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Abstract We assess the most probable causes of late
twentieth century (1960–1994) tropospheric temperature
changes. Optimal detection techniques are used to
compare observed spatio-temporal patterns of near-
surface and tropospheric temperature change with
results from experiments performed with two different
versions of the Hadley Centre climate model. We detect
anthropogenic forcings, particularly well-mixed green-
house-gases, with a less certain sulfate aerosol cooling
influence. More limited evidence exists for a detectable
volcanic influence. Our principal results do not depend
upon the choice of model. Both models, but particularly
HadCM3, appear to overestimate the simulated climate
response to greenhouse gases (especially at the surface)
and volcanoes. This result may arise, at least in part, due
to errors in the forcings (especially sulfate) and technical
details of our approach, which differs from previous
studies. We use corrected and uncorrected versions of
the radiosonde record to assess sensitivity of our detec-
tion results to observational uncertainties. We find that
previous corrections applied to the radiosonde temper-
ature record are likely to have been sub-optimal in only
taking into account temporal consistency. However, the
choice of corrected or uncorrected version has no sys-
tematic effect upon our main conclusions. We show
that both models are potentially internally consistent
explanations of observed tropospheric temperatures.

1 Introduction

A number of previous climate change studies have used
some form of ‘‘optimal detection’’ approach to determine
the most likely causes of recently observed climate. These
have almost exclusively considered near-surface temper-
atures (Tett et al. 1999, 2002a, (hereafter referred to as
T99 and T02)); Stott et al. 2001, (hereafter referred to as
S01); Hegerl et al. 1996, 1997; Barnett et al. 1999), zon-
ally averaged radiosonde-based upper-air temperatures
(Thorne et al. 2002a; Hill et al. 2001; T02; Allen and Tett
1999, (hereafter referred to as AT99); Santer et al. 1996),
or a combination of the two (Jones et al. 2003). These
studies consistently detect the effect of anthropogenic
and natural forcing on twentieth century climate. How-
ever, there are numerous other climate indicators and
depending upon such a small subset is clearly a limita-
tion. If the results can be repeated for a larger range of
independent (or quasi-independent) variables, then our
confidence in the reality of a pronounced human effect on
climate will be enhanced. Recently investigators have
begun to consider changes in ocean heat content (Barnett
et al. 2001; Levitus et al. 2001) MSU (Microwave
Sounding Unit, Christy et al. 2000; Mears et al. (sub-
mitted 2003)) satellite-based tropospheric and strato-
spheric temperatures (Tett et al. submitted 2002b; Santer
et al. 2003a), tropopause height (Santer et al. 2003b), and
surface pressure (Gillett et al. 2003).

In this study, we consider full spatial fields rather
than just zonally averaged temperature fields within the
free atmosphere (Thorne et al. 2002b provides a ratio-
nale). We use large area averages (LAAs) to represent
these full spatial fields. We employ five-year means of
annually averaged modelled and observed LAA data to
ensure that we only consider the large spatio-temporal
scales at which we have confidence in the models ability
to simulate the climate system (Stott and Tett 1998). We
consider a total of six tropospheric temperature diag-
nostics: three layer averages, and three ‘‘lapse rates’’ (the
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differences between layer averages). The derivation of
our input fields is discussed in Sect. 3 along with a brief
summary of the optimal detection algorithm.

We use observations of near-surface temperatures
from the HadCRUTv record (Jones et al. 2001). We
augment this with available tropospheric data from the
HadRT2.1 radiosonde temperature record (Parker et al.
1997). For simplicity we define the troposphere as con-
sisting of any values at or below the 300 hPa level,
regardless of both season and latitude. We consider the
period 1960–1994 both for consistency with previous
zonal-mean detection studies (AT99; T02; Thorne et al.
2002a), and because this is the period when we have the
highest confidence in the veracity of, and maximum
coverage within, the HadRT dataset (Thorne 2001).
Observations are compared to model output from two
versions of the Hadley Centre�s Ocean/Atmosphere
General Circulation Model (AOGCM). These models
have been run both for long control integrations with no
changes in external forcings and for small (generally
four-member) ensembles to assess the historical and
likely future climate responses to time-varying external
(natural and anthropogenic) climate forcing influences.
The model and observational datasets are discussed in
Sect. 2. At this point, however, we justify the selection of
which observed atmospheric temperature dataset to use,
and our decision to use tropospheric values only.

There exist at least three potential sources of observed
tropospheric temperatures: the MSU satellite-based
temperature record (Christy et al. 2000, 2003;Mears et al.
2003), reanalyses using operational numerical assimila-
tion schemes (Kalnay et al. 1996; Gibson et al. 1997), and
instruments carried on radiosondes (Parker et al. 1997).
The MSU record is near-global in coverage and tempo-
rally continuous. However, it exists only for 1979 to date,
and it has been shown on several occasions that a longer
record increases the chances of successful detection (e.g.
Santer et al. 1995; Barnett et al. 1998). Further, there
remain potentially significant uncertainties due to orbital
decay effects (Wentz and Schabel 1998), and platform
changes (Hurrell and Trenberth 1997), amongst others,
which may affect the long-term temporal homogeneity of
the MSU record (NRC 2000; Mears et al. 2003). Rea-
nalyses are likely to contain significant artificial discon-
tinuities due to increasing data availability through time
(Barnett et al. 1999; Santer et al. 1999; Pawson and
Forino 1998), particularly the advent of satellite obser-
vations in the late 1970s. They are also model based data
being output from numerical weather forecast models
with time-invariant physics and resolution. They are
therefore not truly valid for use in any model-observa-
tional intercomparisons. Numerous alternative radio-
sonde temperature databases exist (Angell 1988; Eskridge
et al. 1995; Lanzante et al. 2003a, b for example), but the
only currently available globally gridded (although
incomplete) product, available in several different
versions, is the HadRT record (Parker et al. 1997).

We only consider tropospheric temperatures because
we see this region as the most relevant in terms of the

climate change debate. We believe that on the large
space and time scales considered in the present study the
troposphere is well-mixed. Therefore our detection re-
sults should be consistent for the different temperature
diagnostics if the models are an adequate explanation of
the observed trends. We see no logical reason as to why
stratospheric temperatures (or any other climate
parameter) could not additionally be considered in fu-
ture studies under our approach. However, the HadRT
radiosonde record coverage degrades significantly above
the tropopause, particularly early in the record, due to
sonde burst. There is also good reason to expect errors
within the radiosonde dataset to increase with altitude
(Parker et al. 1997). Further, previous model validation
studies suggest that both Hadley Centre models may not
adequately resolve either natural internal variability or
the dynamical responses to forcings within the strato-
sphere (Gillett et al. 2000; Collins et al. 2001). A con-
sideration of full spatial field stratospheric radiosonde
temperatures in detection studies is, therefore, pre-
mature at the present. Additionally, very different
chemical and dynamical considerations may pertain
within the stratosphere, at least potentially making any
direct comparison of detection results between the two
atmospheric regions non-trivial (see Subsect. 4.4) In
discarding the stratosphere we are sacrificing degrees of
statistical freedom, but previous zonal mean detection
studies have been shown to be insensitive to the inclu-
sion or otherwise of stratospheric temperatures (Thorne
et al. 2002a).

