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Summary 

Aspergillus fumigatus is an opportunistic pathogen that can cause invasive 

disease in immunocompromised individuals and, less frequently, in immunocompetent 

hosts. Proteomic investigation of A. fumigatus has the potential to enable global analysis 

of protein expression, identify potential targets for vaccine or diagnostic tool 

development, and characterise system-wide responses to external stimuli. 

Implementation of a large-scale proteomic strategy lead to the identification of non-

redundant proteins from mycelia (n = 390) and culture supernatants (n = 42) of A. 

fumigatus. Utilisation of MS-based proteomics facilitated the identification of proteins 

typically under-represented in 2D-PAGE proteome maps, including proteins with 

multiple transmembrane regions, hydrophobic proteins and proteins with extremes of 

molecular mass and pI. Pre-fractionation of complex protein samples, by gel-filtration 

or gold nanoparticle pre-incubation, demonstrated potential for reduction of sample 

complexity. Indirect identification of secondary metabolite cluster expression was 

achieved using a global MS-based proteomic approach, with proteins (n = 20) from 

LaeA-regulated clusters detected. Targeted immunoproteomics resulted in the 

identification of antigenic proteins (n = 25) from A. fumigatus, reactive with sera from 

healthy individuals, and characterisation of these proteins may shed light on the 

pathobiology of A. fumigatus. Mechanisms involved in the interaction of A. fumigatus 

with gliotoxin were also examined, using phenotypic analysis, comparative proteomics 

and metabolomics. Gliotoxin was observed to relieve H2O2-induced stress, in a dose-

dependent manner (0 - 10 µg/ml) and this correlated with a significant increase in 

expression of the gliotoxin oxidoreductase GliT (p < 0.05). This indicates a role for 

gliotoxin, and potentially GliT, in relief of oxidative stress in A. fumigatus. 

Correspondingly, proteins associated with response to stress were observed to 

significantly decrease in expression in the co-addition condition, relative to H2O2 alone 

(p < 0.05). Comparative proteomic profiling of the gliotoxin-sensitive mutant, A. 

fumigatus ΔgliK, revealed perturbation of translation, the methyl cycle and the 

endoplasmic reticulum in response to gliotoxin. This informs on the mechanisms 

involved in gliotoxin-mediated toxicity and may apply to other gliotoxin-sensitive 

species. Loss of gliotoxin production in A. fumigatus ΔgliK correlated with significant 

elevation in intracellular ergothioneine levels (p < 0.001). This study describes the first 

identification of ergothioneine in A. fumigatus and represents a target for future redox 

investigations.  
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1 Chapter 1. Introduction 

1.1 General Characteristics of Aspergillus fumigatus  

The saprophytic fungus Aspergillus fumigatus is a member of the class 

Ascomycota, with over 200 species of the genus Aspergillus identified to date (Anzai et 

al., 2008). This soil-associated fungus plays an important role in recycling carbon and 

nitrogen, and is prevalent in the environment (Latge, 1999). In a laboratory setting, A. 

fumigatus can grow on minimal agar containing a simple carbon source (e.g. glucose), a 

nitrogen source (e.g. ammonium tartrate) and trace elements (Brakhage and Langfelder, 

2002). The ability of A. fumigatus to thrive at 37 °C enables the pathogenicity of the 

fungus. The relative thermo-tolerance of A. fumigatus allows it to grow at temperatures 

up to 55 °C, reflective of the presence of an ecological niche in compost heaps, and the 

conidia can withstand temperatures up to 70 °C (Latge, 1999; Bhabhra and Askew, 

2005). A. fumigatus produces hydrophobic conidia (spores) that are aerially dispersed 

and only 2.5-3 µm in diameter (Brakhage and Langfelder, 2002). These conidia are 

ubiquitous to the environment and hundreds are inhaled every day (Latge, 1999). The 

small size and buoyant nature of these conidia enables them to reach the alveoli of the 

lungs, where they are generally cleared in healthy individuals (Dagenais and Keller, 

2009). A relatively small proportion of Aspergillus species are associated with human 

disease, with A. fumigatus demonstrating the highest pathogenicity (Kradin and Mark, 

2008). A. fumigatus is an opportunistic pathogen, which causes disease in immuno-

compromised individuals (Ben-Ami et al., 2010). A markedly high mortality rate is 

observed with invasive Aspergillus-related disease, ranging from 40% to 95% (Abad et 

al., 2010).  

A. fumigatus reproduction is predominantly asexual and is mediated by the 

dispersion of haploid conidia. The asexual life cycle of A. fumigatus is initiated by 
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germination of conidia into septate hyphae which form a network of mycelia (Ward et 

al., 2005). Conidiophores form on hyphal extensions from the mycelial mass, and 

produce chains of grey-green conidia for dispersion (Figure 1.1). Genes regulating 

sexual development in A. fumigatus were identified following the sequencing of the 

genome, in addition to pheromone-associated genes (Nierman et al., 2005; Paoletti et 

al., 2005). Subsequently, the presence of a sexual cycle in A. fumigatus was 

experimentally verified (O’Gorman et al., 2009). 

Sequencing of the genome of the A. fumigatus clinical isolate Af293 revealed 

the presence of 9,926 putative protein-coding genes along eight chromosomes, in a 29.4 

megabase genome (Nierman et al., 2005). Subsequently, a second strain of A. 

fumigatus, A1163, was sequenced, and demonstrated the presence of a set of core, 

highly conserved genes common to both sequenced strains (Fedorova et al., 2008). 

Comparison of the A. fumigatus, Neosartorya fischeri and Aspergillus clavatus genome 

sequences revealed a number of genes that are unique to A. fumigatus. These include 

genes involved in secondary metabolism and detoxification, which may contribute to 

pathogenicity (Nierman et al., 2005; Fedorova et al., 2008). Data from genome 

sequencing and annotation is available from a number of online warehouses including 

the Central Aspergillus Data Repository (CADRE) (http://www.cadre-genomes.org.uk/) 

and the Aspergillus Genome Database (AspGD) (http://www.aspgd.org/). These 

resources combine in silico computational gene annotation with manually curated 

information obtained from experimentation to provide extensive profiling of the 

genome. CADRE provides a unique identifier for each gene with the nomenclature 

indicating the respective strain (e.g. AFUA_ indicates A. fumigatus Af293, AFUB_ 

indicates A. fumigatus A1163).  

 



3 

 

 

 

 

 

Figure 1.1: Overview of asexual life cycle of A. fumigatus. Differential interference 

contrast (DIC) microscopy of (a) germinating conidia and (b) septate hyphae of A. 

fumigatus (Images from Suh et al. (2012)). (c) Scanning electron microscopy of A. 

fumigatus conidiophores (Image from Hannover Medical School). (d) Light microscopy 

of conidia release from conidiophore (Image from www.Aspergillus.org.uk). 

 

a. 

b. 

c. 

d. 

http://www.aspergillus.org.uk/
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In the case of A. fumigatus Af293 the chromosome number and relative gene 

locus are also included in the identifier (e.g. AFUA_6G09740 indicates the gene is at 

locus number 9740 along chromosome 6 in A. fumigatus Af293). 

1.2  Fungal Systems Biology 

The field of systems biology aims to provide a global model of the mechanisms 

and interactions taking place in a biological system, through integration of data from 

multiple tiers of the ‘omics’ platforms (Rochfort, 2005). Combination of transcriptomic, 

proteomic and metabolomic information enables the multi-dimensional interpretation of 

data generated from experimental investigations. From the perspective of fungal 

systems biology, a large emphasis has been placed on the use of this approach to 

elucidate the mechanisms of fungal pathogenicity and related disease (Albrecht et al., 

2011; Rizzetto and Cavalieri, 2011; Santamaría et al., 2011; Horn et al., 2012). While 

this approach is still in its infancy in filamentous fungi, advances in global modelling 

have been made in unicellular microorganisms such as Escherichia coli, Saccharomyces 

cerevisiae and Candida albicans (Guthke et al., 2005; Costanzo et al., 2010; Stincone et 

al., 2011; Tierney et al., 2012).  

In a dual-transcriptional investigation, Tierney et al. (2012) investigated the 

network of interactions between S. cerevisiae and cells of the innate immune system 

(dendritic cells and macrophages). This was achieved by simultaneous analysis of the 

yeast and mammalian transcriptomes following co-incubation using RNA-seq. The 

mechanisms of pathogenicity and conditions experienced in vivo during infection have 

also been investigated. Following recovery of fungal material from a murine model of 

IA, the transcriptome of A. fumigatus during initiation of infection was characterised 

(McDonagh et al., 2008). Analysis of transcript abundance revealed the various stresses 

(e.g. oxidative stress, iron-limitation) imposed on A. fumigatus in the neutropenic 
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murine lung, in addition to identifying the increase in expression of various secondary 

metabolite clusters. Systems biology has also been applied for the amalgamation of data 

generated from distinct sources, demonstrating added value through retrospective 

analysis of targeted studies. Using this approach, an exhaustive metabolic map of A. 

niger was constructed based on modelling of curated data from published sources 

(Andersen et al., 2008). Biochemical reactions, totalling 2240, were mapped to create a 

gapless metabolic network, providing a useful tool for future analysis of transcriptomic 

or proteomic data, in the context of metabolism (Andersen et al., 2008). 

Discrepancies have been observed when combining proteomic and 

transcriptomic data and no strict linear relationship exists between these two platforms 

(Albrecht et al., 2011). Poor correlation between transcripts and their relative proteins 

can be indicative of regulatory mechanisms at either the transcriptional or translational 

level (Albrecht et al., 2011). Furthermore, as translation occurs after transcription, a lag 

can exist between the appearance of the transcript and the respective protein. Results 

from a proteomic investigation of the heat shock response in A. fumigatus were related 

to a previous transcriptomic analysis, across a time-course (Nierman et al., 2005; 

Albrecht et al., 2010). Low correlation was initially observed between the data sets, but 

allowing for a time-shift resulted in improved agreement between the transcriptomic 

and proteomic data (Albrecht et al., 2010). This demonstrates that an integrative 

approach to global profiling provides a more comprehensive and accurate overview of 

the systems involved in response to the applied stimulus. 
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1.3 Functional and Comparative Proteomics in Aspergilli 

Large scale analyses of the proteomes of the genus Aspergillus have been 

emerging following the sequencing and annotation of multiple genomes from these 

species (Galagan et al., 2005; Machida et al., 2005; Nierman et al., 2005; Pel et al., 

2007; Fedorova et al., 2008). Methods for fungal proteomic investigations are 

summarised in Figure 1.2, and can typically be divided into two categories, gel-based 

and gel-free. Techniques utilised in proteomics, included MS-based proteomics and 2D-

PAGE, will be outlined in detail in Chapters 3 and 5. 

 

Figure 1.2: Outline of general workflow of proteomic approach in fungal studies. From 

González-Fernández et al. (2010). 
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While A. nidulans has represented a model organism of filamentous fungi in 

terms of genetics and cell biology research, the majority of proteomic investigations 

carried out to date have focused on A. fumigatus (Kniemeyer, 2011). This may be due to 

the status of A. fumigatus as the major pathogen of the Aspergillus genus. The focus of 

proteomic studies carried out with A. niger is predominately related to the 

characterisation of the secreted and intracellular enzymes produced by this fungus, 

reflective of the biotechnological associations of A. niger (Adav et al., 2010; Lu et al., 

2010; Ferreira de Oliveira et al., 2011). Changes in the proteome of A. fumigatus have 

been studied in response to various stimuli, in an attempt to further elucidate the stress-

response pathways and mechanisms utilised by this opportunistic pathogen to colonise 

susceptible hosts. Further understanding of the factors contributing to the ability of A. 

fumigatus to grow and persist in the human host may aid in the directed development of 

anti-fungal therapies or improved diagnostic tools (Abad et al., 2010). 

The robust nature of filamentous fungal cells, due to the presence of a cell wall, 

meant that initial proteomic investigations required optimisation of more vigorous 

techniques for optimal protein extraction, than those required for eukaryotic cells of 

animal origin (Kim et al., 2007). Development of reproducible extraction and 

purification methodologies lead the way for future use of 2D-PAGE in comparative 

analyses of A. fumigatus (Carberry et al., 2006; Kniemeyer et al., 2006). Production of 

proteome maps for the mycelia, mitochondria and conidia of A. fumigatus established 

large-scale identification of translation products, identified cellular localisations of 

proteins and could be used to validate genomic annotations of ‘hypothetical’ proteins 

(Asif et al., 2006; Carberry et al., 2006; Kniemeyer et al., 2006; Vödisch et al., 2009; 

Teutschbein et al., 2010; Doyle, 2011b). Identification of so-called ‘hypothetical’ or 

‘predicted’ proteins by MS, allows re-annotation as ‘unknown function proteins’ (UFPs) 
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due to confirmation of their existence (Doyle, 2011b). A large number of 

immunoproteomic studies have also emerged, detecting allergenic and antigenic 

proteins from intracellular and extracellular fractions (Asif et al., 2010; Singh et al., 

2010a, 2010b; Shi et al., 2012a). These studies will be described in more detail in 

Chapter 4. More recently, a move towards mass spectrometry-based proteomics is 

evident and represents the next generation in the proteome research (Cagas et al., 

2011b; Suh et al., 2012). Advances in mass spectrometry technology, coupled with 

software development for enhanced analysis capabilities, is paving the way for 

proteomics to match the high genome coverage attained in transcriptomics (Gstaiger 

and Aebersold, 2009). 

Comparative proteomic investigations have expanded the understanding of the 

molecular response of Aspergillus species to stress, whether physical (e.g. heat shock), 

chemical (e.g. antifungals) or due to nutrient limitation (e.g. iron-depletion) 

(Hortschansky et al., 2007; Gautam et al., 2008; Albrecht et al., 2010). The oxidative 

stress response has been investigated in both A. fumigatus and A. nidulans using two 

distinct triggers of reactive oxygen stress. Addition of H2O2, leading to a rise in 

intracellular peroxide (O2
2-

) levels, resulted in fold increases in the putative thioredoxin 

peroxidase Aspf3 and peroxiredoxin Prx1 (Lessing et al., 2007). Paradoxically, 

extended use of menadione to induce oxidative stress in A. nidulans lead to the 

significant repression of peroxiredoxin and peroxidase translation (Pusztahelyi et al., 

2011). Menadione generates oxidative stress through the production of superoxide and 

hydroxyl radicals, and this variance in the type of ROS produced may explain the 

differentiation in regulation. Alternatively, the exposure of A. fumigatus to H2O2 (45 

min) compared to the incubation of A. nidulans with menadione (6 h) may suggest 

different short- and long-term adaptations to oxidative stress (Kniemeyer et al., 2011). 
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Comparative analysis of exposure to hypoxia has also been independently investigated 

in A. fumigatus and A. nidulans using 2D-PAGE (Shimizu et al., 2009; Vödisch et al., 

2011; Barker et al., 2012). Vödisch et al. (2011) examined the response to low oxygen 

over 30 h, following initial cultivation of A. fumigatus in normoxia, and observed an 

increase in the levels of respiratory proteins and reactive nitrogen species (RNS)-

detoxifying protein. Additionally, expression of the secondary metabolite pseurotin A 

biosynthesis cluster was up-regulated at the transcriptional and translational level 

following prolonged exposure to hypoxia. Short-term adaptation to hypoxia in A. 

fumigatus revealed a decrease in proteins constituting the TCA cycle, along with a 

decrease in purine metabolism and ribosome biogenesis (Barker et al., 2012). 

Cultivation of A. nidulans in hypoxic conditions, followed by a time-course proteomic 

investigation indicated the increase in pentose and nucleotide metabolism, with a 

corresponding rise in the expression of thiamine biosynthesis enzymes. These apparent 

differences may again arise from time-dependent adaptation to hypoxia or alternatively 

demonstrate distinct mechanisms of hypoxia response between the species (Kniemeyer 

et al., 2011). Comparative 2D-PAGE analysis in A. fumigatus will be discussed in more 

detail in Chapter 5. 

