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ABSTRACT 

This paper discusses issues related to audio latency for realtime 
processing Android OS applications. We first introduce the prob-
lem, determining the difference between the concepts of low la-
tency and constant latency. It is a well-known issue that pro-
grams written for this platform cannot implement low-latency 
audio. However, in some cases, while low latency is desirable, it 
is not crucial. In some of these cases, achieving a constant delay 
between control events and sound output is the necessary condi-
tion. The paper briefly outlines the audio architecture in the An-
droid platform to tease out the difficulties. Following this, we 
proposed some approaches to deal with two basic situations, one 
where the audio callback system provided by the system software 
is isochronous, and one where it is not. 
 

1. INTRODUCTION 

The support for realtime audio on the Android platform has been 
shown to suffer from significant latency issues [1]. Although 
support for lower latency audio paths has been provided in later 
versions of the operating system, this provision can vary signifi-
cantly from device to device. One of the difficulties here, as iden-
tified by its developers, is that there is no uniformity in the de-
ployment of the system, which has to be able to adapt to a variety 
of vendor-designed hardware set-ups. Its competitor, iOS, on the 
other hand, has been built to run specific devices, which have 
much less variance, and, for this reason, it can deliver a better 
support for realtime audio to developers. 
 
While low latency is critical for certain applications, for others, it 
is possible to design systems around a moderate amount of audio 
delays. In this case, the next requirement tends to be constant la-
tency. In other words, we might not be worried if a given sound 
event is to be delivered a certain number of milliseconds in the 
future, but we would like to be able to predict with a certain de-
gree of precision what this delay will be. Generally speaking, 
constant latency is guaranteed in a working full-duplex audio 
configuration, with respect to the input signal, since any modula-
tion of this delay would be associated with sample dropouts.  
 

The situation is, however, more complex when we are trying to 
synchronise audio output to external control inputs, operating 
asynchronously to the audio stream (fig.1). This situation typical-
ly arises, for instance, when trying to synchronise touch events, 
or responses to sensors, with specific parameter changes (e.g. 
onsets, pitch changes, timescale modifications).  In this case, 
constant latency is not a given: it depends on the audio subsystem 
implementation. On Android, the audio subsystem is vendor-
implemented, and, as noted, can vary significantly from device to 
device. For certain devices, achieving constant latency with re-
gards to an asynchronous control is not much more than a matter 
of using a common clock, as the audio subsystem callback mech-
anism is tightly chained to the sample stream output (itself syn-
chronised to a regular clock). On other devices, the situation is 
more complex, as there is no guarantee that the callback func-
tions will occur with only small amounts of jitter (with regards to 
a common system clock). Furthermore, in these cases, stream 
time is not reported with a good degree of accuracy. 
 

 
Figure 1. Event-to-sound latency 

 
In this paper we will look at approaches to obtaining constant 
audio output latency with regards to external asynchronous con-
trol events. Constant latency is required when we need to esti-
mate the exact time of the change of parameters in the sound 
stream in response to a control input. For instance, if we want to 
try and synchronise musical beats to a step detection algorithm, 
we will need to know how the time between the sending of a 
tempo adaptation command and the appearance of the effect at 
the output. 
 
The paper is organised as follows: an overview of the Android 
audio architecture is provided, which will identify the difficulties 
with latency control, and identify the various sources of delays in 
the system. This will be followed by an examination of ap-
proaches to achieving constant latency in the two cases men-
tioned above: isochronous and anisochronous callback mecha-
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nisms. The paper will demonstrate how it is possible to minimise 
latency jitter in these two situations, describing the algorithms 
employed and their results. The paper concludes with a brief dis-
cussion of the applications for the principles outlined here and 
some indications of future work. 

2. ANDROID AUDIO SYSTEMS 

The audio implementation in Android is built on a number of 
layers [2]. The lowermost components are not exposed to devel-
opers, and they can only be manipulated indirectly via the top-
most application programming interfaces (APIs), of which there 
are a few. High-level development for Android uses a version of 
the Java language, and the simplest APIs are provided as part of 
the Software Developer Kit (SDK). The most flexible of these is 
AudioTrack, which provides a blocking-type audio writing func-
tionality (synchronous), but it is still considered not enough low-
level for any serious audio application. 
 