In Sect. 4 we consider the results for each temperature
diagnostic separately. We focus our analysis on the
lower troposphere and the near-surface, as recent dif-
ferences in trend between these regions have been a
source of controversy (see NRC 2000 for a review).
Section 5 considers whether any fundamental discrep-
ancies exist between our results for all our input tem-
perature diagnostics. Finally, we present our conclusions
in Sect. 6.

2 Observed and model datasets

2.1 Observed datasets

The HadCRUTv dataset (Jones et al. 2001) is available as a
monthly 5� longitude by 5� latitude gridded product of global near-
surface temperature anomalies relative to 1961–90 from the late
nineteenth century to present. Although data availability is dis-
continuous in both space and time through the record as a whole, it
is fairly consistent over the period 1960–1994. HadCRUTv is a
modified version of the HadCRUT dataset (Jones et al. 1999)
employed in previous detection studies considering near-surface
temperatures (Allen et al. 2002; T99; T02; S01; Barnett et al. 1999;
Hegerl et al. 1996, 1997; Santer et al. 1995). Variance corrections
have been applied to both land and ocean components in HadC-
RUTv to account for the effects of time-varying sampling (Jones
et al. 2001). These corrections should yield more stable EOFs
(empirical orthogonal functions) (Jones et al. 2001) an important
consideration in optimal detection. Other gridded near-surface tem-
perature products exist (e.g. Hansen et al. 1999, 2001), and it would
be useful in future studies to use more than one observational
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dataset to assess sensitivity to this choice. However, this observa-
tional uncertainty is likely to be order of magnitude less than in the
upper-air, so we do not consider it here.

The HadRT2.1 record (Parker et al. 1997) is a monthly 10�
longitude by 5� latitude globally gridded radiosonde temperature
product from 1958 to date as anomalies relative to 1971–1990.
Data are available on 9 WMO (World Meteorological Organisa-
tion) standard reporting levels. We only consider data from the
850 hPa, 700 hPa, 500 hPa, and 300 hPa levels as higher levels are
likely to sample stratospheric air for at least part of the year
(outside the tropics). Simple near-neighbour spatio-temporal
quality control checks have been performed on the dataset to
identify obviously spurious values (Thorne 2001), resulting in the
discarding of approximately 5% of the data. There are data gaps in
space and time, with much larger areas of missing data than in
HadCRUTv. To avoid any potential biases we therefore sub-
sample and regrid the HadCRUTv record to match the sparser
HadRT lower tropospheric field before undertaking our analyses.
This ensures that any differences in our results between the near-
surface and free troposphere could not arise due to spatio-temporal
sampling considerations alone (see Santer et al. 2000 for a more
detailed justification). The resulting observed datasets are highly
biased in their coverage towards land and, particularly, Northern
Hemisphere mid-latitude continental regions (Fig. 1).

To assess the sensitivity of our results to likely observational
uncertainties in the free troposphere we consider two versions of
the HadRT dataset: HadRT2.1 and HadRT2.1s. Both have been
corrected globally for significant change-points in individual sta-
tion series post-1979 at the time of known observational practice
changes (Gaffen 1996), with reference to co-located MSUc data
(Christy et al. 1998) as described in Parker et al. (1997). HadRT2.1
has had these corrections applied within the troposphere, whereas
HadRT2.1s has not. A consideration of both versions should per-
mit an assessment of the sensitivity of our results to the effects of
the correction approach.

We caution that our datasets do not fully sample observational
uncertainty. Numerous other both radiosonde and satellite-based
upper-air temperature products exist. These differ both in terms of
their raw input data and their treatment of suspected inhomoge-
neities. The resulting range of climate trajectories is larger than that
spanned by our two versions of the HadRT dataset (Seidel et al.
submitted 2003 provide an intercomparison of different datasets).
It would be highly desirable to repeat our analyses using additional
datasets to fully assess the sensitivity of our results to dataset
treatment and choices.

2.2 Model datasets

Two versions of the Hadley Centre�s AOGCM are considered:
HadCM2 (Johns et al. 1997), and HadCM3 (Pope et al. 2000;

Gordon et al. 2000). Although these are different versions of the
same centre�s GCM, sufficient differences exist between the two
generations, and the forcing histories applied for equivalent sce-
narios for each model (S01; T02, respectively), to justify treating
them as being at least quasi-independent. Both models have a
resolution of 3.75� longitude by 2.5� latitude in the horizontal in
their atmospheric components. HadCM3 has a finer resolution
ocean component (1.25� longitude by 1.25� latitude). Both models
consist of 19 layers within the atmosphere. We simply sub-sample
to our four HadRT2.1 tropospheric levels and the near-surface,
and bilinearly interpolate the model data on each of these levels to
the coarser resolution observational grid. We then mask out values
where HadRT or sub-sampled HadCRUTv data are missing.

Both models have been integrated in a long control run with no
changes in external forcings. These exhibit essentially no long-term
drift in global-mean quantities. However, flux adjustments are re-
quired for HadCM2 to avoid it drifting into an unrealistic state. In
addition both models have been used to predict the time-varying
response to a number of candidate external forcing mechanisms. In
the present study we limit ourselves to the subset of forcing reali-
sations which have direct equivalence between the models. How-
ever, we stress that differences exist between the models in the
manner in which these forcings are applied (see S01 and T02 for
more details). In particular, HadCM3 has more realistic green-
house gas and sulfate aerosol forcings than HadCM2. The model
experiments considered are summarised in Table 1 and are based
on 4-member ensembles. From here onwards the HadCM3 sce-
narios are named using their HadCM2 equivalents to facilitate
intercomparisons. The acronyms for the forcings considered are
therefore: G (greenhouse gases), GS (as G, but additionally
including Sulfate aerosol effects), GSO (as GS, but incorporating
stratospheric ozone depletion effects post-1979), VOL (volcanic
forcing), and LBB (solar forcing). These are different to the acro-
nyms used in T02, but results are for the same forced model runs
and can be compared directly.

3 Methodology

We employ the optimal detection technique of AT99 (see also Allen
and Stott 2003; T02) to a series of 3-dimensional (latitude, longi-
tude, time) input fields. The technique is an application of ordinary
least squares (OLS) multiple regression to ascertain simulated
model signal scaling estimates required to recreate a best fit to the
observational dataset. The scaling estimates are the weightings re-
quired on the individual model signals, based upon ensemble
means. Normally, as is the case here even for our spatially averaged
input fields, the dimension of the input fields (70 for our preferred
diagnostic) is greater than the number of independent noise sam-
ples used to perform optimisation. Therefore the optimisation and
analysis is undertaken only in the phase-space of the leading EOFs

Fig. 1 Areas selected for smart
large area average diagnostics.
The shaded areas indicate grid
boxes (5� latitude by 10�
longitude) which contain values
in the input fields for at least
one of the seven 5-year periods
considered
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of simulated climate variability as estimated from a segment of the
model control run in this input field space. The number of EOFs
considered is termed the truncation dimension. Optimisation is
undertaken by rotating the fields such as to maximise their SNR
(signal to noise ratio) in this EOF space by downweighting high
variability modes.

