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ABSTRACT

Radiosonde humidity records represent the only in situ observations of tropospheric water vapor content with multi-

decadal length and quasi-global coverage. However, their use has been hampered by ubiquitous and large discontinuities

resulting from changes to instrumentation and observing practices. Here a new approach is developed to homogenize his-

torical records of tropospheric (up to 100 hPa) dewpoint depression (DPD), the archived radiosonde humidity parameter.

Two statistical tests are used to detect changepoints, which are most apparent in histograms and occurrence frequencies of the

daily DPD: a variant of the Kolmogorov–Smirnov (K–S) test for changes in distributions and the penalized maximal F test

(PMFred) for mean shifts in the occurrence frequency for different bins of DPD. These tests capture most of the apparent

discontinuities in the daily DPD data, with an average of 8.6 changepoints (;1 changepoint per 5 yr) in each of the analyzed

radiosonde records, which begin as early as the 1950s and ended in March 2009. Before applying breakpoint adjustments,

artificial sampling effects are first adjusted by estimating missing DPD reports for cold (T , 2308C) and dry (DPD artificially

set to 308C) conditions using empirical relationships at each station between the anomalies of air temperature and vapor

pressure derived from recent observations when DPD reports are available under these conditions. Next, the sampling-

adjusted DPD is detrended separately for each of the 4–10 quantile categories and then adjusted using a quantile-matching

algorithm so that the earlier segments have histograms comparable to that of the latest segment. Neither the changepoint

detection nor the adjustment uses a reference series given the stability of the DPD series.

Using this new approach, a homogenized global, twice-daily DPD dataset (available online at www.cgd.ucar.edu/cas/catalog/) is

created for climate and other applications based on the Integrated Global Radiosonde Archive (IGRA) and two other data

sources. The adjusted-daily DPD has much smaller and spatially more coherent trends during 1973–2008 than the raw data. It

implies only small changes in relative humidity in the lower and middle troposphere. When combined with homogenized ra-

diosonde temperature, other atmospheric humidity variables can be calculated, and these exhibit spatially more coherent trends

than without the DPD homogenization. The DPD adjustment yields a different pattern of change in humidity parameters

compared to the apparent trends from the raw data. The adjusted estimates show an increase in tropospheric water vapor globally.

1. Introduction

Water vapor is the single largest contributor to the

natural greenhouse effect in the atmosphere. Its content

is expected to rise as greenhouse gas (GHG)-induced

global warming continues in both models (Held and

Soden 2000; Dai et al. 2001; Meehl et al. 2007) and the

real world (Ross and Elliott 2001; Zhai and Eskridge

1997; Trenberth et al. 2005; Durre et al. 2009; McCarthy
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et al. 2009). How much water vapor increases is a key

feedback that determines climate sensitivity (Held and

Soden 2000; Dessler and Sherwood 2009), particularly

above the middle troposphere, where the effect of water

vapor is not radiatively saturated (Solomon et al. 2010).

Water vapor also plays a key role in the global hydro-

logic cycle (Trenberth et al. 2007), because it acts as

a medium for water and heat exchange and transport

within the climate system and also because it is linked to

the formation of clouds and precipitation. Thus it is

crucial to monitor long-term changes in atmospheric

water vapor content using various types of observations.

Since the middle of the twentieth century, many coun-

tries have made routine observations of atmospheric

humidity using balloon-borne radiosondes. These radio-

sonde humidity observations provide the only record that

has high vertical resolution and is long enough for quan-

tifying multidecadal changes in atmospheric water vapor,

although other observations, such as surface humidity

data (Dai 2006; Willett et al. 2008) and recent satellite

(Trenberth et al. 2005) and global positioning system

(GPS) observations (Wang et al. 2007), can also provide

useful information.

The raw radiosonde humidity records contain large

errors and biases. They are notoriously inhomogeneous

because of difficulties in accurately measuring humidity,

changes in hygrometers and observing practices, and

other factors, such as changing methods of converting

relative humidity (RH) to dewpoint depression (DPD)

for archives (Gaffen et al. 1991; Gaffen 1993, 1994, 1996;

Elliott and Gaffen 1991, 1993; Zhai and Eskridge 1996;

Elliott et al. 1998; Wang et al. 2003; Wang and Zhang

2008; McCarthy et al. 2009). These problems, especially

the temporal inhomogeneities, have severely hampered

the application of radiosonde humidity data in climate

studies and atmospheric reanalyses.

Partially motivated by a need to reconcile tropospheric

warming trends from radiosondes, satellites, and models

with available surface temperature trend estimates (Santer

et al. 2008; Thorne et al. 2011), there have been many ef-

forts devoted to homogenizing global radiosonde temper-

ature data (U.S. CCSP 2006; Thorne et al. 2011 provide

historical overviews). To our knowledge, however, there

have been very few attempts to homogenize the global

radiosonde humidity records, and no published studies

have homogenized radiosonde humidity daily data. Two

recent studies by Durre et al. (2009) and McCarthy et al.

(2009) have adopted methods developed for homoge-

nizing temperature data to detect and adjust radiosonde

humidity monthly data over the Northern Hemisphere.

These two studies both employed a neighbor-based

difference approach, in which a homogeneous refer-

ence series of humidity is assumed to be available from

neighboring station data, but with very different ap-

proaches for deriving these neighbor sets.

In reality, however, many countries have switched their

sounding systems near the same time for most stations.

Furthermore, similar discontinuities often occur at nearby

stations and in current reanalysis humidity data even across

geopolitical boundaries. In addition, the radiosonde net-

work is very sparse, and the spatial correlation scales and

therefore the potential neighbor pool are smaller for

humidity variables than for temperature (McCarthy et al.

2008). There are often no neighboring stations within

hundreds to thousands of kilometers, especially over the

Southern Hemisphere. Further confounding such efforts,

the available humidity records often contain many gaps

that considerably shorten the record length for the

neighbor-based difference series. Thus, the neighbor-

based difference approach is impractical for homogenizing

radiosonde humidity data over many regions. This issue is

exacerbated for daily data whose correlation distances are

much smaller and for which the impacts of synoptic vari-

ations are more pronounced than monthly data.

Unlike radiosonde temperature records, whose discon-

tinuities primarily result from sensor-dependent biases, the

discontinuities in monthly humidity time series result not

only from hygrometer-dependent biases (measurement

bias) (Wang et al. 2003; Sapucci et al. 2005; Wang and

Zhang 2008) but also from changes in sampling (sampling

bias). For example, as radiosonde hygrometers have been

improved over time to have shorter response time and

smaller errors under cold conditions, there has been

increased sampling–reporting of cold and dry conditions

at a given pressure level. Because of this, any attempts to

homogenize the humidity data without first improving

the homogeneity of sampling are likely to adjust the

individual reported daily values farther away from the

truth. Therefore, previous homogenization methods based

on monthly data (e.g., Lanzante 1996; Durre et al. 2009)

are not applicable to the daily data. On the other hand,

homogenized daily data are needed for many applications,

such as atmospheric reanalysis and analyses of extreme

events and their physical causes. Current atmospheric re-

analyses ingest the unadjusted radiosonde humidity and a

host of other data. Combined with the varying observa-

tional constraint from the rest of the observing system over

time, the discontinuities in these radiosonde data induce

temporal discontinuities in reanalysis water vapor and

other fields that often make them unsuitable for trend

analyses (Trenberth et al. 2005; Qian et al. 2006).

Previous studies have shown that the saturation level

of water vapor in the atmosphere, as measured by the

RH near the surface (Dai 2006; Willett et al. 2008) and in

the troposphere (Trenberth et al. 2005), has stayed fairly

constant since the 1970s despite the rapidly rising air
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temperature, although an apparent downward trend

since around 2003 was reported in surface RH over land

(Simmons et al. 2010). Physically, RH is not controlled

by air temperature (Sherwood et al. 2006), unlike specific

humidity (q) and precipitable water (PW). Therefore,

long-term trends are likely to be much smaller in RH than

in q and PW. This implies that one may not need a ref-

erence series to remove the nonstationary components in

the tested time series if RH or a closely related parameter

is analyzed. Furthermore, one can also avoid the need of

a reference series by examining statistics other than the

data time series itself. For example, by analyzing the his-

tograms and time series of occurrence frequency of the

daily data, we show that a reference series is not necessary

in changepoint detection and subsequent adjustments for

the radiosonde humidity data.

