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Abstract

We report on a new digital signal processing technique that reduces speckle
in reconstructions of digital holograms. This is achieved by convolving the
three dimensional intensity pattern (the intensity of the propagated DH at
a series of different distances) with a 3D point spread function in all three
dimensions (x,y,z ). It is based on the fact that the addition of different
independent speckle images on an intensity basis reduces the speckle content.
We provide quantitative results in terms of speckle index and resolution, and
show that filtering in the z direction has the added benefit of an increase the
depth of focus of the digital hologram reconstruction.

Keywords: Digital Holography, Speckle Reduction, 3D Filtering, Digital
signal processing

1. Introduction

Digital holography [1, 2, 3] differs from holography in that an electronic
sensor, rather than photographic material, is used to capture a hologram
during the recording step. In addition the reconstructions are performed
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numerically on a computer instead of physically reconstructing the hologram.
In 1994, Schnars and Jüptner [3] were the first to successfully capture Fresnel
holograms with a CCD sensor. These digital holograms, like their analogue
counterparts, require light that has a high level of coherence and therefore
suffer from the effects of speckle noise.

Speckle occurs when coherent light is incident on an optically rough sur-
face [4]. It degrades the quality of the resulting images and makes it diffi-
cult or impossible to resolve fine detail. All coherent imaging systems suf-
fer from speckle and when we consider viewing reconstructions of DHs this
speckle is an unwanted noise [5]. The presence of speckle hinders the ap-
plication of image processing techniques to digital holographic data. The
reduction of speckle is therefore an important topic whenever reconstruc-
tions of DHs are to be used. One such area which benefits from speckle
reduction is the extraction of 3D shape information from DHs. Existing fo-
cus measures [6, 7, 8, 9, 10] are hampered by the speckled appearance of
the reconstructions, and results are improved when a pre-processing speckle
reduction step is used. Another area that benefits from speckle reduced DH
reconstructions is that of pattern recognition [11, 12, 13, 14]. The analysis
of particles for flow field measurement using reconstructions of DHs has also
benefitted from speckle reduction [15]. However, some of the aforementioned
papers use standard noise reduction techniques that have not been developed
and optimized to address the underlying properties of speckle in DHs and
therefore produce results that are not optimal.

There have been a number of recent contributions to the area of speckle
reduction in DH reconstructions. In 2004, Dubois et al. [15] used a spatially
partially coherent source during recording to reduce the effects of speckle
in a digital holographic microscopy system. In order to create the spatially
partially coherent source a rotating diffuser was placed in the path of the
coherent light source. This technique was also used by Kim [16] in 2004 to
reduce speckle in holographic 3D displays and by Sucerquia et al. [17] two
years later who introduced static (but different) diffusers during the record-
ing of DHs and then added together the resulting reconstructions. Also in
2006, Baumbach et al. [18] added together reconstructions from laterally
shifted holograms of an object to reduce the speckle content. Nomura et

al. [19] proposed reducing speckle in reconstructions of DHs by superposing
reconstructed DHs recorded at different wavelengths. Using a wavelength-
tunable laser, they added together reconstructions from each of the captured
DHs on an intensity basis, thus reducing the speckle content. The imple-
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mentation of a synthetic aperture for digital holography has been realised
recently [20, 21, 22, 23, 24, 25]. It is achieved by moving either the CCD
or the sample, capturing multiple DHs between successive moves, and then
stitching together the resulting DHs to form a larger DH. The primary pur-
pose of a synthetic aperture is to increase the resolution of the resulting im-
ages, while at the same time increasing the aperture size causes the average
speckle size to reduce. All of these techniques required a change to the setup
(i.e., the introduction of diffusers) and/or multiple captures of holograms to
achieve a reduction in speckle.

There have also been contributions to speckle reduction in which only
a single DH was used. To lessen the effects of speckle noise, while investi-
gating compression and Internet transmission of DHs, Naughton et al. [26]
applied a subsampling (spatial integration) operation. They applied this
to the intensity in the reconstruction plane where the operation integrates
nonoverlapping blocks of n × n pixels to a single value. Garcia-Sucerquia
et al. [27] also used a subsampling operation to reduce the effects of speckle
in reconstructions of DHs. Furthermore, they suggested the merging of the
subsampling operation with that of the median filter, although no quantative
results were given in terms of the effects on resolution. In 2004, Bertaux et

al. [28], put forward an approach for the removal of speckle, which was based
on the maximum-likelihood technique and used a general model for image
reflectivity. The image was further improved by applying a constraint on
isoline gray levels, which results in smoothness without blurring of the edges
of the objects in the image. Finally, in 2006 Charrire et al. [29] convolved
reconstructions with a Gaussian filter to reduce noise in images of cells cap-
tured by a DHM system. However as the focus of their paper was not on
speckle reduction, but on living specimen tomography, details of the filtering
process they used was not given.

We report on a new digital signal processing technique that reduces
speckle in reconstructions of digital holograms (DHs). This is achieved by
convolving the three dimensional (3D) intensity pattern (the intensity of the
propagated DH at a series of different distances) with a 3D point spread
function in all three dimensions (x,y,z ). This 3D filtering method is based
on the fact that the addition of different independent speckle images on an
intensity basis reduces the speckle content, and we must therefore take into
account the size of the speckle in all three dimensions. In contrast to some
of the approaches outlined above, our technique requires just a single DH
and unlike standard image processing noise reduction techniques uses the
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inherent properties of the speckle field to adjust the size of the filter used.
We begin by investigating the two dimensional (2D) case where different

speckle patterns are produced by laterally shifting the DH reconstruction
plane in (x,y). If the shift is greater than a speckle correlation area (average
speckle size), then the resulting speckle patterns will be independent and
when summed on an intensity basis, this results in speckle reduction. Adding
together a number of shifted copies of the 2D intensities, each differently
weighted in the sum, may be described by a 2D convolution. Convolution
provides a framework for the application of different kinds of filters, e.g., the
Gaussian filter. Convolution also provides a framework for extension to the
case of 3D filtering. In this case we reconstruct a stack of intensities at a
range of different distances, separated by a constant sampling interval, Tz,
in the z direction. If the sampling distance along z is at least as large as
the speckle size in the z direction we may assume that each reconstruction
has an independent speckle pattern. While applying our method we must
also consider its impact in terms of blurring the image that we are seeking
to improve.

