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Amplification of Surface
Temperature Trends and Variability

in the Tropical Atmosphere
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M. F. Wehner,6 P. J. Gleckler,1 J. S. Boyle,1 W. D. Collins,2

K. W. Dixon,7 C. Doutriaux,1 M. Free,4 Q. Fu,8 J. E. Hansen,9

G. S. Jones,5 R. Ruedy,9 T. R. Karl,10 J. R. Lanzante,7 G. A. Meehl,2

V. Ramaswamy,7 G. Russell,9 G. A. Schmidt9

The month-to-month variability of tropical temperatures is larger in the tro-
posphere than at Earth’s surface. This amplification behavior is similar in a range
of observations and climate model simulations and is consistent with basic
theory. On multidecadal time scales, tropospheric amplification of surface
warming is a robust feature of model simulations, but it occurs in only one
observational data set. Other observations show weak, or even negative, ampli-
fication. These results suggest either that different physical mechanisms control
amplification processes on monthly and decadal time scales, and models fail to
capture such behavior; or (more plausibly) that residual errors in several ob-
servational data sets used here affect their representation of long-term trends.

Tropospheric warming is a robust feature of

climate model simulations that include histor-

ical increases in greenhouse gases (1–3). Max-

imum warming is predicted to occur in the

middle and upper tropical troposphere. Atmo-

spheric temperature measurements from radio-

sondes also show warming of the tropical

troposphere since the early 1960s (4–7), con-

sistent with model results (8). The observed

tropical warming is partly due to a step-like

change in the late 1970s (5, 6).

Considerable attention has focused on

the shorter record of satellite-based atmo-

spheric temperature measurements (1979 to

present). In both models and observations,

the tropical surface warms over this period.

Simulated surface warming is amplified in

the tropical troposphere, corresponding to a

decrease in lapse rate (2, 3, 9). In contrast,

a number of radiosonde and satellite data

sets suggest that the tropical troposphere has

warmed less than the surface, or even cooled,

which would correspond to an increase in

lapse rate (4–12).

This discrepancy may be an artifact of

residual inhomogeneities in the observations

(13–19). Creating homogeneous climate records

requires the identification and removal of non-

climatic influences from data that were primar-

ily collected for weather forecasting purposes.

Different analysts have followed very different

data-adjustment pathways (4–7, 12, 14, 17).

The resulting Bstructural uncertainties[ in ob-

served estimates of tropospheric tempera-

ture change (20) are as large as the model-

predicted climate-change signal that should

have occurred in response to combined human

and natural forcings (16).

Alternately, there may be a real disparity

between modeled and observed lapse-rate

changes over the satellite era (9–11, 21). This

disparity would point toward the existence of

fundamental deficiencies in current climate

models (and/or in the forcings used in model

experiments), thus diminishing our confidence

in model predictions of climate change.

This scientific puzzle provides consider-

able motivation for revisiting comparisons of

simulated and observed tropical lapse-rate

changes (10, 13, 21, 22) with more com-

prehensive estimates of observational uncertain-

ty and a wide range of recently completed

model simulations. The latter were performed

in support of the Fourth Assessment Report of

the Intergovernmental Panel on Climate Change

(IPCC), and involve 19 coupled atmosphere-

ocean models developed in nine different coun-

tries. Unlike previous model intercomparison

exercises involving idealized climate-change

experiments (23), these new simulations in-

corporate estimated historical changes in a

variety of natural and anthropogenic forcings

(24, 25).

Our focus is on the amplification of sur-

face temperature variability and trends in the

free troposphere. We study this amplifica-

tion behavior in several different ways. The

first is to compare atmospheric profiles of

Bscaling ratios[ in the IPCC simulations and

in two new radiosonde data sets: HadAT2

(Hadley Centre Atmospheric Temperatures,

version 2) and RATPAC (Radiosonde Atmo-

spheric Temperature Products for Assessing

Climate). These were compiled (respectively)