OLS yields both a best-estimate of the individual model signal
scalings and their associated uncertainties. From this it is possible
to determine whether each model signal is detected in the obser-
vations, in which case the uncertainty range in the estimate will
encompass only positive values. Detection is assessed at the (two-
tailed) 90% level, such that there is a 35% chance of a false
positive result. Further, we can begin to attribute the observed
changes to a given set of forcings. All potentially important forc-
ings have to be considered to be able to unambiguously attribute
the observed changes to a set of forcings. We are confident that the
ensembles we consider contain responses to what are currently
considered the most plausible major climate forcing factors of the
late twentieth century.

Two distinct approaches have arisen to attribution. The first
specifies that the scaled model signal estimates should all be sta-
tistically consistent with the observations (e.g. Hegerl et al. 1997),
such that the uncertainty in the scaling encompasses unity. This
approach is difficult to quantify in a statistical sense as it is
couched backwards. We are testing for the non-rejection of our
original null hypothesis, used to gain our uncertainty limits, that
the model signal strength is indistinguishable from zero. Rejection
of the null at probability P does not imply acceptance of the
alternative (that the model signal is consistent with the observa-
tions) at 1 – P, as the statistic is assymetric, and any such claims
are likely to be over-optimistic (Levine and Berliner 1999). The
second approach simply attributes the observed changes to the
most parsimonious set of signals which are detected simulta-
neously (e.g. T02). There is no requirement for the model signal
scaling estimates to be ‘‘consistent’’ with the observations under
this approach. However, it is assumed that any model uncertainty
arises primarily within the amplitude and not the pattern of the
modelled response. Barnett et al. (1999) show a large degree of
similarity in the leading EOFs of response to GHG between a
number of models, though it is less certain that responses to
sulfate aerosol or other forcings will exhibit similar behaviour.
Therefore it is assumed that the model signal responses can
simply be scaled to recreate the observations and, potentially, to
constrain predictions of future climate changes (e.g. Allen et al.
2000, 2002; Stott and Kettleborough 2002).

In the present study, where we are comparing results from
distinct tropospheric temperature variables, we feel that the former
definition of attribution (Hegerl et al. 1997) is more useful. We use
our ‘‘attribution’’ criteria of model signal ‘‘consistency’’ with the
observations to flag where the models are likely to be significantly
over- (scaling required significantly less than 1) or under- (scaling

required significantly greater than 1) estimating the magnitude of
the forcing response under the caveat that it is likely to be a weak
test yielding too many consistent estimates (see previous discussion
of attribution approaches). For any given signal an adequate model
would not significantly over-estimate the response in some tem-
perature diagnostics and under-estimate it in others. We are
assuming that our detection analyses are free from (gross) sys-
tematic analytical biases. Such biases could arise due to method-
ological considerations (Allen and Stott 2002), sampling artefacts,
imperfect model forcings, or significant model and observational
error. Furthermore, in some cases a significant over- or under-
estimate of the amplitude of the forcing response in a given tem-
perature diagnostic by a model may arise due to chance alone. We
stress that the choice of attribution approach does not significantly
impact our principal results.

The AT99 detection approach includes a consistency check on
the residuals of the regression against an independent realisation of
natural climate variability gained from a separate section of model
control run. The residuals of the regression should be statistically
indistinguishable from this independent estimate of natural internal
climate variability. If this test does not pass then we are likely to be
incorporating EOFs of control space which are unrealistic (un-
dersampled in the control or poorly captured in the model) and we
flag the results as being likely to be dubious. In addition to a
consistency check, the OLS approach also includes tests for signal
degeneracy (T99) and low SNRs (T02), both of which can signifi-
cantly bias the results. Inputting degenerate (essentially similar)
signals leads to highly uncertain and poorly constrained estimators.
For weak (noisy) signals there are known problems with the AT99
approach, whereby the estimates tend to be biased towards zero,
affecting the chances of successful detection and attribution (Allen
and Stott 2002). We explicitly calculate SNRs following the ap-
proach of T02 and flag those cases where they are low and,
therefore, likely to lead to significantly biased estimators. Discus-
sions of the various technical aspects of the AT99 optimal detection
approach have been extensively addressed (AT99; T99; T02; S01;
Allen and Stott 2002), and so are not covered in any more detail
here. The reader is directed to Sect. 4 and Appendix C of T02 for a
detailed description. Here we discuss further solely those input-field
pre-processing and analysis aspects which are novel to the present
study.

We consider six indicators of tropospheric temperatures: three
‘‘layer average’’ temperatures and three ‘‘lapse rate’’ temperatures.
The layer averages are defined as the surface (SURF henceforth),
lower troposphere (mass weighted average of 850 and 700 hPa
data, LT henceforth), and upper troposphere (mass weighted
average of 500 and 300 hPa data, UT henceforth). We caution that
our LT diagnostic is not equivalent to the TLT temperature diag-
nostic in the MSU temperature series (Christy et al. 2003). The
three lapse rate diagnostics are simply the differences between these
individual layer series, defined as upper layer value minus lower

Table 1 Brief summary of the model signals used in the current study. The detection method can be used to gain, for example, an estimate
of the S signal by recombining G and GS under the assumption of no non-linear actions between the forcings. See T02 for further details

Forcing HadCM2 HadCM3

Well-mixed greenhouse gases G 1860–2100 (All greenhouse gases treated
as CO2 equivalent concentrations)

GHG 1860–2100 (Individual constituent
greenhouse gases considered.)

Greenhouse gases plus
anthropogenic sulfate aerosols

GS 1860–2100 (As G, but additionally
considering the direct effect of sulfate aerosols)

TROP-ANTHRO 1874–2000 (As GHG,
plus includes effects of sulfate aerosols and
the impact of tropospheric ozone changes)

Greenhouse Gases plus
Anthropogenic sulfate aerosols
plus changes in stratospheric
ozone

GSO 1860–1995 (Identical to GS until late 1970s
when the additional effects of stratospheric
ozone depletion are included)

ANTHRO 1860–2100 (Identical to
TROP-ANTHRO until late 1970s when
stratospheric ozone depletion effects
are incorporated)

Solar LBB 1860–1996 (Solar forcing history based
upon the reconstruction of Lean et al. 1995)

SOLAR 1860–1999 (Solar forcing history
based upon the reconstruction of Lean et al. 1995)

Volcanic VOL 1890–1997 (Volcanic forcing history based
upon the dust veil index of Sato et al. 1993)

VOLCANIC 1860–1999 (Volcanic forcing history
based upon the dust veil index of Sato et al. 1993)
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layer value and only calculated for those grid boxes where data
exist for both layers. The lapse rates are: free tropospheric lapse
rate (UT-LT henceforth), entire tropospheric lapse rate (UT-Surf
henceforth) and lower tropospheric lapse rate (LT-Surf hence-
forth).