For this, Android provides a C API based on the OpenSL ES 
1.0.1 specification [3] in their Native Developer Kit (NDK). The 
NDK is a collection of C/C++ APIs that can be used to build dy-
namic modules for Java-based applications, whose functionality 
is accessed through the Java Native Interface. The NDK allows 
developers to port large portions of C/C++ code, and in the case 
of audio applications, to bypass the performance problems asso-
ciated with Java garbage collection. However, it is important to 
note that both the Java AudioTrack and the NDK OpenSL ES 
APIs use the same underlying audio implementation. The docu-
mentation is clear in saying that using the latter does not guaran-
tee better performance in terms of audio latency, although in 
some systems a "fast" audio mixer signal path might be available 
to NDK-based applications [4]. 

2.1. OpenSL ES 

The OpenSL ES API provides the means to open audio streams 
for input and output, and to access these asynchronously via a 
callback mechanism. This method is generally the standard in 
audio APIs across platforms, where the developer provides the 
code to fill in audio buffers at the times requested by the system. 
 
For the developer, this gets exposed via an enqueue mechanism: 
after the device is initialised and opened, the developer starts the 
process by enqueuing a single buffer, and registering a callback. 
This is invoked by the system, according to the specification, 
when a new buffer is required, and so the callback will include 
code to generate the audio and to enqueue it. 
 
The specification does not say anything in relation to the timing 
of these callbacks. In others words, depending on the implemen-
tation, these can either be relied upon to happen at regular times 
(isochronous behaviour) or not (anisochronous). Depending on 
this, different strategies are required for the implementation of 
constant latency. 
 
OpenSL also provides some means of polling the system for the 
current stream time. However, it is not clear from the specifica-
tion how this should be implemented, and to which point in the 
audio chain it refers. In reality, we have observed that the infor-
mation obtained is not reliable across different devices, so it is 
not always usable. 

2.2. Lower levels 

The implementation of OpenSL ES sits on top of the AudioTrack 
C++ library, which is also the backend of the Java AudioTrack 
API, as noted above. Although the two libraries share the name, 
they are actually distinct, the Java API occupying the same level 
as OpenSL on top of the C++ library. The following is a descrip-
tion of the lower-level implementation in Android version 5.0 
(fig.2). 
 
The actual code implementing the OpenSL exposed functionality 
is a thin layer. The enqueueing code simply places a pointer to 
the user-provided memory in a circular buffer. The data in this 
memory location is consumed by an AudioTrack function, which 
copies it into its own buffer. Once all supplied data is read, it is-
ssues the user-supplied callback, which should enqueue more 
data. The OpenSL specification asks for users to implement dou-
ble buffering of audio data, ie. enqueueing one buffer while fill-
ing a second one. However, the implementation is clear: the 
enqueueing is only requested when the buffer data has been cop-
ied completely. Thus double buffering is not really a necessity. 
 
AudioTrack shares its buffer memory with the next lower level 
service, AudioFlinger. This is responsible for mixing the audio 
streams in its own playback thread and feeding the Hardware 
Abstraction Layer (HAL), which is the vendor-implemented part 
of the code that communicates with the audio drivers running in 
the Linux kernel. Some devices implement a feature provided by 
AudioFlinger to reduce latency, a "fast mixer track", which, 
when available, is used if the developer employs a specific buffer 
size and sample rate dictated by the hardware, via OpenSL. The 
presence of this feature can be enquired via a Java call provided 
by the AudioTrack API, which also allows developers to obtain 
the native parameters for it. Surprisingly, it is not possible to do 
this via the NDK. 
 
The consumption of audio data is ultimately linked to the HAL 
implementation, and so the timing behaviour of the callback 
mechanism is influenced by this. The HAL also is supposed to 
supply the information regarding stream time, which is exposed 
by the OpenSL ES, thus its reliability is related to how well this 
is implemented there. 
 

 
Figure 2. The Android audio stack 

2.3. Achieving low and constant latency 

It is clear from this discussion, that any approach to reducing la-
tency is highly dependent on the hardware involved. Some rec-
ommendations have been provided, such as using the native 
buffer size and sample rates, but these are not guaranteed to have 
significant effect on all devices. Avoiding the interference of the 
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Java garbage collector is also important for constant latency, 
which in practice means migrating all relevant code from the 
SDK level to the NDK. In general, an analysis of a device's be-
haviour in relation to its callback timing appears to be needed for 
a full assessment of its particular latency improvement potential 
(both in terms of low and constant characteristics). 