by the UK Met Office (UKMO) (6) and the

National Oceanic and Atmospheric Admin-

istration (NOAA) (7). The scaling factor is

simply the ratio between the temperature var-

iability (or trend) at discrete atmospheric pres-

sure levels and the same quantity at the

surface (26). Observed trends and variability

in tropical surface temperatures (T
S
) were ob-

tained from the NOAA (27) and HadCRUT2v

data sets (28, 29).
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Our second method for estimating scaling

ratios uses the weighted-average temperatures

of deep atmospheric layers (12, 17). These

temperatures are available from the satellite-

based Microwave Sounding Unit (MSU),

which monitors atmospheric microwave emis-

sions from the lower stratosphere (T
4
) and

the troposphere (T
2
). MSU T

2
data have

also been used to retrieve lower tropospheric

temperatures (T
2LT

). We calculate synthetic

MSU temperatures from the IPCC simulations,

and then compare these with actual MSU

temperatures produced by research groups

at the University of Alabama in Huntsville

(UAH) (12) and Remote Sensing Systems

(RSS) in California (14, 17). Synthetic T
4
,

T
2
, and T

2LT
data are also computed from

the HadAT2 and RATPAC radiosonde data

sets (25).

T
2

receives a contribution from the cooling

stratosphere (30). This hampers its use for

estimating the amplification of surface tem-

perature changes in the free troposphere. We

therefore focus on T
2LT

, which is relatively

unaffected by the stratosphere (15). Until

recently, only UAH provided a satellite-based

T
2LT

product (12). The RSS group has now

independently derived a second T
2LT

data

set (14).

Another strategy for removing strato-

spheric influences on T
2

relies on a linear

combination of T
4

and T
2

(15, 25). This pro-

cedure yields T
Fu

Enamed for the first author

of (15)^, which is representative of temper-

atures in the bulk troposphere. Relative to

T
2LT

, T
Fu

receives more of its signal from

higher regions of the troposphere. On the

basis of simple moist adiabatic lapse rate

(MALR) theory (31), we expect scaling ra-

tios in the deep tropics to increase with in-

creasing height and to peak at roughly 200

mbar. Comparison of the amplification fac-

tors estimated with T
2LT

and T
Fu

data allows

us to verify whether models and observations

confirm this theoretical expectation.

Before discussing the scaling ratio results,

it is instructive to examine the variability and

trends in layer-averaged atmospheric temper-

atures and T
S
. Our analysis period (January

1979 through December 1999) is constrained

by the start date of observed satellite data and

the end date of the IPCC historical forcing

experiment. A total of 49 realizations of this

experiment were available (24).

Time series of tropical T
4

changes in UAH,

RSS, and the IPCC simulations are charac-

terized by overall cooling trends and volcan-

ically induced stratospheric warming signals

(Fig. 1A). High-frequency variability asso-

ciated with the quasi-biennial oscillation is

evident in the observations but not in the

model simulations (5, 25). Satellite T
4

trends

lie within the range of model results, but the

larger cooling trends estimated from radio-

sondes do not (Fig. 2A). Part of this discrepan-

cy may be caused by residual stratospheric

and upper tropospheric cooling biases in the

tropical radiosonde data (18, 19).

In observations, the tropical variability of

tropospheric and surface temperatures is dom-

inated by the large El NiDo events in 1982/83,

1987/88, and 1997/98 (Fig. 1, B and C). Be-

cause the IPCC runs are coupled-model simu-

lations, they cannot reproduce the time

sequence of observed El NiDo and La NiDa

events, except by chance (2, 16). The range of

simulated El NiDo/Southern Oscillation (ENSO)

variability spans an order of magnitude.

Models with very strong ENSO variability

have fluctuations in surface and tropospheric

temperatures that are noticeably larger than

observed.

The observed tropical T
S

trends in the

NOAA and HadCRUT2v data sets (0.12 and

0.14-C per decade, respectively) are very

similar to X , the average warming over all

model simulations (Fig. 2E) (32). In the

troposphere, however, model-observed trend

agreement is sensitive to the atmospheric

layer examined and the choice of observa-

tional data set. In both radiosonde data sets

used here, T
2

cools over the years 1979 to

1999, and trends are outside the spread of

model results (Fig. 2B). Large stratospheric

cooling biases in the radiosonde data prob-

ably contribute to this disparity (18, 19). The

use of T
Fu

removes most of the stratospheric

influence on T
2

and yields positive temper-

ature trends in all observed data sets (Fig.

