
T here has been much interest in understanding

 and reconciling rapid surface warming with

 upper-air temperatures, which were reported 

to have exhibited little if any warming over the 

satellite era (Folland et al. 2001; NRC 2000). This 

has led to a number of new satellite- (Christy et al. 

2003; Mears et al. 2003; Grody et al. 2004), radio-

sonde- (Lanzante et al. 2003; Thorne et al. 2005), 

and reanalyses- (Uppala et al. 2005) based upper-air 

temperature datasets. Many of these agree in char-

acterizing specific short-time-scale atmospheric 

features [e.g., El Niño–Southern Oscillation (ENSO), 

volcanic response], but diverge substantially in their 

long-term large-scale mean trends (Seidel et al. 2004). 

Their construction has actually served to increase 

the spread in reported long-term trends, nominally 

increasing our uncertainty.

We can no longer absolutely conclude whether 

globally the troposphere is cooling or warming 

relative to the surface. Clearly, however, the climate 

system has evolved in one unique way. Hence the 

challenge to the climate science community is to 

understand the reasons for the coherent differences 

between available datasets, and to discern the true cli-

mate evolution. The key first step is to understand the 

likely sources and causes of errors and biases. Only 

with this knowledge can we hope to truly reconcile 

the differences and gain a more complete and accu-

rate picture of the true climate system evolution.

SOURCES OF UNCERTAINTY IN CLIMATE 
RECONSTRUCTIONS. An instrument is used 

to measure an atmospheric state variable, such as 

temperature. Once an observation has been made, 

it requires recording, sending, and collating into 

global digitized records. At all of these stages either 

errors or deliberate (but potentially incorrect and 

unrecorded) modifications to the raw data can be 

incorporated. Furthermore, observations have gener-

ally been made to satisfy the immediate demands of 

analysis for short-term weather forecasting with little 

emphasis on the long-term stability of the observing 

UNCERTAINTIES IN CLIMATE TRENDS
Lessons from Upper-Air Temperature Records

BY PETER W. THORNE, DAVID E. PARKER, JOHN R. CHRISTY, AND CARL A. MEARS

The range of trends in upper-air temperature datasets shows that dataset construction 

methodologies can add significant bias; we illustrate how this arises and offer

potential means of reconciliation.

Editors’ note: Also read the related meeting summary about upper-
air temperature trends on page 1471.
AFFILIATIONS: THORNE AND PARKER—Hadley Centre for Climate 
Prediction and Research, Met Office, Exeter, United Kingdom; 
CHRISTY—Earth System Science Center, University of Alabama in 
Huntsville, Huntsville, Alabama; MEARS—Remote Sensing Systems, 
Santa Rosa, California
CORRESPONDING AUTHOR: Dr. Peter Thorne, Hadley Centre 
for Climate Prediction and Research, Met Office, Fitzroy Road, 
Exeter, EX4 1PB, United Kingdom
E-mail: Peter.Thorne@metoffice.gov.uk
DOI:10.1175/BAMS-86-10-1437

In final form 16 June 2005
©2005 American Meteorological Society

1437OCTOBER 2005AMERICAN METEOROLOGICAL SOCIETY |



system. Hence there have been numerous changes in 

instrumentation and observing practice to improve 

forecasts. Unfortunately these changes have often 

introduced spurious nonclimatic signals into long-

term records, masking the true climate signal in the 

raw data. To make matters worse, many such changes 

have not been recorded and/or collated. The ques-

tion of long-term stability of the network for climate 

monitoring purposes, and the specific requirements 

thereof, has only begun to be seriously addressed over 

the last decade or so.

Ideally, we would have an independent ground-

truth measurement that did not change in character-

istics over time, against which we could compare our 

historical databases so as to derive absolute adjust-

ments for nonclimatic influences: a transfer standard. 

Unfortunately we have no effective transfer standard 

that we can use to unambiguously retrieve the true 

underlying time series from the available historical 

data for any climate variable. Therefore, we can only 

ever gain an estimate of the true climate evolution in 

creating climate datasets.

In any typical treatment to form a climate dataset, 

hundreds or thousands of individual adjustments 

can be applied. Because we have no absolute transfer 

standard, each of these individual adjustments will 

a priori retain a nonclimatic signal of unknown 

sign and magnitude regardless of how reasonable 

and physically plausible the chosen homogenization 

approach. There also remain serious issues of repeat-

ability when seemingly unavoidable expert judgments 

have to be made to identify and adjust for spurious 

biases in the raw data. The probability of all the 

dataset treatment errors/biases summing exactly to 

zero in any final dataset, even on large space and time 

scales is infinitesimally small (and even then would 

not guarantee a zero-trend bias). Hence a number of 

seemingly physically acceptable methodologies for 

constructing a dataset from the same raw data will 

yield a range of solutions rather than converge to a 

single point solution.