3. CONSTANT LATENCY APPROACHES 

To achieve approximately constant latency, we first evaluate the 
most basic approach using OpenSL ES, namely enqueueing 
sound data in the OpenSL buffer queue as soon as possible after 
the request occurs. Thereafter, we examine approaches which 
instead estimate the play head position in the output stream and 
enqueue sound data at a fixed delay relative to that play head po-
sition. 
 
All positions are defined relative to the start of the audio data 
stream. We define the enqueued position as the position within 
the data stream corresponding to the last sample enqueued to 
date. We define the true play head position as the position in the 
data stream corresponding to the sound that is currently being 
output from the device. In Android devices the delay between the 
true play head position and the enqueued position ranges from a 
few tens of milliseconds to more than 100 ms for some devices 
[1]. In general, if this delay is constant it should be easier to 
achieve constant latency between sound request and sound out-
put.  
 
To date, we have not encountered any method for measuring this 
latency in an absolute manner. To estimate the latency some au-
thors measure the audio loopback delay, based on a round-trip 
path (input to output): an audio signal is fed to the input and the 
time it takes for it to appear at the output is measured. This can 
be achieved via the Larsen effect [5], or via a custom loopback 
audio connection. From this, it is estimated that the output laten-
cy is half of this time [6]. Nevertheless, it is not guaranteed that 
the audio processing path is symmetrical and therefore that the 
output latency is equal to the input latency.  
 
Other approaches, which are more appropriate to the issue of 
constant latency, as discussed in sect. 1,  include measuring the 
delay between a touch event on the Android device (or some ex-
ternal input) and the corresponding sound output (as illustrated 
by fig.1). However, even here there is a difficult to quantify (and 
usually variable) delay involved in receiving and processing the 
source event before a sound request is ever issued. Therefore, for 
this work, we developed an alternative approach based on the 
relative time at which sound requests were issued and the relative 
time at which sound outputs occurred.  

3.1. Evaluation methodology, equipment and materials 

Two different Android devices were used in this work: A Sony 
Xperia Z2 and a Motorola MotoG (first generation). Both devices 
were running Android 4.4.4. The most relevant audio properties 
of both devices are shown in Table 1. These devices were chosen 
as exemplars of a high end device (the Xperia Z2) and a mid-
range device (the MotoG). As there are a great variety of An-
droid devices and capabilities, this work with just two devices 
should be considered a preliminary examination of the problem 
space. 

Table 1: Key Audio Properties 

Device Low 
latency 

Native 
sample rate 

Native buffer size 
(frames) / duration 

(ms) 
Xperia Z2 No 48000 960 / 20 

MotoG No 44100 1920 / 43.5 
 
A custom Android app was developed which included a C based 
NDK component and a java component. The NDK component 
implemented the sound engine as a thin layer on top of OpenSL 
ES and was responsible for all timing measurements (measured 
using clock_gettime specifying CLOCK_MONOTONIC). The 
Java component implemented test runs which consisted of a se-
quence of 500 sound requests issued at anisochronous intervals 
between 400–500 ms apart. (This interval was chosen so that 
even substantial latency jitter would not create any doubt about 
which sound request and which sound output correspond to one 
another.) The sound engine logged the precise time (in microsec-
onds) at which each request was made and stored this in a log file 
along with other data required for subsequent processing. 
 
Each sound request resulted in production of a short, 10 ms, 1000 
Hz tone pip (with instant attack and release, limited only by the 
analogue hardware response). The audio output of the Android 
device was attached to the line input of a USB sound device 
(Griffin iMic) and recorded as a RIFF-Wave file (mono PCM, 16 
bits, 44100 Hz) on a PC. This soundfile was then post-processed 
with threshold based onset detection to determine the times 
(within the audio file) at which tone pips occurred.  
 
