Although the
strings in RKt are shallow, the characteristic sequence of RKt contains useful information, i.e.
is monotone-Lin-deep, as the following result shows.

Theorem 7.1 RKt is a.e. monotone-Lin-deep.

Proof. We need the following lemma.

Lemma 7.1 For every Lin-compression (C,D, p) of RKt and for almost every j ∈ N

iD,j ≤ 22
3j
.

Proof. Let us prove the lemma by contradiction. Suppose there is a linear compression
(C,D, p) of RKt and an infinite set J of integers j such that iD,j > 22

3j
i.e.,

RKt w D(p[1..j]) w RKt[1..2
23j+1].

16

Let j ∈ J be large (to be determined later). Letting d = p[1..j] yields a string with high Kt
complexity: from π = 〈D, d〉 recover j (from the length of d) and RKt[1..2

23j+1]. Output the
first y with |y| = 23j and RKt(y) = 1, i.e.

Kt(y) ≥ 23j + 3j.

By encoding π the standard way, i.e. π = dbl(〈D〉)01d

|π| ≤ |d|+O(1) = j +O(1).

The time to construct y is the time to recover RKt[1..2
23j+1] (less than O(22

3j
) steps) and the

time to find y in RKt[1..2
23j+1] (less than O(22

3j
) steps), i.e. a total of at most O(22

3j
) steps.

Therefore

Kt(y) ≤ |π|+ logO(22
3j

) ≤ j +O(1) + 23j < 23j + 3j

for j large enough, which contradicts RKt(y) = 1; thus ending the proof of the lemma. ut

Lemma 7.2 There exists a Poly-compression (C,D, p) of RKt such that for almost every
j ∈ N

iD,j = MD(j).

Proof. Let p = 0∞. D on input p[1..j] computes iD,j := MD(j). D constructs RKt[1..iD,j] by
simulating the universal TM on all programs πl of size at most log iD,j + log log iD,j during
tl steps (the simulation stops as soon as tl > 2log iD,j+log log iD,j), the resulting string of such a
simulation is denoted xl. All strings xl with |xl| ≤ log iD,j , for which |πl|+log tl ≤ |xl|+log |xl|
have membership bit 0 in the characteristic sequence RKt[1..iD,j]. All remaining bits in
RKt[1..iD,j] are 1s. The running time of D is less than

O(2log iD,j+log log iD,j) · 2log iD,j+log log iD,j ≤ (iD,j)
c

for some c ∈ N.

The compressor C on input RKt[1..i] finds the smallest j such that MD(j) ≥ i, and outputs
0j . C runs in time polynomial in i. This ends the proof of the lemma. ut

Let us show that RKt is monotone-Lin-deep. Let a > 0 and (C,D, p) be a Lin-compression
of RKt, and let (C ′, D′, p′) be the Poly-compression from Lemma 7.2. We have

iD′,j − iD,j = MD(j)− iD,j by Lemma 7.2

≥ MD(j)− 22
3j

by Lemma 7.1

>
1

2
MD(j) by definition of MD

=
1

2
iD′,j by definition of iD′,j

> a log iD′,j

for almost every j i.e. RKt is monotone-Lin-deep.

17

8 The set of Kolmogorov-random strings is deep

The next result shows that the set of Kolmogorov random strings is bm-Poly-deep.

Definition 8.1 Fix a prefix-free universal Turing machine U . For a time bound t, the t-
bounded Kolmogorov complexity of x is

Kt(x) = min{|p| : U(p) = x, and U halts in at most t(|x|) steps}.

Let 0 < ε < 1. The set of Kolmogorov random string is

RK,ε = {x ∈ {0, 1}∗ : K(x) ≥ ε|x|}. (9)

Theorem 8.1 Let 0 < ε < 1. RK,ε is a.e. bm-Poly-deep.

Proof. Let 0 < ε < 1 We need the following lemma.

Lemma 8.1 For every Poly-compression (C,D, p) of RK,ε and for almost every j ∈ N

iD,j < 2j+1.

Proof. Let us prove the lemma by contradiction. Suppose there is a Poly-compression (C,D, p)
of RK,ε and an infinite set N of integers j such that iD,j ≥ 2j+1. Let c = 4/(1− ε) and j ∈ N .

Let y1, . . . , yc ∈ {0, 1}j such that

K2n
2

(〈y1, . . . , yc〉) ≥ cj −O(log j) but K(〈y1, . . . , yc〉) ≤ O(log j).

Such a c-tuple can be found by simulating U on all programs of appropriate size running in
at most 2n

2
steps. We have RK,ε(yt) = 0 for every t = 1, . . . , c.

Consider L = {(l1, · · · , lc)| 1 ≤ lt ≤ 2ε(j+1), t = 1, . . . , c}. Let Q = {ql| l ∈ L} with
ql = 〈code, p[1..j], l〉 be the set of programs such that U on input ql simulates D(p[1..j]) to
reconstruct RK,ε[1..iD,j] w RK,ε[1..2

j+1], which takes time less than 2O(j) (U stops once D
already output the 2j+1 first bits of RK,ε). U constructs

R0 = {r1 < r2 < . . . | rt ∈ {0, 1}≤j , RK,ε(rt) = 0}

the lexicographically ordered set of all strings of length at most j whose characteristic bit
in RK,ε is 0, which takes time O(2j). If rl1 , · · · , rlc ∈ R0 then output 〈rl1 , · · · , rlc〉 else halt,
which takes time at most O(2j).