RH measurements by hygrometers were usually con-

verted into DPD at each station (Elliott and Gaffen

1993), and only DPD is archived in most radiosonde

databases, such as the Integrated Global Radiosonde

Archive (IGRA) (Durre et al. 2006). We therefore focus

on the homogenization of the individual DPD reports at

0000 and 1200 UTC (referred to as daily data in this

paper). By combining them with homogenized daily air

temperature data (e.g., Haimberger et al. 2008), other

humidity variables (RH, q, PW) can then be derived

from the adjusted DPD values. This is in contrast to the

previous efforts by Durre et al. (2009) who homogenized

PW, and McCarthy et al. (2009) who performed separate

homogenizations for different humidity variables. For q

and PW, complicated discontinuity patterns may arise

from different inhomogeneities in humidity and tem-

perature measurements, making the detection and ad-

justment harder (Lanzante 1996).

Homogenization of daily data often involves comparing

and adjusting histograms or cumulative distribution func-

tions (CDFs) over different periods (e.g., Della-Marta and

Wanner 2006; Wang et al. 2010) under the assumption that

sampling is homogenous over time. In many cases, such as

measurements of light precipitation (Wang et al. 2010) and

atmospheric humidity (McCarthy et al. 2009), sampling

changes systematically over time. This presents a big chal-

lenge for homogenizing the radiosonde humidity data. The

homogenized data may still contain systematic biases if the

data series is adjusted to a reference period that contains

such biases, although these biases usually have small ef-

fects on estimated long-term trends.

In the following, we first illustrate the major discon-

tinuities in radiosonde daily DPD data using examples

(section 2), and then we describe two methods to detect

changepoints in the DPD data (section 3). We sub-

sequently propose new methods to improve the homo-

geneity of DPD sampling (section 4) and a procedure to

make adjustments (for all standard pressure levels up to

100 hPa) to remove any remaining shifts at the locations

of detected changepoints (section 5). In section 6, some

results are shown to illustrate the impact of the adjust-

ments on the estimated trends for DPD, q, and RH. A

summary is given in section 7. The goal of this paper is to

present a new approach for homogenizing radiosonde

humidity daily data for use in climate analyses and atmo-

spheric reanalyses. Evaluations with other PW measure-

ments, such as those from ground-based GPS (Wang et al.

2007; Wang and Zhang 2008), and analyses of long-term

PW trends will be done elsewhere.

2. Known discontinuities in radiosonde
humidity data

McCarthy et al. (2009) have described two major sam-

pling problems that cause discontinuities in radiosonde

humidity data. The first sampling issue is related to hu-

midity values under dry conditions (RH , 20%) for U.S.

stations, which were set to a DPD 5 308C (or RH 5 19%) in

radiosonde archives from about 1973 to about October 1993

(Wade 1994). This is clearly shown by strings of DPD 5

300 (in units of 0.18C) in IGRA. We found that many

stations in Australia and some stations in South America,

the Pacific islands, Europe, and northern Africa (where

carbon hygristor was used) also show abnormally high

occurrence of DPD 5 300 before the early or mid-1990s in

IGRA. This appears to have resulted from a practice built

into certain types of radiosonde systems used in the United

States and several other countries from the 1970s until the

1990s. Figure 1a shows an example of the DPD 5 308C

problem at Norman, Oklahoma (taken from IGRA),

which is typical for all U.S. stations. Obviously, the histo-

gram for the 1980s is unrealistic, because it does not show

any cases with DPD above about 208C, except for the

artificially assigned value of 308C. This practice ended

around early October 1993 at most U.S. stations (Wade

1994), but we found that it generally ended around 1988 in

Australia when a switch from Mark II to Vaisala RS80-15

radiosondes occurred (Wang et al. 2001) and as late as

1995 in the other countries.

Clearly, these 308C DPD values should not be used in

any applications, and it is unclear whether they were

used in current atmospheric reanalyses. Simply dis-

carding them would induce a bias for the earlier records

toward wetter conditions relative to more recent ob-

servations (Fig. 1). On the other hand, accepting the

early DPD 5 308C reports as true observations would

result in spurious downward trends in DPD since the

1970s or 1980s. In some previous analyses, a universal

[e.g., RH 5 16% in Ross and Elliott (1996)] or a local

(e.g., McCarthy et al. 2009) constant was used to replace
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these RH 5 19% or DPD 5 308C cases, whereas in other

studies this issue was not addressed (and it is unclear

whether these reports were discarded or used). An al-

ternative solution is presented in section 4.

The second sampling issue is related to measurements

under cold (ambient air temperature T , 2408C) condi-

tions. Most early radiosonde hygrometers were consid-

ered unreliable under such cold conditions (Remsberg

FIG. 1. Histograms of radiosonde DPD in 28C bins, including both 0000 and 1200 UTC re-

ports, at the 500-hPa level from a station in Norman during five different periods with different

humidity sensors: (a) the 1980s, (b) January 1994–May 1997, (c) June 1997–May 1998, (d) June

1998–October 2006, and (e) November 2006–March 2009.
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et al. 2000), and it was a standard practice until 1993 for

U.S. stations to report humidity measurements as missing

when T was below 2408C. This practice may have con-

tinued until at least 2006 at more than 200 radiosonde

stations in South America, Australia, India, China, and

other countries, even though some modern hygrometers

are able to measure RH when T is as low as 21008C

(Clough and Padovani 2008). To minimize the effect of

this practice, McCarthy et al. (2009) first rejected all the

humidity reports when T , 2408C in .5% of a season’s

observations, and then they used the linear regression

coefficients between monthly-mean T and RH, and be-

tween monthly-mean T and the natural logarithm of q in

the 1995–2003 observations to estimate the mean RH and

q of the missing (or rejected) observations from the mean

of the associated T for all years. Our analysis (Fig. 2) re-

vealed that there were fewer DPD reports during the early

years even for conditions with T from 2308 to 2408C.

Here we made use of the anomaly relationship between

instantaneous T and vapor pressure (e) in the recent

records to estimate missing DPD for cold (T , 2308C)

conditions (section 4).

Besides these sampling problems for dry and cold con-

ditions that can cause discontinuities in monthly-mean

time series, different radiosonde hygrometers have dif-

ferent sensitivity and response time that often lead to

different measurement errors under wet (e.g., when exiting

from clouds) and dry conditions even during recent years.

FIG. 2. Time series of annual DPD reports (expressed as a percentage of the total number

of T reports) from all levels at 1000, 850, 700, 500, 400, and 300 hPa under cold conditions with

T , 2408C (solid lines) and 2408C # T , 2308C (dashed lines) from the raw radiosonde data

(thick lines) and the cold–dry bias-corrected DPD data (thin lines) at (a) one Japanese station

and (b) one U.S. station.
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At U.S. stations, for example, several types of radiosondes

have been used since the early 1990s and the newer ones

tend to have more reports of very dry (DPD # 258C) cases

(Fig. 1). The end effect is that the occurrence frequency for

a given bin of DPD may change because of either changes

in the radiosonde types and/or practices, as discussed be-

low. Such changes are often much larger and more abrupt

than any real-world changes in DPD could conceivably be

(Figs. 2 and 3).