It is not possible to directly synchronize the clock used to meas-
ure sound request times with that used to measure sound onset 
times using standard Android devices. Therefore it was necessary 
to convert from raw times using these unsynchronized clocks to 
times that can be compared. To achieve this, all raw request 
times from the log file were made relative to the time of the first 
request (by subtracting the first request time from each of them). 
Similarly all raw sound onset times from the audio file were 
made relative to the time of the first sound onset (by subtracting 
the first sound onset time from each of them). After this calcula-
tion the first request and sound onset time are both zero and this 
allows subsequent request and onset times to be compared. The 
initial real world latency between the first request and the first 
sound onset cannot be measured (because the clocks cannot be 
synchronised) and appears as zero. If the latency is constant, all 
subsequent sound onsets occur at precisely the same time offsets 
as the corresponding requests and the time difference between 
them should be zero. In contrast, if there is latency jitter, the 
sound onset times will differ from the request times by an 
amount equal to the jitter. 
 
In the subsequent evaluations it was noticed that there was a 
slight mismatch between the clock used to time requests on the 
Xperia Z2 and the sample clock in the USB microphone audio 
input to the PC. This mismatch caused the two clocks to drift 
apart by 1-2 ms over the duration of a test run. Therefore Xperia 
Z2 plots shown in the following sections have been de-trended to 
compensate for the drift which is unrelated to the latency algo-
rithms being evaluated. 

3.2. Latency using the Next Buffer approach 

The most basic approach to approximating constant latency with 
OpenSL ES is to enqueue audio data as soon as possible after it is 
requested. In other words: 
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  (1) 
where insertPos is the insertion position of the sound in the data 
stream and enqueuedPos is the end of data stream position after 
the most recent callback preceding the request has completed. 
 
In general the Next Buffer approach can be expected to yield at 
least one buffer duration jitter as the request may occur just be-
fore a callback is due, resulting in a very short request to enqueue 
delay, or just after a callback has completed, resulting in a longer 
request to enqueue delay. For small buffer sizes (for example 20 
ms) this jitter may be acceptable, but for larger buffer sizes (for 
example the 43 ms of the MotoG) the jitter can become audible. 
 
Furthermore, if OpenSL callbacks occur at isochronous intervals, 
then two requests occurring within one buffer duration of each 
other will never be enqueued more than one buffer apart (even if 
they occur just before and just after a callback). If, however, 
callbacks do not occur at isochronous intervals (that is, some in-
ter-callback intervals are shorter than others) then it is possible 
that two requests occurring within one buffer duration of each 
other in real time may be enqueued more than one buffer apart 
resulting in jitter that is even greater than one buffer duration in 
this case.  
 
The results for the Xperia Z2 are shown in Figure 3. 
 

 

Figure 3  Relative latencies using Next Buffer on the 
Xperia Z2: (a) histogram, (b) values. Dashed lines show 
two standard deviation boundaries. 

In this case the latency jitter is reasonable and limited to a range 
that is just larger than one buffer duration (-10.7 to 11.4 ms). 
Closer investigation showed that OpenSL callback times were 
nearly isochronous for this device. 
 
Figure 4 shows the MotoG results and in this case the latency 
jitter is much larger than the Z2. 
 

 
Figure 4  Relative latencies using Next Buffer on the Mo-
toG: (a) histogram and (b) values. Dashed lines show two 
standard deviation boundaries. 

 
In fact the latency jitter for the MotoG is even larger than one 
buffer duration (95% of the values were within a 58 ms range). 
This range is really too large and can result in audible jitter. The 
main cause for the jitter appears to be that the callback is not in-
voked at regular intervals on the MotoG. Instead a typical se-
quence of callback intervals measured in milliseconds might be: 
40, 60, 20, 60, 40, 40, 80, 30, and so on. 
 
Therefore it appears that the Next Buffer approach is only suita-
ble if two conditions are satisfied by the device: (1) the native 
buffer size is relatively small, and (2) callbacks are invoked at 
isochronous intervals. For devices which do not satisfy these re-
quirements, such as the MotoG, another approach is required. 

3.3. Latency using the OpenSL position 

Rather than attempting to enqueue a sound as soon as possible 
after the request and suffering the jitter that results it would be 
better if it was possible to enqueue the sound such that it was 
output a constant latency after the request. If the current play 
head position is known, then constant latency can be achieved by 
adding the sound to the data stream at some fixed delay relative 
to the play head position. This fixed delay must be large enough 
that the desired insert position of the sound is never earlier than 
the already enqueued position despite any callback jitter. 
 