Previous studies employing the approach of AT99 using lon-
gitude, latitude, time fields of near-surface temperature have con-
sidered a spherical harmonic representation of the decadally
averaged gridded data to ensure that they only consider large-scale
climate features (Allen et al. 2002; T99; T02; S01). Given the
sparsity of observational dataset coverage in some regions of the
globe (particularly oceanic and southern high latitudes) in our
datasets (Fig. 1), it is unlikely that the spherical harmonic ap-
proach would be stable. However, all that is required is a repre-
sentation of the observed and modelled climate variations at the
large space and long time scales at which we have confidence in the
ability of the models (Stott and Tett 1998). We therefore choose to
use large area averages (LAAs henceforth) (Fig. 1) to represent the
spatio-temporally varying observed and model temperature fields.
In all cases we use five-year averaged segments of data (1960–1964,
1965–1969 etc.). To derive a 5 year mean value at least three years
in each five must contain at least two months with data in three of
the four seasons. We use five year periods rather than decadal
periods to retain a sufficient time resolution for a full spatio-tem-
poral analysis.

To assess the sensitivity of our results to the choice of LAAs
representation we consider four different sets of LAAs, two smart,
and two na. The smart LAAs try to take into account dataset
coverage (hence the name smart) such that areas are chosen to
represent approximately equal numbers of datapoints, and as far as
possible, what we consider to be climatologically distinct regions.
Therefore smart LAAs are heavily skewed towards Northern
Hemisphere mid-latitude continental regions (Fig. 1). Further-
more, in undertaking such a procedure we omit a few of the
tropical stations where recent differences between the surface and
the troposphere have been shown to be most pronounced (Hegerl
and Wallace 2002; Thorne et al. 2003). Our preferred smart set is
defined by 10 regions, with a second choice limited to five much
larger regions. The use of more areas in our preferred spatial pre-
processing option should increase the power to discriminate be-
tween competing forcings, reducing the chances of signal degen-
eracy. In addition we consider two na diagnostics whereby we make
no assumptions about the spatial coverage other than it being
insufficient south of 30�S. We simply split the remaining areas of
the globe equally into 6 and 12 areas (30�S–0�S, 0�N–30�N, and
30�N to 90�N, and then 2 (0�E–180�E and 180�E–360�E) and 4
(0�E–90�E, 90�E–180�E, 180�E–270�E and 270�E–360�E) equal
longitude intervals respectively (see Jones et al. 2003)). Given that
the number of contributing data points will vary widely between
these areas, and that they are unlikely to describe distinct clima-
tological units, we consider that such an approach is likely to be
less optimal than our smart approach.

We use what we define as detection ‘‘traces’’ (see Fig. 2) to
outline our principal results and assess their robustness to the
choice of truncation. These ‘‘traces’’ show how our signal scaling
estimates and their associated 90% uncertainty ranges change with
increasing truncation from 4 to 21. The power of the detection
approach increases with truncation (North et al. 1995; Hasselmann
1993) as more modes of variability are considered. The first few
truncations tend to be dominated by global-scale variability,
whereas at latter truncations we tend to incorporate more regional-
scale modes. This may significantly impact at what truncations
individual signals become detectable. For example, S has a more
regional response pattern than G in both models considered here.
Therefore we might expect G to be both better defined and more
detectable at much earlier truncations than S. Conversely, G may
become undetectable at high truncations as we concentrate more
on regional modes where the model may fail to adequately capture
the response. In some cases the consistency test on the residuals
fails, and such cases are clearly marked. We consider all four LAA
cases for both models. We claim that a given model signal is ro-
bustly detected if it is detected in all four LAA representations and

at most truncations in our traces. We also assess model signal
consistency with the observations (our attribution approach) in a
similar manner.

Global-mean trend reconstructions are calculated based upon
our preferred 10-area smart LAA diagnostics. The reconstructions
are performed using the highest truncation (largest number of
principal modes considered) at which the test on the residuals
passes for each model. The optimised signals, weighted by the
scaling factors, and observations are used to recreate an estimate of
the true observed and model-predicted global-mean timeseries.
Unless models are identical in every respect, the reconstructed
observed trend will differ between models, as their projection onto
their leading modes will not be identical. The global-means are also
not true global-means, being limited to the available 10-area smart
LAA data, which is spatially sparse.

4 A consideration of individual temperature diagnostics

We illustrate our results by concentrating on SURF and
LT diagnostics in view of the recently observed trend
discrepancies from 1979 to date between these layers,
which cannot to date be unambiguously explained by
model predictions (see Jones et al. 1997a; Santer et al.
2000, 2001; Thorne et al. 2003). However, we consider
the longer period of 1960–94. This is important as there
is evidence that pre-1979 the observed ‘‘discrepancy’’
was reversed (Jones et al. 1997a; Parker et al. 1997;
Angell 2000; Brown et al. 2000; Gaffen et al. 2000). We
also have relatively little weighting in our smart LAA
diagnostics within the tropics, and most of the recently
observed global mean trend discrepancy arises within
this region (Hegerl and Wallace 2002; Thorne et al.
2003). Therefore, we might not expect to see a discrep-
ancy between our detection results for these two layers,
even if such a discrepancy exists on other space and
time-scales in the real world.

In all cases results shown are those using HadRT2.1s
tropospheric data. We find that for all upper air tem-
perature diagnostics except UT-LT the use of HadRT2.1
as the observed radiosonde dataset results in an in-
creased frequency of failure of the consistency test on the
residuals, whilst having negligible impact upon our
estimates of the signal scalings. This is most likely be-
cause the corrections applied to HadRT2.1 were
undertaken with only a temporal rather than spatio-
temporal consistency requirement (Parker et al. 1997).
We cannot however rule out any errors in MSU data
used as a reference in the corrections also affecting our
results. Fields of radiosonde instrumental biases fol-
lowing corrections, which were applied in a patchy
manner (only when metadata, which is incomplete for
the vast majority of stations, existed and was coincident
with a statistically significant difference), are unlikely to
correspond to the leading modes of variability in either
model (or the real world). Thus they will tend to artifi-
cially inflate the residuals term in our analyses whilst
having negligible impact upon our scaling estimates
(Thorne 2001). It would be useful to have a radiosonde
dataset for which spatio-temporal consistency is main-
tained and robust error estimates are available.
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4.1 Deciding which signals to be considered

We begin our analysis by summarising detection results
for all possible combinations of input signals for each
tropospheric temperature diagnostic. Clearly with a very
large matrix of potential one to five input signal com-
binations (there are 25 combinations in total) it is
sensible to focus solely upon the most plausible expla-
nations in our detailed analysis. Analysis is undertaken
using either truncation 21 (the estimated maximum
number of degrees of freedom of the control sections in
the shortest model control used for optimisation (1.5
times the number of independent 35 year sections,
AT99)), or the maximum truncation at which the test on
residuals does not fail, if this is reached before 21. We
limit ourselves to our two sets of smart LAA diagnostics
in this initial analysis. In addition to using ordinary least
squares (OLS) regression, we also use total least squares
(TLS) (Allen and Stott 2002) to assess whether results
are sensitive to implicitly accounting for the presence of
noise in our small ensemble model signals.