3. Detection of changepoints

Figures 2 and 3a show that the frequencies exhibit

stepwise changes not only for dry and cold conditions

but also for most other categories, such as DPD 5 08–58,

58–108, 108–158, and 158–208C, resulting primarily from

instrumental or observational changes (Fig. 3a). The

normalization by the number of temperature reports in

Fig. 2 minimizes the effect of the varying total number of

FIG. 3. Annual time series of DPD occurrence frequency as a percentage of the total number

of the DPD reports from all levels at 1000, 850, 700, 500, 400, and 300 hPa for the listed bins of

DPD at a Japanese station from (a) raw, (b) cold and dry bias-adjusted, and (c) final adjusted

DPD data. The scale for the black line needs to be multiplied by 3.
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soundings, and thus this frequency (referred to as sam-

pling frequency) may be used for assessing the homo-

geneity of sampling. On the other hand, the frequency

shown in Fig. 3 (referred to as occurrence frequency)

reveals the relative homogeneity among the different

DPD categories (e.g., dry versus humid) and thus can be

used for identifying changes in the histograms of the

daily DPD data. To make full use of the shifts seen in the

histograms (Fig. 1) and occurrence frequencies (Fig. 3)

in the detection of changepoints, we applied an improved

variant (namely, Kuiper’s statistic) of the Kolmogorov–

Smirnov (K–S) test for differences in two distributions

(Press et al. 1992, p. 621) to the DPD daily data and the

penalized maximum F test (PMFred) of Wang (2008a,b)

to the time series of monthly occurrence frequency

(Fig. 3) for specified bins of DPD (see appendix A for

details of the tests). To help the statistical tests locate

the changepoints associated with the sampling biases

discussed in section 2, we did not apply the correction

for the cold and dry conditions discussed in section 4 be-

fore the changepoint detection. Although the adjustment

made in section 4 may remove some of the discontinuities

(mostly for DPD bins under cold and dry conditions) as-

sociated with the changepoints resulting from the sampling

biases, the histogram-based adjustment done in section 5

may still be needed at these changepoints for other DPD

quantiles.

Before applying the K–S and PMFred tests, we filled

gaps in the IGRA twice-daily DPD data from January

1945 (but around 1973 for most stations) to March 2009

with additional data from 125 Chinese stations (T. Zhao

et al. 2010, unpublished manuscript) and the Com-

prehensive Aerological Reference Dataset (CARDS;

Eskridge et al. 1995). Fifteen stations with short records

and close to other stations were excluded. Stations with

fewer than 120 months of DPD records during January

1945–March 2009 were also excluded. Furthermore, records

for 16 pairs of closely located stations with similar station

names and matched end and start of records were merged.

We ended with 881 stations (Fig. 4) to which the K–S and

PMFred tests were applied. We found that surface DPD

data included in the radiosonde archives often contained

changepoints different from the upper-air record at many

stations, because the surface data usually came from sur-

face measurements at the station, not from radiosonde

measurements, and also because of the higher sensitivity

of surface observations to station relocation and local

nonclimatic effects. Thus, the detection was done sep-

arately for the surface and upper-air records. Of the

881 stations, only 776 had some metadata (mostly before

;1993) as part of the IGRA dataset. Despite very sub-

stantial efforts, most notably by Gaffen (1993, 1996), these

metadata are known to be grossly incomplete, especially

outside the northern midlatitudes, and they usually con-

tain only the year of change without specific dates. The

metadata also do not contain error information.

Because of these reasons, we did not use the metadata

directly in the changepoint detection; instead, they were

used to validate the detected changepoints. Thus, our

tests were for detecting unknown changepoints, which

involves searching over most of the data series to locate

the data points associated with a significant shift in the

mean. Testing for a mean shift at an unknown (or un-

documented) location is different from testing for a mean

shift at a known location because the critical value for the

former is much larger than for the latter (Wang 2008a,b).

This mainly affects the number of identified changepoints

with small to moderate shifts, because large shifts will be

identified using the critical values either for known or

unknown changepoints.

In our tests, changepoints with small shifts are limited

to a manageable number (less than ;15 at most stations

based on our visual examination of station data series)

by our choice of significance level and by how we com-

bine the changepoints detected at different levels and

for different DPD bins (see appendix A for details). We

made these choices based on comparisons with available

metadata after a number of experiments with different

values for the significance level and other criteria. As

in all homogenizations, there are large uncertainties in

detecting small shifts, and we had to make a choice with

regard to how many such changepoints are retained. We

recognize that our choice may not be optimal for some

stations. This could lead to either overadjustment if there

are too many changepoints or underadjustment if there

are too few of them. Improved metadata may help us in

detecting and retaining the changepoints with small shifts

in the future.

About 50% of the changepoints detected by the

K–S test of the DPD histograms were confirmed within

12 months by the PMFred test of monthly occurrence fre-

quency anomaly series. This number increases to about

two-thirds for major changepoints detected by the K–S test

(defined as those with the test statistic D being 50% above

the critical value). In many cases, the K–S test was able

to find the exact date at which an instrumental change

was indicated by the available metadata for some U.S.

stations during recent years. The changepoints from the

K–S and PMFred tests were merged to produce a final list

of changepoints, as described in appendix A.

About 45% of our final detected changepoints in

upper-air DPD data were confirmed by the available

metadata within 12 months, compared with about 41%–

42% in Durre et al. (2009), and about 72% of the

changes indicated by the available metadata were found

to be associated with a significant discontinuity by our
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tests. Figure 4 shows the DPD record length, number of

detected changepoints, and the mean segment length at

each of the 881 stations analyzed. The mean segment

length is relatively short (4–6 yr) over most stations in

the United States and western Europe, compared to

more than 6–10 yr at many stations in Asia and eastern

Europe. This may reflect a tendency to upgrade the

sounding systems more frequently in the United States

and western Europe. On average, there were about 8.6

changepoints in each of the upper-air station records

with a mean rate of approximately one change per 5 yr.

This propensity for changepoint detection and the metadata

congruence of identified changepoints are also broadly

similar to those documented in radiosonde temperature

homogenization efforts (Thorne et al. 2005; Haimberger

2007). Visual examinations of the DPD time series from

select stations confirmed that a discontinuity is likely at

many of the detected changepoints.

Six such examples are shown in Figs. 5–7 for upper-air

DPD series. The discontinuities at these stations are

often typical for other stations in their respective countries.

Available metadata generally confirmed the detected

changepoints, especially for the large shifts. For example, at

station 47580 (Fig. 6a), the detected changepoints generally

agree with known radiosonde type or software changes,

such as the change from Meisei RSII-56 to RSII-80 around

FIG. 4. (a) Radiosonde record length (years, before March 2009) for the 881 stations analyzed

in this study; (b) number of changepoints in upper-air daily DPD series based on the K–S and

PMFred tests; and (c) mean segment length (years) for the DPD series.
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1982, the introduction of MEIR91 in 1996, the improve-

ment to MEIR91 hygrometer near the end of 1999 to

reduce its dry bias (Nakamura et al. 2004), and the im-

plementation of RH wet bias correction at T , 08C

started in February 2003 (Ishihara 2004). At the Norman

station (Fig. 7a), VIZ OMEGA, VIZ B, Vaisala RS80,

Vaisala RS80 with the sensor boom cover (Wang et al.

2002), and MkIIA radiosondes were introduced in 1986,

on 24 March 1989, on 1 June 1998, in late 2000 and on

13 November 2006, respectively; and all these changes

were detected by our tests to within a few months.

Detailed metadata for station 94910 from R. Atkinson

and S. Allen (2010, personal communication) confirmed

five of the changepoints shown in Fig. 7b. For example,

the lithium chloride used in radiosondes before 25 July

1982 introduced a systematic moist bias because of its

very slow response time; and the K–S test detected

a shift at 31 July 1982 (Fig. 7b). Figure 7 shows that the

cold and dry bias corrections had a large impact on the

monthly DPD at the U.S. station before the early 1990s

and at the Australian station in Wagga in the 1980s.

The sampling bias corrections had little effect on the

monthly series at the other stations shown in Figs. 5

and 6.

Although a change in radiosonde type or observa-

tional practice may have varying impacts on different

variables (e.g., T, DPD, winds, geopotential height) in

the same radiosonde record, in many cases the change

FIG. 5. Monthly anomaly time series of the raw (dashed line, left ordinate) and final adjusted

(solid line, right ordinate) at 500 hPa from a station in (a) Lindenberg, Germany and (b)

Moscow, Russia. The vertical bars indicate the locations of the detected changepoints. The

DPD after the cold and dry bias adjustment overlays the dashed line and thus is not shown.
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will likely induce discontinuities not only in the DPD

series but also in some of the other variables at the same

time. And because the DPD discontinuities are often

more pronounced than in T and other variables, the

detected changepoints from our DPD analysis may be

helpful for identifying changepoints in radiosonde data

series for the other variables.