Comparative proteomics can also be employed to deduce changes to the 

proteome of the organism following deletion of a specific gene. In combination with 

phenotypic analysis, this approach can provide insight into the role of the respective 

protein through monitoring of the processes altered in the deletion strain relative to the 

parent strain (Doyle, 2011b). This methodology has been used for the functional 

investigation of a number of proteins from the Aspergillus species (Bruneau et al., 2001; 

Hortschansky et al., 2007; Lessing et al., 2007; Sato et al., 2009; Zhang et al., 2009; 

O’Hanlon et al., 2012). The production of non-ribosomal peptides (NRPs) is carried out 



10 

 

by large modular enzymes, referred to as NRP synthetases (NRPSs). The respective 

peptide products of these NRPSs can be difficult to identify, and gene deletion studies 

can facilitate matching of the enzyme to the respective product, in addition to 

elucidating the biochemical role of the NRP in the cell (Balibar and Walsh, 2006; 

Cramer et al., 2006; Kupfahl et al., 2006; Maiya et al., 2006; Reeves et al., 2006; 

O’Hanlon et al., 2011, 2012). Deletion of the gene encoding the largest NRPS, pes3, 

from A. fumigatus resulted in the generation of a strain with impaired germ tube 

formation, increased sensitivity to voriconazole and demonstrating enhanced virulence 

in a corticosteroid mouse model of IA (O’Hanlon et al., 2011). Reduced 

immunogenicity of the Δpes3 strain was also observed and evasion of the immune 

reaction may attribute to the increase in virulence noted in this mutant. Comparative 

2D-PAGE was used to analyse the relative changes to the proteome of A. fumigatus 

germlings following deletion of the pes3 gene. O’Hanlon et al. (2011) detected an 

increase in the protein Rab11, with a predicted role in the regulation of plasma 

membrane-endosome trafficking. Disruption of this mechanism may account for the 

enhance sensitivity to voriconazole associated with Δpes3. Down-regulation of actin, 

spermidine synthase and the petafunctional AroM protein are reflective of the observed 

morphological differences and germination deficiency of Δpes3. The differential 

characterisation of the proteomes of Δpes3 and the parent strain, provided confirmatory 

data for phenotypic analyses and indicated a structural role for the Pes3-encoded peptide 

(O’Hanlon et al., 2011). This demonstrates the capacity for proteomics to contribute to 

the functional elucidation of genes and their down-stream products, through 

characterising the effects of gene deletion (Doyle, 2011b). 
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1.4 Pathogenesis of A. fumigatus 

1.4.1 A. fumigatus-related disease 

The opportunistic pathogen, A. fumigatus, is responsible for a range of diseases, 

with host susceptibility closely linked to the immune status of the individual (Latge, 

1999). A. fumigatus-associated disease can be classified into three general groups; (a) 

allergic reactions, (b) colonisation with limited invasiveness and (c) invasive infections 

(Brakhage and Langfelder, 2002). The latter category tends to be observed in 

immunocompromised individuals, demonstrative of the classification of A. fumigatus as 

an opportunistic pathogen (Abad et al., 2010).  

Allergic airway diseases, associated with A. fumigatus, include allergic 

bronchopulmonary aspergillosis (ABPA) and related conditions. ABPA is a 

hypersensitivity disorder that predominantly affects individuals with cystic fibrosis (CF) 

and asthma (Knutsen and Slavin, 2011). ABPA can lead to chronic lung damage and 

deterioration of lung function in this cohort of patients (Kraemer et al., 2006; 

Chaudhary and Marr, 2011). The major predisposing factor for development of ABPA 

is the ineffective clearance of inhaled conidia from the lung (Pihet et al., 2009; 

Patterson and Strek, 2010). Structural abnormalities associated with chronic lung 

disease can contribute to the conidial evasion of the host mucociliary clearance 

mechanism (Thomas et al., 2010; Chaudhary and Marr, 2011). CF is characterised by 

mutations in the CF transmembrane conductance regulator (CFTR), leading to 

disruption of chloride channels in many epithelial cells. This results in the development 

of thick, viscous mucous in the lung, which can impede the clearance of inhaled 

microorganisms (Pihet et al., 2009). In the absence of ABPA, lung function is not 

affected by A. fumigatus colonisation, which is observed frequently in CF patients (De 

Vrankrijker et al., 2011). Conidia evading extrusion from the lung must germinate 
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before allergy can be established, as dormant conidia are immunologically inert due to 

presence of an external hydrophobic rodlet layer (Aimanianda et al., 2009). Damage to 

pulmonary epithelium following germination permits exposure of A. fumigatus antigens 

to host dendritic cells (DCs). Pulmonary DCs subsequently elicit a Th2-type response 

with secretion of cytokines and B-cell isotype switching to IgE production (Chaudhary 

and Marr, 2011). Elevation of total IgE levels and secretion of proinflammatory 

cytokines is indicative of the allergic response associated with ABPA (Knutsen, 2006; 

Patterson and Strek, 2010). Diagnostic guidelines for ABPA include presence of pre-

disposing conditions (e.g. CF), elevation in total IgE, elevation in anti-A. fumigatus 

antibodies and a number of other criteria (Agarwal, 2011).  

Aspergilloma is an example of the second category of A. fumigatus-related 

disease, characterised by colonisation in the absence of extensive invasiveness. A. 

fumigatus colonisation of pre-existing cavities in the lung can result in the formation of 

an aspergilloma (fungus-ball). Tuberculosis (TB) is the most common cause of 

cavitation leading to aspergilloma formation, with 11 % of individuals possessing 

cavities showing radiographical signs of aspergilloma (Kawamura et al., 2000; Zmeili 

and Soubani, 2007). The aspergilloma consists of a mass of fungal hyphae, 

inflammatory cells, fibrin mucous and cell debris and the condition is usually non-

invasive (Latge, 1999; Zmeili and Soubani, 2007). Detection and diagnosis of 

aspergilloma is usually through routine radiography, as the condition is often 

asymptomatic (Zmeili and Soubani, 2007; Kradin and Mark, 2008). Sporulation of 

conidia, is postulated to occur in addition to mycelial growth, as multiple isogenic, 

azole-resistant strains were isolated from an aspergilloma during a course of anti-fungal 

therapy (Camps et al., 2012). Surgical intervention is utilised for removal of the 
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aspergilloma, and the use of anti-fungals as an adjunct has been found to be ineffective 

(Brik et al., 2008; Sagan and Goździuk, 2010). 

The third sub-category of disease associated with A. fumigatus is classified by 

invasive disease, which may disseminate and result in systemic infection. Invasive 

aspergillosis (IA) is a term used to describe clinical presentations that fall into this 

group. IA is the most detrimental Aspergillus-related disease, with associated mortality 

rates ranging from 40 to 95 % (Nivoix et al., 2008; Abad et al., 2010). Various factors 

including the immune status of the patient, site of infection and treatment affect these 

mortality rates (Maertens et al., 2002). Individuals at risk for the development of IA 

include patients with haematological malignancies (e.g. leukaemia), chronic obstructive 

pulmonary disease (COPD), solid organ and hematopoietic stem cell transplant (HSCT) 

recipients, extended corticosteroid use and HIV-positive individuals (Dagenais and 

Keller, 2009; Gangneux et al., 2010). COPD has been identified as a risk factor for 

development of Aspergillus-related hypersensitivity and ABPA (Agarwal et al., 2010). 

Genetic factors also influence the susceptibility of individuals to IA, and individuals 

with single nucleotide polymorphisms (SNPs) in genes such as plasminogen, IL-10 and 

mannose-binding lectin (MBL) are pre-disposed to develop IA (Crosdale et al., 2001; 

Brouard et al., 2005; Sainz et al., 2007; Zaas et al., 2008). Two distinct risk factors exist 

for the development of IA, neutropenia and corticosteroid-induced immunosuppression 

(Figure 1.3). Prolonged neutropenia represents the dominant risk for development of 

pulmonary IA and the associated disease is characterised by angioinvasion and 

disseminated fungal growth (Kradin and Mark, 2008; Ben-Ami et al., 2010). 

Additionally, disruption in neutrophil function (e.g. chronic granulomatous disease 

(CGD) can result in a similar clinical presentation of IA, although angioinvasion is 

generally not observed in this sub-set of patients (Segal and Romani, 2009). A different 
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pathology is observed in IA associated with corticosteroid-induced immunosuppression. 

Non-neutropenic or corticosteroid-related IA is generally non-angioinvasive, with 

limited fungal development or dissemination. Instead, the condition is characterised by 

excessive inflammation resulting in damage to tissues due to an aggressive host 

response (Balloy et al., 2005). Inhaled conidia that evade mucociliary clearance, are 

generally phagocytosed by macrophages in the lung (Bhatia et al., 2011). In addition to 

their function as phagocytes, alveolar macrophages modulate the immune response, and 

elicit the migration of other immune effector cells through the release of chemo- and 

cytokines. Engulfed conidia are killed in macrophages through the action of reactive 

oxygen species (ROS) and acidification in the phagolysosome (Ibrahim-Granet et al., 

2003; Philippe et al., 2003). While corticosteroids do not affect phagocytosis of conidia 

by alveolar macrophages, ROS-mediated killing is inhibited. This can lead to 

germination of phagocytosed conidia in individuals undergoing corticosteroid treatment 

(Philippe et al., 2003). Circulating neutrophils are recruited to the lung and are 

important in defence against fungal hyphae. Neutrophils mediate killing of hyphae by 

oxidative mechanisms following attachment to hyphal surfaces and de-granulation 

(Levitz and Farrell, 1990; Feldmesser, 2006). Tissue damage resulting from 

corticosteroid-associated IA is through an excessive influx of neutrophils and associated 

inflammation (Balloy et al., 2005). Conversely, in neutropenia-associated IA, hyphal 

growth and extensive fungal development occurs due to the absence of neutrophils 

(Balloy et al., 2005; Feldmesser, 2006). Diagnosis of IA is often delayed due to the non-

specificity of the associated symptoms and limited sensitivity of diagnostic tests, which 

can contribute to delayed treatment (Segal and Walsh, 2006; Trof et al., 2007). 

Treatment of IA involves the use of anti-fungal therapy, which includes the azole, 

echinocandin and polyene classes of drugs (Kontoyiannis, 2012).  
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1.4.2 Detection and diagnostic strategies for IA 

Diagnosis of IA has been hampered by the presence of a multi-factorial disease, 

coupled with a wide-range of pre-disposing host factors. Together with the limited array 

of validated laboratory diagnostic methods, late diagnosis of IA contributes to delayed 

treatment and correspondingly high mortality rates (Maertens et al., 2007). This 

phenomenon is exemplified by the high disparity between post-mortem detection and 

ante-mortem diagnosis of invasive fungal infections (IFIs), and specifically IA 

(Chamilos et al., 2006; Antinori et al., 2009). The current criteria for diagnosis of IFIs 

have been outlined by the consensus group of the European Organisation for Research 

and Treatment of Cancer/Invasive Fungal Infections Cooperative Group and the 

National Institute of Allergy and Infectious Diseases Mycoses Study Group 

(EORTC/MSG) (De Pauw et al., 2008). Following the revised EORTC/MSG guidelines 

diagnoses of IFIs can be delineated into proven, probable or possible categories of 

disease. Classification is dependent on the presence of host factors (e.g. recent 

neutropenia or prolonged corticosteroid use), observation of clinical indications (e.g. 

radiographic findings) and mycological criteria (e.g. direct microscopy or detection of 

antigens). Mycological evidence of IFI involves the direct or indirect detection of the 

causative fungal agent. Direct methods of detection include culture of the fungus from 

patient specimens, including sputum or bronchoalveolar lavage (BAL) fluid, or 

observation of fungal elements by microscopy. Indirect mycological detection methods 

currently approved for use in EORTC/MSG guidelines are typically only applicable to 

aspergillosis and candidiasis due to the selectivity of these tests (De Pauw et al., 2008). 
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Figure 1.3: Pathogenesis of IA based on immune status of the host. (a) A. fumigatus conidia are inhaled and reach the alveoli of the lungs, where 

germination occurs. (b) Conidia are cleared by cells of the immune system, including alveolar macrophages and PMN cells. (c) Germination and tissue 

invasion occurs in individuals with reduced quantity or efficacy of PMN cells. (d) Non-neutropenic hosts (e.g. long-term corticosteroid use) develop 

tissue damage as a result of excessive PMN cell recruitment. From Ben-Ami et al. (2010). 

a. b. c. 

d. 
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 Detection of circulating antigens using the enzyme-immunoassay (EIA) format 

has contributed to the detection and monitoring of Aspergillus infections. 

Galactomannan is a heat-stable polysaccharide component of the cell walls of 

Aspergillus and Penicillium spp, which is secreted during fungal growth (Latgé et al., 

1994). The FDA-approved Platelia© sandwich EIA, for the detection of Aspergillus 

galactomannan, is routinely used as an adjunct diagnostic tool for IA (Maertens et al., 

2007). Levels of circulating galactomannan (GM) have been considered to be 

proportional to the relative fungal load, with absence of GM subsidence an indicator of 

prognosis (Boutboul et al., 2002). An additional cell wall constituent, β-glucan, is 

another diagnostic target for IFIs. Since β-glucan is present on cell walls from most 

pathogenic fungi, excluding Cryptococcus and Zygomycetes, it does not specifically 

indicate IA but instead is a ‘pan-fungal’ detection strategy (Hope et al., 2005; Maertens 

et al., 2007; Thornton, 2010). Investigation of the specificity and sensitivity of these 

indirect detection strategies, currently in routine use for IFI diagnosis, has resulted in 

widely varying results. Host-factors appear to influence the performance of these 

antigen assays, with accuracy of GM detection differing between patients with 

haematological disorders and immunosuppressed individuals (Pfeiffer et al., 2006; Ku 

et al., 2012). Furthermore, anti-fungal therapy can also reduce the sensitivity of these 

antigen immunoassays, highlighting the need for further validated tests for IA diagnosis 

(Marr et al., 2005). Polymerase chain reaction (PCR)-based detection strategies, for use 

in IA diagnosis, are undergoing development, with further validation required before 

they can be included in the EORTC/MSG guidelines for IFI diagnosis (De Pauw et al., 

2008). Efforts have been undertaken to standardise procedures used in PCR-based 

detection of IA, in addition to reduction in the incidence of false-positives (White et al., 

2010, 2011). Emerging real-time quantitative PCR (qPCR) strategies for detection of 

Aspergillus are compliant with stringent guidelines for reporting and may signal the 
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shift towards inclusion of these molecular tests in the IA diagnostic tool-belt (Johnson et 

al., 2012). 

Several novel strategies are under investigation for the diagnosis of IA, 

including immuno-based methods and detection of Aspergillus-specific low molecular 

mass metabolites. The use of monoclonal antibodies (MAbs) for detection of alternative 

targets to previously described (i.e. GM, β-glucan) has been examined by a number of 

groups with the potential for enhanced selectivity and sensitivity of detection. The 

development of an Aspergillus antigen capture ELISA has been described, using two 

distinct MAbs for the enhanced capture and detection of an Aspergillus antigen (Hao et 

al., 2008). Combination of an antigen-assay with detection of anti-Aspergillus 

antibodies has also been explored, for the overall improvement in diagnostic 

capabilities. The gliotoxin oxidoreductase, GliT, has demonstrated immunoreactivity 

and has been identified both intracellularly and extracellularly in A. fumigatus (Schrettl 

et al., 2010; Kumar et al., 2011). Measurement of anti-GliT antibody levels, has been 

examined as a putative tool for IA diagnosis in non-neutropenic patients, although 

coupling of this assay with GM detection was suggested for optimal results (Shi et al., 

2012b). A lateral flow device has been developed for the detection of an Aspergillus-

specific antigen, utilising a MAb directed against an undisclosed external component of 

Aspergillus, which is secreted during active growth (Thornton, 2008). Due to the ease of 

use, this device represents a significant development in IA diagnostics (Thornton et al., 

2012). 

Additional studies have been carried out to investigate the potential of low 

molecular mass fungal metabolites in diagnosis. A novel metabolite-based detection 

strategy, under preliminary investigation, comprises a breath test for IA, and is based on 

the detection of an Aspergillus-specific volatile organic compound (VOC) (Chambers et 



19 

 

al., 2011). The premise of this test is the use of 2-Pentylfuran (2PF) as a biomarker of 

IA, however technical apparatus required to characterise these samples make this 

technology incompatible with a clinical setting in its current form (Chambers et al., 

2011). MS-based detection of cyclic non-ribosomal peptides has been proposed as a 

way by which to detect fungal infection and distinguish between fungal strains, based 

on distinct cyclic peptide profiles (Jegorov et al., 2006). Additionally, detection of the 

bis-methylated derivative of gliotoxin (bmGT), was achieved using thin layer 

chromatography (TLC) and high performance liquid chromatography (HPLC), and was 

put forward as a more reliable diagnostic candidate than native gliotoxin (Domingo et 

al., 2012). Further to their potential for use as biomarkers of infection, fungal 

metabolites can also be employed for detection of fungal growth in vivo. Petrik et al. 