Results differ markedly in detail between temperature
diagnostics (Thorne 2001, gives much greater detail than
is possible here), with signals in general being less
detectable for SURF and, particularly, lapse rate vari-
ables than for UT and LT. The TLS approach leads to a
systematic decrease in signal detectability, although this
arises almost entirely in those cases where input signals
are identified as being potentially degenerate. Impor-
tantly use of OLS versus TLS does not influence the
relative detectability of different signal types. So we later
proceeded using solely OLS analyses as these are less
likely to be unduly influenced by the likely presence of
non-negligible observational errors in the HadRT data
than TLS analyses (Allen and Stott 2002). We find that
the most detectable signals according to both models
and all temperature diagnostics are, in descending order;
G (or GS/GSO), S, VOL, LBB, O (see Thorne 2001 for
details of this analysis). The few detections of LBB and
O are rare enough to have occured by chance alone.
Therefore we discount these forcing mechanisms as
being detectable explanations of the observed climate
changes. In doing so, we are assuming that the models
do not grossly fail to capture the surface and tropo-
spheric temperature response to either forcing. Our
choice of temporal averaging period may reduce our
chances of successful detection of an LBB signal as it is
approximately half the solar sunspot cycle length. We

subsequently consider in greater detail, using all four
LAA representations, detection results for the following
three input signal combinations: G + S, GS + VOL,
and G + S + VOL.

4.2 Lower tropospheric temperatures

Detection traces for LT temperatures are shown for
HadCM2 in Fig. 2. For the GS + VOL signal combi-
nation, GS is both robustly detected and consistent with
the observations, except with the 6-area na LAA aver-
ages combined with high truncation. The VOL signal is
only very occasionally detected, and the response is
significantly overestimated within the model. Analysis of
SNR values (not shown here), indicates that this is
highly unlikely to be due solely to a weak model volcanic
signal leading to a biased estimator. However, in the
real-world El Chichon and Pinatubo were coincident
with ENSO events (although weak at the time of Pina-
tubo) which might have mitigated the observed response
leading to an apparent bias towards both models over-
estimating the VOL response in all tropospheric tem-
perature diagnostics we consider (Brown et al. 2000;
Santer et al. 2001). G is robustly detected in the G + S
input signal combination and in all four LAA diagnos-
tics. In the LT observations, at almost all truncations, G
has an amplitude consistent with unity. The S signal is
less robustly detected, although it too is consistent with
unity in all LAA diagnostics, and at the majority of
truncations. The S signal is more robustly detected in the
na diagnostics as these better sample hemispheric assy-
metry which is an important component of the S signal.
Individual signal components of the three-signal
regression generally track their estimates from the two-
signal regressions discussed. The overestimation prob-
lem for VOL within the model is partly reduced when G
and S are allowed to vary rather than being a fixed ratio
(GS), leading to a slightly increased frequency of
detection of a VOL signal. This result is seen in cases
where the scaling estimate on the S signal is close to zero
in the 10-area smart LAA diagnostic (although not for
other input LAA diagnostics). Therefore, there may be a
degree of co-linearity between the responses to S and
VOL leading to degenerate solutions (confirmed by
standard degeneracy tests, T99).

GS + VOL signal combination detection traces for
HadCM3 LT temperature fields, shown in Fig. 3, indi-
cate robust detection of a GS signal,which is consistent
with unity. Results for VOL are more uncertain: the
VOL signal is rarely detected at truncations that pass the
consistency test for residuals. HadCM3 also tends to
overestimate the amplitude of the VOL response. In our
preferred smart 10-area LAA diagnostic, the best-guess
VOL signal scaling estimate is negative over a range of
truncations. The inverse of the signal, a warming of the
lower troposphere with volcanic events, is required to
best explain the observations at these truncations which,
on purely physical grounds, is unlikely to be correct.

Fig. 2 Changing amplitude scaling estimates with increasing
truncation for HadCM2 lower tropospheric model signals. The
OLS regression signal amplitude estimates are denoted by the bold
lines, with 90% uncertainty ranges for assessing signal consistency
denoted by shading. Detection confidence limits are denoted by a
red line, detection occuring when above zero. Detection and
consistency limits differ for methodological reasons (S02). Asterisks
mark ‘‘inconsistent’’ residuals, indicating likely problems in our
analysis. Top two rows relate to GS + VOL, the middle two G + S,
and lower three G + S + VOL
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This is unlikely to be an artefact of a weak signal, as
SNR analysis shows that the signal is distinguishable
from natural variability. However, our confidence limits
still encompass positive values, so we do not discount a
VOL influence. Furthermore, this result is not repeated
for our other LAA representations. Nevertheless, our
confidence in a VOL influence on temperatures within
the LT is reduced. For HadCM3, in the G + S signal
combination, G is both robustly detected and consistent
with the observations. S is also robustly detected in
smart LAA diagnostics but not na LAA diagnostics, and
in all cases it is consistent with the observations. The S
signal estimates are very poorly constrained at low
truncations, improving marginally with increasing
truncation. Estimates of the S signal amplitude are also
seen to vary widely between LAA diagnostics, with the
10-area smart LAA diagnostic being an outlier yielding
consistently larger scaling estimates. Reasons for this
behaviour are unknown, but it is unlikely to be due to
signal covariance leading to overestimated compensat-
ing G and S amplitudes as there is no similar shift in the
G scaling estimates. This underscores the importance of
exploring the sensitivity of results to a broad range of
pre-processing choices. Three-way regression results for
HadCM3 mirror those for the individual components
discussed.