4. Adjusting for artificial DPD sampling biases

After the changepoints had been detected, the homo-

geneity of the DPD sampling was improved by replacing

the missing or bad DPD reports under the cold and dry

conditions discussed in section 2 with empirically derived

temperature-based estimates. These estimates used an

anomaly (relative to a multiyear mean denoted by subscript

‘‘o’’) relationship (Fig. 8) between e and homogenized

T from Haimberger et al. (2008). The empirical de versus

dT relationship was derived separately for dry (RH #

20% or DPD $ 208C) and cold (T ,2308C) conditions

using observations made during recent years, which were

2000–08 except for U.S. stations, which used 1999–2005

because of changes of radiosonde types at many U.S.

stations during 2006–08. Some stations (e.g., in Japan,

cf. Fig. 2) still had no humidity observations for T ,

2408C conditions in most recent years, in which cases

the cold de versus dT relationship was based on condi-

tions with 2408C , T , 2308C.

We tried various other forms of e versus T relationship

besides the one shown in Fig. 8, for example, applying the

natural logarithm to the y axis plus a constant; however,

we failed to improve the correlation despite the apparent

FIG. 6. As in Fig. 5, but for 700-hPa DPD from a station in (a) Japan and (b) Beijing, China. The

DPD after the cold and dry bias adjustment overlays the dashed line and thus is not shown.
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nonlinearity in Fig. 8. Because of this, a simple linear

regression was done between de and eodT/To
2 at each

station for both the dry and cold cases separately. This de

versus eodT/To
2 relationship is an approximation to the

Clausius–Clapeyron equation (des 5 const 3 esdT/T2) for

saturation vapor pressure. Daily variations in RH con-

tribute to the scatter shown in Fig. 8. For the majority of

the 881 stations analyzed, the correlation between de and

eodT/To
2 was between 0.4 and 0.8. For about 20% of the

stations, however, the correlation was weak (below 0.2) for

unknown reasons, and the regression from the closest

station was used in these cases. After many tries, we used

upper-air observations at or below the 300-hPa level for

the recent years together in the regression analysis, with

the mean eo and To for each level being removed in de-

riving the de and dT.

The regression for dry conditions was used to estimate

vapor pressure e (5eo 1 de, in hPa) from air temperature

and then DPD for 175 stations, mostly in the United

States and Australia. These stations had abnormally

high frequency of DPD 5 308C cases before a specific

date around the late 1980s to mid-1990s. We used the

following equation for vapor pressure over pure water

from WMO (2008) in the regression analysis: e 5 6.112

exp[17.62 3 Td/(243.12 1 Td)], Td 5 T 2 DPD, where T

and Td are air temperature and dewpoint temperature

in degrees Celsius, respectively. For estimating our final

humidity variables, however, this e estimate was multi-

plied by a factor of [1.0007 1 (3.46 3 P 3 1026)], where

P is air pressure in hectopascals (Buck 1981). For cases

where T was below 2308C and DPD was missing in all

the years, the regression under the cold conditions at

FIG. 7. As in Fig. 5, but from a station in (a) Norman and (b) Wagga. The thin solid line is the

DPD after the cold and dry bias adjustment.
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each station was used to estimate the e and then DPD

from air temperature.

Figure 2 illustrates the effect of the above adjustments

for the dry and cold sampling biases at one Japanese and

one U.S. station. It shows that the DPD sampling under

both conditions with T 5 2308 to 2408C and T , 2408C

is much more homogeneous after the sampling bias cor-

rection (thin lines) than the original data (thick lines). For

the Japanese station, the big jump around 1982 resulted

from a documented radiosonde change, which also

caused occurrence frequency changes for many DPD

categories (Fig. 3a). Even at the U.S. station, there is an

apparent shift in the DPD frequency for T 5 2308 to

2408C around the early 1990s, besides the previously

noticed change in DPD reporting for T , 2408C. We

also examined DPD sampling frequency for T . 2308C

conditions, but we did not find large discontinuities.

Because the adjustment discussed in the next section

requires that the data are homogeneously sampled—

that is, not biased toward certain DPD quantiles—we

need to assess the homogeneity of DPD sampling after

the cold and dry bias corrections. Here we examined the

time series of the annual number of DPD reports as a per-

centage of the total number of T reports for various DPD

categories. The number of T reports below 100 hPa

since the early 1970s is fairly stable at most stations. Thus,

it is reasonable to assume that radiosonde sampling for

T is homogeneous, that is, not biased toward certain

synoptic conditions. Because the main humidity sampling

problem results from the changing number of reports of

dry conditions (DPD . ;208C) over time, here we focus

on the sampling for DPD below and above 208C cases.

Figures 9 and 10 show two examples for stations

10393 and 47580. At the Lindenberg station in Germany

(Figs. 9a and 9b), the DPD sampling looks homogeneous

besides the two major shifts around 1992 and 2004, and

the bias corrections are trivial and had little impact. At

the Japanese station (Figs. 10a and 10b), the reports of

DPD , 208C cases show a large increase around ;1982

when the reports for DPD $ 208C do not change much

(Fig. 10a). The cold bias correction removes this sampling

discontinuity around 1982 (Fig. 10b). Without this bias

correction, the quantile-matching (QM) algorithm used

in section 5 would mistake the drop in the number of

DPD , 208C cases before 1982 as a shift toward reporting

higher DPD values and will try to decrease the DPD

values in all DPD $ 208C categories so that the contri-

bution from DPD , 208C cases will be comparable to

later years. In other words, it will mistakenly adjust the

correct measurements to make up the missed measure-

ments under cold conditions.

We also visually examined plots from other stations

and found that the sampling bias corrections signifi-

cantly improve the homogeneity of DPD sampling, and

the bias-adjusted DPD appears to be homogeneously

sampled. We emphasize that the DPD data after the bias

corrections can be homogeneously sampled even if the

frequency series after the bias corrections (Figs. 9b and

10b) still contain changes, as long as these changes offset

each other (due to discontinuities in the measured data

that are dealt with in the next section) or occur similarly

in all DPD categories (e.g., due to random higher miss-

ing data rates for older hygrometers at U.S. and other

stations).

FIG. 8. Scatterplots between vapor pressure anomaly (relative to

climatological mean eo for each day and level) and air temperature

anomaly (multiplied by eo/To
2, where To is the climatological mean

temperature for the same day and level) for (a) dry conditions (RH #

20% or DPD $ 208C) and (b) cold conditions (T , 2308C) at two

U.S. stations. Also shown is the correlation coefficient (r) between

the anomaly data.
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5. Adjusting for other discontinuities

Changes in radiosonde types, such as that occurred at

the Japanese station in 1982, can induce mean shifts in

occurrence frequencies for all DPD categories because

of different systematic measurement errors (Fig. 3a).

Obviously, the above bias corrections for the dry and

cold cases cannot remove discontinuities in all DPD

categories (cf. Fig. 3a). Figures 3a, 6, 9, and 10 all show

that additional adjustments are needed to remove the

discontinuities associated with the detected changepoints.

To further improve the homogeneity of the daily DPD

data, we adapted the quantile-matching algorithm re-

cently developed by Wang et al. (2010), briefly described

in appendix B, to adjust the daily DPD data to remove

the detected shifts. The adjustments were done sepa-

rately for 0000 and 1200 UTC and for each standard

pressure level up to 100 hPa. DPD data at higher levels

FIG. 9. Time series of annual DPD reports as a percentage of the total number of air tem-

perature reports at the 1000-, 850-, 700-, 500-, 400-, and 300-hPa levels for DPD 5 08–208, 208–

508, and 08–508C cases in the (a) raw, (b) cold and dry bias-adjusted, and (c) final adjusted DPD

data at the Lindenberg station. Note the DPD 5 208–508C case (long-dashed line) is shown on

the right-side ordinate.
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often contain many data gaps that prevent reliable ad-

justments. We used the latest segment as the reference

segment based on the fact that hygrometers generally

improve over time. We recognize that this may not al-

ways be the best choice because the last sonde type may

not have the most realistic histogram for some stations

(e.g., Fig. 1). In future studies, we plan to identify the

reference segment with the most realistic histogram for

each of the stations based on bias information for in-

dividual sonde types and comparisons to independent

humidity measures where these are available (Wang and

Zhang 2008).