(2010) exploited the iron scavenging activity of A. fumigatus, by using modified 

siderophores as a reporting mechanism. Radio-labelled siderophores were selectively 

taken up by A. fumigatus in vivo and accumulation allowed the detection of A. 

fumigatus infection using positron emission tomography (PET). Again this strategy 

hinged on the principle of using fungal-specific molecules or mechanisms for detection, 

to eliminate false positives from host interference. Further development of indirect 

detection methods for IA is of paramount importance, as sensitive and selective 

techniques would preclude the need for invasive diagnostic procedures. 

1.5 Anti-fungal therapy for IA 

Therapeutic goals in the treatment of invasive fungal infections (IFI) include the 

restoration of immune function, if applicable, and the reduction of the fungal burden 

(Traunmüller et al., 2011). Anti-fungal agents are utilised to achieve the latter, and 

include polyenes, triazoles and echinocandins for the treatment of IA (Thompson and 

Patterson, 2008). Due to relatively close phylogenetic relationship between fungi and 
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humans, unique targets for anti-fungal therapeutics are limited and the identification of 

differential mechanisms may expand this base (Denning and Hope, 2010). One such 

target for anti-fungal agents is the cell wall, which represents a fungal-specific entity, 

distinct from the host background (Vandeputte et al., 2012). Additionally ergosterol, a 

component of the fungal cell membrane, is not found in human cell membranes, with 

particular classes of drugs targeting these molecules (Beauvais and Latgé, 2001). The 

polyene class of anti-fungals, including amphotericin B (AmB) deoxycholate, exploit 

this unique fungal target to elicit their function. AmB binds to ergosterol in the fungal 

cell membrane and forms pores, which lead to leakage of potassium ions. The resultant 

proton gradient ultimately results in fungal cell death (Lemke et al., 2005). AmB was 

classically the primary anti-fungal used for the treatment of IA, however substantial side 

effects, including nephrotoxicity, have lead to the development and use of lipid 

formulations with reduced toxicity (Wingard et al., 1999; Kleinberg, 2006; Ullmann et 

al., 2006). 

Voriconazole, itraconazole and posaconazole are member of the triazole class of 

anti-fungals used to treat invasive fungal infection. Triazoles inhibit the cytochrome 

P450 enzyme resulting in disruption of ergosterol biosynthesis and consequently cell 

membrane dysfunction and cell death (Thompson and Patterson, 2008). Voriconazole 

inhibits the action of 14α-lanosterol demethylase, a key step in the production of 

ergosterol which is required for normal cell membrane function (Denning and Hope, 

2010). Some hepatic-related side effects are associated with voriconazole use, 

principally due to metabolism via host cytochrome P450 enzymes (Johnson and 

Kauffman, 2003). Despite this, voriconazole has emerged as the primary therapy for IA 

due to the reduced toxicity profile and enhanced efficacy, relative to AmB (Herbrecht et 

al., 2002; Azie et al., 2012). Emergence of resistance to azoles has been noted in some 
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cases and this represents a potential concern for long-term use of these therapeutics 

(Howard et al., 2006; Trof et al., 2007; Camps et al., 2012). 

Caspofungin is a member of the echinocandin class of anti-fungal agents, which 

function by disrupting cell wall synthesis. Caspofungin is currently recommended for 

use as a second line or salvage therapy for IA (Maertens et al., 2004; Kartsonis et al., 

2005). Recent studies have also indicated the effectiveness of this agent in the primary 

treatment of IA, with efficacy and favourable toxicity profiles shown in patients with 

haematological disorders and HSCT recipients (Herbrecht et al., 2010; Jarque et al., 

2012). The mechanism of action of caspofungin is the targeted disruption of β(1,3)-D-

glucan biosynthesis, through non-competitive inhibition of β(1,3)-D-glucan synthase. 

Inhibition of β(1,3)-D-glucan biosynthesis, a principle cell wall component, results in 

destabilisation of fungal cell walls and limits fungal growth (Letscher-Bru, 2003). 

Caspofungin is utilised as a monotherapy for IFIs, in addition to inclusion in 

combination therapy (Maertens et al., 2010). Combination therapy for the treatment of 

IA offers a number of theoretical advantages, including reduced risk of resistance, wider 

target area, and more rapid effect, however preliminary studies have not conclusively 

demonstrated the effectiveness of this approach over monotherapy (Trof et al., 2007; 

Tunger et al., 2008; Garbati et al., 2012). In vitro studies suggest positive outcomes 

upon combinations of azoles with echinocandins, possibly due to differential targets 

associated with these agents (Jeans et al., 2012). 

Immunotherapy represents another strategy for the treatment of IA, focusing on 

modulation of immune function for enhanced anti-fungal activity (Carvalho et al., 

2012). Administration of recombinant colony stimulating factors (CSFs), including 

granulocyte-CSF (G-CSF) and granulocyte-macrophage CSF (GM-CSF), has been 

investigated for potential in the treatment of invasive fungal infections. G-CSF 



22 

 

stimulates the proliferation and survival of neutrophils and their precursors, and is used 

in the prevention of chemotherapy-associated febrile neutropenia (Silvestris et al., 

2012). GM-CSF promotes neutrophil survival and stimulates neutrophil effector 

function, in addition to stimulation of macrophage proliferation and activity (Hercus et 

al., 2012). Therapeutic use of these CSFs in treatment of IFI was expected to restore 

immune function and consequently enhance fungal clearance, however results from 

various in vitro studies and clinical reports were contradictory (Lehrnbecher et al., 

2011). Post-transplant administration of G-CSF has also been demonstrated to impair 

immune recovery due to the induction of an inflammatory Th2 response (Volpi et al., 

2001). GM-CSF represents a more appropriate agent for use against Aspergillus-

associated infection due to stimulation of both neutrophils and macrophage activity. 

Additionally GM-CSF, unlike G-CSF, does not dramatically increase total leukocytes 

counts, resulting in reduced tissue injury from the inflammatory neutrophil response 

(Graybill et al., 1998). Use of G-CSF has been shown to shorten recovery times and 

length of hospitalisation when used in the treatment of IA, however no effect was noted 

regarding mortality rates (Pagano et al., 2010). The most beneficial use of CSFs appears 

to be in prophylactic treatment for the prevention of infection in high-risk patient 

cohorts (Falagas et al., 2008). Therefore this immunotherapy represents a promising 

preventative or adjunct therapy for IA. 

1.6 Factors contributing to A. fumigatus pathogenicity 

A. fumigatus has been postulated to be an accidental pathogen, lacking 

sophisticated virulence factors (McCormick et al., 2010). Many of the traits of A. 

fumigatus, which contribute to its pathogenicity under opportune conditions, have 

developed to enable survival in the primary ecological niche of this fungus, the soil. 

Through functional genomics investigations a number of genes connected to thermo-
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tolerance in A. fumigatus were identified, including afpmt1 (AFUA_3G06450), afmnt1 

(AFUA_5G10760), cgrA (AFUA_8G02750), thtA (AFUA_1G03992) and midA 

(AFUA_3G10960) (Bhabhra et al., 2004; Chang et al., 2004; Zhou et al., 2007; 

Wagener et al., 2008; Dichtl et al., 2012). The genes afmnt1, cgrA, thtA and midA are 

essential for growth at 48 °C, while conidiation at 50 °C is inhibited upon deletion of 

afpmt1. A range of distinctive mechanisms contribute to attenuation of thermo-tolerance 

in these deletion strains. CprA has a role in ribosomal synthesis, and is required for 

conidial germination at higher temperatures. Afpmt1 and afmnt1 code for an α-1,2-

mannosyltransferase and an O-mannosyltransferase respectively, with deletion of these 

genes resulting in loss of cell wall integrity (Zhou et al., 2007; Wagener et al., 2008). 

This implicates the cell wall as an integral component in resistance to thermal stress. 

Comparative proteomics has also identified mechanisms that are differentially regulated 

upon exposure to heat shock. Protein chaperones, proteins involved in carbon and 

nitrogen metabolism, translation, and proteins involved in defence against oxidative and 

nitrosative stress, were all significantly up-regulated upon temperature shift from 30 to 

48 °C (Albrecht et al., 2010). Proteins involved in cell wall and cytoskeleton assembly 

were also observed to increase in expression following thermal stress, further 

demonstrating the importance of cell wall integrity in resistance to stress.  

The cell wall provides a physical barrier between the fungal cell and the external 

environment, affording structural integrity to the hyphae and conidia in addition to 

physical protection from exogenous stresses. The cell wall of A. fumigatus is composed 

primarily of polysaccharides, and is a dynamic structure embedded with proteins, that 

can change in response to environmental stimuli (Abad et al., 2010). The constituents of 

the cell wall include α(1,3)-glucans, β(1,3)-glucans, chitins and galactomannans (Figure 

1.4). Disruption of the cell wall integrity increases the sensitivity of A. fumigatus to 
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external stresses, and additionally can enhance the susceptibility to antifungal agents. 

Deletion of afmnt1 and afpmt1, involved in cell wall component biosynthesis, increases 

the sensitivity of the mutants to azoles and hygromycin respectively (Zhou et al., 2007; 

Wagener et al., 2008). Additionally, wsc1 mutants lacking a protein involved in cell 

wall integrity signalling, are significantly more sensitive to echinocandin treatment 

(Dichtl et al., 2012). The cell wall constituent, β-glucan is recognised by the host 

immune system and is a ligand for the Dectin-1 receptor, which activates the 

inflammatory immune response (Steele et al., 2005). β-glucan is not exposed on the 

surface of resting conidia, but becomes available for Dectin-1 binding following the 

initiation of conidia swelling and germination (Hohl et al., 2005). Components of the 

cell wall also exhibit immunomodulatory mechanisms, which can result in attenuation 

of the innate immune response. Specifically, α-glucan reduces toll-like receptor (TLR)-

2 and TLR4-mediated production of interleukin (IL)-6, while β-glucan decreases IL6 

production via TLR4 (Chai et al., 2011b). These effects were dose-dependent and more 

pronounced IL6 attenuation was observed using extracts from germinating conidia 

compared to resting conidia (Chai et al., 2011b). TLRs recognise specific non-self 

molecules and trigger immune responses through signalling mechanisms. IL6 triggers 

the innate immune response and modulation of the production of this molecule 

demonstrates an immunoevasion mechanism elicited by the cell wall of A. fumigatus. 

As described earlier, the innate immune response directed against A. fumigatus 

involves alveolar macrophages and dendritic cells, resident in the lung, as a first-line of 

defence. Additionally, recruitment and activation of other leukocytes is required to fend 

off infiltrating fungal infection. As A. fumigatus is an opportunistic pathogen, virulence 

is associated with impairment in the host defence system.  
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Figure 1.4: Schematic of A. fumigatus cell wall. From Abad et al. (2010). 
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Moreover, A. fumigatus has a number of characteristics that enhance immune 

evasion and enable resistance to components of the host immune response. In addition 

to the cell wall components discussed previously, A. fumigatus possesses exterior 

features that impart protection against external stresses. Melanin is located on the 

external surface of conidia and is responsible for the dark pigment associated with A. 

fumigatus conidia (Tsai et al., 1999; Schmaler-Ripcke et al., 2009). Melanin has been 

demonstrated to play a protective role in A. fumigatus conidia through a number of 

mechanisms: (i) protection against UV light, (ii) down-regulation of the complement 

cascade, (iii) ROS scavenging and (iv) masking cell surface ligands of the innate 

immune system (e.g. β-glucan) (Tsai et al., 1998, 1999; Brakhage and Liebmann, 2005; 

Nosanchuk and Casadevall, 2006; Chai et al., 2011a). Furthermore, following 

phagocytosis of conidia by macrophages, melanin inhibits phagolysosome acidification 

and apoptosis, thus prolonging the survival of infected macrophages (Thywißen et al., 

2011; Volling et al., 2011). An additional hydrophobic layer, encases the surface of 

conidia, and is composed of RodA protein covalently bound to the cell wall. This rodlet 

or hydrophobin layer aids in the dispersion of conidia, through the associated 

hydrophobicity, and also decreases the immunogenicity of resting conidia. Conidia from 

mutants deficient in the RodA protein activated dendritic cells and alveolar 

macrophages, with associated release of cytokines, while wild-type resting conidia were 

immunologically silent (Aimanianda et al., 2009; Dagenais et al., 2010). An additional 

mechanism employed by neutrophils in the defence against A. fumigatus is the 

production of neutrophil extracellular traps (NETs), consisting of secreted DNA 

complexes with anti-microbial granular proteins, which surround the fungal cells 

(Wartha et al., 2007; Bruns et al., 2010a). RodA is responsible for reduced NET 

formation, with reduced levels or absence correlating with enhanced secretion of NETs 

by neutrophils (Bruns et al., 2010a). As with melanin, the hydrophobin layer provides a 
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mask for immunogenic cell surface ligands in dormant conidia, allowing spores to 

evade host defences prior to germination. 

An integral component of A. fumigatus, in resistance to effector functions of the 

host defences, is the plethora of enzymes for detoxification of ROS. Macrophage and 

neutrophil-mediated killing of conidia and hyphae is achieved in part through the 

generation of ROS. NADPH-oxidase (NOX) is responsible for release of ROS and is 

essential for defence against fungal infection (Brown et al., 2009a). Correspondingly, 

defects in the NOX enzyme, associated with CGD, results in impaired capacity of 

neutrophils to kill fungi and leads to increased susceptibility to infections (Segal and 

Romani, 2009). The mitogen-activated protein kinase (MAPK) family of enzymes play 

a role in cell signalling and regulate intracellular responses to stress. In A. fumigatus, 

MpkA and SakA are two MAPKs associated with response to ROS and mediate their 

function through signal transduction cascades (Du et al., 2006; Valiante et al., 2008). 

MpkA is involved in the regulation of a number of genes encoding anti-oxidant 

proteins, including catalases and superoxide dismutase (SOD) (Jain et al., 2011). In A. 

nidulans, the interaction of SakA with the transcription factor AtfA facilitates stress 

signalling and is involved in the regulation of catalase and peroxiredoxin expression 

(Lara-Rojas et al., 2011). The transcription factor, Yap1, plays an integral role in the 

regulation of antioxidant genes in A. fumigatus (Aguirre et al., 2006). Upon exposure to 

oxidative stress, Yap1 accumulates in the nucleus and induces the transcription of genes 

involved in protecting the cell from stress-induced damage (Kuge et al., 1997). Yap1 

targets, identified by comparative proteomics using a yap1 deletion strain, included 

catalases, chaperones, peroxidases and a mitochondrial peroxiredoxin (Lessing et al., 

2007). While Δyap1 displayed no change in pathogenicity relative to the wild-type in a 

mouse model of invasive pulmonary aspergillosis (IPA), Yap1 was essential for 
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virulence in an ocular keratitis infection model (Lessing et al., 2007; Sixto et al., 2012). 

This may result from the use of a neutropenic mouse model for IPA infection, as Yap1 

is crucial in the defence against neutrophil-mediated killing (Lessing et al., 2007; Sixto 

et al., 2012). A zinc finger transcription factor, SebA, has recently been identified in A. 

fumigatus, with a role in protection against various forms of stress, including oxidative 

and heat shock stress (Dinamarco et al., 2012). The deletion strain of sebA, 

demonstrated increased sensitivity to H2O2 and paraquat treatments, and sebA-

dependent regulation of anti-oxidant enzymes was observed in response to these stimuli 

(Dinamarco et al., 2012). The fungal response to oxidative stress therefore plays an 

integral role in the ability to function as a human pathogen (Brown et al., 2009a) and 

further characterisation of this response is necessary for the understanding of 

pathogenicity.  