Global-mean LT temperature reconstructions are
shown in Fig. 4 for both models. Reconstructions based
upon HadCM2 input fields are unable to resolve the
observed minimum in the mid-1970s, instead producing
a more monotonic increase. This may be due to known
inaccuracies in the sulfate aerosol forcing history in
HadCM2 or its crude parameterisations of their effects.
For HadCM2, both sulfate and volcanic forcings help to
explain the observed maximum in global-mean LT
temperatures in the late 1980s, with Pinatubo and sulfate
effects causing a slight cooling in the early 1990s.
Without accounting for volcanic influences, the increase
in reconstructed global-mean LT temperatures is more
monotonic than observed, implying that volcanic influ-
ences may be an important component of recent LT
temperature trends (a finding in agreement with Santer
et al. 2001). All HadCM3 reconstructions fall within the
uncertainty range of the observations at all times. The
volcanic influence is almost zero, except for Pinatubo in
the early 1990s when there is a cooling of a few hun-
dredths of a degree in the five year average. At the
truncation being considered the weighting on the VOL
signal is close to zero in HadCM3 so we are down-
weighting the VOL component in the HadCM3 recon-
structions vis-à-vis those for HadCM2. Most of the
warming trend is derived from greenhouse-gases, al-
though this is moderated by the cooling effects of sulfate
aerosols, which are particularly important in explaining
trends early in the period. HadCM3 better captures the
temporal response possibly due to a more detailed S

forcing history than HadCM2 (T02, S01). These global
mean plots confirm the principal ‘‘detection’’ findings in
that greenhouse gases are necessary for both models to
adequately explain global-mean observed warming
trends. Sulfate aerosols and volcanic influences are less
necessary, as they both tend to cool the LT over this
period and explain local and more high-frequency detail.

4.3 Near-surface temperatures

It is instructive to compare the current analysis for
SURF with previous work comparing signals from the
same models with the non-variance corrected HadC-
RUT series (T99, T02; S01). These studies have consis-
tently yielded detectable well-mixed greenhouse gas (G)
and, more tentatively, sulfate aerosol (S) influences for
the latter half of the twentieth century. There is also
evidence for solar and volcanic influences on SURF,
although detection of these is shown to be sensitive to
methodological choices, at least for HadCM2 (S01).
These studies considered the full available observed field
rather than our more data-sparse sub-sampled repre-
sentation. We also use: a representation of spatial pat-
terns other than spherical harmonic coefficients;
temporal sampling other than decadal resolution; and a
consideration of shorter than 50-year trend lengths. Ef-
fects of these differences in approach cannot be com-
pletely separated in the present analysis (see Gillett et al.
2002 for an example as to how to quantify such effects).

Detection traces for HadCM2 SURF temperatures
are given in Fig. 5. For GS + VOL, GS is both occa-
sionally detected and marginally consistent with the
observations for some, but by no means all, truncations
for each LAA diagnostic. Best-guess scaling estimates
for GS in HadCM2 are consistent between LAA diag-
nostics in suggesting that the simulated signal must be
approximately halved to provide a best fit to the
observations. This is at odds with previous analyses (see
Fig. 2 of T99) which indicated that the GS SURF signal
was consistent with the observations. It is also at vari-
ance with LT results, which showed that the HadCM2
GS signal scaling was consistent with observations
(Fig. 2). There is no evidence that GS SNRs for SURF
are systematically decreased compared to GS SNRs for
troposphere temperatures, which could lead to nega-
tively biased estimators. This might be expected given
that SURF temperatures are likely to contain many
more degrees of freedom (Jones et al. 1997a, b) than LT.
The HadCM2 VOL signal scaling in SURF is zero or
close to zero in all four LAA diagnostics, and includes
negative values, implying a non-significant volcanic
influence. Considering traces for the G + S signal
combination, both signals tend to be overestimated in
amplitude in HadCM2 in all LAA diagnostics at all
truncations, although S is not significantly overesti-
mated (the scaling estimate is not significantly less than
unity). G is occasionally detected in all four input
diagnostics, whereas S is detected only once (in the

Fig. 3 As Fig. 2 except for HadCM3 signals
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12-area na LAA diagnostic). The S signal is very noisy
(SNR of about 2), particularly at low truncations, for all
LAA input representations and, therefore, our estimates
may be negatively biased (T02). However, the GS signal
result in the GS + VOL combination (which is domi-
nated by G) is similar to G in G + S, so a negatively
biased S estimator, (which could cause a negatively
biased G estimator) is unlikely to explain the observed
overestimation of both G and S signals. It is also pos-
sible that the S signal pattern is significantly in error

given the uncertainties in this forcing. Individual com-
ponents of the three-way regression for SURF track
their components in the two-way regressions described.

HadCM3 detection traces for SURF are given in
Fig. 6. As for HadCM2, GS, when considered in com-
bination with VOL, is only occasionally detected and it
is significantly overestimated within the model. For

Fig. 4 Observed and
reconstructed global-mean LT
temperature series based upon
HadCM2 (left panels) and
HadCM3 (right panels). The
‘‘observations’’ are projections
of observations onto the leading
modes of model simulated
internal variability, and
therefore differ between models.
The reconstructions are based
upon the sum of the signals in
the phase space of the leading
modes multiplied by their
amplitude estimates arising
from the regression

Fig. 5 As Fig. 2 except for SURF input temperature diagnostics
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HadCM3, the damping required on the GS signal esti-
mate to fit the observations is even greater than for
HadCM2. This is in keeping with previous analyses of
near-surface temperature, which show that HadCM3 is
more likely to overestimate the magnitude of the late
20th Century anthropogenic response (see Figs. 8 and 11
of T02, and T99). However, the results detailed here
exhibit a greater overestimation bias than in T02. The
systematic effect on results for both models indicates
that it is most likely to relate to changes in input fields
and their pre-processing between our study and previous
studies (see Sect. 4.4 and Gillett et al. 2002). For Had-
CM3, in agreement with HadCM2, a detectable VOL
signal is discounted, being at or around zero scaling in
nearly all cases. G is only rarely detected in combination
with S for HadCM3, and the simuluted signal almost
always needs to be significantly reduced. The simulated
S signal is generally consistent with observed near-sur-
face temperatures, but only ever marginally detected in
smart LAA diagnostics, and never detected in na LAA
diagnostics. The greater G signal strength overestima-
tion within HadCM3 according to our analysis leads to
increased ambiguity regarding anthropogenic signal
detection compared to previous analyses (T02). Results
for the individual HadCM3 signals discussed above are
generally insensitive to the consideration of a three-way
regression.

Global mean SURF temperature reconstructions are
shown in Fig. 7. For both models those reconstructions
including VOL are physically implausible, since ampli-
tude scalings applied to this forcing are negative at the
truncation considered (but we retain them for com-
pleteness). We therefore concentrate on the the HadCM2
and HadCM3 G + S reconstructions. Both are within
the 2r uncertainty bounds of observed SURF tempera-
tures, with G providing the major component of the
warming trend, in agreement with results for LT. How-
ever, the absolute magnitude of the trend over the entire
period is not well captured, being underestimated by
both model reconstructions. This is likely due to the
large down-weighting required on the G signal in both
models according to our analysis. Previous analyses
which yielded scaling estimates closer to unity better
recreate the magnitude of the observed trends (T02; S01).