The idea of adding shifted intensities for speckle reduction in hologra-
phy has precedent. In 1975, Gama [30] used a vibrating source during op-
tical replay of holographic reconstructions of diffuse objects to reduce the
speckle contrast pattern. Recently, Pen et al. [31] introduced a method to
reduce coherent noise in digital holographic phase contrast microscopy by
slightly shifting the specimen under investigation and at each shift captur-
ing a DH, each with a different speckle pattern. By adding reconstructions
from these DHs together the speckle content was reduced. Another method
by the same group introduced an improved polarization recording approach
to reduce speckle noise in off-axis DHs [32]. Once again multiple DHs are
obtained by rotating the linear polarization state of both illumination and
reference beams simultaneously. Speckle is suppressed by adding together
reconstructions from these DHs on an intensity basis. Nomura et al. [19]
proposed a different method of reducing speckle by superposing the inten-
sities of reconstructed DHs recorded at different wavelengths. They used a
wavelength-tunable laser and they captured their DHs in the range 567 nm
to 624 nm, with an interval of 8 nm. They then added together reconstruc-
tions from each of the captured DHs on an intensity basis, thus reducing
the speckle content. While these final two approaches do not compromise
the underlying image quality, they have the major drawback that multiple
DHs need to be captured, ruling out the possibility of investigating dynamic

4



objects.
This paper is structured as follows. Sect. 2 provides a full analysis of

our technique and is followed by Sect. 3 which discusses the metrics used to
evaluate its effectiveness and provides an analysis of the expected theoreti-
cal resolution. Sect. 4 provides a comprehensive set of experimental results
for filtering in one, two and three dimensions. Finally we summarize our
contribution in Sect. 5.

2. Analysis

An analysis of the technique is now presented. In Sect. 2.1 the convolu-
tion framework, upon which our technique is built, is discussed. Then we
address the issue of generating a 3D reconstructed DH along with the required
sampling intervals needed for convolving such a signal (see Sect. 2.2). The
differences between reconstruction with the direct and spectral methods and
possible implications for our approach are treated in Sect. 2.3. In Sect. 2.4
we discuss speckle size in 3 dimensions and compare the expected size given
by theory to the size of the speckle observed in numerically reconstructed
DHs. Finally, the model we have developed is presented in Sect. 2.5.

2.1. Convolution and filtering

Convolution in 2D is often used in image processing to reduce noise. How-
ever, as we are using DHs, it is possible to create a 3D signal by calculating
the intensity pattern for a stack of different distances within a certain range
around the correct object distance. For such a signal we can perform 3D fil-
tering using 3D convolution with a suitable 3D kernel. Following this, the 2D
image corresponding to the correct distance can be isolated. 3D convolution
in the continuous case can be written as

(g ∗ f)(x, y, z) =
∫

∞

−∞

∫

∞

−∞

∫

∞

−∞

f(u, v, w)g(x− u, y − v, z − w)dudvdw, (1)

where x, y, z, u, v, w are ∈ R and the discrete bounded case can be formulated
as
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∣

∣

∣

Sp. ∆ξ ∆η
∣

∣

∣
z0

(

min(Nx,Ny)

min(Nx,Ny)+1

)

− z0

(

min(Nx,Ny)

min(Nx,Ny)−1

)∣

∣

∣

Table 1: Sampling intervals for the 3D field when using the direct method and the spectral
method for simulating the Fresnel Transform. Di.: Direct method of reconstruction, Sp.:
Spectral method of reconstruction, Tx: Sampling interval in x, Ty: Sampling interval in y,
Tz: Sampling interval in z (depth of focus [5]), ∆ξ: sensor pixel size in x, ∆η: sensor pixel
size in y, Nx, Ny: number of pixels on the sensor in x and y respectively, z0: distance of
the object to the sensor, λ: wavelength of the light used.

h[r′Tx, s
′Ty, t

′Tz] =

Nx
2

∑

r=−
Nx
2

Ny
2

∑

s=−
Ny
2

Nz
2

∑

t=−
Nz
2

f [rTx, sTy, tTz]

× g[r′Tx − rTx, s
′Ty − sTy, t

′Tz − tTz], (2)

where f is the 3D signal, g the 3D kernel, Tx, Ty and Tz the sampling periods
in the (x,y,z ) directions respectively and r, s, t, r′, s′ and t′ are integers with
a range of −Nx

2
to Nx

2
, −Ny

2
to Ny

2
and −Nz

2
to Nz

2
, respectively. Rather than

using a simple block filter, we can use on a kernel based on important image
feature directions, use a Gaussian filter, or other image processing filters such
as a Laplacian filter.

2.2. Numerical computation of the 3D intensity field

Discrete convolution with a 3D filter kernel requires a 3D discrete signal.
When constructing such a signal, careful consideration needs to be focused
on the discrete sampling intervals between the 2D slices in the z direction.
Furthermore, the sampling intervals differ depending on the choice of recon-
struction method. Table 1 gives the equations used to calculate sampling
intervals in the x, y and z directions [5]. As can be seen from the table, the
sampling interval in x and y (Tx and Ty) is proportional to the reconstruc-
tion distance when using the direct method and is the same size as the sensor
pixels when using the spectral method. In order to decide which sampling
interval we should choose along the z direction, we use the concept of depth
of focus given by Kreis [5]. Kreis calculates the depth of focus to be related
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to the rate of change along the z direction and therefore the correct sam-
pling interval in the Nyquist sense. In order to assure sufficient sampling,
the 3D intensity signal should be made up of a number of 2D reconstructions
(zero-padded sufficiently) that are centered on the optimum reconstruction
distance and are separated in space by Tz. We further reduced this sampling
interval to a quarter of its size to ensure sufficient sampling of the 3D inten-
sity field. The effect of this is to increase computation times by a factor of
4, but this was acceptable for our set of tests as these intensities only had to
be performed once, and could be stored for further processing.

2.3. Direct and spectral methods of reconstruction

The direct method of reconstruction [33] can be derived by applying the
Fresnel Transform to the sampled signal O(nx∆ξ, ny∆η), which denotes the
sampled object term in the hologram (CCD) plane to obtain an equation for
the continuous reconstructed image recon(x′, y′). It is given by

recon(x′, y′) =
exp[ikd]

jλz0
exp

[

jπ

z0λ
(x′2 + y′2)

]

×
∫ ∫

O(nx∆ξ, ny∆η)exp

[

jπ

z0λ
(x2 + y2)

]

× exp

[

j2π

λz0
(x′ + y′)

]

dxdy. (3)

The constant exp[jkd]
jλd

does not depend on the spatial frequency coordinates
or the object and so shall be omitted. We note that since the signal O exists
only at discrete spatial coordinates, only these discrete values of x and y
need to be considered in the above integral;

x = nx∆ξ nx = −Nx

2
, .....,

Nx

2

y = ny∆η ny = −Ny

2
, .....,

Ny

2
, (4)

where ∆ξ and ∆η are the CCD pixel sizes in the x and y directions respec-
tively, and where Nx and Ny are the number of pixels in the CCD camera
in the x and y directions, respectively. We can conclude that WCCDx and
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WCCDy, the widths of the camera in the x and y directions are given by Nx∆ξ
and Ny∆η.