The exposure to hypoxia represents a further physiological stress imposed on A. 

fumigatus during pathogenesis (Vödisch et al., 2011). The sterol-regulatory element 

binding protein, SrbA, regulates ergosterol biosynthesis, maintains cell polarity and is 

essential for growth in hypoxic conditions (Willger et al., 2008). Furthermore deletion 

of srbA results in attenuated virulence in both neutropenic and corticosteroid models of 

IA, underpinning the role of hypoxia adaptation in the pathogenicity of A. fumigatus 

(Willger et al., 2008, 2009). Large-scale proteomic and transcriptomic investigations 

have been carried out to identify mechanisms differentially regulated in A. fumigatus in 

response to both short-term and long-term hypoxia (Vödisch et al., 2011; Barker et al., 

2012). Long-term exposure to low oxygen conditions correlated with the increase in 

expression of proteins involved in glycolysis, respiration and secondary metabolite 

production. The transcription factor SrbA was activated in response to a requirement for 

ergosterol biosynthesis, and additionally NO-detoxifying flavohemoprotein was up-
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regulated, indicating the production of reactive nitrogen species (RNS) may be 

associated with hypoxia (Vödisch et al., 2011). Similarly, following short-term 

exposure to hypoxia, ergosterol biosynthesis and flavohemoprotein were also up-

regulated, indicating the requirement for these components in the adaption to, and the 

maintenance of growth in, hypoxic conditions (Barker et al., 2012). 

As A. fumigatus is a saprophytic fungus, the ability to extract nutrients from the 

host plays an integral part in the ability of the fungus to survive and persist in the lung. 

Secreted enzymes, including proteases, hydrolases and lipases, allow acquisition of 

nutrients, in addition to destruction of host barriers to enable invasive growth. A 

transcriptional regulator of proteases, PrtT, was detected in A. fumigatus following the 

identification of homologs in A. niger and A. oryzae (Bergmann et al., 2009; Sharon et 

al., 2009). While PrtT-regulated proteases were essential for the utilisation of protein as 

a nutrient source, these enzymes did not contribute to virulence in a neutropenic or 

corticosteroid mouse models of IA (Bergmann et al., 2009; Sharon et al., 2009). 

Another prerequisite for the survival of A. fumigatus in the host is the ability to obtain 

and store iron, an essential nutrient and cofactor for a number of enzymes (Haas, 2012). 

Conditions encountered by A. fumigatus in the lung are iron-limited and the capacity to 

acquire iron is crucial for growth (Schrettl et al., 2007; Haas, 2012). Two distinct routes 

exist by which A. fumigatus can obtain iron, reductive iron assimilation (RIA) and 

siderophore-assisted iron uptake, both of which are induced in iron-limiting conditions 

(Schrettl et al., 2007). The latter of these systems involves the production of 

siderophores, which specifically chelate ferric iron and can be used to sequester iron 

from the host environment or store iron internally (Schrettl et al., 2004). Abrogation of 

siderophore biosynthesis, by disruption of the sidA, resulted in complete attenuation of 
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virulence in a neutropenic mouse model of IA, demonstrating the essential role of the 

siderophore system in A. fumigatus pathogenicity (Schrettl et al., 2004, 2007). 

A. fumigatus is capable of producing a range of toxic molecules which may 

attribute to its success as an opportunistic pathogen. Many of these molecules are 

secondary metabolites in A. fumigatus and those implicated in pathogenicity are listed in 

Table 1.1. Over 200 secondary metabolites are secreted by A. fumigatus and include 

melanins and ergosterols discussed earlier (Frisvad et al., 2009). Gliotoxin represents 

the most characterised secondary metabolite of A. fumigatus, with relevance to 

virulence. The mechanism of action of gliotoxin will be discussed in detail later in the 

Chapter, in addition to the effect of gliotoxin on the host defences. Briefly, gliotoxin is a 

redox-active metabolite, which exerts numerous immunomodulatory mechanisms, 

contributing to the success of A. fumigatus as an opportunistic pathogen (Figure 1.5) 

(Abad et al., 2010). Helvolic acid is a triterpene which demonstrates ciliostatic activity, 

albeit with lower activity than gliotoxin and fumagillin (Amitani et al., 1995). A 

putative cluster involved in helvolic acid biosynthesis has been identified on 

Chromosome 4 in A. fumigatus, however the biosynthetic pathway has not been 

elucidated to date (Lodeiro et al., 2009; Mitsuguchi et al., 2009). Ergot alkaloids are 

conidia-associated toxins that interact with monoamine receptors and can affect the 

nervous and reproductive systems through this antagonism (Coyle et al., 2007). 

Recently, the non-ribosomal peptide synthetases (NRPS), Pes1 and PesL, have been 

implicated in the production of the ergot alkaloid, fumigaclavine C (Figure 1.5) 

(O’Hanlon et al., 2012). Fumigaclavine C has been shown to inhibit the proliferation 

and activation of T lymphocytes in addition to reducing the production of TNFα in vivo 

and in vitro (Zhao et al., 2004). Other mycotoxins associated with conidia have been 

identified following sporulation and include fumiquinazoline C, tryptoquivaline F, 
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trypacidin, monomethylsulochrin and questin (Figure 1.5). Of these, trypacidin was 

observed to have toxic characteristics, and significantly and substantially reduced the 

cell viability of a human alveolar carcinoma cell line (A549) (Gauthier et al., 2012). 

Trypacidin triggered cell death through necrosis in both primary and immortal lung 

cells, with oxidative stress induction implicated in the irreversible death process 

(Gauthier et al., 2012). Fumagillin produced by A. fumigatus has been suggested to have 

genotoxic effects on mammalian cells in vivo, in addition to anti-angiogenic activity 

(Figure 1.5) (Stanimirovic et al., 2007). Moreover, fumagillin has recently been 

identified as an inhibitor of neutrophil function through interruption of the NAPDH 

oxidase complex assembly (Fallon et al., 2010). Degranulation of neutrophils was also 

reduced in fumagillin treated cells, which could contribute to the persistence of A. 

fumigatus in the host (Fallon et al., 2010). Pseurotin A and related analogues have 

demonstrated suppression of IgE production in vitro (Figure 1.5) (Ishikawa et al., 

2009). Pseurotin A biosynthesis is encoded by a portion of a secondary metabolite 

‘supercluster’ on Chromosome 8, with the sole hybrid polyketide synthase/non-

ribosomal peptide synthetase (PKS/NRPS) in A. fumigatus essential for pseurotin A 

production (Maiya et al., 2007; Perrin et al., 2007). The pseurotin precursor molecules, 

propionyl-coenzyme A, phenylalanine and malonyl-coenzyme A, are utilised to produce 

a PKS-NRPS bound intermediate, with the remaining genes in the cluster putatively 

responsible for further modification of this intermediate (Maiya et al., 2007). 

No single factor appears to be responsible for virulence of A. fumigatus and the 

associated disease is multi-faceted (Abad et al., 2010). Collectively, all of the features 

described contribute to the pathogenicity of A. fumigatus in the immunocompromised 

host. Further exploration into these mechanisms of tolerance and resistance to host 

induced stresses may expand our understanding of the pathogenicity of A. fumigatus. 
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1.7 Secondary Metabolism in Fungi 

1.7.1 Identification of Secondary Metabolite Clusters 

Secondary metabolites are predominantly low molecular mass molecules, 

produced by a range of organisms, which are dispensable for primary growth (Keller et 

al., 2005). The production of SMs can often be associated with specific morphological 

stages and SMs may confer selective advantages in the presence of competing 

organisms (Calvo et al., 2002; Losada et al., 2009). Secondary metabolites can be 

broadly categorised based on the enzyme classes responsible for their biosynthesis, and 

include (i) polyketides, (ii) non-ribosomal peptides (iii) terpenes and (iv) indole 

alkaloids. Biosynthesis of these SMs is carried out by polyketide synthetases (PKSs), 

NRPSs, terpene cyclases and dimethylallyl tryptophan synthetases (DMATS), 

respectively. These enzymes catalyse the first step in the biosynthesis of SMs and are 

referred to as ‘backbone enzymes’ (Khaldi et al., 2010). Enzymes involved in the 

biosynthesis of SMs are usually grouped in contiguous clusters in the genome with a 

proclivity towards telomeric localisation (Keller et al., 2005; Nierman et al., 2005). This 

phenomenon is not observed in primary metabolite biosynthetic pathways, nor in 

secondary metabolism genes from other kingdoms. The sequencing of the genome of A. 

fumigatus Af293, revealed the presence of 26 SM clusters, including a number of 

clusters not identified in A. oryzae or A. nidulans (Nierman et al., 2005). The number of 

SM gene clusters was subsequently revised to 22 by Perrin et al. (2007).  

Recent developments in automated web-based tools, including Secondary 

Metabolite Unknown Region Finder (SMURF), have aided in locating SM clusters in 

fungi (Khaldi et al., 2010). Additionally, the inclusion of a second sequenced strain of 

A. fumigatus, A1163, has resulted in the total number of SMs in A. fumigatus being 

adjusted to 36 (Table 1.2) (Fedorova et al., 2008; Sanchez et al., 2012). 
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Table 1.1: Secondary metabolites of A. fumigatus implicated in virulence. Adapted from Dagenais and Keller (2009). 

Secondary 

Metabolite 

Fungal Association(s) Potential function in vivo 

Gliotoxin Hyphae Induction of host cell apoptosis 

Epithelial cell damage and slowed ciliary beating  

Inhibition of phagocytosis and oxidative burst  

Inhibition of T-cell responses 

Restrictocin Hyphae  Inhibition of neutrophil-mediated hyphal damage 

Verruculogen Hyphae, Conidia Affects transepithelial resistance and induces hyperpolarization, cytoplasmic vacuolization of epithelial cells 

Fumagillin Hyphae  Epithelial cell damage and slowed ciliary beating; angiogenesis inhibitor 

Helvolic acid Hyphae  Epithelial cell damage and slowed ciliary beating 

Ergot alkaloids Hyphae, Conidia  Unknown 

Fumitremorgin Unknown Unknown 
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Figure 1.5: Structures of several secondary metabolites produced by A. fumigatus. 

Images from Rundberget and Wilkins (2002); Kikuchi and Kakeya (2006); Frisvad et 

al. (2009). 
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Characterisation of mechanisms required for the production of specific classes of 

secondary metabolites has enabled the identification of similar clusters in disparate 

species. The identification of the gliotoxin biosynthetic cluster in A. fumigatus was 

facilitated by comparison with another previously characterised 

epipolythiodioxopiperazine (ETP), sirodesmin, from Leptosphaeria maculans (Gardiner 

and Howlett, 2005). Subsequently, both of these biosynthetic clusters were used to 

identify other ETP clusters from across a range of fungi, and resulted in the detection of 

a second smaller ETP cluster in A. fumigatus (Patron et al., 2007). Techniques routinely 

used to identify and characterise secondary metabolites from fungi include organic 

extraction, TLC, reversed-phase HPLC (RP-HPLC), LC-MS/MS and NMR. These 

methodologies will be elaborated upon in Chapter 6. 

1.7.2 Secondary Metabolite Cluster Regulation 

Various factors can influence the production of secondary metabolites and regulation of 

SM gene cluster expression is controlled by transcription factors. ‘Broad’-domain 

transcription factors can co-regulate the expression of multiple gene clusters, resulting 

in an integrated response to external stimuli (Keller et al., 2005). Conversely, ‘narrow’ 

range transcription factors, are often located within gene clusters and specifically 

regulate expression of the respective SM pathway. Secondary metabolism is influenced 

by external environmental factors, including pH, temperature, light and nutrient source, 

in addition to morphological development (Calvo et al., 2002; Reverberi et al., 2010). 

In A. terreus the production of the poyketide lovastatin, is influenced by the 

carbon:nitrogen ratio, while the biosynthesis of aflatoxin in A. flavus is dependent on 

temperature (Casas López et al., 2003; O’Brian et al., 2007). 
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Table 1.2: Secondary metabolism gene clusters in A. fumigatus, with central enzymes (e.g. NRPS, DMATS, PKS) listed. 

Adapted from Sanchez et al. (2012). 

No Af293 gene A1163 gene Gene Name Actual or predicted product 

1 AFUA_1G01010  No homolog   

2 AFUA_1G10380 AFUB_009800 pesB (pes1)  

3 AFUA_1G17200  AFUB_016590 sidC ferricrocin, hydroxyferricrocin 

4 AFUA_1G17740  AFUB_045790   

5 AFUA_2G01290 AFUB_018370   

6 AFUA_2G05760 AFUB_022790   

7 AFUA_2G17600 AFUB_033290 alb1(pksP) YWA1 

8 AFUA_3G01410 AFUB_046990   

9 AFUA_3G02530 No homolog   

10 AFUA_3G02570 No homolog   

11 AFUA_3G02670 AFUB_045610   

12 AFUA_3G03350 AFUB_044900 sidE  

13 AFUA_3G03420 AFUB_044830 sidD fusarinine C, triacetylfusarinine C 

14 AFUA_3G12920 AFUB_036270 pesF putative ETP 

15 AFUA_3G13730 AFUB_035460 pesG  

16 AFUA_3G14700 AFUB_034520   

17 AFUA_3G15270 AFUB_033950 pesH  
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No Af293 gene A1163 gene Gene Name Actual or predicted product 

18 AFUA_4G00210 AFUB_100730   

19 AFUA_4G14560  AFUB_071800   

20 AFUA_5G10120 AFUB_057720   

21 AFUA_5G12730 AFUB_060400 pesI  

22 AFUA_6G03480 AFUB_094810   

23 AFUA_6G08560 AFUB_074520   

24 AFUA_6G09610 AFUB_075660 pesJ  

25 AFUA_6G09660 AFUB_075710 gliP gliotoxin 

26 AFUA_6G12050 AFUB_078040  fumiquinazolines 

27 AFUA_6G12080 AFUB_078070  fumiquinazolines 

28 AFUA_6G13930 AFUB_000820 pyr2 pyripyropene A 

29 AFUA_7G00160 AFUB_086700   

30 AFUA_8G00170 AFUB_086360 ftmA fumitremorgins 

31 AFUA_8G00370 AFUB_086200   

32 AFUA_8G00540 AFUB_086030 psoA pseurotin A 

33 AFUA_8G01640 AFUB_084950   

34 AFUA_8G02350 AFUB_084240   

35 No homolog AFUB_07971   

36 No homolog AFUB_045640   
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A methyltransferase domain protein, LaeA, is a global regulator of secondary 

metabolism and development in Aspergillus species (Bok and Keller, 2004; Sarikaya 

Bayram et al., 2010). The function of LaeA is putatively executed via methyltransferase 

activity and regulation of chromatin remodelling (Bok and Keller, 2004; Bok et al., 

2005; Keller et al., 2006; Perrin et al., 2007). LaeA was originally identified as a SM 

regulator following complementation of the loss of sterigmatocystin biosynthesis from 

A. nidulans, and was subsequently recognised as essential for the production of 

penicillin and conidial pigments (Bok and Keller, 2004). In A. nidulans, two of the 

velvet family of proteins, VeA and VelB, were shown to form a trimeric complex with 

LaeA and subsequently up-regulate asexual development and secondary metabolism 

(e.g. sterigmatocystin biosynthesis) (Bayram et al., 2008). Translocation of VeA, and 

consequently VelB, to the nucleus is inhibited by light and thus interaction with LaeA 

occurs in the absence of light (Bayram et al., 2008; Sarikaya Bayram et al., 2010). 

While a similar trimeric interaction (VelB-VeA-LaeA) is noted in A. fumigatus, absence 

of VeA and VelB did not affect biosynthesis of gliotoxin in A. fumigatus (Park et al., 

2012). A large-scale transcriptional investigation identified multiple SM gene clusters 

under full or partial LaeA-regulation in A. fumigatus, including those involved in ergot 

alkaloid biosynthesis and the gliotoxin biosynthetic cluster (Perrin et al., 2007). The 

contribution of secondary metabolites to the pathogenicity of A. fumigatus was 

evidenced by the reduction in virulence, in a neutropenic model of pulmonary 

aspergillosis, upon deletion of the laeA gene (Bok et al., 2005). An increase in 

macrophage-mediated conidial phagocytosis of ΔlaeA, was caused by a reduction in the 

hydrophobic rodlet layer due to delayed expression of rodA (Bok et al., 2005; Dagenais 

et al., 2010). Moreover, reduced killing of polymorphonuclear neutrophils (PMNs) by 

ΔlaeA hyphae was due to reduction in secreted SMs, causing reduction in the PMN-

respiratory burst (Bok et al., 2005; Sugui et al., 2007a). During the onset of IA, a 
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significant number of the SM genes regulated by LaeA were increased in expression, 

including member of the pseurotin and gliotoxin gene clusters (McDonagh et al., 2008). 