Figure 11 shows that the adjustment to the individual

DPD reports can be very large (108–158C) for the top

10 percentiles for some segments. At most stations, the

adjustment is largest for the DPD reports in the top

quantiles (i.e., dry conditions). This is because DPD

histograms from many earlier hygrometers do not have

the long tail of large DPDs seen in the recent observations,

and the quantile-matching algorithm will try to adjust

the top quantiles in the histograms of earlier segments

to have such a tail to match that of modern observations.

Figure 12 shows one example for the Japanese station.

As shown by the sampling frequency series (Fig. 10),

FIG. 10. As in Fig. 9, but for a Japanese station.
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the lack of the long tail of large DPDs in Fig. 12b is not

due to undersampling of conditions with large DPDs.

Rather it is because of sensor-dependent biases that

caused overreporting of DPD , 208C cases and under-

reporting of DPD $ 208C cases, despite the homoge-

neous sampling of all conditions, as implied by the flat

solid line over the data periods in Fig. 10b. The adjust-

ments to the histograms shown in Fig. 12 act to remove

the sensor-dependent biases, not to fill in any missed

sampling of conditions with large DPDs using samples

from other occasions. The corresponding adjustments

to RH are shown in Fig. 13, which also shows the ad-

justment is largest for the driest and most humid condi-

tions. After the adjustment, the DPD series exhibit more

homogeneous variations (Figs. 5–7).

The above large adjustments under dry conditions

are consistent with our knowledge about RH biases for

old hygrometers. Many of these hygrometers have a

wet bias because of their long response time and the

fact that RH decreases sharply with height in the free

troposphere (Held and Soden 2000). For example, the

Goldbeater’s skin takes 100–200 s to respond to a change

in RH when T is below 2208C (WMO 2008), during

which time the balloon may rise by 500–1600 m with

a speed of 5–8 m s21 (WMO 2008). Thus, the hygrometer

would report the RH of the layers several hundred meters

below the nominal pressure levels. Furthermore, errors

in individual RH measurements under dry (RH 5

10%–60%) conditions can be as large as 6%–20% even

for T . 2208C (WMO 2008). Another source of error

comes from the conversion of measured RH to archived

DPD at individual stations, which can introduce errors

more than 18C under dry conditions (Elliott and

Gaffen 1993). Thus, we believe the adjustments shown

in Figs. 11–13 are reasonable, even though they are very

large for the DPDs under dry conditions for certain

segments.

Because we allowed different trends for individual

DPD categories in the detrending and used only part of

those segments longer than 5 yr in estimating the his-

togram discontinuity at each changepoint, final adjusted

DPDs with the trends included are not constrained to

have the exact same histogram as that of the reference

segment, as shown in Figs. 12 and 13. This should help

prevent overadjustment to the data.

We found that the above adjustments were able to

greatly improve the homogeneity of DPD occurrence

(Fig. 3c) and sampling (Figs. 9c and 10c) frequencies

and remove the major discontinuities associated with

changes in radiosonde types (thick solid line in Figs. 5–7).

With the adjustments, the histograms of daily DPD over

different segments are more comparable, as expected

and as shown in Figs. 12 and 13. We emphasize that the

QM-based adjustment not only alters the mean for all

segments except the reference segment but it also changes

the DPD variability of these segment so that the varia-

tions are comparable to those of the reference segment,

as shown in Fig. 6.

Despite these significant improvements, we recognize

that the QM-based adjustments made in this section

were based on the assumption that the CDF differences

before and after the detected changepoints are entirely

FIG. 11. The amount of DPD adjustment (based on QM) applied to the individual DPD

reports at 1200 UTC for the 300-hPa level at a Japanese station (47580) for different segments

(represented by different line styles) separated by detected changepoints as a function of the

DPD percentiles, with larger DPD values in the higher percentiles.
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due to nonclimatic changes. While this is largely true in

most cases for the DPD data, we cannot rule out cases

where nonlinear trends and other natural variations may

induce changes in the CDFs, thus violating this as-

sumption and causing errors in the adjustments. We also

cannot guarantee that the adjusted record is optimal in

all cases, as the adjustment is purely statistical and

automated and therefore blind to unusual cases where

limited sampling or other influences may require further

fine turning.

6. Impacts on long-term trends

To assess the global impacts of our homogenization of

the daily DPD data, we computed the annual trend from

1973 to 2008 in the unadjusted, cold and dry bias-corrected

FIG. 12. Histograms of 300-hPa DPD for 1200 UTC at a Japanese station (47580) from May

1982 to May 1986 from the (a) raw, (b) bias-adjusted, and (c) final adjusted data. (d) Also shown

is the histogram of the bias-adjusted DPD of the last segment used as the reference for the

adjustment.
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(section 4), and final homogenized DPD for stations with

DPD monthly estimates (requiring $10 days of obser-

vations per month) for at least 240 months during the

1973–2008 period. We calculated the trends in two ways: (i)

estimating the trend slope at each station and then map-

ping it onto a 2.58 3 2.58 grid for display and (ii) gridding

the station DPD anomalies onto a 2.58 3 2.58 grid and then

computing the trend for each grid box (requiring $240

months of data). We found that the trend maps from the

two approaches are very similar; we use the second ap-

proach here because it also allows area-weighted regional

averaging of the DPD anomalies. We compared the esti-

mated trends from the simple least squares fit and the

median of pairwise slopes (Lanzante 1996) and did not

find significant differences. Here we only show the trends

from the least squares fit.

Figure 14 shows large, spatially incoherent trends in

unadjusted DPD at 700 hPa during 1973–2008. In par-

ticular, large negative trends are seen over the conti-

nental United States, the Caribbean islands, Hawaii,

and other Pacific islands. These downward trends result

primarily from the practice of setting DPD to 308C

FIG. 13. As in Fig. 12, but for RH.
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FIG. 14. Annual trends [8C (50 yr)21] in (a) unadjusted, (b) cold and dry bias-adjusted, and

(c) final adjusted 700-hPa DPD data from 1973 to 2008. Hatching indicates the trend is sta-

tistically significant at the 5% level. A gridding method similar to Dai et al. (1997) with a search

radius of 1000 km was used to create the gridded DPD data, from which the trend was com-

puted. This approach was also used for Fig. 15. See Fig. 4a for station locations.
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before around October 1993 for dry conditions with RH ,

20% at U.S. and some other stations (section 2 and Fig. 1).

After the dry and cold bias corrections of section 4, most of

the negative trends disappear, with trends over the United

States becoming strongly positive as over most other land

areas (Fig. 14b). The positive trends are expected because

there is an upward trend in the sampling of dry (DPD $

208C) cases because of improved sensitivity of radiosonde

hygrometers to low humidity over the years. This time-

varying bias is clearly shown in the DPD histograms (e.g.,

Figs. 1, 12, and 13) and the frequency time series for large

DPD values (e.g., Figs. 3, 9, and 10). In particular, Australian

stations had major sonde changes around 1982/83 that re-

sulted in sharp increases in monthly-mean DPD around

this time (cf. Fig. 7b) and contributed to the large upward

trends over Australia shown in Fig. 14b. Thus, most of the

trends shown in Fig. 14b are still not real. After the addi-

tional adjustments of section 5, the DPD trends become

much smaller [within 628C (50 yr)21 or 0.48C (10 yr)21]

and statistically insignificant for more than 75% of the

sampled locations (Fig. 14c), compared with 32% and 23%

for Figs. 14a and 14b, respectively. Further evaluations

suggest that the adjusted DPD produces q and PW changes

that are more comparable with other independent mea-

surements [e.g., PW from GPS measurements (Wang et al.