If we sample the reconstructed complex image with sampling rate ∆ξ′ and
∆η′ in the reconstruction plane and interest ourselves only in the samples
over the range of indices given by

x′ = mx′∆ξ′ mx′ = −Nx

2
, .....,

Nx

2
− 1

y′ = my′∆η′ my′ = −Ny

2
, .....,

Ny

2
− 1, (5)

and choose the output sampling intervals to be defined as follows

∆ξ′ =
λz0

Nx∆ξ
=

λz0
WCCDx

∆η′ =
λz0

Ny∆η
=

λz0
WCCDy

, (6)

then Eq. 4 will reduce to the following;

recon(mx′∆ξ′,my′∆η′) = exp

[

jπ

z0λ
((λz0mx′∆ξ′)2 + (λz0my′∆η′)2)

]

×
Nx
2

−1
∑

nx=
Nx
2

Ny
2

−1
∑

ny=
Ny
2

O(nx∆ξ, nx∆η)exp

[

jπ

z0λ
((nx∆ξ)2 + (ny∆η)2)

]

× exp

[

j2π
nxmx′

Nx

+ j2π
nymy′

Ny

]

. (7)

which is in the form of a Discrete Fourier Transform (DFT). This equation
can be calculated using the very time efficient Fast Fourier Transform (FFT)
algorithm. We note that the output window size in the x′ and y′ dimensions
can be calculated to be

Nx∆ξ′ =
λz0
∆ξ

,

Ny∆η′ =
λz0
∆η

. (8)

8



It is clear that the output window size is directly proportional to the distance
of propagation, z0, and inversely proportional to the sampling interval ∆ξ
and ∆η in both dimensions. The resultant field recon(mx′∆ξ′,my′∆η′) is
the numerical representation of a complex optical wavefield and from it the
intensity image Image(mx′∆ξ′,my′∆η′) and the phase φ(mx′∆ξ′,my′∆η′)
can be determined as

Image(mx′∆ξ′,my′∆η′) = |recon(mx′∆ξ′,my′∆η′)|2, (9)

and

φ(mx′∆ξ′,my′∆η′) = tan−1

(

Im{recon(mx′∆ξ′,my′∆η′)}
Re{recon(mx′∆ξ′,my′∆η′)}

)

(10)

respectively, where Im{} represents the imaginary part and Re{} the real
part of the resultant field recon(mx′∆ξ′,my′∆η′). Schnars [3] notes that a
DH reconstruction has an advantage over an optical reconstruction in that
it has phase information.

The second reconstruction method we tested is the spectral method [34].
This is based on the definition of the Fresnel transform as a chirp multiplica-
tion in the Fourier domain, i.e., recon(x′, y′) is related to O(x, y) as follows;

recon(x′, y′) = F−1{F{O(x, y)}exp[jπλz0(u2 + v2)]}, (11)

where and u and v are spatial frequencies in the x and y directions. The
discrete version consists of taking the DFT of the sampled object signal,
multiplying it by a sampled version of the quadratic phase version factor and
then performing an inverse DFT on the result.

recon(mx′∆ξ′,my′∆η′) = DFT−1 {DFT{O(nx∆ξ, ny∆η)} × exp [A]} ,
(12)

where A = jπz0λ

(

(

mx

Nx∆ξ

)2

+
(

my

Ny∆η

)2
)

and mx, my, nx, ny, mx′ and my′

all have the same range as previously defined. In the case of the spectral
method the output sampling interval ∆ξ′ and ∆η′ are equal to the input
sampling intervals, i.e. the pixel size, ∆ξ and ∆η. Using the spectral method
for reconstruction, we transform the DH from the spatial domain into the
spatial frequency domain where it is multiplied by the free space transfer
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in Fig. 1 (b), the output window is the width of the CCD, Ny∆η [35]. These
details are important when it comes to choosing a reconstruction method to
use for a given object size. A general rule of thumb is that if the object
is larger than the CCD, the direct method should be employed. Otherwise
costly zero padding of the DH is required as a pre-processing step before
reconstruction to ensure no aliasing. In both cases NxNy lines emanate from
the DH and cut through the x,y,z coordinate system. In the case of the
direct method the propagation is performed radially from each pixel of the
DH. In the case of the spectral method the propagation is performed using a
cylindrical model of propagation, with each line traveling orthogonal to the
DH. These lines therefore propagate through and sample the 3D speckle field
differently.

Figure 1 (a) shows that for the direct method the speckle grains are
parallel to along the lines emanating from the CCD plane and therefore we
expect that the calculated speckle size should closely match that given by
the theory [36]. However, for the spectral method [see Fig. 1 (b)] the lines
propagate at an angle to the speckle grains and thus we expect that the
calculated speckle size may be smaller than that predicted by theory. In the
next section we test this hypothesis and discuss how it affects our filtering
algorithm.

2.4. Speckle size and independent speckle patterns

The addition of independent speckle patterns on an intensity basis will
reduce the speckle index by 1/

√
M where M is the number of independent

speckle patterns [4]. The assumption here is that the M images are statis-
tically independent. To satisfy this assumption we shift the reconstruction
by an amount at least as large as the average speckle size in a given dimen-
sion. Speckle can then be reduced by adding together the resulting intensity
reconstructions.

In the x and y directions the theoretical speckle size, given by Good-
man [4], is

Sx,y = 0.9λ

(

z0
Lx,y

)

, (13)

where L in the length of the sensor in the respective direction and λ is
wavelength of the capturing light. In the z direction the theoretical speckle
size, according to Leushacke and Kirchner [36], is
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Sz =
7.31

√
2λz0

2

√

Lx
4 + Ly

4
. (14)

As long as z0 is large compared with the size of the sensor, then the
speckle will have a much greater size in the z direction than in the x or y

directions.
In order to determine the physical size of the speckle in a numerical recon-

struction of a digital hologram of a planar test object (a DH of a resolution
chart) we apply auto-correlation to a uniform area of the reconstruction. In
order to validate our result we compare it to the theoretical values. A uniform
square feature in the reconstructed image is extracted and auto-correlated
[see Box A in Fig. 2 (a)]. The DH was interpolated by a factor of 4 in or-
der to be able to sample at a scale that was significantly smaller than the
the expected theoretical speckle size. For the direct reconstruction method
interpolation of the reconstruction was achieved by zero padding the DH
prior to reconstruction, whereas for the spectral method interpolation was
achieved by zero padding the DH in the frequency domain using two DFT
operations [37]. For the resolution chart hologram [see DH 1 in Table 2 for
details of its parameters] the expected speckle size in the x and y directions
is 7.16µm and 9.59µm, respectively. Application of the direct method to
this hologram without interpolation provides a reconstructed image with a
sampling interval of 7.96µm and 10.6µm in x and y, which is approximately
equal to the speckle size in x and y. After interpolation, the sampling interval
reduces to 1.99µm and 2.66µm, which is significantly less than the speckle
size. Similarly direct application of the spectral method to the hologram
without interpolation provides a reconstructed image with a sampling inter-
val of 6.45µm in x and y (as the pixel sizes have equal extent in x and y),
which once again is close to the size of the speckle in x and y. After inter-
polation the sampling interval reduces to 1.61µm in both directions, which
is, again, significantly less than the speckle size. Thus, by interpolating ap-
propriately for both reconstruction methods, we have ensured a sampling
interval that is sufficiently less than the expected speckle size and this will
allow for an accurate analysis of the speckle in the reconstructed image.