1.8 Gliotoxin 

1.8.1 General Information 

Gliotoxin is classified as an epipolythiodioxopiperazine (ETP) toxin, and is 

produced by a range of fungal species including A. fumigatus, A. terreus, A. flavus, A. 

oryzae, Trichoderma virens and some Penicillium species (Patron et al., 2007). ETPs 

are characterised by the presence of an internal disulphide bridge across a 

dioxopiperazine ring, formed from a modified cyclic dipeptide (Gardiner et al., 2005b; 

Fox and Howlett, 2008). The toxicity and reactivity of gliotoxin is mediated by the 

disulphide bridge, which can cross-link proteins through reaction with thiol-containing 

cysteine residues (Patron et al., 2007). Additionally, gliotoxin is a redox-active 

metabolite, generating ROS as it cycles between its oxidised (disulphide) and reduced 

(dithiol) forms (Figure 1.6) (Gardiner and Howlett, 2005). Gliotoxin (C13H14N2O4S2) is 

a 326 Da metabolite, and through radiolabelled isotope feeding experiments the 

precursor molecules for the diketopiperazine core were found to be phenylalanine and 

serine (Suhadolnik and Chenowath, 1958; Winstead and Suhadolnik, 1960). Gliotoxin 

has been extensively studied for its toxicity properties towards mammalian cells, with 

anti-microbial activity also attributed to this molecule (Pardo et al., 2006; Carberry et 

al., 2012). 
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Figure 1.6: Redox cycling between the reduced (1) and oxidised (2) forms of gliotoxin, 

with the oxidation of gliotoxin producing ROS. From Gardiner and Howlett (2005). 
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1.8.2 Gliotoxin Biosynthesis 

As mentioned previously, the genes for gliotoxin biosynthesis are clustered 

together, and the gli cluster is comprised of thirteen genes (Figure 1.7a) (Gardiner and 

Howlett, 2005; Schrettl et al., 2010). Functional genomics demonstrated that the NRPS, 

GliP, is essential for the production of gliotoxin (Cramer et al., 2006; Kupfahl et al., 

2006; Spikes et al., 2008). The initial step in the biosynthesis of gliotoxin was 

subsequently elucidated, through heterologous expression and purification of GliP from 

Escherichia coli (Balibar and Walsh, 2006). GliP was observed to catalyse a 

condensation reaction between L-phenylalanine and L-serine, resulting in the formation 

of a dipeptide (Balibar and Walsh, 2006). GliP is the ‘backbone’ enzyme of the gli 

cluster and is multi-modular, a feature of NRPSs. Release of the dipeptide from the GliP 

enzyme occurs non-enzymatically, due to the absence of a thioesterase domain on the 

NRPS, and results in a cyclic diketopiperazine molecule (Figure 1.7b) (Balibar and 

Walsh, 2006; Davis et al., 2011a). 

An integral stage in the formation of gliotoxin is the introduction of the sulphur 

atoms that confer the signature redox activity to gliotoxin. Since neither phenylalanine 

nor serine are sulphur-containing amino acids, other molecular species were proposed as 

potential sulphur donors, including cysteine, methionine and sodium sulphate 

(Suhadolnik and Chenowath, 1958; Gardiner et al., 2005b). A putative glutathione-S-

transferase gene, gliG, is situated within the cluster, and presented a potential route for 

sulphur incorporation into the gliotoxin precursor (Gardiner et al., 2005b). This 

hypothesis was confirmed through functional genomics whereby the gliG was deleted, 

resulting in abrogation of gliotoxin biosynthesis and accumulation of an off-pathway 

shunt metabolite (Molecule 4; Figure 1.7b) (Davis et al., 2011a; Scharf et al., 2011). 

Davis et al. (2011a) validated the glutathione-S-transferase (GST) activity of the 
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enzyme using recombinant GliG and demonstrated that GliG does not confer auto-

protection against exogenous gliotoxin. Scharf et al. (2011) demonstrated the activity of 

the P450 monooxygenase, GliC,which is required for a hydroxylation reaction prior to 

the GliG-mediated conjugation of glutathione (GSH) to the gliotoxin precursor. The 

function of a number of GSTs relates to detoxification of non-polar compounds (i.e. 

xenobiotics) through conjugation of GSH, allowing subsequent metabolism of the 

glutathionylated molecule. While the proposed gliotoxin biosynthetic pathway partially 

resembles this mechanism, GliG is phylogenetically distinct from these detoxification 

enzymes (Davis et al., 2011a; Scharf et al., 2011).  

Exposure of the thiol groups of gliotoxin was predicted to be catalysed by GliI 

utilising pyridoxyl-5’-phophate (PLP) as a co-factor (Figure 1.5) (Fox and Howlett, 

2008; Davis et al., 2011a; Scharf et al., 2011). Recently, the activity of GliI as a C-S 

lyase was experimentally verified, and was demonstrated to perform concurrent 

cleavage for the formation of both thiols in the ETP (Scharf et al., 2012a). Identification 

of a cytosolic, water-soluble intermediate, exclusive to the gliI mutant (ΔgliI), enabled 

elucidation of the mechanism of action of this enzyme in gliotoxin biosynthesis (Scharf 

et al., 2012a).  

The final step in gliotoxin biosynthesis has also been elucidated and involves the 

oxidation of the dithiol form of gliotoxin to form the disulphide bridge (Figure 1.7) 

(Scharf et al., 2010; Schrettl et al., 2010). This action is mediated by the enzyme, GliT, 

which was initially annotated as a thioredoxin reductase. While dithiol to disulphide 

oxidation is required to complete the biosynthesis of gliotoxin, GliT also exhibits 

NADPH-dependant gliotoxin reductase activity (Schrettl et al., 2010). This mechanism 

is key in the auto-protection of A. fumigatus from the toxic effects exerted by gliotoxin 

through the disulphide bond. Indeed deletion of gliT resulted in a phenotype that was 
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hypersensitive to exogenous gliotoxin, confirming the role of GliT in self-protection 

against gliotoxin (Scharf et al., 2010; Schrettl et al., 2010). Additionally, transformation 

of gliT into A. nidulans and S. cerevisiae conferred gliotoxin resistance to these 

typically sensitive species. Hlm1, a functionally homologous enzyme to GliT was 

recently identified in Streptomyces clavuligerus and is associated with the production of 

the antibiotic, holomycin. As with GliT, Hlm1 is responsible for the oxidation of the 

dithiol in the final step of holomycin biosynthesis, and also confers protection against 

the toxic effects of this molecule (Li and Walsh, 2011).  

The gli cluster also contains a selection of genes that are not directly involved in 

the gliotoxin biosynthetic process, namely the transporter, gliA, and the transcriptional 

regulator, gliZ. The gliA gene encodes a transporter of the major facilitator superfamily 

(MFS), while the homologous gene in the sirodesmin cluster of L. maculans, sirA, 

encodes an ATP binding cassette (ABC) transporter (Gardiner and Howlett, 2005). MFS 

transporters are more commonly found in fungal toxin biosynthetic clusters (e.g. 

aflatoxin) than ABC transporters (Gardiner et al., 2005a). Disruption of the gliA 

homolog, sirA, in L. maculans resulted in increased secretion of sirodesmin, indicating 

that SirA is not solely responsible for efflux of sirodesmin from the cell. Despite this 

observation, ΔsirA demonstrated enhanced sensitivity to exogenous sirodesmin and 

gliotoxin, relative to the parent strain (Gardiner et al., 2005a). Furthermore, 

complementation of ΔsirA with gliA resulted in acquired tolerance to gliotoxin but not 

sirodesmin. This indicates that the MFS transporter, GliA, specifically imparts auto-

protection against the gliotoxin through its action as an efflux pump. 

Regulation of the gli cluster expression is controlled by the global transcription 

factor, LaeA (Bok and Keller, 2004). Additionally, a narrow range transcriptional 

regulator, GliZ, is present within the cluster and regulates the expression of the cluster 
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genes in response to various stimuli (Bok et al., 2006; Schrettl et al., 2010). GliZ is a 

Zn2Cys6 transcription factor and deletion of gliZ gene results in abolition of gliotoxin 

biosynthesis due to loss of expression of a number of gli cluster genes, including gliA, 

gliG and gliI (Bok et al., 2006; Schrettl et al., 2010). Exogenous gliotoxin induces gli 

cluster expression, a process mediated by GliZ (Schrettl et al., 2010). In the absence of 

gliZ, gliotoxin is unable to induce expression of cluster components such as gliG or 

gliA, however gliT expression is regulated independently of gliZ (Schrettl et al., 2010). 

While deletion of gliZ resulted in reduced virulence of A. fumigatus in an insect model 

of infection, ΔgliZ demonstrated no significant change in pathogenicity in a murine IA 

infection model relative to the parent strain (Bok et al., 2006; Schrettl et al., 2010). This 

is in contrast to deletion of the global SM regulator, laeA, which resulted in reduced 

virulence owing to the disruption of SM biosynthesis (Bok et al., 2005, 2006). 

Furthermore, supernatants from both ΔlaeA and ΔgliZ triggered significantly less 

apoptosis of PMN in vitro, relative to the respective parent strains (Bok et al., 2006). 

Recently, differential metabolomic analysis has resulted in the identification of a 

number of gliZ-dependent metabolites (Forseth et al., 2011). While many of these 

molecules represent shunt metabolites of the gliotoxin biosynthesis pathway, they may 

elaborate on the mechanisms involved in gliotoxin biosynthesis (Forseth et al., 2011). 

Several of the sulphurised gliZ-dependent metabolites identified were S-methylated, 

including the previously characterised bisdethiobis(methylthio)gliotoxin, with a methyl 

group bound to each of the thiol groups on the piperazine ring (Forseth et al., 2011). 

While the significance of this thiol methylation is not yet understood, this may represent 

a mechanism by which to reduce the toxicity of gliotoxin and associated intermediates 

in A. fumigatus, through capping of the reactive moieties. 
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To date, the putative functions of the other members of the gli cluster have not 

been experimentally validated. While both gliC and gliF genes are predicted to encode 

cytochrome P450 monooxygenases, the hydroxylation of the diketopiperazine, prior to 

C-S bond formation, does not appear to involve GliF (Scharf et al., 2011). GliM and 

GliN have putative assigned functions as an O-methyltransferase and a 

methyltransferase, respectively, and both genes have homologs in the sirodesmin 

biosynthetic cluster (Gardiner and Howlett, 2005). Transfer of methyl groups to 

gliotoxin precursors is likely mediated through the methyl donor S-adenosylmethionine 

(SAM) (Davis et al., 2011a). Additionally, a GliM homolog is also found in a second 

smaller putative ETP biosynthetic cluster in A. fumigatus (Kremer et al., 2007; Patron et 

al., 2007). A putative dipeptidase, GliJ, may act by cleavage of L-glutamate groups 

from the bis-glutathionylated intermediate (Molecule 8; Figure 1.7) or alternatively may 

release the cyclic peptide, tethered to the GliP enzyme (Fox and Howlett, 2008; Davis et 

al., 2011a; Scharf et al., 2011). Finally, two unknown function proteins, GliK and GliH 

are included in the gli cluster. GliH (AFUA_6G09745) was recently recognised as a 

member of the gliotoxin biosynthetic cluster and is not involved in self-protection 

against gliotoxin (Schrettl et al., 2010). Prior to the work carried out in this thesis, the 

function of GliK had not been investigated. No GliK homolog is present in the 

sirodesmin biosynthetic cluster in L. maculans, indicating that the function of GliK may 

be specific to gliotoxin biosynthesis as opposed to broad ETP synthetic activity 

(Gardiner and Howlett, 2005; Gardiner et al., 2005b). Indeed, gliK-like genes are only 

found in gliotoxin-producing species such as A. oryzae, A. terreus and T. virens (Patron 

et al., 2007). Additionally, the presence of gliK in fungal ETP clusters coincides with 

the presence of a MFS transporter as opposed to an ABC transporter in that cluster 

(Patron et al., 2007). Elucidation of the contribution of GliK to A. fumigatus 
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biochemistry and gliotoxin production could aid in the characterisation of this protein in 

other organisms. 
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a. 

 

b. 

 

Figure 1.7: (a) Gliotoxin biosynthetic cluster and (b) proposed biosynthetic pathway. 

GliP-mediated conjugation of L-Phe and L-Ser lead to the formation of an acyl imine 

intermediate (7), which undergoes glutathionylation via GliG. Subsequent reactions, 

putatively catalysed by GliJ and GliI de-protect the thiol groups on the gliotoxin 

precursor. From Scharf et al. (2012) and Davis et al. (2011), respectively. 
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1.8.3 Gliotoxin: Effects on host cells 

Gliotoxin has been shown to elicit a range of modulatory mechanisms on 

immune and non-immune cells, both in vitro and in vivo (Pardo et al., 2006; Kwon-

Chung and Sugui, 2009). Induction of mammalian cell apoptosis has been associated 

with gliotoxin, and this effect has been demonstrated in a range of cells from the 

immune system. Polymorphonuclear (PMN) cells undergo apoptosis following 

incubation with purified gliotoxin in vitro, in both hypoxic and normoxic conditions 

(Dyugovskaya et al., 2011). Apoptosis of monocytes, the precursors of macrophages, 

was also induced by gliotoxin (Stanzani et al., 2005; Orciuolo et al., 2007). Culture 

supernatants from A. fumigatus mutants, deficient in gliotoxin production (e.g. ΔgliP, 

ΔgliZ), induced significantly less apoptosis in PMN and macrophage-like cells (Bok et 

al., 2006; Kupfahl et al., 2006; Sugui et al., 2007b). Gliotoxin-induced apoptosis is 

mediated by a member of the proapoptotic Bcl-2 family, Bak (Pardo et al., 2006). The 

Bak protein is localised in the mitochondria of mammalian cells and elicits initiation of 

apoptosis following a conformational change in response to cell-damage stimuli (Figure 

1.8) (Griffiths et al., 1999). Subsequent oligomerisation of the Bak protein occurs and 

creates a pore in the mitochondrial membrane resulting in membrane permeability 

(Dewson et al., 2009). Gliotoxin interacts with the Bak protein to cause a 

conformational change and consequently leads to ROS production and disruption of the 

mitochondrial membrane (Figure 1.8) (Pardo et al., 2006). Interestingly oligomerisation 

of the Bak protein involves cysteine linkages (Dewson et al., 2009) and may represent 

the mode of action for gliotoxin activation of this process. Following activation of Bak, 

release of other proapoptotic factors, including cytochrome c and apoptosis-inducing 

factor (AIF), from the mitochondria ultimately results in cell death (Figure 1.8). This 
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mechanism contributes to the virulence of the fungus, with mice deficient in Bak 

exhibiting reduced mortality in a corticosteroid model of IA (Pardo et al., 2006). 

 

 

 

Figure 1.8: Proposed mechanism of gliotoxin (GT)-induced apoptosis. Gliotoxin 

produced by A. fumigatus enters mammalian cells and causes a conformational change 

in the mitochondrial Bak protein. This results in mitochondrial membrane disruption, 

depolarisation (↓Δψm) and ROS production, leading to release of pro-apoptotic proteins 

and cell death. AIF, apoptosis-inducing factor; Cyt c, cytochrome C. Adapted from 

Pardo et al. (2006). 
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Another mechanism employed by gliotoxin, to suppress the immune response to 

A. fumigatus, is the inhibition of the NADPH-dependent oxidative burst from PMN 

cells such as neutrophils. Culture supernatants from gliotoxin-producing strains of A. 

fumigatus inhibited the oxidative burst of human neutrophils, while gliotoxin-deficient 

mutants had no inhibitory effects (Sugui et al., 2007b). ROS generation is achieved 

through the NADPH oxidase enzyme, which generates O2
-
 from molecular oxygen 

(Figure 1.9). Release of ROS from immune effector cells contributes to the killing of 

invading microorganisms, and defects in NADPH oxidase (e.g. CGD) result in 

increased incidence of invasive fungal infections (IFIs) (Henriet et al., 2012). The 

components of NADPH oxidase are dispersed between the cytosol and the membrane in 

resting cells. Upon stimulation the cytosolic elements (p47
phox

, p67
phox

, p40
phox

 and 

Rac2) translocate to the membrane and assemble with flavocytochrome b558 (Figure 

1.9). Gliotoxin inhibits the assembly and activation of the NADPH oxidase enzyme 

through disruption of the translocation of p47
phox

, p67
phox

 and p40
phox

 to the membrane 

(Tsunawaki et al., 2004). Furthermore, gliotoxin directly interacts with flavocytochrome 

b558, inhibiting electron transport capabilities prior to assembly of the oxidase enzyme 

(Nishida et al., 2005). These authors postulated that the mechanism of inhibition of 

flavocytochrome activity was through the reaction of gliotoxin with available cysteines 

on the protein. In this way gliotoxin prevents the activation of NADPH oxidase but it 

not effective in inhibiting the activity of the assembled enzyme (Tsunawaki et al., 

2004). The action of gliotoxin is mediated through the disulphide bridge on the ETP 

molecule, and blocking the thiol groups of gliotoxin negated the effect of the metabolite 

on NADPH activation (Tsunawaki et al., 2004).  
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Figure 1.9: Model of assembled NADPH oxidase enzyme at cell membrane, and 

associated activities. SOD, superoxide dismutase; MPO, myeloperoxidase. From Segal 

and Romani (2009). 