Fig. 1. Time series of
monthly-mean tropical
temperature anomalies
in (A) T4, (B) T2, and (C)
TS. Observed T4 and T2

data are from UAH (12)
and RSS (17). Observed
TS results are from
the NOAA (27) and
HadCRUT2v datasets
(28). The latter were
subsampled at the loca-
tions of HadAT2 radio-
sonde data (6). Model
TS results and syn-
thetic MSU temper-
atures are from the
IPCC historical forcing
runs (25). Results shown
are restricted to those
models that included
forcing by both strato-
spheric ozone depletion
(O) and volcanic aero-
sols (V). All data were
spatially averaged over
20-N to 20-S, expressed
as anomalies relative to
climatological monthly
means over the years
1979 to 1999, and
low-pass filtered. To fa-
cilitate model observa-
tion and model-model
variability comparisons involving models with different ensemble sizes, only the first realization is plotted from each model.
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2C) (5, 15, 30). All observed T
Fu

trends are

within the envelope of model values.

In the tropical lower troposphere, all data

sets except UAH have positive T
2LT

trends

(Fig. 2D). The difference between the UAH

and RSS trends (È 0.13-C per decade) is a

factor of two larger than the claimed 95%

confidence interval for the UAH global T
2LT

trend (12). This difference is primarily at-

tributable to the different ways in which the

two groups account for the effects of orbital

drift on the sampling of the diurnal temper-

ature cycle (14). The UAH T
2LT

trend lies

outside the range of model solutions. The dis-

parate behavior of T
2LT

and T
Fu

in the UAH

data (the former cools, whereas the latter

warms) is not evident in any other data set

(14, 15, 30).

Both model and satellite data indicate that

variability in T
S

is amplified in the tropical

troposphere (Fig. 1, B and C). Amplification

of surface warming is a direct result of moist

thermodynamic processes (31). We examine

two different amplification metrics: R
S
(z), the

ratio between the temporal standard devia-

tions of monthly-mean tropospheric and T
S

anomalies, and Rb(z), the ratio between the

multidecadal trends in these quantities, where

z denotes a height coordinate (pressure in

mbars). Because most of the monthly time-

scale variability in tropical surface and tropo-

spheric temperatures is driven by interannual

fluctuations in ENSO, R
S
(z) largely reflects

amplification processes acting on annual time

scales (fig. S1) (33).

Figure 3A shows R
S
(z) values in models

and radiosondes. The theoretically expected

profile is also displayed (34). In all cases,

R
S
(z) increases above the boundary layer, with

maximum amplification at È200 mbar. Below

È400 mbar, there is close agreement be-

tween the scaling ratios in models, radio-

sondes, and theory. Between 400 and 150

mbar, the theoretical scaling ratios are con-

sistently larger than they are in either the

radiosondes or the IPCC simulations. Such

departures may be due to the fact that MALR

theory is applicable to regions of the tropical

ocean experiencing deep convection. In con-

trast, the model and radiosonde tempera-

ture data used to calculate R
S
(z) include

many convectively inactive areas, where the

surface-air temperature change is not con-

strained by the moist adiabat set by the con-

vectively active regions. Furthermore, active

moist convection does not always penetrate

above 400 hPa, which would weaken the

connection to a moist adiabat above this

level.

When scaling ratios are calculated for mul-

tidecadal linear trends, both radiosonde data

sets are clear outliers. HadAT2 and RATPAC

Rb(z) values never exceed 0.82, indicating

damping of the surface warming trend in the

free atmosphere (Fig. 3B). None of the 49

model realizations demonstrates such behav-

ior. The shapes of the radiosonde-based

scaling ratio profiles also differ from model

and theoretical results, with peak values at

generally lower atmospheric levels. Subsam-

pling the HadCRUT2v T
S

data at the loca-

tions of the HadAT2 radiosonde stations has

little impact on the observed R
S
(z) or Rb(z)

values (25).