In all observational datasets there exist two sourc-

es of uncertainty (error): structural uncertainty arises 

through the choice of approach; parametric uncer-

tainty (also known as value or internal uncertainty) 

is the uncertainty given the chosen approach in the 

presence of a finite sample of data. Traditionally 

investigators have only considered parametric un-

certainty when calculating error estimates. If they 

have considered structural uncertainty then it has 

been through tweaking their methodologies, but this 

yields a limited assessment of structural uncertainty. 

Different investigators starting from scratch may 

choose radically different approaches that still appear 

to be physically rigorous and yet come to significantly 

different solutions.

In each individual dataset, structural uncertainty 

adds systematic bias, but, aggregated over many in-

dependent, plausibly constructed datasets, it should 

be a random effect. So, increasing the number of 

datasets decreases the uncertainty; the “unmasking” 

of uncertainty by new analyses must not be used 

as an excuse not to produce independently derived 

datasets. When only a single dataset exists, and in 

the absence of any other information, our structural 

uncertainty must, by definition, be infinite. More 

datasets enable constraints to begin to be placed on 

the structural uncertainty and permit investigation 

of the causes of differences. So multiple independent 

efforts must be undertaken to create climate datasets. 

It is important that these efforts be truly independent 

to minimize the chances of results clustering around 

a single initial estimate or small set of estimates of the 

value of, for example, the long-term trend, which may 

eventually be proven wrong.

MICROWAVE SOUNDING UNIT CHAN-
NEL-2 TIME SERIES: AN ILLUSTRATION 
OF STRUCTURAL UNCERTAINTY. The 

(Advanced) Microwave Sounding Unit [(A)MSU] 

instrument is a passive microwave sensor that has 

been f lown on consecutive National Oceanic and 

Atmospheric Administration (NOAA) polar orbit-

ing satellites since mid-November 1978. The instru-

ment measures upwelling microwave emissions from 

oxygen, and to a lesser extent, water vapor in deep 

atmospheric layers; these emissions are subsequently 

converted to brightness temperatures. Three groups 

(Christy et al. 2003, hereafter UAH; Mears et al. 

2003, hereafter RSS; Grody et al. 2004, hereafter UM) 

have recently produced new time series based upon 

brightness temperatures from channel 2 (channel 5 

on AMSU), which incorporates information from the 

surface to the lower stratosphere.

MSU structural trend uncertainty can be simpli-

fied to a flow diagram (Fig. 1). All three groups take 

identical input data from the satellite data archives 

at NOAA National Environmental Satellite, Data, 

and Information Service (NESDIS). These are then 

adjusted for the nonclimatic effects of known or 

strongly suspected causes of inter- and intrasatellite 

biases. In the absence of agreed to rigorous transfer 

standards between radiances measured by different 

satellites there is no objective way to specify the opti-

mal correction procedure, so a degree of subjectivity 

is inevitably introduced.
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It may prove dangerous to assume that our cur-

rent range of estimates accurately characterizes 

structural uncertainty. Previous versions of UM and 

UAH have differed from their current versions by 

up to a similar magnitude to the currently reported 

trends as new effects have been recognized and ac-

counted for, or adjustment procedures refined with 

improved physical understanding. For example, the 

initial version of the UM dataset reported a warm-

ing of 0.24 K decade–1 (Vinnikov and Grody 2003), 

but ignored the instrument body temperature effect, 

which both remaining groups found to be important. 

When this was taken into account the trend was 

reduced to 0.17 K decade–1 in closer agreement with 

other available estimates. Furthermore, even within 

a given approach choices can have a large effect. Us-

ing the “backbone satellite merging” method of UAH 

and repeating the sensitivity study of Christy et al. 

(1998) about choices of satellites to merge, but using 

channel 2 rather than 2LT, yields a range of 0.08 K 

decade–1 in the resulting trends. There are reasoned 

arguments that could be made for any of these merg-

ing pathway choices.

As a community we must assume that the latest 

dataset versions are the best estimates based upon 

investigators knowledge and experience using the 

data. However, clearly unknown, ignored, or poorly 

characterized biases could explain at least part of 

the residual differences. Importantly, although the 

groups generally agree on the important nonclimatic 

influences there are some remaining disagreements. 

The true structural uncertainty may therefore be 

larger or smaller than the current range of estimates 

suggests.

Indeed, we could conceive of a very large number 

of physically plausible mechanisms for adjusting MSU 

time series for nonclimatic effects and hence create a 

distribution of plausible datasets. However, we have 

no information as to the trends that would result. A 

large spread in trends would imply that the satellite 

data are insufficiently constrained to improve our 

understanding of long-term climate change despite 

providing useful information on climate variability 

on shorter time scales. Conversely, a small spread 

of trends would imply that at least one of the cur-

rent datasets is not physically plausible. Although 

creating such a range of datasets is highly desirable, 

there are serious resource implications that make 

such an explicit treatment of structural uncertainty 

impractical.