52 

 

Angiogenesis, the formation of new blood vessels from existing ones, is a 

feature of IA and occurs possibly in response to tissue hypoxia associated with invasion 

of the pulmonary vasculature (Ben-Ami et al., 2010). Following interaction with A. 

fumigatus hyphae, endothelial cells release proinflammatory cytokines, including TNFα 

and IL-8, and this event is not affected by the presence or absence of gliotoxin (Chiang 

et al., 2008). The activation of pro-angiogenic signalling pathways is elicited by these 

cytokines, resulting in the induction of vascular endothelial growth factor (VEGF) and 

basic fibroblast growth factor (bFGF) (Yoshida et al., 1997). Cytokine-mediated 

recruitment of PMN cells to the site of infection results in the release of ROS, and 

consequently, induction of NF-κB. Further up-regulation of pro-angiogenic molecules is 

induced by NF-κB (Figure 1.10). ROS, including H2O2, derived from NADPH oxidase, 

are important mediators of angiogenesis (Ushio-Fukai and Alexander, 2004). Gliotoxin 

performs an anti-angiogenic function through reduction of ROS generation by PMN 

cells and inhibition of NF-κB (Figure 1.10). Gliotoxin also has the potential to act as an 

antioxidant, reducing intracellular H2O2 to H2O via the mammalian thioredoxin redox 

system, hence eliminating a potent inducer of NF-κB and angiogenesis (Choi et al., 

2007). By replacing the function of 2-cys peroxiredoxin, gliotoxin reduces H2O2 in a 

dose-dependent manner, thus preventing H2O2-induced angiogenesis (Choi et al., 2007). 

Redox-cycling between the oxidised and reduced forms of gliotoxin is integral to this 

action and involves the transfer of electrons from NADPH to gliotoxin (Choi et al., 

2007). This suggests a dual-function for gliotoxin, in production and neutralisation of 

ROS, and further investigation of this dichotomy is required to understand the role of 

gliotoxin in A. fumigatus and pathogenesis. Despite the pro-angiogenic signals elicited 

by A. fumigatus infection, culture filtrates were demonstrated to have potent anti-

angiogenic properties in vitro (Ben-Ami et al., 2009).  
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Figure 1.10: Pro- and anti-angiogenic signals in IA. Pro-angiogenic factors secreted 

from endothelial cells, macrophages and PMN cells are positioned on the left of the 

image. The anti-angiogenic activities elicited by gliotoxin are indicated on the right of 

the figure. From Ben-Ami et al. (2010). 
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This anti-angiogenic activity is attributable to secondary metabolites in A. 

fumigatus, as evidenced by the loss of this activity from the ΔlaeA mutant. Using a 

gliotoxin-deficient mutant, ΔgliP, these authors verified that gliotoxin was responsible 

for approximately 40% of the LaeA-dependent anti-angiogenic activity of A. fumigatus 

(Ben-Ami et al., 2009, 2010). 

A number of other immunomodulatory effects are attributable to gliotoxin and 

may contribute to the virulence of A. fumigatus in vivo. These functions include 

inhibition of T-cell responses, impairment of phagocytosis and reduction in ciliary 

movement of epithelial cells (Abad et al., 2010). Gliotoxin interferes with human T-cell 

activation, suppressing the response of these cells to antigens. This action is 

accomplished by inhibition of antigen presentation as opposed to directly impairing T-

cell function (Stanzani et al., 2005). Gliotoxin also impedes the activities of cytotoxic T 

lymphocytes (CTLs) through blocking the binding of CTLs to target cells (Yamada et 

al., 2000). Again, the disulphide bridge of gliotoxin is indispensible for this process, as 

reduced gliotoxin (i.e. dithiol form) was unable to inhibit CTL-mediated cytotoxicity 

(Yamada et al., 2000). The influence of gliotoxin on phagocytosis has also been 

highlighted, with low concentrations of gliotoxin significantly inhibiting the phagocytic 

capacity of human PMN cells (Coméra et al., 2007; Orciuolo et al., 2007). It was also 

noted that gliotoxin promoted cytoskeleton reorganisation, with F-actin collapse noted 

around nuclei of affected cells, however it was proposed that these events were 

independent (Coméra et al., 2007). Through inhibition of phagocytosis, gliotoxin could 

contribute to the persistence of A. fumigatus in infected tissue. Additionally, reduction 

in the rate of ciliary movement, as caused by gliotoxin, could result in impaired 

clearance of inhaled conidia from the lung and reduced capacity to keep conidia from 

reaching the epithelium (Amitani et al., 1995).  
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The variety of host mechanisms affected by gliotoxin is due to the disulphide 

bridge across the piperazine ring. This confers the ability to cross-link proteins or other 

molecules via thiol residues and can result in antagonism of active sites or induction of 

conformational changes, disrupting protein function (Waring et al., 1995; Hurne et al., 

2000; Srinivasan et al., 2006). Furthermore, redox cycling between the reduced (dithiol) 

and oxidised (disulphide) forms of gliotoxin can produce ROS, with deleterious effects 

(Bernardo et al., 2003; Gardiner et al., 2005b; Kwon-Chung and Sugui, 2009). As 

discussed in the previous section, ROS reducing activity is also possible through 

incorporation into the thioredoxin redox system (Choi et al., 2007), contributing to the 

multi-faceted role of gliotoxin. An increase in the potency of gliotoxin is observed upon 

reduction of mammalian cell density, as a result of active concentration of the toxin 

within cells (Bernardo et al., 2003). The oxidised (disulphide) form of gliotoxin can 

gain entry into cells while the reduced (dithiol) form cannot permeate cells (Bernardo et 

al., 2003). This mechanism forms the basis of gliotoxin accumulation in cells and the 

consequent execution of toxic effects. Oxidised gliotoxin, is subsequently reduced by 

intracellular glutathione (GSH) leading to concentration of reduced gliotoxin within the 

cell (Figure 1.11). The ensuing depletion of glutathione leads to reversion of gliotoxin 

to the oxidised form and efflux is restored. Glutathione-dependent accumulation of 

gliotoxin correlated with an increase in mammalian cell apoptosis and hence defines a 

route by which this metabolite exerts its effects (Bernardo et al., 2003). This process 

allows recycling of gliotoxin from apoptotic cells and increases the efficiency of 

cytotoxicity. These authors also postulated that the accrual of gliotoxin intracellularly 

could be caused by other cellular reductants, in addition to glutathione, indicating 

intracellular redox potential as a moderator of gliotoxin susceptibility. 
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Figure 1.11: Schematic representation of glutathione-dependent accumulation of 

gliotoxin inside cells. (1) Oxidised gliotoxin passes into cells and (2) is reduced by 

intracellular glutathione (GSH). (3) Reduced gliotoxin is unable to permeate cells and 

so is concentrated intracellularly. (4) Depletion of intracellular GSH leads to 

spontaneous re-oxidation of gliotoxin (Bernardo et al., 2003).  
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Despite the range of effects of gliotoxin on mammalian cells, the contribution of 

gliotoxin to the pathogenicity of A. fumigatus has been debated. Mouse models infected 

with gliotoxin-deficient strains of A. fumigatus displayed divergent results, making the 

definition of gliotoxin as a virulence factor tentative. The immunosuppression regime 

utilised for the IA infection model appears to be of paramount importance in assessing 

the effect of gliotoxin on the pathogenicity of A. fumigatus. Mice treated with 

cyclophosphamide (inducing neutropenia) coupled with corticosteroids demonstrated 

comparable mortality rates when infected with gliotoxin-deficient strains of A. 

fumigatus (ΔgliP, ΔgliZ), relative to the respective gliotoxin-producing parent strains 

(Bok et al., 2006; Cramer et al., 2006; Kupfahl et al., 2006; Spikes et al., 2008). These 

results appeared to indicate that gliotoxin did not contribute significantly to the 

development of IA in the absence of neutrophils. Conversely, when corticosteroids were 

used alone for immunosuppression, gliotoxin-deficient strains of A. fumigatus displayed 

significantly reduced pathogenicity compared to the wild-type strains (Sugui et al., 

2007b; Spikes et al., 2008). This observation correlates with the effects of gliotoxin on 

neutrophils and suggests that gliotoxin contributes to virulence in a non-neutropenic 

setting but may be dispensable in a more severely immunocompromised host. 

In addition to induction of toxicity in mammalian cells, gliotoxin also exhibits 

anti-fungal effects (Losada et al., 2009; Schrettl et al., 2010; Coleman et al., 2011; 

Carberry et al., 2012). Metabolite extracts from A. fumigatus, containing gliotoxin, were 

demonstrated to induce moderate inhibition on a number of Aspergillus species, and this 

may have contributed to A. fumigatus out-competing A. clavatus in co-culture 

conditions at 37 °C (Losada et al., 2009). Carberry et al. (2012) confirmed the activity 

of gliotoxin against a number of filamentous fungi, including A. terreus, A. niger and 

Neurospora crassa. The activity of gliotoxin against various species of yeast has also 
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been illustrated, with potent anti-fungal activity observed against C. albicans, 

Cryptococcus neoformans and Saccharomyces cerevisiae (Coleman et al., 2011; 

Carberry et al., 2012). This anti-fungal activity may confer a competitive advantage to 

A. fumigatus in its environmental niche or in the human host. Furthermore the 

sensitivity of fungal strains to gliotoxin was linked to glutathione levels, as observed in 

mammalian cells (Bernardo et al., 2003; Carberry et al., 2012). Deletion of a 

glutathione biosynthetic enzyme, gsh1, in S. cerevisiae correlated with reduced 

sensitivity to gliotoxin. Similarly, elevated GSH levels were present in the gliotoxin 

sensitive mutant A. fumigatus ΔgliT, which, in addition to GliT absence, may contribute 

to the potency of gliotoxin (Carberry et al., 2012). The presence of mechanisms for 

gliotoxin resistance in A. fumigatus, including the gliotoxin oxidoreductase GliT and the 

putative gliotoxin transporter GliA, provide protection from the toxic effects of 

gliotoxin (Scharf et al., 2010; Schrettl et al., 2010; Coleman et al., 2011). Additional 

uncharacterised protective mechanisms may exist in A. fumigatus, which confer 

resistance to gliotoxin. This allows A. fumigatus to remain tolerant to gliotoxin while 

benefiting from its activity against competitors or host cells.  
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1.9 Thesis Rationale and Objectives 

A large proportion of fungal proteins are annotated as ‘hypothetical’ or 

‘conserved hypothetical’ due to a lack of sequence homology to functionally 

characterised proteins (Brachat et al., 2003; Nierman et al., 2005). Many of these 

proteins currently represent in silico predicitions from nucleic acid sequences, and with 

no experimental detection, the existence of these proteins remains unconfirmed. 

Expansion of fungal proteomics through large-scale detection of proteins by MS, can 

aid in the corroboration of genome sequencing data. Furthermore, de novo elucidation 

of functions for ‘hypothetical’ proteins and validation of bioinformatically assigned 

functions, will greatly enhance the analysis and interpretation of data from future 

studies (Lubec et al., 2005; Mazandu and Mulder, 2012). Determination of protein 

function can also facilitate the retrospective analysis of previously conducted studies. 

Strategies for the characterisation of proteins include identification of protein 

localisation, in silico analysis, comparative analysis and determination of 

immunogenicity of proteins of interest (Doyle, 2011b).  

The GliK protein forms part of the gliotoxin biosynthesis cluster, but as of yet 

the function of this protein has not been investigated (Gardiner and Howlett, 2005). No 

role for GliK as part of the gliotoxin biosynthetic pathway has previously been 

proposed. Characterisation of an A. fumigatus gliK deletion mutant by comparative 

proteomic and metabolomic analysis should therefore aid in the elucidation of the role 

of GliK in A. fumigatus biochemistry. 

Therefore, the overall objectives of this thesis were as follows: 

(i) To expand the identification of A. fumigatus proteins, both intracellular and 

extracellular, through the use of MS-based proteomics. 



60 

 

(ii) To characterise the immunoreactivity of intracellular A. fumigatus mycelial proteins, 

with subsequent identification of antigenic proteins. 

(iii) Phenotypic characterisation of A. fumigatus ATCC26933 and ΔgliK to 

combinatorial stresses of gliotoxin and H2O2, with subsequent use of comparative 

proteomics for the identification of mechanisms involved in observed phenotypic 

alterations.  

(iv) To investigate the role of GliK in gliotoxin biosynthesis and overall A. fumigatus 

biochemistry through comparative metabolite profiling of A. fumigatus ATCC26933 

and ΔgliK.  

 



 

 

 

 

CHAPTER 2 

 

Materials and Methods 
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2 Chapter 2. Materials and Methods 

2.1 Materials 

All chemicals were purchased from Sigma-Aldrich Chemical Co. Ltd. (U.K.), 

unless otherwise stated 

2.1.1 Solutions for pH Adjustment 

2.1.1.1 5 M Hydrochloric Acid (HCl) 

Hydrochloric Acid (43.64 ml) was added slowly to deionised water (40 ml) in a 

glass graduated cylinder. The final volume was adjusted to 100 ml with deionised water. 

The solution was stored at room temperature. 

2.1.1.2 5 M Sodium Hydroxide (NaOH) 

NaOH pellets (20 g) were added to deionised water (80 ml) and dissolved using 

a magnetic stirrer. The final volume was adjusted to 100 ml with deionised water. The 

solution was stored at room temperature. 

2.1.2 SDS-PAGE and Western Blotting Reagents 

2.1.2.1 10 % (w/v) Sodium Dodecyl Sulfate (SDS) 

SDS (10 g) was added to 80 ml of distilled water and dissolved. The solution 

was adjusted to 100 ml with distilled water and stored at room temperature.  

2.1.2.2  1.5 M Tris-HCl pH 8.3 

Trizma-hydrochloride (23.64 g) was dissolved in 60 ml distilled water. The pH 

was adjusted to 8.3 using 5 M NaOH (Section 2.1.1.2). The volume was adjusted to 100 

ml with distilled water and stored at 4 °C. 



62 

 

2.1.2.3  0.5 M Tris-HCl pH 6.8 

Trizma-hydrochloride (7.88 g) was dissolved in 60 ml distilled water. The pH 

was adjusted to 6.8 using 5 M NaOH (Section 2.1.1.2). The volume was adjusted to 100 

ml with distilled water and stored at 4 °C. 

2.1.2.4  10% (w/v) Ammonium Persulfate (APS) 

Ammonium persulfate (0.1 g) was added to 1 ml distilled water. The solution 

was stored at 4 °C and used within 8 h. 

2.1.2.5  1% (w/v) Bromophenol blue 

Bromophenol blue (0.2 g) was added to distilled water (20 ml). The solution was 

stored at 4 °C. 

2.1.2.6  0.5% (w/v) Bromophenol blue 

Bromophenol blue (0.1 g) was added to distilled water (20 ml). The solution was 

stored at 4 °C. 

2.1.2.7  5 X Solubilisation buffer 

Glycerol (8 ml) was added to distilled water (4 ml), containing 1.6 ml of 10 % 

(w/v) SDS (Section 2.1.2.1) and 1 ml of 0.5 M Tris-HCl, pH 6.8 (Section 2.1.2.3). 2-

mercaptoethanol (0.4 ml) was added to the solution along with 0.2 ml of 0.5 % (w/v) 

bromophenol blue solution (Section 2.1.2.6). The solution was stored at -20 °C in 

aliquots. 
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2.1.2.8  5 X SDS Electrode running buffer 

Trizma base (30 g), glycine (144 g) and SDS (10 g) were added to 1600 ml 

distilled water, and dissolved using a magnetic stirrer. The pH was adjusted to between 

8.6 and 8.8. The final volume was adjusted to 2 L. The solution was stored at room 

temperature. 