In the low- to mid-troposphere, model Rb(z)

results are in good agreement with theoretical

expectations. Model scaling ratios are there-

fore consistent with theory on both monthly

and multidecadal time scales, whereas the ra-

diosonde data are only consistent with theory

on monthly time scales.

A qualitatively similar picture emerges

from scatter plots of the individual compo-

nents of R
S
(z) and Rb(z) (Fig. 4). These dis-

play scaling behavior for layer-averaged

atmospheric temperatures rather than for tem-

peratures at discrete atmospheric levels. Figure

4A shows s(T
S
) and s(T

2LT
), the temporal

standard deviations of monthly-mean trop-

ical T
S

and T
2LT

data. Both vary by a factor

of Q 5 over the 19 IPCC models. Values of

s (T
Fu

) span a comparable range (Fig. 4B).

These large ranges are primarily dictated by

model differences in the amplitude of ENSO

variability.

Despite this large spread of model vari-

ability estimates, the tropospheric amplifica-

tion of s (T
S
) is internally consistent across a

wide range of models and observed data

(Fig. 4, A and B). The regression between the

model s(T
S
) and s(T

2LT
) values has a slope of

1.3, in accord with the theoretically expected

scaling ratio at the peak of the T
2LT

weighting

function. The regression line for s(T
S
) and

s(T
Fu

) is steeper (1.5). This is because the T
Fu

weighting function peaks higher in the atmo-

sphere, where scaling ratios are larger (Fig.

3A) (25). All model and observational results

in Fig. 4, A and B, are tightly clustered around

the fitted (red) regression lines, which is con-

sistent with the close agreement between

Fig. 2. Simulated and
observed least-squares
linear trends in tropical
(A) T4, (B) T2, (C) TFu,
(D) T2LT, and (E) TS. Red
bars represent X, the
mean of the model re-
sults (32). The black
lines that encompass X
are the maximum and
minimum values from
49 realizations of the
IPCC historical forcing
experiment (25). Aster-
isks identify observation-
al trends outside the
range of model results.
All trends were calcu-
lated from spatially-
averaged (20-N to
20-S) anomaly data
over the 252-month pe-
riod January 1979 to
December 1999. For
anomaly definition and
data sources, see Fig. 1.
The orange bar in panel
(E) is the TS trend based
on HadCRUT2v TS data
that were subsampled
at the locations of HadAT2 radiosonde data (6).
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modeled and observed R
S
(z) values in the

lower troposphere (Fig. 3A).

Amplification factors estimated from mul-

tidecadal trends in T
S
, T

2LT
, and T

Fu
also dis-

play considerable internal consistency in the

19 IPCC models (Fig. 4, C and D). This

consistency occurs despite large intermodel

differences in convective parameterizations,

boundary layer formulation, and resolution, all

of which affect the simulation of tropical con-

vection and tropospheric lapse rates. Further-

more, the model-model consistency in Rb(z)

ratios is robust to differences in the natural

and anthropogenic forcings applied by each

group (24, 25). Many of these forcings are

heterogeneous in space and time (2, 3, 35).

These differences in forcings and physics do

not cause appreciable displacement of model

results from the regression line in Fig. 4, C

and D. The regression slopes are similar to

those estimated from monthly-timescale vari-

ability, with T
Fu

results again yielding a

steeper slope than does T
2LT

.

The real conundrum in Fig. 4 is the com-

plex behavior of the observations. On month-

ly timescales, the amplification behavior of

models and observations is consistent. On

decadal timescales, however, only the RSS-

based T
2LT

and T
Fu

trends have scaling

factors that are in reasonable accord with

model results (Fig. 4, C and D) (25). Despite

sustained warming of the tropical land and

ocean surfaces, the UAH T
2LT

trend is

negative—i.e., Rb(z) G 0. The UAH Rb(z)

value seems physically implausible (14, 15).

Prolonged surface warming should desta-

bilize tropical temperature profiles, thus en-

hancing conditions for moist convection and

readjustment of atmospheric temperatures to

an MALR.