As discussed previously, the OpenSL ES API defines a function 
to read the current play head position and this is direct estimate 
of the play head position which may be used to calculate an ap-
propriate insert position for the requested sound data as follows: 
  (2) 
 
where requestSLPos is the OpenSL position at the time of the 
request and the fixed delay (which was determined empirically 
for each device) guarantees that the insertion position is never 
earlier than the end of data already enqueued. This fixed delay 
does not appear in subsequent plots due to the relative nature of 
the times used.  
 
Although the relative latencies for the Xperia Z2 using the Next 
Buffer approach were already quite good, we decided to evaluate 
the achievable latency jitter using the OpenSL position also. The 
results are shown in Figure 5. 
 

insertPos enqueuedPos=

insertPos requestSLPos fixedDelay= +
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Figure 5 Relative latencies using OpenSL position on the 
Xperia Z2: (a) histogram, (b) values. Dashed lines show 
two standard deviation boundaries. 

It is clear that inserting sounds a fixed delay after the OpenSL 
position (measured at the time of request) has substantially re-
duced the latency jitter (95% of the values are in 5.6 ms range) 
relative to the Next Buffer approach. 
 
When this latency approach was applied to the MotoG the results 
improved somewhat relative to the NextBuffer approach but 
were still much worse than the Xperia Z2 as can be seen in Fig-
ure 6. 
 
In this case, 95% of the latencies are contained within an 36.8 ms 
range (compared to a 58 ms range previously). This is still a rela-
tively large range and, unlike the Xperia Z2, there are a number 
of outlier values which substantially depart from the typical 
range. 
 

 

Figure 6  Relative latencies using OpenSL position on 
the MotoG: (a) histogram, (b) values. Dashed lines show 
two standard deviation boundaries. 

 
Closer examination of OpenSL positions on the MotoG indicated 
that the intervals between OpenSL positions on consecutive re-
quests did not match the intervals between the real time of those 
requests very well. Further investigation indicated that the API 
call to read the OpenSL position appears to read a cached posi-
tion value which is not always up to date rather than reading the 
real position from the low level hardware or driver.  
 
In some cases reading the OpenSL position twice 3 ms apart sug-
gested that the position had not advanced at all whereas at other 
times a similar pair of requests separated by just 3 ms of real time 
indicated that OpenSL position had changed by as much as 30 
ms. Therefore a better approach is still required for the MotoG 
and similar devices. As noted in section 2, the implementation of 
the position polling in Android devices cannot be relied on, and 
thus this approach is not general enough for all devices. 

3.4. Latency using the Filtered Callback Time 

Results to date indicated that the interval between callbacks on 
the MotoG was not even approximately constant. Nevertheless 
the mean callback interval precisely matches the buffer duration. 
This is to be expected: if the mean callback interval were any 
larger it would mean that the buffer level (the difference between 
the true play head position and the enqueued position) would 
gradually decrease and underflow as new buffers would be added 
more slowly than they were consumed. Similarly if the callback 
interval were any smaller than the buffer duration, the buffer lev-
el would increase until overflow occurred. Therefore, the fact 
that the callback intervals are distributed around a predictable 
mean value suggests a possible approach to achieving constant 
latency. 
 
The callback intervals recorded for the MotoG are suggestive of 
a low level task which polls the state of the low level audio buff-
ers approximately once every 20 ms and initiates a callback if the 
buffer level is less than some threshold. We assume that, for var-
ious reasons (including the mismatch between the polling rate 
and the buffer duration), the buffer level is different for consecu-
tive callbacks and therefore there is variable latency between the 
true play head position and the next data enqueued by the 
callback. Our approach is to estimate the times at which 
callbacks would have been invoked if they were invoked at the 
same buffer level each time and therefore invoked at isochronous 
intervals. 
 
The basic approach is to record the times at which callbacks oc-
cur and filter these to estimate the time at which a constant laten-
cy callback would have occurred. 
 
The technique used to estimate the filtered callback time was 
double exponential smoothing [7] as defined by the following 
standard equations: 
 
  (3) 

  (4) 

 
where s(n) defines the smoothed output (the filtered callback 
time) at time n, x(n) defines the input (the callback time), and 
b(n) defines the trend in the data (corresponding to the smoothed 
interval between callbacks in this case). The parameters α and β 
determine the smoothing factors and rate of convergence of the 
filter. 
 