4.4 Results for all temperature diagnostics

In this section we summarise results for all six input
tropospheric temperature diagnostics. The summary is
based upon the same analysis as that performed in the
previous two subsections. This detailed analysis is
available online in Thorne (2001) for the remaining four
temperature diagnostics (UT and the three ‘‘lapse-rate’’
diagnostics). We distill the large volume of results from
each temperature diagnostic to provide a few meaningful

indicators. Inevitably a degree of subjectivity is involved
in this process, even though the raw results upon which
these summaries are based are quantitative and consider
uncertainty due to pre-processing choices. We conclude
that we are very confident if results agree across all LAA
representations and at almost all truncations in sup-
porting a particular conclusion. We report no or very
little confidence if the results overwhelmingly either do
not support or contradict the conclusion. In between
these extremes our results provide some degree of sup-
port but a degree of uncertainty remains based upon the
choices of truncation and LAA representation. This de-
gree of uncertainty is reflected in the confidence interval
we assign. We stress that this subjectivity will only impact
the absolute confidence values assigned to any statement
rather than their relative values. We choose to concen-
trate on what we consider to be the four most useful
indicators: whether a signal is detected, whether it is a
consistent explanation of the observations (our attribu-
tion approach), whether the consistency test on the
residuals is passed, and how well global mean trends are
reproduced. Results for HadCM2 are shown in Table 2,
whilst those for HadCM3 are shown in Table 3.

Both models agree that successful signal detection is
more likely for both UT and LT than SURF and, in
particular, than lapse rate diagnostics. Lapse rate diag-
nostics systematically have lower SNRs as much of the
signal in the models is common to adjacent layers and
hence removed in our lapse rate calculation. Therefore
they may have a tendency to yield significantly nega-
tively biased scalings (hence less detections). However
our analysis (Thorne 2001, see also Sect. 5 and Fig. 8)
shows that this systematic reduction in signal detect-
ability for lapse rates arises predominantly from a sys-
tematic increase in the uncertainty range in our scaling
estimates rather than negative biases in the scaling esti-
mates themselves. This most likely relates to the opti-
misation tending to be less efficient for the ‘‘noisier’’
lapse rate diagnostics leading to larger uncertainties.
Our analysis for all diagnostics also confirms our pre-
liminary detection analyses (see Sect. 4.1) in ranking the
signal detectability as, in descending order; G (or GS), S,
VOL for both models.

For HadCM2 we find with high confidence that
anthropogenic forcing factors (GS, G + S) are consis-
tent with the observations for all diagnostics except
SURF and LT-SURF, for which the model significantly
overestimates the amplitude of the response to GS(G).
For HadCM3 the overestimation of the response to
anthropogenic forcings, in particular GS(G), is more
widespread than for HadCM2 (consistent with T99 and
T02). However, in agreement with the HadCM2 analy-
ses this model overestimation of the GS(G) response is
greatest for SURF and LT-SURF. There is also a ten-
dency for both models to overestimate the amplitude of
the volcanic forcing response. This is contrary to recent
findings of Jones et al. (2003) who, by using a 4D input
field including stratospheric values and making na
assumptions about observational coverage, yield a VOL

Fig. 6 As Fig. 3 except for SURF input temperature diagnostics
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signal consistent with observations. We do not include
stratospheric values and we downweight tropical re-
gions, the two regions where a VOL response is likely to
be strongest, which taken together likely explain this
difference.

The systematic difference between SURF and LT-
SURF and the remaining input diagnostics for the GS
and G scaling estimates suggests that either the models
or observations (or both) could be in error in the surface
regions considered. Our results imply that the surface

should have been warming faster than observed over
1960–1994 whereas the troposphere has been warming at
the predicted rate if the models are correct. This is the
opposite of the recently observed and much discussed
global-mean trend discrepancy between observed and
modelled lower tropospheric and near-surface tempera-
tures (NRC 2000). We repeat our previous caveat that
we are considering both a highly sub-sampled space and
a longer time period than considered in the NRC report.
We also note that our analysis points towards potential

Fig. 7 As Fig. 4 except for
SURF temperature diagnostics
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biases in our SURF results when compared both to
previous studies (T99, T02; S01) as well as to our results
for remaining diagnostics. These earlier studies better
reconstructed both the magnitude and evolution of the
global-mean observed trends and yielded signal esti-
mates consistent with unity. Our analysis does not per-
mit definitive attribution of the causes of the differences
in our results compared to previous studies. This would
require a much more detailed experiment to assess our
sensitivity to a range of plausible pre-processing choices,
our current small sample space being grossly insufficient.
Analysis in Sect. 5 suggests that the differences in results
solely within our analysis between SURF and tropo-
spheric temperature diagnostics may not be statistically
significant.

For HadCM2, the consistency test on the residuals
passes in nearly all cases for all input temperature
diagnostics. The exception is for UT-LT lapse rates and
this is mitigated if HadRT2.1 is used instead of Had-
RT2.1s, and hence is likely to be a result of observa-
tional rather than model error. For HadCM3 the
consistency test also passes in most cases, the exceptions
being UT and UT-LT. The latter can again be explained
by observational error, whereas the former cannot. Gi-
ven that HadCM2 does not experience similar behaviour
for UT, the increased rate of consistency test failure is
likely to relate at least in part to model error within
HadCM3. HadCM3 probably fails to adequately cap-
ture at least some of the leading modes of internal cli-
mate variability in UT.

Finally we consider how well our estimators recon-
struct observed global-mean trends. HadCM2 tends to

underestimate the magnitude of the observed global-
mean temperature trends in most cases using the
weightings derived from our analyses. The reconstruc-
tions also occasionally fall outside the 2r bounds of the
observations, although this could happen due to chance
alone. HadCM3 also tends to underestimate the mag-
nitude of the observed trends, but generally stays within
2r of the observed reconstruction. The exception is for
UT, where at the truncations considered at least one of
the VOL or S forcings involved always has a negative
(unrealistic) weighting applied and therefore we cannot
make any meaningful inferences. Much of the reason for
the systematic tendency for both models to under-esti-
mate the magnitude of the observed global-mean chan-
ges in at least those temperature diagnostics including
SURF most likely relates to biases introduced by the
reduced spatial sampling, leading to differences from
previous studies, as discussed previously.