WHEN IS STRUCTURAL UNCERTAINTY 
LIKELY TO BE IMPORTANT? MSU is used in 

this essay solely as an example. Because there has 

been debate over the veracity of early UAH versions, 

a number of independent efforts have been made to 

construct and refine climate datasets from the raw 

MSU data. Unlike efforts to create climate datasets 

at the surface and from radiosonde records, the MSU 

groups have all used the same input data, meaning 

that differences will arise solely due to processing 

choices. Therefore MSU is the best current example 

that we can use to illustrate the problem of structural 

uncertainty. We stress that structural uncertainty will 

also be applicable to other climate variables and data 

from nonsatellite platforms.

We can generalize that from a hypothetical view-

point structural uncertainty will be largest given 

the following “problems” with the raw data (in no 

particular order):

• if the variable is being measured by a single or very 

small number of instruments with little overlap;

• if the spatial sampling density is low, especially for 

variables with small spatial scales such as precipi-

tation;

• if changes are pervasive across the observing 

network, especially so if they are undertaken co-

incidentally across large regions;

• if the temporal sampling changes over time; or

FIG. 1. Flow diagram to illustrate the processing of 
MSU channel-2 datasets from UAH, RSS, and UM. The 
processing of the raw data to account for the inter- and 
intrasatellite nonclimatic influences is uncertain and 
hence represented as a gray box. Arrows from the 
biases are bidirectional, since the processing typically 
both estimates and utilizes the various biases. Result-
ing decadal trend estimates are shown on the rhs and 
exhibit a spread of similar magnitude to the reported 
trend.
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• if changes to observing procedures are poorly 

documented.

Plausibly the structural uncertainty will be larger for 

datasets constructed from relatively sparse “fire and 

forget” radiosondes or single-instrument satellite 

monitoring than from the relatively dense and stable 

surface observing network.

CAN WE CONSTRAIN STRUCTURAL UN-
CERTAINTY? Climate change detection studies are 

sensitive to the choice of a tropospheric temperature 

dataset (Thorne et al. 2003; Santer et al. 2003). As we 

do not know which observed upper-air temperature 

dataset is closest to the “truth” we are prevented 

from understanding the causal mechanisms behind 

observed climate change. Similar sensitivities are 

likely to be evident for many other climate variables. 

Hence, extensive efforts to understand climate 

model uncertainties (e.g., experiments such as www.
climateprediction.net) will be greatly hindered 

without accompanying efforts to understand and 

rigorously constrain observational uncertainties 

in the quantities against which models are being 

compared.

We strongly caution that one cannot use model 

simulations to determine which observational data-

sets are “correct” as we may merely screen out obser-

vations that do not agree with our models, thereby 

making model errors invisible. An historical example 

of this was the automated screening out of low ozone 

levels over Antarctica that lead to a delay of several 

years in identifying and recognizing the importance 

of the ozone hole (e.g., Farman et al. 1985).

Independent data derived from other observing 

platforms or from reanalyses could be used to at-

tempt to place useful constraints on our uncertainty 

in climate datasets. Such comparisons have already 

begun (Christy et al. 2003; Seidel et al. 2004), but their 

utility is severely limited if all datasets have serious 

flaws. Furthermore, any a priori weighting toward 

preferred datasets against which to compare could 

artificially bias intercomparison analyses and yield 

a false sense of agreement.

Returning to our MSU channel-2 example, 

analysis of differences between UAH and RSS 

MSU series suggests that much of the global-mean 

trend discrepancy arises over a series of very short 

satellite transitions (NOAA-6 to NOAA-9) in 1987 

(Mears et al. 2003). For very short overlaps the re-

sults are highly sensitive to the chosen intersatellite 

adjustment technique. Over these transitions we 

may be able to assume that nonclimatic changes in 

radiosonde and reanalyses products are small in 

comparison to, and independent of, the intersatellite 

bias effect. Therefore it might be possible to use these 

independent data to constrain this particular aspect 

of MSU long-term trend discrepancies (Christy and 

Norris 2004).

The global climate system is complex and an 

understanding of the evolution of a single variable 

alone is not a sufficient constraint to comprehen-

sively understand the climate system evolution. 

In addition to temperature, it is also necessary to 

consider changes in a number of other variables, 

including vapor pressure/humidity, cloud cover 

and height, outgoing longwave radiation (OLR), 

atmospheric circulation, and ocean heat uptake. 

Much of the data required to create climate quality 

datasets in nontemperature variables already exist. 