On any program ql ∈ Q, U runs in less than O(2j) + 2O(j) ≤ 2j
2

steps. Moreover all lt
(t = 1, . . . , c) can be encoded in at most ε(j+1) bits (because |R0| ≤ 2ε(j+1)) i.e., all programs
ql ∈ Q have size bounded by

|ql| ≤ cε(j + 1) + j +O(log j) ≤ (cε+ 1)j +O(log j).

Because RK,ε(yt) = 0 for every t = 1, . . . , c, let v = (v1, . . . , vc) ∈ L be the vector of the
positions of y1, . . . , yc in RK,ε i.e., rvt = yt for every t = 1, . . . , c. Thus U on input qv outputs

〈y1, . . . , yc〉 i.e., qv is a program for 〈y1, . . . , yc〉 that runs in less than 2j
2
< 2|〈y1,...,yc〉|

2
steps.

Thus we have

K2n
2

(〈y1, . . . , yc〉) ≤ (cε+ 1)j +O(log j) which implies

cj −O(log j) ≤ (cε+ 1)j +O(log j) i.e.,

cj ≤ (cε+ 1)j +O(log j) ≤ (cε+ 2)j

thus c(1− ε) ≤ 2 which is a contradiction. ut

18

Lemma 8.2 There exists a Comp-compression (D, p) of RK,ε such that for almost every
j ∈ N

iD,j = 2j/ε.

Proof. Let p = Ω[1..n] where Ω is the halting probability Ω =
∑

p:U(p)↓ 2−|p|. D on input
p[1..εj] (wlog εj is an integer, otherwise it is replaced by bεjc) can compute using standard
Dove-tailing (see [8]) whether U(p) ↓ for all programs p with |p| ≤ εj, i.e. it can reconstruct
RK,ε[1..2

j+1 − 1]. We have iD,εj = 2j i.e., iD,j = 2j/ε. ut
Let us show that RK,ε is bm-Poly-deep. Let a > 0 and (C,D, p) be a Poly-compression of
RK,ε, and let (D′, p′) be the Comp-compression from Lemma 8.2. We have

iD′,j − iD,j = 2j/ε − iD,j by Lemma 8.2

≥ 2j/ε − 2j+1 by Lemma 8.1

= 2j(2(1/ε−1)j − 2)

> 2j for j large enough

> a log iD′,j

for almost every j, i.e. RK,ε is a.e. bm-Poly-deep. ut

Final remark

We hope our general depth framework will help other researchers investigate new depth
notions in the future. As seen from Section 4, most existing depth notions are based on some
class of compression algorithms, which as seen by our general depth framework, is only one
–among many others– particular way to define the depth of a sequence, therefore leaving
the door open to the study of new depth notions, not necessarily based on the compression
paradigm.

References

[1] C. H. Bennett, Logical depth and physical complexity, The Universal Turing Machine,
A Half-Century Survey (1988) 227–257.

[2] J. I. Lathrop, J. H. Lutz, Recursive computational depth, Inf. Comput. 153 (1) (1999)
139–172.

[3] L. Antunes, L. Fortnow, D. van Melkebeek, N. Vinodchandran, Computational depth:
Concept and applications, Theoretical Computer Science 354 (2006) 391–404.

[4] D. Doty, P. Moser, Feasible depth, in: S. B. Cooper, B. Löwe, A. Sorbi (Eds.), CiE, Vol.
4497 of Lecture Notes in Computer Science, Springer, 2007, pp. 228–237.

[5] H. Buhrman, L. Longpré, Compressibility and resource bounded measure, SIAM J. Com-
put. 31 (3) (2001) 876–886.

[6] D. W. Juedes, J. I. Lathrop, J. H. Lutz, Computational depth and reducibility, Theor.
Comput. Sci. 132 (2) (1994) 37–70.

19

[7] L. A. Levin, Randomness conservation inequalities; information and independence in
mathematical theories, Information and Control 61 (1) (1984) 15–37.

[8] M. Li, P. Vitanyi, Introduction to Kolmogorov complexity and its applications, Springer,
1993.

[9] E. Allender, H. Buhrman, M. Koucký, What can be efficiently reduced to the
Kolmogorov-random strings?, Ann. Pure Appl. Logic 138 (1-3) (2006) 2–19.

[10] E. Allender, H. Buhrman, M. Koucký, D. van Melkebeek, D. Ronneburger, Power from
random strings, SIAM J. Comput. 35 (6) (2006) 1467–1493.

[11] E. Allender, H. Buhrman, M. Koucký, What can be efficiently reduced to the K-random
strings?, in: V. Diekert, M. Habib (Eds.), STACS, Vol. 2996 of Lecture Notes in Com-
puter Science, Springer, 2004, pp. 584–595.

[12] E. Allender, H. Buhrman, M. Koucký, D. van Melkebeek, D. Ronneburger, Power from
random strings, in: FOCS, IEEE Computer Society, 2002, pp. 669–678.

[13] P. Moser, A general notion of useful information, in: T. Neary, D. Woods, A. K. Seda,
N. Murphy (Eds.), CSP, Vol. 1 of EPTCS, 2008, pp. 164–171.

[14] P. Moser, On the polynomial depth of various sets of random strings, in: M. Ogihara,
J. Tarui (Eds.), TAMC, Vol. 6648 of Lecture Notes in Computer Science, Springer, 2011,
pp. 517–527.

[15] K. B. Athreya, J. M. Hitchcock, J. H. Lutz, E. Mayordomo, Effective strong dimension in
algorithmic information and computational complexity, SIAM J. Comput. 37 (3) (2007)
671–705.

[16] P. Moser, Martingale families and dimension in P, Theor. Comput. Sci. 400 (1-3) (2008)
46–61.

[17] J. Lutz, Almost everywhere high nonuniform complexity, Journal of Computer and Sys-
tem Science 44 (1992) 220–258.

20