In contrast to the model results and

theoretical expectations, both radiosonde data

sets used here have Rb(z) ratios ¡ 1.0 (Fig. 4,

C and D). As in the case of the satellite data

sets, there are large structural uncertainties in

radiosonde estimates of tropospheric temper-

ature change (4–7). Comparisons of tropical

temperature data from day- and night-time ra-

diosonde ascents suggest that the error arising

from solar heating of temperature sensors has

decreased over time (18, 19). Inadequate cor-

rection for this effect may account for a

residual cooling bias in tropospheric temper-

ature changes.

The existence of residual inhomogene-

ities in the observational data is likely. Cur-

rent atmospheric observing systems were

designed for real-time monitoring of weather

rather than long-term monitoring of climate.

The construction of reliable climate records

from radiosondes is hampered by the above-

noted changes in instrumentation (18, 19)

along with changes in observing practices

and network density (4–7, 11, 13). Similar

concerns apply to satellite data, which are in-

fluenced by intersatellite biases, orbital drift

and decay, and uncertainties in instrument

calibration coefficients (11–14, 17).

Adjustments for these and other effects are

applied at discrete points in an observational

time series, such as times of transition to a new

satellite. None of these corrections is precisely

known. Small errors in adjustments can in-

troduce systematic errors in the time series.

These errors have little impact on monthly and

interannual variability, which account for most

of the variance of tropospheric temperature

fluctuations in the deep tropics (Fig. 1B).

However, systematic errors can have a pro-

nounced effect on interdecadal variability.

This helps to explain why model/data com-

parisons of Rb(z) ratios are sensitive to ob-

servational uncertainty, whereas R
S
(z) ratios

are not.

We have demonstrated that all observed

data sets and model results are remarkably

consistent in terms of their relation between

monthly– and annual–time scale temperature

variations at the surface and in the free tro-

posphere. This is a strong verification of the

Fig. 3. Atmospheric
profiles of temperature
scaling ratios in mod-
els, theory, and radio-
sonde data. (A) RS(z) is
the ratio between the
temporal standard de-
viations of T(z), the
temperature at discrete
pressure levels, and the
surface temperature TS.
(B) Rb(z) is similarly
defined, but for trends
over 1979 to 1999.
Model results are from
49 realizations of the
IPCC historical forcing
experiment. Radio-
sonde scaling ratios
were calculated with
HadAT2 and RATPAC
T(z) data (6, 7). Scaling
ratios for HadAT2 are
based on unsubsam-
pled HadCRUT2v TS

data. HadCRUT2v TS

data subsampled with
HadAT2 coverage yield
virtually identical scal-
ing ratios (not shown).
RATPAC-derived scaling
ratios use spatially com-
plete NOAA TS data.
Theoretically expected
values of RS(z) and
Rb(z) are also shown
(34). All standard devi-
ations in panel (A) were calculated with linearly detrended data. Rb(z) results in panel (B) are not plotted for three model realizations with surface warming close to
zero (25). All results are for spatial averages over 20-N to 20-S. For anomaly definition, data sources, and further processing details, see Fig. 1 and (25).
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model physics that governs the amplification

of tropical surface temperature changes. On

decadal time scales, however, only one ob-

served data set (RSS) shows amplification

behavior that is generally consistent with

model results. The correspondence between

models and observations on monthly and

annual time scales does not guarantee that

model scaling ratios are valid on decadal time

scales. However, given the very basic nature

of the physics involved, this high-frequency

agreement is suggestive of more general va-

lidity of model scaling ratios across a range of

time scales.

The RSS T
2LT

, T
2
, and T

Fu
trends are

physically consistent (all three layers warm

as the surface warms), whereas the UAH data

show trends of different sign in the lower-

and midtroposphere. These results support

the contention that the tropical warming trend

in RSS T
2LT

data is more reliable than T
2LT

trends in other observational data sets. This

conclusion does not rest solely on compar-

isons with climate models. It is independent-

ly supported by the empirical evidence of

recent increases in tropospheric water vapor

and tropopause height (26, 36), which are in

accord with warming but not cooling of the

free troposphere.

We have used basic physical principles as

represented in current climate models, for in-

terpreting and evaluating observational data.