2.5. Gaussian filtering and our model

Gaussian filtering is often chosen for image de-noising [38]. The advantage
of the Gaussian kernel over the rectangular kernel (mean filtering) is that no
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(a) (b)

Figure 2: The USAF resolution chart used to quantify the loss of resolution. (a) The full
chart, and (b) a zoomed in section of smaller details (these are marked with region of
interest box A in (a)). The chart has a fully developed speckle pattern (speckle index is
calculated on the homogeneous section marked with region of interest box B in (a)) and
using visual inspection the minimum resolvable bars in x and y is highlighted by the two
dashed white lined rectangles in (b).

nulls occur in the frequency domain. This can be explained as follows; the
FT of a Rect function is a Sinc function which contains a series of null (zero
value) points in its two dimensional distribution. Since convolution in space
with a Rect function is equivalent to multiplication in frequency by a Sinc
function we can expect the FT of the filtered image to contain a number of
null frequencies which will inevitably distort the image. Alternatively the FT
of a Gaussian function is also a Gaussian function which reduces smoothly
in value, but does not contain null points. A 3D Gaussian distribution has
the following form

G(x, y, z) = A exp

[

−
(

x2

2σ2
x

+
y2

2σ2
y

+
(z − z0)

2

2σ2
z

)]

(15)

where σx, σy and σz are the standard deviations in the (x,y,z ) directions, A is
a normalization factor 1/(

√
2πσx

√

2πσy

√
2πσz) and z0 is the reconstruction

distance. There exists no obvious direct relationship between the size of the
Gaussian kernel and the number of independent speckles that will be averaged
together resulting from the convolution. In order to simplify our analysis we
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attempt to apply an approximately direct relationship between the standard
deviation of the Gaussian function and the reduction in speckle index. To
do this we empirically investigate 2D Gaussian filtering of a test hologram of
a USAF resolution chart with a range of different standard deviation values.
Our assumption is that our model will be similar to the model used for
predicting the speckle index when multiple independent speckle patterns are
added together. In that case the speckle index is given by 1/

√
M where

M statistically independent images are added together [4]. In this case we
assume that Gaussian filtering will result in a speckle index given by 1/

√
Mx,

where Mx is a linear function of σx. In order to derive this function we use
two expected values. The first is when σx → 0, the speckle index, C, should
be 1 indicating no speckle reduction. Thus as the Gaussian function narrows
to approximate a Dirac delta function, it allows the input to pass through
unimpeded and there will only be one independent speckle pattern giving
C = 1. Upon investigation of our experimental measurements a second point
of interest was chosen, this time with σx = Sx and C ≈ 1

2
. Therefore we

conclude that an approximate model for the speckle index resulting from 1D
Gaussian filtering in the x direction is given by

C =
1

√

1 + 3σx

Sx

. (16)

A similar model can be used for 1D filtering in both the y and z directions.
Extension to the 2D case is given by the product of the 1D values,

C =
1

√

1 + 3σx

Sx

× 1
√

1 + 3σy

Sy

(17)

and it follows that the 3D case is given by,

C =
1

√

1 + 3σx

Sx

× 1
√

1 + 3σy

Sy

× 1
√

1 + 3σz

Sz

. (18)

The theoretical values for the speckle index resulting from 1D, 2D and 3D
Gaussian filtering will be presented in Sect. 4 and as will be readily seen
they closely agree with the experimental results.
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3. Metrics and theoretical resolution

We use speckle index, also known as speckle contrast, together with a
resolution metric to investigate the results. Fig. 2 shows a reconstruction
of a DH (with no speckle reduction applied) of a USAF resolution chart,
purchased from Edmund Optics, which is opaque except for the transparent
areas [39]. Deciding upon the resolution is a subjective process involving
visual inspection. In order to ensure a consistent measurement of resolution
across the entire data set we define a set of measurement criteria for the
detection of a minimum value. The minimum resolvable set of lines must
obey the following rules;

1. There should be clear separation between the bars in a given group of
three, i.e., the contrast between the bars and the space between the
bars should be strong enough to preclude any doubt that there is a gap
between the bars.

2. Individual bars do not need to be contiguous and can be corrupted by
speckle noise.

3. Each set of bars with a lower resolution than the chosen set should also
be resolvable.

4. A set of bars is not penalized if a neighboring set of bars blurs into it.

5. If it is not clear what the resolution is between two sets of bars then
the lower resolution is chosen.

When no speckle reduction is applied the resolution, seen in Fig. 2 (b), in
the x direction (vertical bars) is group 5 element 1, or 35.91 line pairs per
millimeter, and the resolution in the y direction (horizontal bars) is group 5
element 2, or 32 line pairs per millimeter. The resolution, R, which denotes
the of the number of lines per millimeter is given by R = 2G+(E−1)/6, where
G is the group and E the element within that group. Groups 2 and 3 both
containing elements 1 through 6 are clearly visible in Fig. 2 (a). For the
remainder of the paper the resolution is given in line pairs per millimeter.