We initialize s(0) to be x(0) and b(0) to be the native buffer dura-
tion. On each callback, (3) provides an estimate of the filtered 
callback time based on the linear trend up to that point. Thereaf-
ter (4) updates the value of the trend. The trend should not 
change much over time but using these equations allows the al-
gorithm to adapt to slight mismatches between the system clock 
used by Android and the sample clock used by the audio hard-
ware. (We previously used simple exponential smoothing [7] 
with a fixed estimated interval between callbacks but preliminary 
results showed that the two clocks soon drifted audibly apart us-
ing this approach.) 
 
The filtered callback time is calculated at the start of each 
callback before any new data has been enqueued. Therefore the 
play head position at the start of the callback may be estimated 
(save for a constant offset) as  

[ ]( ) ( ) (1 ) ( 1) ( 1)s n x n s n b nα α= + − − + −

[ ]( ) ( ) ( 1) (1 ) ( 1)b n s n s n b nβ β= − − + − −
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  (5) 

 
where enqueuedPos is the end of data stream position after the 
preceding callback completed, cbTime is the time at which the 
current callback was invoked, and filteredCBTime is the time at 
which the current callback should have been invoked if it were 
invoked exactly when the buffer level drained to its mean level. 
This estimate of the play head position incorporates a constant 
offset (the mean buffer level) which should be subtracted to get a 
more accurate estimate of the true play head position. In our ap-
proach, this offset is incorporated as part of the fixed delay added 
later in the algorithm. 
 
In the sound request a new estimate of the play position estimate 
is made as follows: 
 
  (6) 

 
where reqTime is the time at which the request was made and 
other values are as already defined based on the most recent 
callback preceding the request. Therefore this step accounts for 
the time that has elapsed since the play position was last estimat-
ed. Thereafter, the insertion point may finally be determined as 
 
  (7) 
 
Using the filtered callback time technique to achieve low latency 
on the Xperia Z2 yielded results that were essentially identical to 
those obtained using the OpenSL position. For that reason they 
are not shown here. The MotoG results, however, did differ from 
those obtained using the OpenSL position as shown in Figure 7. 
 

 
Figure 7  Relative latencies using Filtered Callback Time 
on the MotoG: (a) histogram, (b) values. Dashed lines 
show two standard deviation boundaries. 

These results show a clear improvement over those obtained us-
ing the Next Buffer and OpenSL position techniques. In this case 
95% of the relative latencies are within a 16 ms range resulting in 
jitter that should be inaudible to most, if not all, listeners. The 
results also indicate a number of outlier values, but these oc-
curred at the start of the test run during the convergence period of 
the filter. 
 
Despite the reduction in relative latency jitter that has been 
achieved there is still some residual jitter remaining. The detailed 
sources of this residual jitter are currently unknown but it is pos-
sible that at least some of it is due to scheduling jitter within the 

operating system since there are several interacting threads in-
volved in the process of audio output. 

4. CONCLUSIONS AND FUTURE WORK 

The work described in this paper described the motivation for 
and difficulty in achieving constant latency on Android devices 
as many devices, even recent devices, do not implement the low 
latency feature now supported by the Android operating system. 
 
We made two main contributions: we measured the relative la-
tency jitter achieved by two Android devices using OpenSL ES 
and we proposed two schemes which specifically aimed to re-
duce this latency jitter and approach constant latency output of 
audio events. 
 
The commonly used Next Buffer scheme was investigated and 
found to be sub-optimal in achieving constant latency for all de-
vices (although for low latency devices it may be sufficient). Us-
ing the Open SL position to achieve constant latency worked 
well for one phone (the Xperia Z2) but badly for another (the 
MotoG) and we conclude that the success of this scheme is high-
ly dependent on the quality of the OpenSL ES implementation on 
the device. Finally we proposed a novel scheme based on filter-
ing the callback times to estimate the play head position and 
showed that this scheme worked quite well even when the under-
lying OpenSL ES implementation appeared to have several 
shortcomings (as was the case for the MotoG). 
 
Notwithstanding the successes reported in this paper, preliminary 
investigations with additional Android devices have indicated 
that there seem to be quite a variety of different OpenSL ES im-
plementations and buffer strategies used by different device 
manufacturers. Consequently, it appears that even the techniques 
described above must be supplemented by additional techniques 
if constant latency is to be achieved on all devices. In the future, 
as part of our ongoing work, we plan to investigate additional 
techniques and a method of selecting the best technique for a par-
ticular device (if no single technique works for all devices). 
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