2.1.2.9  1 X SDS Electrode running buffer 

5 X SDS Electrode running buffer (200 ml) (Section 2.1.2.8) was added to 800 

ml distilled water. 

2.1.2.10  Coomassie® Blue Stain Solution 

Distilled water (600 ml), glacial acetic acid (100 ml) and methanol (300 ml) 

were added to a glass bottle containing 1 g Coomassie® Brilliant Blue R. The solution 

was stored at room temperature. 

2.1.2.11  Destain Solution 

Glacial acetic acid (100 ml) was added to distilled water (600 ml) and methanol 

(300 ml). The solution was stored at room temperature. 

2.1.2.12  Gel Fixing Solution for Colloidal Coomassie® Stain 

Phosphoric acid (30 ml) was added to ethanol (500 ml) and distilled water (470 

ml). The solution was stored at room temperature. 

2.1.2.13  Incubation Buffer for Colloidal Coomassie® Stain 

Ammonium sulfate (170 g) was dissolved in a solution containing methanol 

(340 ml), phosphoric acid (30 ml) and brought to 1 L with distilled water. 
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2.1.2.14  Towbin Electrotransfer Buffer for Semi-Dry Transfer 

Trizma base (6.06 g) and glycine (28.8 g) were added to distilled water (600 ml) 

and methanol (200 ml). The final volume was adjusted to 1 L with distilled water. The 

solution was stored at room temperature. 

2.1.2.15  Wet Transfer Buffer 

Trizma base (3.03 g) and glycine (14.4 g) were added to distilled water (600 ml) 

and methanol (200 ml). The final volume was adjusted to 1 L with distilled water. The 

solution was stored at 4 °C. 

2.1.2.16  Blocking Solution 

Marvel® (Powdered milk) (5 g) was added to 100 ml PBST (Section 2.1.2.21) 

2.1.2.17  BSA Blocking Solution 

Marvel® (Powdered milk) (5 g) and bovine serum albumin (1 g) (BSA) were 

added to 100 ml PBST (Section 2.1.2.21) 

2.1.2.18  Antibody Buffer 

Marvel® (Powdered milk) (1 g) was added to 100 ml PBST (Section 2.1.2.21) 

2.1.2.19  BSA Antibody Buffer 

Marvel® (Powdered milk) (1 g) and bovine serum albumin (1 g) (BSA) were 

added to 100 ml PBST (Section 2.1.2.21). 

2.1.2.20  Phosphate Buffered Saline (PBS) 

One PBS tablet (Oxoid) was dissolved in 100 ml distilled water. The solution 

was stored autoclaved at 121 °C for 15 min and stored at room temperature. 
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2.1.2.21  Phosphate Buffered Saline/ Tween-20 (PBST 0.05%) 

Tween-20 (0.5 ml) was added to 1 L PBS (Section 2.1.2.20). The solution was 

stored at room temperature. 

2.1.2.22  DAB Substrate Buffer 

Trizma-HCl (15.76 g) was added to 700 ml distilled water and the pH was 

adjusted to 7.6 with 5 M NaOH (Section 2.1.1.2). The final volume was adjusted to 1 L.  

2.1.2.23  Developing Solution 

Developing Solution (Kodak, 200 ml) was added to 400 ml distilled water and 

stirred. The bottle was stored at room temperature, protected from light. 

2.1.2.24  Fixing Solution 

Fixing Solution (Kodak, 150 ml) was added to 450 ml distilled water and stirred. 

The bottle was stored at room temperature, protected from light. 

2.1.2.25  8 M Urea 

Urea (24 g) was dissolved in distilled water and brought to a final volume of 50 

ml. The solution was stored at room temperature. 

2.1.2.26 100 mM Borate Buffer pH 7.0 

Borax (38.14 g) was dissolved in 800 ml distilled water and the pH was adjusted 

to 7.0. The solution was brought to 1 L and stored at room temperature. 
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2.1.2.27  2 mM Borate Buffer pH 8.0 

100 mM Borate buffer pH 7.0 (Section 2.1.2.26) (20 ml) was added to 800 ml 

distilled water. The pH was adjusted to 8.0 and solution was brought to 1 L with 

distilled water. 

2.1.3 Mass Spectrometry Reagents 

2.1.3.1  100 mM Ammonium bicarbonate (NH4HCO3) 

NH4HCO3 (395 mg) was dissolved in deionised water (50 ml). The solution was 

prepared fresh on day of use. 

2.1.3.2  50 mM Ammonium bicarbonate (NH4HCO3)  

100 mM ammonium bicarbonate (Section 2.1.3.1) (5 ml) was added to 5 ml of 

deionised water. The solution was prepared fresh on day of use. 

2.1.3.3  10 mM Ammonium bicarbonate(NH4HCO3) 

100 mM ammonium bicarbonate (Section 2.1.3.1) (1 ml) was added to 9 ml of 

deionised water. The solution was prepared fresh on day of use. 

2.1.3.4  1 M Dithiotreitol (DTT) 

DTT (154 mg) was dissolved in 100 mM ammonium bicarbonate (Section 

2.1.3.1) (1 ml). The solution was prepared fresh on day of use. 

2.1.3.5  1 M Iodoacetamide 

Iodoacetamide (185 mg) was dissolved in 100 mM ammonium bicarbonate 

(Section 2.1.3.1) (1 ml). The solution was prepared fresh on day of use. 



67 

 

2.1.3.6  Whole Protein Lysate Fungal Extraction Buffer 

Trizma hydrochloride (790 mg), Guanidine hydrochloride (114.6 g) and DTT 

(308 mg) were dissolved in distilled water (150 ml). The pH was adjusted to 8.6 using 5 

M NaOH (Section 2.1.1.2) and the solution was brought to 200 ml. The solution was 

stored at 4 °C.  

2.1.3.7  Trypsin diluent 

100 mM ammonium bicarbonate (Section 2.1.3.1) (1 ml) and acetonitrile (1 ml) 

were brought to 10 ml with distilled water. The solution was prepared fresh on day of 

use. 

2.1.3.8  0.1 % (v/v) Formic Acid 

Formic Acid (1 ml) was added to LC-MS grade water (1 L).  

2.1.3.9  10 % (v/v) Methanol in 0.1% (v/v) Formic Acid 

HPLC-grade methanol (1 ml) was added to 0.1 % (v/v) formic acid (9 ml) 

(Section 2.1.3.8). 

2.1.3.10  0.1 % (v/v) Trifluoroacetic acid (TFA) 

Trifluoroacetic acid (TFA) (10 µl) was added to HPLC-grade water (9.99 ml). 

This solution was prepared immediately before use. 

2.1.3.11  Matrix (α-cyano-4-hydroxycinnamic acid) (4-HCCA) 

Trifluoroacetic acid (Section 2.1.3.10) (0.1 % (v/v); 350 µl) was added to 4-

HCCA (5 mg) and vortexed for 30 s. Acetonitrile (350 µl) was added to the mixture and 

vortexed for an additional 30 s. The sample was centrifuged at 13000 rpm for 1 min in a 
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microfuge and 200 µl of the supernatant was retained. Internal calibrants, hATCH 19 - 

39 and Angiotensin fragment III, were added in sufficient quantities for visualisation by 

MALDI-ToF analysis. 

2.1.4 Reverse Phase-High Performance Liquid Chromatography (RP-HPLC) 

Reagents 

2.1.4.1  Solvent A: 0.1 % (v/v) Trifluoroacetic Acid (TFA) in HPLC grade water 

TFA (1 ml) was added to 1 L of HPLC grade water. Solution was prepared fresh 

on day of use. 

2.1.4.2   Solvent B: 0.1 % (v/v) Trifluoroacetic Acid (TFA) in HPLC grade 

Acetonitrile 

TFA (1 ml) was added to 1 L of HPLC grade acetonitrile. Solution was prepared 

fresh on day of use. 

2.1.5 Aspergillus Media and Reagents 

2.1.5.1  Aspergillus Trace Elements 

Na2B4O7.7H2O (0.04 g), CuSO4.5H20 (0.4 g), Fe (III) SO4.2H2O (0.8 g), 

Na2MoO.2H20 (0.8 g), ZnSO4.7H2O (8 g) were dissolved in deionised water (900 ml) in 

the order given. The solution was adjusted to a final volume of 1 L with deionised 

water. The solution was split into 50 ml aliquots and stored at - 20 °C 

2.1.5.2  50 X Aspergillus Salt Solution 

KCl (26 g), MgSO4.7H20 (26 g), KH2PO4 (76 g) and Aspergillus Trace elements 

(50 ml) (Section 2.1.5.1) were dissolved in 800 ml distilled water. The solution was 
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brought to 1 L with distilled water and autoclaved. Chloroform (2 ml) was added to the 

solution and it was stored at room temperature. 

2.1.5.3  100 X Ammonium Tartrate 

Ammonium tartrate (92 g) was dissolved in 1 L of distilled water and 

autoclaved. The solution was stored at room temperature. 

2.1.5.4  0.3 M L-glutamine 

L-glutamine (43.8 g) was dissolved in 800 ml distilled water, with 1-2 drops of 5 

M HCl (Section 2.1.1.1) added to aid solubility. The pH was adjusted to 6.5 and brought 

to a final volume of 1 L with distilled water. The solution was filter sterilised (0.22 µm 

filter) and stored at room temperature. 

2.1.5.5  Aspergillus Minimal Media (AMM) 

100 X ammonium tartrate (10 ml) (Section 2.1.5.3), 50 X Aspergillus salt 

solution (20 ml) (Section 2.1.5.2) and glucose (10 g) were added to 800 ml distilled 

water and dissolved. The pH was adjusted to 6.8 and the solution was made up to 1 L 

with distilled water. The solution was autoclaved at 105 °C for 30 min and stored at 

room temperature. 

2.1.5.6  Aspergillus Minimal Media (AMM) Agar 

100 X ammonium tartrate (10 ml) (Section 2.1.5.3), 50 X Aspergillus salt 

solution (20 ml) (Section 2.1.5.2) and glucose (10 g) were added to 800 ml distilled 

water. The pH was adjusted to 6.8. Agar (18 g) (Scharlau Chemie S.A., Barcelona, 

Spain) was added to the solution and made up to 1 L with distilled water. The solution 

was autoclaved at 105 °C for 30 min and allowed to cool to ~50 °C before being poured 
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into 90 mm petri dishes under sterile conditions. The plates were allowed to set and 

were stored at 4 °C. 

2.1.5.7  Malt Extract Agar (MEA) 

Malt extract agar (50 g) (Oxoid Ltd, Hants., England) was dissolved in 1 L of 

distilled water. Agar solution was autoclaved at 115 °C for 10 min and allowed to cool 

to ~50 °C before being poured into 90 mm petri dishes under sterile conditions. 

2.1.5.8  Sabouraud Dextrose Broth 

Sabouraud dextrose powder (30 g) (Oxoid Ltd, Hants., England) was dissolved 

in 1 L of distilled water. Solution was autoclaved at 121 °C for 15 min. 

2.1.5.9  Czapek-Dox Broth 

Difco
TM

 Czapek-Dox powder (35 g) (BD Biosciences) was dissolved in 1 L of 

distilled water and autoclaved at 121 °C for 15 min. 

2.1.5.10  Czapek-Dox Agar 

Agar (18 g) (Scharlau Chemie S.A., Barcelona, Spain) was added to 1L of 

Czapek-Dox broth (Section 2.1.5.9). The solution was autoclaved at 121 °C for 15 min 

and allowed to cool to ~50 °C before being poured into 90 mm petri dishes under sterile 

conditions. The plates were allowed to set and were stored at 4 °C. 

2.1.5.11  YES broth 

Yeast extract (20 g) and sucrose (40 g) were dissolved in 800 ml distilled water. 

The pH was adjusted to 5.8 and the solution was adjusted to a final volume of 1 L with 

distilled water. The solution was autoclaved at 121 °C for 15 min to sterilise. 
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2.1.5.12  RPMI media 

Sucrose (10g) was dissolved in RPMI 1640 (400 ml) and the volume was 

adjusted to 465 ml with RPMI 1640. The solution was autoclaved at 121 °C 15 min to 

sterilise. L-glutamine (0.3 M; 35 ml) (Section 2.1.5.4) was added using sterile 

techniques once the media had cooled to 50 °C. 

2.1.5.13  Phosphate Buffered Saline/ Tween-20 (PBST 0.1% (v/v)) 

Tween-20 (1 ml) was added to 1 L PBS (Section 2.1.2.20). The solution was 

autoclaved at 121 °C for 15 min and stored at room temperature. 

2.1.5.14 100 mM Phenylmethylsulfonyl fluoride (PMSF) 

PMSF (17.4 mg) was dissolved in 1 ml methanol. The solution was stored at 

room temperature. 

2.1.5.15 Pepstatin A (1 mg/ml) 

Pepstatin A (10 mg) was brought to 10 ml with distilled water. The solution was 

split into 1 ml aliquots and stored at -20 °C. 

2.1.5.16 1M DTT 

DTT (154 mg) was brought to 1 ml with distilled water. The solution was 

prepared fresh prior to use. 

2.1.5.17 Aspergillus lysis buffer; reducing 

Tris-HCl (15.7 g) and NaCl (2.9 g) were dissolved in 60 ml distilled water. 

Glycerol (10 ml) was added to the solution and 4 ml of 500 mM EDTA (Section 

2.1.6.7) before adjusting the pH of the solution to 7.5. The solution was brought to a 
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final volume of 100 ml with distilled water and stored at 4 °C. Immediately prior to use, 

the solution was brought to 1 mM PMSF, 1 µg/ml Pepstatin A and 30 mM DTT by 

addition of appropriate amounts of the stock solutions (Section 2.1.5.14; 2.1.5.15, 

2.1.5.16).  

2.1.5.18  Aspergillus lysis buffer; non-reducing 

Tris-HCl (15.7 g) and NaCl (2.9 g) were dissolved in 60 ml distilled water. 

Glycerol (10 ml) was added to the solution and 4 ml of 500 mM EDTA (Section 

2.1.6.7) before adjusting the pH of the solution to 7.5. The solution was brought to a 

final volume of 100 ml with distilled water and stored at 4 °C. Immediately prior to use, 

the solution was brought to 1 mM PMSF and 1 µg/ml Pepstatin A by addition of 

appropriate amounts of the stock solutions (Section 2.1.5.14; 2.1.5.15).  

2.1.5.19  100 % (w/v) TCA 

Trichloroacetic acid (100 g) was added to 45.4 ml distilled water and dissolved. 

The solution was stored in the dark at 4 °C. 

2.1.5.20  10 % (w/v) TCA 

100 % (w/v) TCA (5 ml) (Section 2.1.5.19) was diluted in distilled water (45 ml) 

and stored in the dark at 4 °C.  

2.1.5.21  Plate assays 

A. fumigatus wild-type and mutant strains were grown on Czapek-Dox agar 

(Section 2.1.5.10) for 5 days at 37 C after which conidia were harvested (Section 

2.2.1.1). Conidia (5 µl; 5 x 10
3
 conidia) were spotted in triplicate onto agar plates 

containing various additives (Table 2.1). Plates were incubated at 37 C and growth was 
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monitored at specific time intervals by measuring the diameter of radial growth (cm) of 

each colony. 

 

Table 2.1: Reagents and concentrations used in plate assays to test for phenotypic 

alterations in A. fumigatus. 

Reagent Stock Concentration Concentration range used 

Hydrogen peroxide 1 M in Czapek-Dox Broth 

(Section 2.1.5.9) 

0 – 1 mM 

Gliotoxin  1 mg/ml in Methanol 0 – 10 µg/ml 

 

2.1.5.22  5’-Iodoacetamidofluorescein (IAF) (20 mg/ml) 

5’-Iodoacetamidofluorescein (IAF) (20 mg) was dissolved in 1 ml dimethyl 

sulfoxide (DMSO). The solution was stored, protected from light, at -20 °C. 