We now discuss the expected theoretical resolution for the resolution DH.
The approximate bandwidth limit for a DH system is imposed by the aperture
of the camera, WCCDx,y, the wavelength of the laser used in the system, λ,
and the object camera distance, z0 [39];

Bandwidthx,y
∼= WCCDx,y

λz0
, (19)
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where the x, y subscript denotes that the equation is valid for both the x
and the y parameters. We can rewrite the equation above in terms of system
parameters

Bandwidthx
∼= Nx∆ξ

λz0
, (20)

Bandwidthy
∼= Ny∆η

λz0
. (21)

Therefore we can expect a complex image that is recorded by a DH sys-
tem will have a frequency range in fx and fy (spatial frequency coordinates
corresponding to x and y respectively) given by;

|fx| /
Nx∆ξ

2λz0
, (22)

|fy| /
Ny∆η

2λz0
. (23)

The maximum recoverable spatial frequency is given by

fxmax
∼= Nx∆ξ

2λz0
, (24)

fymax
∼= Ny∆η

2λz0
. (25)

We note that the maximum recordable frequency is directly proportional to
the camera width in the direction of interest and is inversely proportional to
the wavelength and the camera object distance. We also note that there are
at least three other factors that further reduce the bandwidth of the system
[39]; these include (i) the averaging effect of the pixel, which for a Fresnel
system amounts to an averaging of the complex reconstruction; (ii) the effect
of sampling which can result in overlapping replicas of the reconstruction;
and (iii) the pixel quantization, which can lead to errors in the reconstructed
image [40]. Furthermore, we expect the speckle noise (and indeed other
sources of noise) to further impact on resolution. Thus, it should be stated
that the limits given above in Eqs. 24 and 25 are approximate and should
be treated as upper limits. In practice we can expect that the maximum
recordable frequencies will be less than the values determined by Eqs. 24 and
25.
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The unit of lines per millimeter can be related to maximum recoverable
frequency of the system. This unit is based on the number of bright and
dark line pairs that can be found in a length of 1mm. Equations 24 and
25 can be interpreted as the number of bright and dark lines that can be
found in a length of 1m, assuming that all of the parameters in the equations
are defined in meters. Therefore we can redefine the theoretical maximum
frequencies in terms of the pairs per millimeter as follows

fxmax
∼= Nx∆ξ

2λz0
, (26)

fymax
∼= Ny∆η

2λz0
. (27)

For the resolution chart DH, the parameters of which are defined in Ta-
ble 2 (DH 1), and we can calculate the values of the theoretical maximum
frequencies to be

fxmax
∼= 62.85(line pairs / mm), (28)

fymax
∼= 46.95(line pairs / mm). (29)

As expected the experimental values of 35.91 and 32 lines pairs / mm re-
spectively fall some way short of the expected theoretical maximum values.
We add one final note. If we are correct in our previous assumption that the
speckle noise will impact on the maximum recordable frequencies, then we
can expect that speckle reduction may increase the number of line pairs per
millimeter that can be observed in the image.

4. Experimental results

In order to test our approach, reconstructions of the resolution chart DH
introduced in the previous section were used to quantify the improvement
in speckle contrast and the resulting loss in resolution. We investigated
1D filtering in the x, y and z directions separately, 2D filtering in the x y

plane, and finally full 3D filtering in all three spatial directions. In all cases
resolution results are provided separately for x and y. We provide evidence
that our model closely approximates the theory in terms of speckle reduction
for a given number of independent speckle patterns. We also provide evidence
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DH λ(µm) ∆ξ(µm) ∆η(µm) Nx Ny z0(m)
1 0.785 6.45 6.45 1392 1040 0.091
2 0.785 6.45 6.45 1392 1040 0.279
3 0.785 6.45 6.45 1392 1040 0.3
4 0.785 6.45 6.45 1392 1040 0.394
5 0.785 3.45 3.45 2448 2050 0.105

Table 2: Parameter details for DHs used in the experiments. The numbers 1 through 5
are labels for DHs of the USAF resolution chart, two screws, a toy spindle, a stormtrooper
object and two small chairs. λ: wavelength of the light used, ∆ξ: sensor pixel size in x,
∆η: sensor pixel size in y, Nx, Ny: number of pixels on the sensor in x and y respectively,
z0: distance of the object to the sensor.

DH Sx(µm) Sy(µm) Sz(µm)
1 7.16 9.59 729
2 21.2 29.4 6800
3 23.6 31.6 7900
4 31 41.5 13600
5 8.74 10.43 1000

Table 3: Theoretical speckle size for each DH. Sx, Sy and Sz are the sizes in x, y and z

respectively. These values are calculated using Eqs 13 and 14, and the DH parameters
given in Table 2.

that an improvement in the depth of focus can be achieved when filtering
in the z direction, if the object of interest has an appreciable extent in this
direction.

Following our analysis with the resolution chart DH, we investigate the
performance of the method on a number of different holograms. Tables 2
and 3 provide details such as sensor pixel sizes, number of pixels on the
sensor, reconstruction distances, wavelength of the light used during capture
and the theoretical speckle sizes (based on Eqs. 13 and 14) for the DHs tested
in this paper. Table 4 gives details of the sampling intervals in and around
the reconstruction plane used in all three directions for both reconstruction
methods (direct and spectral method). We note here again that the sampling
interval in the z direction is calculated using the concept of depth of focus
given by Kreis [5]. In Sect. 2.3 we postulated that the effective speckle size
could be smaller in the z direction when the images are stacked using the
spectral method because the direction of the lines along which the averaging
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Direct Method Spectral Method
DH Tx(µm) Ty(µm) Tz(µm) Tx(µm) Ty(µm) Tz(µm)
1 7.96 10.66 161.64 6.45 6.45 175.19
2 24.39 32.65 1500 6.45 6.45 536.54
3 26.23 35.1 1800 6.45 6.45 576.92
4 34.45 46.11 3000 6.45 6.45 757.69
5 9.71 11.59 240.37 3.45 3.45 101.95

Table 4: Sampling intervals in x, y and z for both the direct and spectral methods for
the DHs used in this paper. Tx: Sampling interval in x, Ty: Sampling interval in y,
Tz: Sampling interval in z (given by the depth of focus). We note that these are the
calculated theoretical sampling intervals and that these are reduced further to ensure
sufficient sampling of the 3D field.

occurs in the z direction is different to the direction of the speckle and indeed
in Sect. 2.4 we measured a slightly smaller speckle size. For the experiments
carried out on the resolution chart DH we do not adapt the size of the
Gaussian kernels to take this into account as the difference in speckle size
was quite small due to the small camera object distance (0.091m) at which
the resolution chart was recorded. For larger camera object distances this
effect is more pronounced and the size of the filter used should be adapted
accordingly if the spectral method is used to reconstruct the DH. As all of our
tests were carried out on the resolution chart DH, we determined the width
of the Gaussian kernel based on the dimensions of the theoretical speckle size
(given in Table 3, DH 1). Table 4, by giving values for the depth of focus
for all DHs used, also gives an insight into the size of the sampling period
need to ensure sufficient sampling is performed. The values in Table 4 were
calculated using the equations given in Table 1 and the parameters in Table 2.
In the following sections tests are carried out with the resolution chart DH
and using both the direct and the spectral method of reconstruction.