2007); T. Zhao et al. 2010, unpublished manuscript; not

shown here] and more coherent spatially. This suggests that

the adjusted DPD is likely to be more realistic than the

unadjusted data, corroborating the known biases associ-

ated with changes in sonde types.

The effect on the trend in the derived q from the DPD

adjustments is also very large over most of the sampled

locations (Fig. 15). The cold and dry bias corrections

remove most of the upward trend in q over the conti-

nental United States but enhance the downward trend

over Australia. The large spatial variations in the q trend

in both the unadjusted and cold and dry bias-adjusted q

(Figs. 15a and 15b) look spurious. This is because both

tropospheric temperature and water vapor content

are determined by large-scale atmospheric circulation

(Sherwood et al. 2006), and thus their changes should

be spatially coherent, as shown by satellite observa-

tions of PW (Wentz and Schabel 2000; Trenberth et al.

2005) and temperature (Haimberger et al. 2008). Our

adjustments greatly improve the spatial coherence for

the q trend (Fig. 15c), as is usually the case for the ho-

mogenization of radiosonde temperature (Haimberger

et al. 2008). This is also true for PW trends (not shown).

For comparison, Fig. 15d also shows the 700-hPa q trend

from 1973 to 2008 derived from the European Centre

for Medium-Range Weather Forecasts (ECMWF) atmo-

spheric reanalyses (ERA; Uppala et al. 2005; Simmons et al.

2007). ERA-Interim used the homogenized radiosonde

temperature from Haimberger (2007), while the 40-yr

ECMWF Re-Analysis (ERA-40), like most other re-

analyses, used the unadjusted radiosonde data. Un-

homogenized radiosonde humidity data were used in

the ERA-40 and all other atmospheric reanalyses. The

ERA-40 q trend patterns over land resemble those of

Fig. 15b more than Fig. 15c, and they differ substantially

from our adjusted q trends, for example, over northern

mid-high latitudes. The large negative trends over the

low-latitude land areas in the ERA-40 data also appear

to be unrealistic. This suggests that water vapor trends

in atmospheric reanalyses are significantly affected by

inhomogeneities in radiosonde humidity data and thus

cannot be trusted. The large positive trends over the data-

sparse oceans in ERA-40 are also unreliable (Trenberth

et al. 2005). Use of homogenized radiosonde data could

improve the homogeneity of future reanalysis data: this

was a primary aim of this research.

Trend maps for RH (not shown) are very similar to

those for DPD (Fig. 14), with changes in tropospheric

relative humidity from 1973 to 2008 within a few per-

centage points per 50 yr. More detailed analyses of the

long-term changes in RH, q, and PW will be presented in

a separate paper.

7. Summary and concluding remarks

Motivated by the need for homogenous radiosonde

humidity data in climate analyses and atmospheric re-

analyses, we have developed a new approach to homog-

enize the twice-daily radiosonde reports of dewpoint

depression (DPD) from 881 stations included in the

IGRA dataset with data gaps filled with data from two

other datasets. Primarily because of constant improve-

ments in radiosonde hygrometers, especially in their

sensitivity to low relative humidity, response time, and

accuracy under cold conditions, large discontinuities

exist in the occurrence frequency and histograms of the

daily DPD. These discontinuities cause large mean shifts

and spatially incoherent trends in monthly time series of

DPD and the derived RH, q, and PW. However, the

monthly-mean shifts are not suitable for adjusting the

daily DPD values because the mean shifts result largely

from inhomogeneous sampling of dry and cold condi-

tions and from DPD-dependent biases in individual

measurements.

Here we first applied an improved variant of the K–S

test to the histograms of daily DPD and the PMFred test

to the monthly series of the occurrence frequency for

specified bins of DPD. The two tests agreed within

12 months on the timing of most major discontinuities,

and each of the merged changepoints was probably

associated with a discontinuity according to our visual
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FIG. 15. Annual trends in 700-hPa specific humidity [g kg21 (50 yr)21] derived from (a)

unadjusted T and DPD, (b) adjusted T (from Haimberger et al. 2008’s RICH v1.4) and cold and

dry bias-corrected DPD, (c) adjusted T and final adjusted DPD, and (d) ERA-40 (for 1973–88)

and ERA-Interim (for 1989–2008). The ERA-40 data were adjusted by M2 2 M1, where M1

and M2 are the ERA-40 and ERA-interim means, respectively, for their overlap period from

1989 to 2001. Hatching indicates the trend is statistically significant at the 5% level.
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examination of selected cases and comparison with avail-

able metadata. About 45% of the detected changepoints

were confirmed by the available and grossly incomplete

metadata within 12 months, and about 72% of the changes

documented by the metadata (some of which were not

expected to cause a discontinuity) were found to be asso-

ciated with a significant shift by our tests. On average,

there were about 8.6 changepoints in each of the analyzed

DPD records (;1 changepoint per 5 yr), most of which

started in the early 1970s and all ended in March 2009.

After detecting the changepoints, we next improved

the DPD sampling for known reporting practice issues

by estimating DPD values for the cold cases where DPD

was missing and air temperature was below 2308C for

all stations and for all years, and for the dry cases where

DPD had been set to 308C for all U.S.-operated stations

and some other stations with abnormally high incidence

of DPD 5 308C before around the early 1990s. We used

local anomaly relationships, similar to the Clausius–

Clapeyron equation, between (homogenized) air temper-

ature (T) and vapor pressure derived from radiosonde

observations for recent years for cold and dry conditions

to estimate DPD from T. The bias-adjusted DPD data

show homogeneous sampling in comparisons with ra-

diosonde temperature reports.

We then adapted the quantile-matching algorithm of

Wang et al. (2010) to adjust the histograms of the cold

and dry bias-adjusted DPD, so that they become com-

parable (but not identical) to that of a reference seg-

ment, which was chosen to be the latest one. This choice

was based on the assumption that measurements made

by newer hygrometers are generally, but not always,

more accurate than older technologies and practices.

For Wang et al.’s algorithm to work well for the DPD

data, a significant change was made in detrending the

data: we allowed each DPD category to have its own

trend instead of a common trend for all categories, as in

Wang et al. (2010). This change greatly improves the

trends in the homogenized data based on comparison

with the underlying trends in the original data and the

enhanced spatial coherency of the trend. It further al-

lows the individual segments to have slightly different

histograms after the adjustments. The adjustment was

done separately for 0000 and 1200 UTC observation

times and for each standard pressure level up to 100 hPa.

These adjustments remove most of the discontinuities

in the time series of occurrence frequency and monthly-

mean DPD. They also modify the histograms of the daily

DPD for the earlier decades to be comparable to most

recent observations. The adjusted DPD shows small

[within 628C (50 yr)21] and mostly insignificant trends

from 1973 to 2008 over the continents and many islands,

in contrast to spatially incoherent and obviously spurious

large trends [up to 6108C (50 yr)21] in the unadjusted

data. The small DPD trends indicate that middle to lower

tropospheric relative humidity has been relatively stable

during 1973–2008. The adjusted DPD data at each stan-

dard pressure level (up to 100 hPa) were used to derive

specific humidity and precipitable water in the tropo-

sphere, in combination with homogenized radiosonde

temperature based on Haimberger et al. [2008, Radio-

sonde Innovation Composite Homogenization version 1.4

(RICH v1.4)]. The trends in these derived variables are

spatially more coherent and thus likely to be more realistic

after the homogenization than in the unadjusted data.

There are two unique features in our homogenization

approach: first, it removes major discontinuities not only

in the monthly-mean time series but also in the statistical

distributions of the daily radiosonde data, which has not

been done previously; second, it does not require a refer-

ence or background series to remove the natural variations

and real trends in the data series to detect changepoints

and estimate the amount of adjustment. Instead, synop-

tic and other natural variations and long-term trends were

allowed in the DPD data. We avoided the use of a refer-

ence series (often unavailable) by analyzing the histo-

grams and occurrence frequency series instead of the data

series itself, in contrast to most previous homogeniza-

tion efforts (e.g., Haimberger 2007; Durre et al. 2009;

McCarthy et al. 2009).