5 Are inter-level results consistent?

Analysis in Sect. 4 considered results for individual
tropospheric temperature diagnostics as independent
pieces of information. In both the modelled and real
worlds we know that this is not true, and that on the
large space and long time scales which we are consid-
ering the results should be consistent. As a first step
towards an assessment of consistency we undertake a
very simple analysis. All we wish to do is be able to
identify whether evidence exists for fundamental dis-
crepancies (arising from the modelled or the observed

Table 3 Summary of principal
results for HadCM3

1 No to very low confidence
2 Low confidence
3 Medium confidence
4 High confidence
5 Very high confidence
> Model signal response
significantly overestimated
eq. Model signal response
consistent with the observations
< Model signal response
significantly underestimated

Detection Consistent explanation of the observations Consistent
residuals

Reproduces
Global mean
trends

GS G S VOL GS G S VOL

> eq. < > eq. < > eq. < > eq. <

UT 5 5 3 3 3 3 1 4 2 1 1 4 1 3 3 1 2 4
LT 5 5 3 1 1 5 1 2 4 1 1 4 1 4 2 1 4 5
SURF 4 4 2 1 4 1 1 5 1 1 2 4 1 1 1 1 5 3
UT-LT 2 2 1 1 3 2 1 3 2 1 1 1 1 1 1 1 2 1
UT-SURF 1 1 1 1 3 2 1 3 2 1 1 1 1 1 1 1 5 3
LT-SURF 2 2 2 2 3 1 1 3 1 1 2 2 1 2 2 1 5 4

Table 2 Summary of principal
results for HadCM2

1 No to very low confidence
2 Low confidence
3 Medium confidence
4 High confidence
5 Very high confidence
> Model signal response
significantly overestimated
eq. Model signal response
consistent with the observations
< Model signal response
significantly underestimated

Detection Consistent explanation of the observations Consistent
residuals

Reproduces
Global mean
trends

GS G S VOL GS G S VOL

> eq. < > eq. < > eq. < > eq. <

UT 5 5 3 2 1 5 1 1 5 1 1 4 1 4 1 1 4 5
LT 5 5 2 2 1 5 1 1 5 1 1 4 1 3 2 1 5 3
SURF 4 4 2 1 3 3 1 3 3 1 3 3 1 1 1 1 5 3
UT-LT 3 3 2 3 1 5 1 2 4 1 1 4 1 4 2 1 3 4
UT-SURF 3 2 2 1 2 4 1 2 4 1 2 4 1 1 2 1 4 3
LT-SURF 2 2 2 1 2 1 1 2 1 1 1 2 1 1 1 1 4 4
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datasets) in the results for either model. We proceed
under the assumption that such gross errors would cause
a lack of overlap in the uncertainty ranges of our indi-
vidual signal scaling estimators for our six tropospheric
temperature diagnostics. We make no effort to ascertain
quantitative measures of the degree of agreement, al-
though this would be highly desirable in future. We also
limit our analysis to the G + S input signal combina-
tion.

Results for both HadCM2 and HadCM3 are shown
in Fig. 8 for the 10-area smart LAA diagnostic. It can be
seen from the ellipses in the top panels of this figure that
for both models there exists a degree of overlap in the

scaling estimates at the truncation being considered
(9 and 6 for HadCM2 and HadCM3 respectively, the
maximum truncation for which all diagnostics pass the
consistency test on the residuals). In the bottom panels
are univariate detection traces. These show that this
overlap is independent of truncation over a reasonable
range for both G and S signal estimators in HadCM2.
At the majority of truncations both these signals are
consistent with the observations, but they have a ten-
dency to overestimate the signal strength (have a scaling
estimate < 1) for most of the temperature diagnostics
considered. For HadCM3, although the G signal esti-
mates consistently overlap, the S signal estimates are

Fig. 8 The range of solutions
gained for a G + S signal
combination for all six input
temperature fields and both
HadCM2 (left panels) and
HadCM3 (right panels). The top
images give ellipses containing
90% of the joint probability
distribution with the amplitude
scaling estimate resulting from
the regression denoted by a
cross at truncation 9 (HadCM2)
and 6 (HadCM3). The lower
panels give traces over the entire
range of truncations for both G
and S. Areas denoted by
shading in these lower plots
relate to regions where the
univariate uncertainty limits (at
the 90% level) overlap entirely.
The individual limits are not
shown here for the sake of
clarity. Where the test on the
residuals fails the traces are
shown as thin lines
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more uncertain and whether there is overlap is critically
dependent upon the chosen truncation. HadCM3 con-
sistently overestimates the amplitude of the observed
response to greenhouse gases, whereas the overlap, when
it exists, is generally consistent with the observations for
the S signal response. Individual S amplitude scaling
estimates for HadCM3 are highly uncertain however,
reducing our confidence in this result. The fact that the
overlap is relatively robust to changing truncation for
both models, at least for G, which our analyses have
shown to be the most important explanation of the ob-
served changes, does provide some confidence in their
adequacy.

6 Conclusions

We have shown that applying an optimal detection
algorithm to full spatio-temporal tropospheric temper-
ature fields potentially adds power to zonal mean
detection studies. Available near-surface and radiosonde
observations were compared to climate change experi-
ments performed with two versions of the Hadley Centre
model: HadCM2 and HadCM3. Our analysis serves to
confirm results of previous studies of tropospheric
temperature changes over the latter twentieth century
(e.g. AT99; T99, T02; S01) in that we detect with high
confidence an anthropogenic signal for our analysis
period of 1960–1994. We also sometimes detect volcanic
influences, although we made no attempt to remove
ENSO effects from the observed fields which might bias
this result towards non-detection. We find that HadCM2
and particularly HadCM3 based simulations have a
tendency to significantly overestimate the amplitude of
the tropospheric temperature response to anthropogenic
greenhouse gases. We conclude that this effect is likely to
be real, although comparisons with previous studies
suggest that artificially reduced dataset coverage and a
shift in emphasis towards extra-tropical land regions to
match available radiosonde coverage, amongst other
differences, may be playing a significant role at the
surface where the discrepancy is most pronounced.
Therefore, at this stage we cannot unambiguously
attribute recently observed changes in tropospheric
temperatures to any combination of external forcing
influences, although by far the most plausible causes are
anthropogenic.

We have considered the sensitivity of results to sev-
eral potential sources of uncertainty and find our prin-
cipal conclusions to be robust, although further sources
of uncertainty not considered within our analysis cer-
tainly remain. In particular it would be desirable to
repeat these analyses using different modelled and
observed datasets and to consider the reasons for our
discrepancies with previous surface analyses in a robust
and systematic manner. We aim to achieve this latter
point through an analysis of the sensitivity of detection
results to input field pre-processing choices. A simple

comparison of this study and previous studies is insuf-
ficient to make conclusive statements as to the causes of
the differences in results. Our analysis showed that
corrections previously applied to the HadRT radiosonde
temperature record might be sub-optimal in considering
solely spatial rather than spatio-temporal consistency
aspects. Work in progress aims to rectify this. We cau-
tion that any other radiosonde record corrections based
on solely single station records in isolation may suffer
from similar problems. We plan to repeat our detection
analyses once improved radiosonde data are available
using updated HadCM3 model fields for the longer
period of 1958 to date to assess sensitivity of our results
to radiosonde data uncertainties.

We extend traditional detection and attribution
studies by stipulating that for multiple climate variables
our detection results should overlap for any given
model. We conclude under this approach that there is no
evidence for a fundamental discrepancy between mod-
elled and observed temperatures within the troposphere,
at least under anthropogenic forcings. In the longer term
we would envisage a more rigorous, quantitative, check
being possible (see Ch. 7 of Thorne 2001 for a detailed
discussion).
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