Our work illustrates that progress toward an

improved understanding of the climate system

can best be achieved by combined use of ob-

servations, theory, and models. The availabil-

ity of a large range of model and observational

surface and atmospheric temperature data sets

has been of great benefit to this research, and

highlights the dangers inherent in drawing in-

ferences on the agreement between models

and observations without adequately account-

ing for uncertainties in both.
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Radiosonde Daytime Biases and
Late–20th Century Warming

Steven C. Sherwood,1* John R. Lanzante,2 Cathryn L. Meyer1

The temperature difference between adjacent 0000 and 1200 UTC weather
balloon (radiosonde) reports shows a pervasive tendency toward cooler daytime
compared to nighttime observations since the 1970s, especially at tropical
stations. Several characteristics of this trend indicate that it is an artifact of
systematic reductions over time in the uncorrected error due to daytime solar
heating of the instrument and should be absent from accurate climate records.
Although other problems may exist, this effect alone is of sufficient magnitude to
reconcile radiosonde tropospheric temperature trends and surface trends during
the late 20th century.

Atmospheric models and simple thermody-

namic arguments indicate that tropospheric

and surface temperature changes should be

closely linked (1). Radiosonde data during the

late 20th century, however (2–5), have not

shown warming commensurate with that re-

ported for the surface (1, 6, 7). The main dis-

crepancy is in the Tropics during the last two

decades of the 20th century.

A number of design changes to radiosonde

systems over the years may have affected

trends (8). Indeed, the spread of trends among

stations well exceeds that implied by satellite

data (9), suggesting that trends in the obser-

vation bias typically exceed those of the

actual temperature at individual stations.

Among the most serious known problems is

bias due to solar heating of the temperature

sensor (10). For many radiosonde designs this

can elevate the temperature several -C above

ambient during daylight, an effect that must

be removed via an estimated correction. For

other designs no correction is standard even

though the effect may not be completely ab-

sent. Adjustment of climate records for in-

strument changes using their documented

histories is problematic (8, 11).

One can try to remove undocumented arti-

facts by careful examination of the data itself.

Several such efforts have detected hundreds or

thousands of apparent artifacts (3–5, 12). Their

net effect on trends was found to be large only

in the stratosphere. Revised trends were still

lower than those indicated by the Microwave

Sounding Unit (MSU) in both the troposphere

and stratosphere (13). Because empirical sepa-

ration of artificial discontinuities from genuine

variability is extremely challenging in correlated

time series (14, 15), especially as changes can

probably occur in many small steps (16), it is

not clear how successful the above efforts

may have been in detecting discontinuities—

or avoiding false adjustments—of amplitudes

well below 1-C.

Here we adopt a strategy for quantifying

trend errors that does not require identifying

specific change events. The strategy applies

only to the solar heating error and does not

detect other errors. It relies on the fact that the

diurnal temperature range in the free tropo-

sphere, hence its expected trend, is small and

has known characteristics that differ from those

expected from a radiation error.

The diurnal temperature variation in Earth_s
atmosphere is a tide arising from its direct solar

heating and from diurnal variations of con-

vective heating driven by the diurnal variation

of surface temperature. Atmospheric heating,

which occurs primarily in the stratosphere via

ozone absorption, drives migrating resonant

oscillations that cause temperature fluctuations

of several -C in the upper stratosphere. In the

troposphere, weaker solar heating occurs due

mainly to near-infrared absorption by water

with a contribution from dark aerosols. These

influences produce diurnal temperature fluctu-

ations of 1-C or less in the free troposphere

(17). Near the land surface, variations of 5- to

15-C occur due to surface diurnal heating

(18); over oceans, variations are È1-C.

Because atmospheric tides are a linear

phenomenon (19), the diurnal variation of

temperature is proportional to that of the

heating, though the two need not be in phase.

Trends of È j0.2-C per decade are evident in

the land surface diurnal temperature range

(DTR) (20), which amount to about 2% of the

mean DTR per decade. Tropospheric water

vapor and stratospheric ozone changes do not

exceed a few percent per decade in recent

decades (21, 22), and absorption increases
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