We emphasize that, as in all statistical homogenizations,

the adjustments presented here were aimed to remove the

overall biases in distributions of the DPD data (not just

shifts in the mean). Adjustments to individual DPD values

may contain large errors, but overall the adjusted DPDs

are more realistic and represent climate variations and

long-term changes much better than the raw data. This

applies to any homogenization efforts, including those

using a reference or background series, because the mean

adjustment estimated from a difference series can be ap-

plied only in a statistical sense, and it may not be an ac-

curate adjustment for individual data points.

Improvements can be made to our homogenization

with more detailed and more complete metadata, better

use of the metadata in the changepoint detection, fur-

ther improvements to the sampling of the DPD data,

better detrending and removal of natural variations in

the quantile-matching-based adjustments, and quanti-

tative bias information for specific sonde types, such as

those presented in Wang and Zhang (2008). With the

additional information, we may be able to identify a

segment with the most realistic DPD distribution, re-

move any biases in the DPD data over this segment, and

then use it as the reference segment for the quantile-

based adjustment for each station instead of using the

last segment at every station.
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Our homogenized-daily DPD data, together with ad-

justed air temperature (based on Haimberger et al. 2008)

and derived q and RH and other raw sounding data, at

standard pressure levels for all 881 stations will be avail-

able freely online (at www.cgd.ucar.edu/cas/catalog/). We

believe that use of this dataset in climate analyses and

atmospheric reanalyses should improve the homogeneity

of the upper-air temperature and humidity fields and thus

long-term trends in these and other related fields.
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APPENDIX A

Details of the Detection of Changepoints in
Twice-Daily DPD Data

a. K–S test

As in most statistical tests, the K–S test is usually ap-

plied to two given samples for testing whether the sam-

ples have similar distributions. However, for detecting

unknown changepoints, a search over the entire time

series (except some endpoints) is needed to locate the

unknown changepoint that produces the largest proba-

bility for the two samples separated by this changepoint

to have different distributions based on the K–S test.

Because of this, the critical value for a given significance

level for our K–S test is larger than that used in the

standard K–S test applied to two fixed samples as in Press

et al. (1992). We had to use a large number of Monte

Carlo simulations to generate the empirical critical values

(CVs) for our K–S test (see below), as was done for the

PMFred test (Wang 2008b). This is an important but of-

ten overlooked difference between testing for unknown

(or undocumented) and known (or documented) change-

points using any statistical test.

We used Monte Carlo simulations to estimate the CVs

for detecting unknown changepoints using Kuiper’s

statistic, an improved variant of the K–S test (Press et al.

1992, p. 621). For each case, 200 000 simulations were

used based on results from test runs that showed very

similar CVs using either 100 000 or 200 000 simulations.

Synthetic random time series were generated from a

Gaussian process N(0, 1) with zero mean and unit stan-

dard deviation. A first-order autoregressive model (AR1)

was used to create autocorrelated time series from the

N(0, 1) random-number generator. Because the K–S test

statistic D is based on the maximum difference between

the CDFs of the two tested samples and D’s distribution

is independent of the probability distributions of the

sample data (Press et al. 1992), the CVs derived using

the Gaussian process is representative for other types

of data. This was confirmed in our experiments where

the data points were randomly sampled through simple or

block bootstrapping of real DPD data with non-Gaussian

distributions (cf. Fig. 12d). The block bootstrapping

randomly samples a consecutive segment (e.g., five data

points) each time, so the autocorrelation within the

original data is roughly preserved.

As in the test of the DPD data, we searched only over

the middle third of a given time series. In general, the

search has been done over a wider section (Wang 2008a,b);

however, for our daily DPD data, we had sufficient data to

search only the middle year of a moving 3-yr data window

(see below) because we required a minimum of 300 data

points on either side of the tested point. For example, for

a time series with 900 points (N 5 900), the search for

a changepoint was done only over the 301st–600th data

points. Because we applied the K–S test each time to data

points over a short (3 yr) period, changes induced by long-

term trends are likely to be small compared with any

nonclimatic shift within the same period.

The values of the test statistic D from the 200 000 tries

for each given combination of N and r1 (lag-1 autocorre-

lation) were ranked and the values for the 80th, 90th, 95th,

99th, 99.9th and a few other select quantiles were saved as

the CVs for use in the K–S test for unknown changepoints.

Figure A1 shows that the CVs decrease rapidly as the

sample size N increases to around 900; thereafter, the de-

creasing rate levels off as one would expect. The CVs are

also higher for autocorrelated time series and for smaller a

values for a given N. We emphasize that the CVs may be

different if the search is done differently rather than over

the middle third of the series. For example, in the extreme

case, the search can be only over the middle point of the

series (i.e., testing for distribution difference in two given

samples), and the CVs would follow D’s analytical distri-

bution presented in Press et al. (1992).

We applied the K–S test to a moving, 3-yr window

of twice-daily DPD anomaly series at each station, with

the long-term mean for each day of the year and each

observation time being removed. The search was done

only over the middle year, then the data window moved
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forward by one year. The data window was extended

backward (forward) if the first (second) segment in the

data window contained fewer than 300 data points. The

test was applied separately to surface and 850- and 700-hPa

levels, which had the fewest missing data. Upper levels

often contain too many data gaps in the earlier years,

making the K–S test ineffective. The changepoints from

the 850- and 700-hPa levels were merged as follows: any

two changepoints within 300 days were considered as

the same shift and only the one with the larger test

statistic D was kept. We used this combination based on

our observations that changepoints may become obvious

at different levels, as the effect of an observational change

(e.g., relocation) varies with height. We used the CVs for

the 99.9th quantile in our K–S tests to obtain a manageable

number of changepoints (e.g., fewer than 15 for most

stations) that were roughly comparable to those from

the PMFred test. Visual examinations revealed that the

changepoints detected by the K–S test captured all the

obvious shifts in the DPD monthly time series.

b. Application of the PMFred test

The PMFred test of Wang (2008b) was used to detect

mean shifts in the time series of monthly-mean occur-

rence frequency for individual bins of DPD (cf. Fig. 3).

Starting from the whole series, the PMFred test finds

the most probable (i.e., with the largest probability) and

significant changepoint (if exists) that divides the whole

series into two segments, it finds the most probable and

significant changepoint within each of these two seg-

ments, and then it reevaluates the significance for each

of the detected changepoints given the existence of the

other changepoints and removes any insignificant ones.

This process continues until no new changepoints are

found or the segments reach a preset minimum length.

The PMFred test allows a long-term trend and auto-

correlation in the time series and thus a reference series

is not required. The occurrence frequency was calcu-

lated using the unadjusted DPD data separately for the

surface and upper-air levels. Reports from the 1000-,

850-, 700-, 500-, 400-, and 300-hPa levels were combined

in computing the upper-air frequency to increase the

sample size. The frequency time series for the following

DPD bins (in 8C, ‘‘[’’ for inclusive) were tested sepa-

rately with a nominal a value of 5%: [0, 1), [1, 5), [5, 10),

[10, 15), [20, 25), [25, 29.99), [29.99, 30.01), and [30.01,

40) for upper-air DPD; and [0, 1), [1, 3), [3, 5), [5, 7), [7,

11), and [11, 15) for surface DPD. Time series with fewer

than 120 months of data were skipped. If there were more

than one changepoint detected within any 12-month

period from the tests of the frequency series for all the

DPD bins, then only the changepoint with the largest

value of the test statistic was retained.