Initial efforts to create climate datasets for some of 

these variables have also been made. However, many 

further efforts are required to bring these datasets 

up to the current state of temperature-based analy-

ses, which have historically had the most attention 

paid to them. Geographical patterns of evolution in 

these complimentary variables will provide useful 

additional information and physical understanding 

that can help to constrain the structural uncertainty 

in temperature time series (and vice versa) and, per-

haps more importantly, climate models. Continued 

construction and cross-validation of multivariate 

climate datasets must therefore be seen as a high 

priority.

SUPPORT FOR A FUTURE REFERENCE 
NETWORK. We can probably do little to provide 

retrospectively the absolute transfer standards that 

would allow us to remove much if not all of the 

structural uncertainty in historical climate records. 

However, we can learn from the past and instigate 

such standards for the future.

A reference network providing a multisite, multi-

instrument calibration system consisting of surface, 

radiosonde, and satellite-based instruments should be 

instigated as a matter of urgency. This network will 

require a dedicated end-to-end management system 

with climate as the primary customer and result 

in a freely available database for use by the climate 

research community. Through having multiple inde-

pendent measurements of the same variable colocated 

in space and time, a thorough understanding of in-

strumental biases and errors would be gained. If we 

had such a network then we would, at the very least, 

significantly reduce and likely eradicate uncertainty 

in our future climate monitoring activities.
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What a reference network does not necessar-

ily require is saturation (extensive) global cover-

age—the network acts as anchor points for the more 

global networks, which necessarily have operational 

weather requirements as their primary customers. A 

well-designed coverage of perhaps 50 sites globally 

would likely be sufficient. Although such sites will 

prove expensive, they are relatively inexpensive in 

comparison to our operational (particularly satellite 

based) programs. There would be additional benefits 

for instrument development, radiative transfer code 

development, and model development, among other 

applications.

Efforts underway at NOAA and through the World 

Meteorological Organization (WMO) Global Climate 

Observing System (GCOS) Implementation Plan 

(GCOS 2004) to plan and instigate a global reference 

network should be strongly supported by the climate 

community. Without such a reference network being 

established, it is likely that in 20 years time the climate 

community will still be struggling with uncertainty 

and unable to ascertain true climatic variations.

CONCLUSIONS. Following reports of a surface 

warming and a concurrent relative lack of warming 

aloft globally over the satellite period (Folland et al. 

2001; NRC 2000) several groups have attempted 

to produce independent estimates of the true tem-

perature variations aloft. There exists a pronounced 

spread in long-term temperature trends (e.g., Seidel 

et al. 2004)—the variable of most interest to policy 

makers. We argue that such a spread is inevitable, 

resulting from unintentional bias arising from the 

chosen methodological approaches: structural un-

certainty. The challenge is to quantify the true spread 

of physically plausible solutions, given the limited 

number of datasets. If it is small then at least some 

of the current datasets must be physically unrealistic, 

whereas if it is sufficiently large then we cannot con-

clude anything meaningful about long-term trends 

aloft. Although we use upper-air temperatures as an 

example, we contend that structural uncertainty will 

be generic to all climate data records.

Production of a sufficiently large number of in-

dependent datasets to resolve structural uncertainty 

explicitly is unrealistic. However, an important lesson 

is that single datasets for a given variable will give a 

conservative estimate of the true uncertainty and 

hence a number of independently produced versions 

are both useful and required. The more independent 

versions the better, but we contend that three inde-

pendently derived datasets is probably the minimum 

in order to get a handle on the magnitude of likely 

structural uncertainty. Efforts to strictly quantify 

observational uncertainty are critical if current en-

deavors to understand and better quantify climate 

model uncertainties are to prove optimal.

We cannot use climate models to differentiate 

between observational datasets as the models may 

be wrong. We could use independent datasets for 

specified subperiods to constrain uncertainty. For 

example, over the short NOAA-9 satellite transitions, 

when much of the long-term MSU trend uncertainty 

arises (Mears et al. 2003), radiosonde and reanalysis 

data could be used to constrain the intersatellite 

biases. More promising is the consideration of mul-

tivariate changes to constrain our uncertainty in 

individual variables. This requires much greater ef-

forts than have been made to date to construct climate 

quality datasets of, for example, OLR, humidity, and 

ocean heat content. Although a necessary prerequisite 

for model validation, consideration of temperatures 

alone is not adequate. Showing that climate models 

capture multivariate changes across a wide range 

of variables would provide increased confidence in 

projections compared to traditional approaches that 

have, almost exclusively, considered temperature (or 

derived product) changes alone.

Looking forward, most of the uncertainty could be 

eradicated by setting up and maintaining a reference 

network from which absolute transfer standards can 

be derived. Efforts under way to implement such a 

network should be given the highest priority.
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