4.1. 1D filtering

Our initial tests involve filtering with Gaussian kernels that have extent
in only one direction (x, y or z ). Figure 3 (a) plots the resolution in x and
y for 1D filtering in the x direction. Initially the resolution in x is better
than that in y due to the fact that the CCD is rectangular and is larger in
the x direction (0.009m versus 0.0067m) [39]. We observe an improvement
in the y resolution, before a slight dip, and then the resolution remains
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Figure 3: Resolution in x and y when filtering only in the x direction (a), only in the
y direction (b) and only in the z direction (c). These results are applicable to both the
direct and spectral methods of reconstruction as the resolution was the same regardless of
which method was chosen.

constant at 35.91 line pairs per mm. It is an interesting phenomenon that
the resolution can increase through filtering (as was predicted in Sect. 3),
but it can be attributed to an improvement in image quality brought about
by the reduction in speckle index. As expected, the resolution in x steadily
degrades as the width of the Gaussian filter increases until, when σx = 5
(units of Sx), only 4.49 line pairs per mm can be observed. Figure 4 shows
the effect on speckle index when filtering in the x, y and z directions using
both the direct and the spectral methods of reconstruction. It confirms that
our model reflects the actual speckle index very well. We note that there
are small differences between the direct and spectral methods with the latter
method having a slightly smaller speckle index. Figure 5 shows a section of
the resulting resolution chart after filtering is applied only in the x direction.
Figure 3 (b) plots the resolution in x and y for 1D filtering in the y direction.
This time we observe an improvement in resolution in the x direction from
35.91 line pairs per mm up to 45.25 line pairs per mm. However this degrades
to 32 lines as the filter size reaches larger sizes (for σy = 4.5Sy to 5Sy). The
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Figure 4: Speckle index when filtering only in the x direction (a), only in the y direction
(b) and only in the z direction (c).

reason for this is that sets of 3 vertical bars start to blur into each other,
thus reducing the resolution. Figure 3 (c) plots the resolution in x and y for
1D filtering in the z direction. As we are averaging along a direction that is
orthogonal to both x and y there is no improvement in resolution as the filter
kernel size increases, only a degradation. We note that for this method of
filtering there was more noise between pairs of bars that we consider resolved
than for the similar 1D x and y filtering. We also note that for larger filter
kernels this method outperforms the previous two conditions in at least one
direction and if the desired goal is to have good resolution in both x and y

directions, this could be the method of choice in the event only 1D filtering
is to be carried out. If improved resolution is required is another direction
then the Gaussian kernel can be rotated as required.

4.2. 2D filtering

In this section, we take the next logical step and filter using a Gaussian
kernel with extent in both the x and y direction. Figure 6 (a) plots the
resolution in x and y for 2D filtering in the x and y directions. The resolution
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(a) (b)

Figure 5: Filtering only in the x direction with σx = 1.25Sx (a) Using the direct method of
reconstruction, and (b) using the spectral method of reconstruction. In both reconstruc-
tion cases the x resolution is 17.95 line pairs per mm and the y resolution is 40.31 line
pairs per mm (marked by the red boxes). The speckle contrast was reduced to a speckle
index of 0.5025 in the case of the direct method and 0.4984 for the spectral method.

in x is better than that in y due to the larger extent of the sensor in the
x direction for all tests conducted. We note an initial improvement in the
x direction resolution from 35.91 line pairs per mm (with no filtering) to
40.31 line pairs per mm, and thereafter as the filter kernel increases in size
the resolution reduces. At first the resolution in the y direction remains
the same as when no filtering is applied at 35.91 line pairs per mm, but
then resolution degrades at approximately the same rate as that in x. If
maintaining resolution in both x and y directions is important, then 2D
filtering provides large gains over 1D filtering. Figure 6 (b) plots the actual
speckle index achieved when filtering in 2D against the expected theoretical
speckle index. The model once again approximates the theoretical expected
speckle index values well. Figure 7 (a) and (b) shows that with σx and
σy set to Sx

2
and Sy

2
, respectively, the x resolution is 40.31 line pairs per

mm and the y resolution is 32 line pairs per mm, and the speckle index is
approximately 0.52. In comparison, if we were to filter in 1D in any direction
and our aim was to achieve a similar speckle index (i.e., a value close to
0.5), the best case would be filtering in the x direction which provides 20.15
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Figure 6: (a) Resolution in x and y when filtering in 2D. These results are applicable to
both the direct and spectral methods of reconstruction as the resolution was the same
regardless of which method was chosen. (b) Graph showing the expected theoretical value
of the speckle index versus the actual speckle index when filtering in 2D in x and y. As
there were only negligible differences in speckle index between the direct and spectral
reconstruction methods, only the direct method is plotted here

line pairs per mm in x resolution, while of course having better resolution
in the y direction at 40.31 line pairs per mm. Comparing 2D filtering with
1D filtering is difficult, but a general rule of thumb is that if resolution is
required in both spatial directions then 2D filtering should be chosen over
1D filtering. Furthermore, due to the separability of the Gaussian kernel, the
2D filter can be implemented as a pair of orthogonal 1D Gaussians, which
reduces the computational complexity from O(n2) to O(2n).

4.3. 3D filtering

In this section, we take advantage of the inherent 3D nature of DHs and
and filter using a Gaussian kernel with support in the x, y and z directions.
Figure 8 (a) plots the resolution in x and y for 3D filtering, where σx, σy

and σz are increased by equal multiples of Sx, Sy and Sz, respectively. The
resolution in x is better than that in y for the first two kernel sizes, but after
that the resolution is the same in both directions. The trend is for resolution
to degrade in both directions as the kernel size increases in x, y and z. Fig 8
(b) plots the actual speckle index achieved when filtering in 3D against the
expected theoretical speckle index. We note that there are larger differences
between the model and theoretical expected speckle index values than for
the 1D or 2D filtering cases. Fig. 9 shows a result for 3D filtering when σx,
σy and σz are set to Sx

2
, Sy

2
and Sz

2
, respectively. If resolution in both the x

and y directions is important then 3D filtering outperforms 1D filtering. For
this example the speckle index is approximately 0.4 for both reconstruction
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(a) (b)

Figure 7: Filtering in 2D in the x and y directions with σx = Sx

2
and σy =

Sy

2
. (a) Using

the direct method of reconstruction (speckle index = 0.5292), and (b) using the spectral
method of reconstruction (speckle index = 0.5285). In both cases the x resolution is 35.92
line pairs per mm and the y resolution is 28.51 line pairs per mm (marked by the red
boxes).

methods and the resolution in x is 25.4 line pairs per mm and resolution in
y is 22.63 line pairs per mm. In comparison, if we were to filter in 1D in any
direction and our aim was to achieve a similar speckle index (i.e., a value close
to 0.4), the best case would be filtering in the z direction which provides 14.25
line pairs per mm in both the x and y directions. However, when compared
with 2D filtering, 3D filtering performed slightly worse for every test, when
the criteria is to have good resolution in both the x and y directions coupled
with a low speckle index. We note that the USAF resolution DH is a planar
object and thus has no extent in the z direction. We expect 2D filtering to
perform extremely well on such an object. This does not, however, mean
that 3D filtering should be dismissed, as it can perform well if the object has
extent in the z direction. Then we actually observe, with astute positioning
of the filter, an improvement in the depth of focus too.