The PMFred test assumes a common trend in the

whole tested series and it does not require a reference

series. The DPD, unlike q or PW, is relatively stable and

contains only small trends. This should minimize any

long-term trends in the DPD sampling frequency and

thus helps the PMFred test. In general, we found the

mean shifts induced by nonclimatic changes in the fre-

quency series are much larger than trends induced by

real long-term changes in the DPD series. Furthermore,

short-term variations in the frequency series are rela-

tively small compared with those in the DPD data series

FIG. A1. Critical values determined from Monte Carlo simula-

tions with 200 000 tries for each case as a function of both sample

size N and (a) lag-1 autocorrelation (r1) with a fixed significance

level of 5%, and (b) significance level (a) with no autocorrelation

for the K–S test (Kuiper’s statistic; Press et al. 1992, p. 621). It is

assumed that the search for the changepoint is done over the

middle third of the time series.

15 FEBRUARY 2011 D A I E T A L . 987



(cf. Figs. 3 and 6). Thus, the use of the DPD sampling

frequency series, instead of the DPD data series itself, in

the PMFred test should improve the test results.

c. Synthesizing the results of the K–S and
PMFred tests

The changepoints detected by the K–S and PMFred

tests are usually very close for major discontinuities. For

small to moderate discontinuities, they may not agree

with each other (see statistics in section 3). To account

for uncertainties in the detected locations and to limit the

final number of changepoints to a manageable level (e.g.,

fewer than 15 for most stations), we combined the

changepoints as follows: 1) if both the K–S and PMFred

tests detect a changepoint within 12 months of each other,

then the exact date from the K–S test is used as the lo-

cation of the shift; 2) if one test detects a changepoint but

the other does not within a 12-month range, then this

changepoint is retained only if the test statistic is 20%

above the critical value. This extra 20% requirement was

chosen empirically to limit the number of small to mod-

erate changepoints in the combined final list of change-

points.

Unlike tests of single time series, here we had to make

a number of choices in our tests because we were exam-

ining multiple levels and multiple frequency time series,

and we were using two different tests on two differ-

ent variables (i.e., DPD distribution and occurrence fre-

quency). An implicit assumption was that an instrumental

or observational change in radiosonde observations will

cause a discontinuity at the same time for all upper-air

levels but with varying magnitudes and properties, so that

the discontinuity may be detected more easily at some

levels or in one of our tests than in others. Obviously, the

combined changepoints will have a false-alarm rate—that

is, the percent of the detected changepoints not associ-

ated with an actual discontinuity—different from what

the nominal significance level (i.e., the a value) implies.

This is true in all attempts to combine changepoints from

more than tests, in which both the detection rate and

false-alarm rate will increase if passing either test con-

stitutes detection, but they decrease if a confirmation is

required by more than one test or at numerous levels.

As pointed out in section 3, the final list of change-

points for each station may change if different choices

were used in the tests. This will mostly affect the number

of changepoints with small to moderate discontinuities

because the large ones will be detected with any reason-

able choices. Our visual examinations of DPD time series

plots from select stations suggest that our changepoints

are reasonable and capture all the major discontinuities.

While improvements can be made in detecting small to

moderate discontinuities with improved metadata and

optimized choices, the effects of the small to moderate

discontinuities on estimated long-term trends are much

smaller than those from the large ones. We realize that it

is subjective regarding how many changepoints one re-

tains from statistical tests. This has a potential conse-

quence: too many can lead to overadjustment whereas

too few may cause underadjustment.

APPENDIX B

A Brief Description of the QM Algorithm

The QM algorithm of Wang et al. (2010) includes

several steps: 1) detrend the data series to be homoge-

nized, using the linear trend estimated from a multiphase

linear regression fit that accounts for the mean shifts at

the changepoints in the data series (see Wang 2008b); 2)

for each changepoint to be adjusted, divide the data in

the chosen time periods (up to 5 yr) immediately before

and after the changepoint into Mq (54–10; see below)

quantile categories, and for each quantile, compute the

differences between the means of the two periods; 3)

in cases of more than one changepoint, accumulate the

differences in such a way that the resulting adjustments

will lead to adjusting all segments to a chosen reference

segment [see Eq. (10) in Wang et al. (2010)]; 4) fit a nat-

ural spline to the (accumulated) Mq category-mean dif-

ferences between the segment to be adjusted and the

reference segment (Fig. 11); and 5) use the fitted spline

value that corresponds to the empirical cumulative fre-

quency of the datum in the segment as the adjustment

amount. The linear trend removed during the detrending

is added back to the adjusted data series. See sections 5–7

in Wang et al. (2010) for more details about the QM al-

gorithm and its assumptions, caveats, and ways to relax

the assumptions.

As pointed out by Wang et al. (2010), different trends

can be estimated for data in different seasons during

the detrending step. Similarly, we estimated and re-

moved a linear trend for the DPD data in each quantile

category before the QM adjustment, because the DPD

data in different quantile categories appear to have

different trends (i.e., quantile-dependent trends). That

is, we stratified the daily DPD data into categories and

fit a multiphase regression model to the series of DPD

data in each of the Mq categories separately. Detrending

with one common trend for all Mq categories did not

work well for the DPD data series (Fig. B1) because

it cannot remove the quantile-dependent trends in the

DPD data. Note that allowing quantile-dependent trends

in the data allows a gradual change over time in the shape

of data distribution, although such gradual change is
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usually small. Also, the multiphase regression fit only

accounts for segment-mean shifts (i.e., one shift value for

all data in the same segment), not a value-dependent shift

as in the QM adjustment. This inconsistency, however,

does not appear to be a problem for the DPD data

series. The detrending approach seems to work well for

the DPD data, as shown by the dark solid line in Fig. B1

and spatially coherent DPD trend patterns (see section

6). Figure B1 shows that trends in the final adjusted

DPD (dark solid lines) are comparable to the appar-

ent underlying trends in the original data series (dashed

lines) when the detrending was done separately for

each category. In contrast, detrending the whole data

series with one common trend leads to an unrealistic

trend for both data series (thin solid lines in Fig. B1).

In the QM adjustment of the DPD data, we assumed

that the Mq category-mean differences between the two

chosen parts of segments separated by a changepoint

completely result from nonclimatic changes at the

changepoint. This is equivalent to assuming that, except

for the linear trends that we estimated and set aside for

each of the Mq quantile categories at the beginning of

the QM algorithm, there are no low-frequency natural

changes in the DPD data over the period covered by the

FIG. B1. Monthly anomaly time series from daily DPD data with the cold and dry bias ad-

justment only (dashed line) and with additional adjustments based on the QM of Wang et al.

(2010) with a common trend (thin solid line) for all categories and separate trends for individual

categories (dark solid line) for detrending the data before the QM-based adjustment. (top) The

surface DPD is from Lindenberg, and (bottom) for 500-hPa DPD from Norman. The vertical

bars indicate the locations of the detected changepoints. Note the mean of the time series may

be shifted upward or downward to separate the lines.
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two chosen parts of segments separated by the change-

point that could cause changes in the DPD distribution.

Because of this assumption, how one estimates and pre-

serves the deterministic components (trends and natural

low-frequency variations) in the data series to be adjusted

may have a significant impact on the final adjusted data.

In particular, a bias in the linear trend estimate will be

passed on to the adjusted data series (e.g., as shown in

Fig. B1).

We also tried an additional iteration, in which the

adjusted DPD data (with the category-dependent trends

added back) were used to reestimate the trends for in-

dividual categories for detrending the unadjusted data

before estimating the final adjustment. The reason for

the iteration is that the first estimates of adjustment

remove most of the quantile-dependent shifts, so that

the mean-shifts in the second multiphase model fit are

small, which could potentially improve the estimate of

the trend for each category. However, tests showed that

the improvement from the additional iteration was

small. Thus, we only show results without the iteration in

this paper.

Tests also showed that the histogram of the adjusted

DPD data is not very sensitive to the choice of Mq—the

number of quantile categories used to estimate the

spline for use to derive the QM adjustments. We used

Mq 5 4 ; 10, depending on the length of the shortest

segment in a given DPD data series (the minimum num-

ber of data for estimating a category mean is 20; that is,

there must be at least Mq 3 20 data points in a segment).

Note that we used a chosen part of segment with up to

1825 data points (over 5 yr if no data gaps but longer if

there are missing values) before and after a changepoint to

estimate the Mq category differences and then the spline.
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