We also performed 2D and 3D filtering on in-line DHs 2-4 from Tab 2.
Figure 10 shows the results when filtering was applied to a stormtrooper
DH, a DH of two bolts and a spindle object for the 2D and 3D cases for with
different sized Gaussian kernels. In the figure the original reconstruction
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Figure 8: (a) Resolution in x and y when filtering in 3D. These results are applicable to
both the direct and spectral methods of reconstruction as the resolution was the same
regardless of which method was chosen. (b) Graph showing the expected theoretical value
of the speckle index versus the actual speckle index when filtering in 3D in the x, y and z

directions.

is shown with no speckle reduction applied, then the result of applying 2D
filtering with σx = 2Sx and σy = 2Sy and finally the result of applying 3D
filtering with σx = 1.75Sx, σy = 1.75Sy and σz = 1.75Sz. The resulting
speckle index for the reconstructions with 2D filtering applied is ≈ 0.14
(theoretical value given by our model is 0.16) and for the reconstructions
with 3D filtering applied is ≈ 0.09 (theoretical value is 0.064). Overall the
3D filtering results [see Fig. 10 (c), (f) and (i)] are slightly more blurred, but
have a lower speckle index, than the 2D filtering results [see Fig. 10 (b), (e)
and (h)]

Although our quantitative results using the resolution chart DH revealed
no benefit in choosing 3D filtering over 2D filtering, the ability to average
in another dimension can be advantageous under certain circumstances. Fil-
tering in the z direction with objects that have extent in that direction can
improve the depth of focus of resulting image. To illustrate this we inves-
tigated filtering a DH of two small chairs in the z direction and provide
qualitative evidence that the depth of focus is indeed improved. The DH
was recorded with the parameters shown in row 5 in Table 2. The same laser
was used to record this hologram as in the case of the resolution chart but
the recording distance was a little further from the camera at 0.105m. We
note that the expected speckle size is a little larger than for the resolution
chart as shown in Table 3. The speckle size in the x and y directions are
given by 8.74µm and 10.43µm respectively, while Sz is equal to 1mm. This
particular object has a large depth; The front of the object is in focus at a
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(a) (b)

Figure 9: Filtering in 3D in the x, y and z directions with σx = Sx

2
, σy =

Sy

2
and σz = Sz

2
.

(a) Using the direct method of reconstruction (speckle index = 0.4079), and (b) using the
spectral method of reconstruction (speckle index = 0.4037). In both reconstruction cases
the x resolution is 25.4 line pairs per mm and the y resolution is 23.63 line pairs per mm
(marked by the red boxes).

reconstruction distance of 0.0975m as shown in Fig. 11 (a), while the back
of the object is in focus at a reconstruction distance of 0.1125m as shown
in Fig. 11 (b), which gives us an object depth of 1.5cm and a mid-point
reconstruction distance of z0 = 0.105m. Both of these reconstructions were
calculated after first zero padding the DH up to a size of 6150× 7344 pixels
and reconstructing using the direct method. The resulting image in Fig. 11
(a) has a pixel size of 3.61µm and 3.02µm in the x and y dimensions respec-
tively, and in Fig. 11 (b) has a pixel size of 4.16µm and 3.48µm in the x and
y dimensions respectively. In both Fig. 11 (a) and (b) we show zoomed in
regions of the reconstruction which highlight small features in the front and
back parts of the object. We note that no filtering was applied to either of
these reconstructions.

It is interesting to apply our 3D filtering algorithm with a Gaussian filter
that has a standard deviation that is wide enough to cover a large range of
the full object depth. We implement the method with σx = Sx, σy = Sy

and σz = 7Sz. The result of using this 3D filter using the direct method is
shown in Fig. 12 (a), where we have chosen the reconstruction distance to be
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 10: Filtering in 2D and 3D applied to three different DHs (an in-line DH of a
stormtrooper object, two bolts and a spindle object). (a), (d) and (g) show the the original
reconstructions with no speckle reduction applied (all have a speckle index of ≈ 1.0). (b),
(e) and (h) shows 2D filtering applied with parameters σx = 2Sx and σy = 2Sy (speckle
index for these figures is ≈ 0.14) and finally (c), (f) and (i) shows 3D filtering applied with
parameters σx = 1.75Sx, σy = 1.75Sy and σz = 1.75Sz (speckle index for these figures is
≈ 0.09).
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the midpoint object distance z0 = 0.105m. We can see that the effect of the
wide z filter significantly blurs the image. While this filter will ensure that
all of the object will come into focus as part of the summation, it will also
ensure that each part will go significantly out of focus as well and the out of
focus contribution to the final summation is much greater. The result of this
filter is a blurred image. However this problem can be overcome adapting
the Gaussian filter. We redefine the filter with a delay in the z direction with
a delay parameter f(x, y) that is a function of x and y.

G(x, y, z) = A exp

[

−
(

x2

2σ2
x

+
y2

2σ2
y

+
(z − f(x, y))2

2σ2
z

)]

(30)

with normalization factor A defined as before.
This delay parameter f(x, y) is given by the distance at which that part

of the image at location (x, y) approximately comes into focus. This can be
implemented using the algorithm presented in Ref [6]. The intensity of the
reconstructed image is calculated over a series of distances and the variance
of the image is calculated at each location (x, y) for a particular block size.
This is repeated for each reconstruction distance. For a given value of x and
y the variance is compared across the sequence of intensity reconstructions.
When the variance is at a maximum we take the corresponding distance to
be the in focus distance for that part of the image and we set f(x, y) equal
to that value. In our case we use a block size of 400× 400 pixels. The depth
map calculated, f(x, y), is shown in Fig. 12 (b). Applying the standard
3D Gaussian filter, defined above in Eq. 15, using z0 equal to the middle
distance 0.105m and using σx = Sx, σy = Sy and σz = 7Sz we obtain the
speckle reduced image shown in Fig. 12 (a). We can see that this image is
out of focus and of poor quality. However using the improved filter defined in
Eq. 30 with the variable delay with σx = Sx, σy = Sy and σz = Sz we obtain
the considerably improved image shown in Fig. 12 (c). Further speckle
reduction can be achieved at the expense of some blurring by increasing the
filter size. In Fig. 12 (d) we show the result for σx = 2Sx, σy = 2Sy and
σz = 2Sz. Comparing these latter two results with Fig. 12 (a) demonstrates
that the filter with the variable delay affords a much improved image resulting
from us being able to employ a more controlled and narrower filter in the
z direction. We note that the improved filter employing the variable depth
parameter is not without disadvantage. It necessitates the calculation of
a depth map f(x, y) as described above, which requires the calculation of
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(a) (b)

Figure 11: Reconstructions of a DH of two small chairs with (a) front in focus, and (b)
back in focus. In both images two areas are highlighted and enlarged on the chairs to
emphasise that in each image either the front or the back is in focus. Neither image has
had any filtering applied.

multiple reconstruction depths prior to even beginning the filtering process.
This can be time intensive and for the two results shown in Fig. 12 (a),
the overall process required approximately two hours on a modern computer
processor.

4.4. Comparison with other techniques

Here we present results of a comparison between the best performing
filter from this paper, the 2D filter and other standard speckle reduction
techniques including the mean and median filters, the discrete Fourier fil-
ter (DFF) [41] and the best performing wavelet from a previous paper of
ours [42]. Table 5 provides a comprehensive set of results and reveals that
2D filtering has outperformed the other techniques, achieving a similar level
of speckle reduction but maintaining a higher resolution. We have made bold
the results that provide a reduction in speckle index to ≈ 0.5 to highlight
the superiority of 2D filtering over the other tested techniques. The next
best performing method is the DFF, followed by the mean, median filters
and finally the Haar mother wavelet filter.
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(a) (b)

(c) (d)

Figure 12: (a) Result of filter with size σx = Sx, σy = Sy and σz = 7Sz using Eq.16
with z0 set to the middle distance 0.105m, (b) the depth map,f(x, y) [6], (c) filter of size
σx = Sx, σy = Sy and σz = Sz, using the delay in z described in Eq. 30 and (d) filter size
of σx = 2Sx, σy = 2Sy and σz = 2Sz, also using the delay in z from Eq. 30.
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Technique C RES x RES y

2D filtering (σx = Sx

2
, σy = Sy

2
) 0.52 35.92 28.51

2D filtering (σx = 0.75Sx, σy = 0.75Sy) 0.37 32 22.62
2D filtering (σx = Sx, σy = Sy) 0.3 22.62 17.96
2D filtering (σx = 1.25Sx, σy = 1.25Sy) 0.24 20.16 16
DFF (768× 768) 0.52 28.51 25.4
DFF (512× 512) 0.42 25.4 20.15
DFF (256× 256) 0.23 17.95 16
DFF (128× 128) 0.14 8.97 8.97
Haar (detail level 1) 0.66 35.92 25.4
Haar (detail level 2) 0.53 25.4 22.62
Haar (detail level 3) 0.47 20.15 16
Haar (detail level 4) 0.45 16 14.25
Mean filter (3× 3) 0.47 25.4 22.62
Mean filter (5× 5) 0.39 22.62 17.95
Mean filter (7× 7) 0.29 20.15 16
Mean filter (9× 9) 0.23 17.95 14.25
Median filter (3× 3) 0.54 25.4 22.62
Median filter (5× 5) 0.46 22.62 20.15
Median filter (7× 7) 0.35 20.15 17.95
Median filter (9× 9) 0.29 17.95 16

Table 5: Comparison of 2D filtering versus various speckle reduction techniques. C: speckle
index, RES x : resolution in the x direction, RES y : resolution in the y direction.
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5. Summary

In this paper, we have reported on a Gaussian filtering technique to re-
duce speckle in digital holograms. Our main contribution was to use the
inherent 3D nature of DHs to construct suitable 3D filters to reduce the
speckle content. Using a convolution approach, a large set of quantitative
results were generated for the 1D, 2D and 3D cases to show the effectiveness
of the technique. We demonstrated that a reduction of the speckle content
could be attained, while at the same time resolution improved in directions
orthogonal to the filtering direction. We also provided qualitative evidence
that 3D filtering can have a positive impact on the depth of focus of the re-
sulting filtered image. In the following, we provide more details of the main
findings in this work.

The model developed was shown to predict the reduction in speckle con-
trast well in the x and y directions, but performed less well for the z direction
case. This is primarily because tuning the model parameters were optimized
on data taken from 2D filtering. Nonetheless, the general trend of the reduc-
tion in speckle contrast is also approximated well for filtering in z.

We also discussed the expected theoretical maximum recoverable frequen-
cies and how these values relate the observable line pairs / mm in the image.
We pointed to the fact that the theoretical values are upper limits as there
are at least three factors that further reduce the bandwidth of the system;
(i) the averaging effect of the pixel, which for a Fresnel system amounts
to an averaging of the complex reconstruction; (ii) the effect of sampling
which can result in overlapping replicas of the reconstruction and (iii) the
pixel quantization, which can lead to errors in the reconstructed image [40].
Furthermore, we postulated that the speckle noise could further impact on
resolution and showed that by reducing speckle noise it was possible to in-
crease the resolution of the image.

We discussed the shape and orientation of the speckle in the 3D intensity
field and postulated that the spectral method averages along lines that cut
through the speckle grains. This suggests that the effective speckle size in
the z direction is smaller when using the spectral method to reconstruct over
when the direct method is used. A numerical calculation of the speckle size
confirms this. However, using the spectral method to filter in the z direction
has the disadvantage that reconstructions at each subsequent plane are not
aligned as the field is expanding. This of course can have a negative effect
on the resulting resolution.
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When filtering in the x direction only, resolution in the y direction initially
improved (over a non-filtered reconstruction) and then after a slight degra-
dation was maintained, all the while resolution in the x direction decreased
steadily with increasing kernel size. Filtering in the y direction produced
similar effects, with an observed slight improvement in x resolution, followed
by a slight degradation and leveling off, but this time with some further res-
olution loss. This was due to the design of the resolution chart itself, which
allows for the blurring of the vertical resolution bars into each other and was
not a discovery that warranted further investigation. 2D filtering in x and
y directions resulted in a slight improvement in x resolution and no change
to the y resolution, before a steady decrease in resolution for both x and
y. There was no initial improvement in resolution in either direction for 3D
filtering and as the kernel size was increased resolution decreased steadily
in both directions. As expected, in terms of resolution and speckle index,
2D filtering outperformed both 1D and 3D filtering when the criteria was to
maintain resolution in both the x and y directions and achieve a certain level
of speckle reduction. This is because the test object was planar and it can
be reasonably asserted that the results might favour 3D filtering if the test
object were to have an appreciable extent in the z direction.

Finally, we provided qualitative evidence that 3D filtering can have a
positive impact on the depth of focus of the resulting filtered image. Using a
DH of two small chairs with extent in the z direction, we showed that both
the front and the back of the chairs could be in focus more after filtering,
with the added benefit of a reduced speckle contrast, than when no filtering
is applied.
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