2.1.5.23  5’-IAF (3 mg/ml) 

5’-IAF (20 mg/ml) (Section 2.1.5.22) was diluted in DMSO. The solution was 

prepared fresh on day of use and protected from light. 

2.1.5.24  500 mM Sodium Borohydride 

Sodium borohydride (1.89 g) was dissolved in 100 ml of distilled water. The 

solution was used within 30 min of preparation. Lid was not closed on bottle as 

hydrogen gas is liberated from solution. 
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2.1.6 2D-PAGE reagents 

2.1.6.1  2M DTT 

DTT (308 mg) was brought to 1 ml with IEF buffer (Section 2.1.6.2). The 

solution was prepared fresh prior to use. 

2.1.6.2  2D-PAGE Isoelectric Focusing Buffer (IEF) 

Urea (9.6 g), Thiourea (3.04 g), Trizma base (24 mg) Chaps (0.8 ml), Triton X-

100 (0.2 ml) were brought to 20 ml with distilled water. The solution was split into 1 ml 

aliquots and stored at -20 °C. 2M DTT (Section 2.1.6.1) (32 µl) and appropriate 

ampholytes (GE Healthcare) (8 µl) were added to a 1 ml aliquot immediately prior to 

use. 

2.1.6.3  IPG Strip Equilibration Buffer 

Glycerol (150 ml), SDS (10 g), Urea (180 g) and Trizma base (3.03 g) were 

dissolved in 450 ml of distilled water. The pH was adjusted to 6.8 and the solution was 

brought to 500 ml. The solution was split into 50 ml aliquots and stored at -20 °C. 

2.1.6.4  Equilibration Buffer A 

DTT (200 mg) was added to IPG Strip Equilibration Buffer (Section 2.1.6.3) (10 

ml). This volume was adequate for 1 strip. The solution was prepared immediately prior 

to use. 

2.1.6.5  Equilibration Buffer B 

Iodoacetamide (250 mg) was added to IPG Strip Equilibration Buffer (Section 

2.1.6.3) (10 ml). This volume was adequate for 1 strip. Trace amounts of bromophenol 

blue was added to the solution. The solution was prepared immediately prior to use. 
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2.1.6.6  Agarose Sealing Solution 

Trizma base (1.5 g), glycine (7.2 g) and SDS (0.5 g) were dissolved in 80 ml 

deionised water. Agarose (0.7g) and 1% (w/v) Bromophenol blue solution (200 µl) 

(Section 2.1.2.5) were added and the solution was adjusted to 100 ml with deionised 

water. The solution was heated to dissolve the agarose and stored at room temperature. 

2.1.6.7 500 mM EDTA 

Ethylenediaminetetraacetic acid dipotassium salt dehydrate (46.53 g) was added 

to 200 ml of distilled water. The pH was adjusted to 8.0 in order to dissolve the salt. The 

solution was brought to 250 ml with distilled water and stored at room temperature. 

2.1.6.8  Aldrithiol-4 (A4) 

Aldrithiol-4 (11 mg) was dissolved in absolute ethanol (1 ml). The solution was 

stored at -20 °C. 

2.1.6.9 Gel Fitration Calibrant Mixture 

Thyroglobulin (25 mg/ml) (200 µl), Aldolase (25 mg/ml) (160 µl) and RNAse A 

(25 mg/ml) (160 µl) were brought to 1 ml with PBS (Section 2.1.2.20). The solution 

was stored at 4 °C. All calibrants used were included in the HMW gel filtration 

calibration kit (GE Healthcare). 

 



76 

 

2.2 Methods 

2.2.1 Microbiological culture methods 

Fungal strains used in this study are listed in Table 2.2. 

 

Table 2.2: List of fungal strains used in this study. 

Species Strain used Genotype Source/ Reference  

Aspergillus fumigatus  ATCC 26933 Wild-type ATCC collection 

Aspergillus fumigatus  ΔgliK Mutant Gallagher et al. (2012) 

 

2.2.1.1  A. fumigatus growth, maintenance and storage 

A. fumigatus strains were maintained on MEA (Section 2.1.5.7) or AMM agar 

(Section 2.1.5.6). A sterile inoculation loop was used to seed conidia onto agar plates. 

The inoculated agar plates were incubated at 37 °C for 5-7 days. Conidia were harvested 

in a biological safety cabinet using sterile PBST (Section 2.1.5.13). Harvested conidia 

were centrifuged at 2000 g for 10 min and the conidia were washed twice with sterile 

PBS (Section 2.1.2.20) (10 ml). Centrifugation was repeated and the conidia were 

resuspended in sterile PBS (Section 2.1.2.20) (5 ml). Harvested conidia were stored at 4 

°C. A. fumigatus mycelium was obtained by inoculation of sterile liquid media with 

relevant conidia. These cultures were incubated at 37 °C, with shaking at 200 rpm, for a 

time relevant to each experiment. Mycelia were harvested by filtering liquid culture 

through miracloth and PBS (Section 2.1.2.20) was used to wash media from the 

mycelium. Excess moisture was removed from mycelia by pressing between sheets of 
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absorbent paper. The mycelium was snap frozen in liquid nitrogen and stored at -80 °C 

until required.  

2.2.1.2 Conidia counting using a haemocytometer 

A haemocytometer was used to count conidia. Prior to use, the chamber and the 

coverslip were cleaned with alcohol and the coverslip was fixed in place. The conidia 

suspension was diluted 1/100 (i.e. 10 µl of conidia stock added to 990 µl of PBS 

(Section 2.1.2.20)). Diluted conidia suspension (10 µl) was placed on the grid of the 

haemocytometer. The slide was then viewed by a compound microscope under the 10X 

objective lens. The cells were counted in the large central gridded square (1 mm
2
) 

(Figure 2.1). The conidia count was then multiplied by the dilution factor and also by 1 

x 10
4 

to estimate the number of conidia per ml. This count was performed on duplicate 

samples and the average was obtained.  

 

Figure 2.1 Diagram of haemocytometer. The circled region shows the large central grid 

used to count conidia. 
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2.2.2 Protein extraction methods 

2.2.2.1  A. fumigatus whole protein extraction using bead-beating 

Harvested mycelia (Section 2.2.1.1) was placed in a 50 ml tube, snap-frozen in 

liquid nitrogen and lyophilised overnight. 100 mg of lyophilised mycelium was placed 

in a 2 ml microfuge tube along with a tungsten bead. The mycelium was subjected to 

bead-beating at 30 Hz for 5 min in a bead beater (MM300, Retsch®). Ice-cold A. 

fumigatus lysis buffer, reducing (Section 2.1.5.17) or non-reducing (2.1.5.18) (0.5 ml), 

was added to the mycelium and the bead-beating step was repeated. An additional 0.1-

0.5 ml of ice-cold A. fumigatus lysis buffer was added to the lysate and the suspension 

was incubated on ice for 1 h. The lysate was centrifuged at 12000 g for 5 min at 4 °C. 

The supernatant was placed in a sonication bath (Fisher Scientific) for 5 min and the 

centrifugation step was repeated. The supernatant was brought to 3 mM PMSF and 2 

µg/ml Pepstatin A, final concentrations (Section 2.1.5.14; 2.1.5.15). Relative quality of 

extracted protein was analysed by SDS-PAGE (Section 2.2.4.2) and aliquots were 

stored at -20 °C until required for use. 

2.2.2.2  A. fumigatus whole protein extraction for 2D-PAGE 

Harvested mycelia (Section 2.2.1.1) was placed in a mortar and crushed into a 

fine powder using liquid nitrogen and a pestle. Mycelial powder was collected and 

stored immediately at -70 °C. Mycelial powder (250 mg) was weighed into a 15 ml 

tube. 10 % (w/v) TCA (Section 2.1.5.20) (1.5 ml) at 4 °C was added to the mycelia. The 

suspension was sonicated with a sonication probe (Bandelin Sonopuls, Bandelin 

electronic, Berlin) at 10% power, cycle 6 for 10 seconds. This was repeated twice more 

with the sample being cooled on ice between each sonication. The sample was 

incubated on ice for 15-30 min before being centrifuged at 10000 g for 10 min at 4 °C. 
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The supernatant was discarded and distilled water (60 µl) was added to the sample 

followed by vortexing. Ice-cold acetone (1 ml) was added to the sample and the pellet 

was resuspended as completely was possible by pipetting. The sample was vortexed and 

placed at -20 °C for 1 h, with vortexing at 10 min intervals. The sample was stored at -

20 °C overnight. The sample was centrifuged at 10000 g for 10 min and the supernatant 

was removed. Ice-cold acetone (0.5 ml) was added to the sample and the centrifugation 

step was repeated. The supernatant was removed and the pellet was left to air-dry for a 

maximum of 5 min. The pellet was resuspended as completely as possible in IEF buffer 

(Section 2.1.6.2) (0.5 ml). The sample was left at room temperature for 1 h and then 

centrifuged at 13000 rpm for 1 min. The supernatant was removed to a clean 1.5 ml 

microfuge tube. Protein quantitation was carried out using the Bradford protein assay 

(Section 2.2.4.1) 

2.2.2.3  A. fumigatus whole cell lysate extraction for shotgun mass spectrometry 

 Harvested mycelia (Section 2.2.1.1) was placed in a mortar and crushed into a 

fine powder using liquid nitrogen and a pestle. Mycelia powder was collected and 

stored immediately at -70 °C. Mycelia powder (1 g) was weighed into a 15 ml tube. 

Whole Protein Lysate Fungal Extraction Buffer (Section 2.1.3.6) (6 ml) was added 

gradually to disperse the mycelia. The suspension was sonicated at 10% power, cycle 6 

for 10 seconds. This was repeated four more times with the sample being cooled on ice 

between each sonication. A small volume (0.1 ml) was retained for determination of 

protein concentration (Section 2.2.4.1). Following sonication, reduction was carried out 

using DTT, followed by alkylation using iodoacetamide. Briefly, 10 µl of 1 M DTT 

(Section 2.1.3.4) was added per ml of lysate and incubated at 56 °C for 30 min. The 

sample was allowed to cool to room temperature and 55 µl of 1 M iodoacetamide 

(Section 2.1.3.5) was added per ml of lysate. The sample was incubated in the dark for 
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20 min at room temperature. The whole cell lysate was dialysed (Section 2.2.4.9) 

against 100 mM ammonium bicarbonate (Section 2.1.3.1). The dialysed protein was 

stored at -20 °C until required for use.   

2.2.3 Methods for Purification of Protein Samples 

2.2.3.1 TCA/Acetone Precipitation 

Solutions containing protein to be concentrated were brought to 10 % (w/v) 

TCA by addition to 1 volume of ice-cold 100 % (w/v) TCA (Section 2.1.5.19) to 9 

volumes of protein solution at 4 °C. Samples were incubated on ice for 30 min followed 

by centrifugation at 12,000 g for 10 min at 4 °C. The supernatants were removed and 

the pellets were resuspended in ice-cold acetone (1 ml). The samples were incubated at 

– 20 °C for 1 h before centrifugation at 12,000 g for 10 min at 4 °C. The supernatants 

were removed and the pellets were washed once more with ice-cold acetone. After the 

supernatant was removed, the pellets were air-dried for 5 min. The pellets were 

resuspended in 8 M urea (Section 2.1.2.25). 

2.2.3.2 Gel Filtration Chromatography 

Gel filtration chromatography was carried out using an ÄKTA purifier coupled 

with (i) a Superose 6 10/300 GL column (GE Healthcare, Germany), used for analytical 

gel filtration, or (ii) a Sephacryl XK 16/S400 column, used for preparative gel filtration. 

Lines were purged prior to use and the column was equilibrated with PBS (Section 

2.1.2.20). Samples were filtered through 0.22 µm filter or centrifuged at 10000 g for 10 

min to remove particulates prior to injection onto column. A selection of molecular 

weight calibrants were applied to the column in order to prepare a standard curve based 

on molecular weight versus elution volume (Ve) (Section 2.1.6.9). The flow rate was set 
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to 0.2 ml/min, with absorbance monitored at 215, 254 and 280 nm. Fractions were 

collected if required for further analysis. 

2.2.3.3 Gold nanoparticle (AuNP) co-incubation with A. fumigatus proteins  

Colloidal gold (30 nm) (BB International, UK) (2 ml) was centrifuged at 10000 

g for 10 min at 4 °C and the supernatant was removed. Pellet was resuspended in 2 mM 

borate pH 8.0 (Section 2.1.2.27) (1 ml). A. fumigatus protein lysates (Section 2.2.2.1) 

were diluted to 3 mg/ml using 2 mM borate pH 8.0 (Section 2.1.2.27). A. fumigatus 

lysates (100 µl) were incubated with colloidal gold (50 µl), with gentle mixing, for 30 

min at room temperature. The gold:A. fumigatus protein solutions was centrifuged at 

10000 g for 10 min at 4 °C and the supernatants were removed. The pellets were 

washed four times with PBST (Section 2.1.2.21) (40 µl) with centrifugation repeated 

each time. The final pellet was resuspended in 5X solubilisation buffer (Section 2.1.2.7) 

(40 µl) and boiled for 5 min. The A. fumigatus proteins that interact closely with the 

gold nanoparticles were analysed by SDS-PAGE (Section 2.2.4.2). Lanes containing 

this fraction was cut horizontally into 3 mm slices and subjected to trypsin digestion 

(Section 2.2.6.1) followed by LC-MS analysis (Section 2.2.6.3). 

2.2.4 Protein Characterization Methods 

2.2.4.1  Bradford Protein Assay 

Bio-Rad protein assay dye was diluted 1/5 in sample buffer prior to use. The 

sample to be assayed was also diluted appropriately. 20 µl of the sample was added to 

980 µl of the diluted Bio-Rad protein assay dye and mixed thoroughly. The final sample 

(1 ml) was transferred to a 1 ml plastic cuvette and incubated for 5 min at room 

temperature. The A595nm was read relative to a blank and the protein concentration was 
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determined based on values obtained from a standard curve. All samples were prepared 

and analysed in duplicate. 

2.2.4.2  Sodium Dodecyl Sulphate Polyacrylamide Gel Electrophoresis (SDS-

PAGE) 

SDS-PAGE gels, both stacking and resolving, were prepared according to Table 

2.3 and Table 2.4, respectively. The gels were cast using the Mini-Protean II gel casting 

apparatus (BioRad, CA, USA) according to the manufacturer’s guidelines. Samples 

were prepared by adding one volume of 5X solubilisation buffer (Section 2.1.2.7) to 

every 4 volumes of sample in a 1.5 ml microfuge tube. The samples were boiled for 5 

min and centrifuged briefly to collect the sample to the bottom of the tube. An 

appropriate volume of sample was loaded onto the gel using a Hamilton syringe. A 

molecular mass marker was run alongside samples in order to estimate the relative size 

of observed proteins. The molecular mass marker used throughout this study ranged 

from 7-175 kDa (P7703, NEB). The electrophoresis tank was filled with 1X SDS 

electrode running buffer (Section 2.1.2.9). Electrophoresis was carried out initially at 80 

V for 30 min, followed by electrophoresis at 120 V until the dye front reached the 

bottom of the gel.  
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Table 2.3: Reagents composition for SDS-PAGE Resolving Gels 

 

 

Table 2.4: Reagents composition for SDS-PAGE Stacking Gel 

Number of Minigels 2 5 8 

0.5 M Tris-HCl pH 6.8 (Section 2.1.2.3) 2.5 ml 4.0 ml 5.2 ml 

10 % SDS (Section 2.1.2.1) 100 µl 160 µl 210 µl 

30 % Acrylamide, 0.8 % Methylene bis 

Acrylamide 

1.0 ml 1.5 ml 2.0 ml 

Distilled water 6.4 ml 9.6 ml 12.8 ml 

10 % Ammonium persulfate  (Section 

2.1.2.4) 

100 µl 150 µl 200 µl 

TEMED 10 µl 15 µl 20 µl 

 

% Acrylamide 10% 10% 12% 12% 15% 

Number of Minigels 5 8 5 8 5 

1.5 M Tris-HCl pH 8.3 (Section 

2.1.2.2) 
7.0 ml 10.5 ml 7.0 ml 10.5 ml 7.0 ml 

10 % SDS (Section 2.1.2.1) 280 µl 420 µl  280 µl 420 µl 280 µl 

30 % Acrylamide, 0.8 % 

Methylene bis Acrylamide 

9.3 ml 13.9 ml 11.3 ml 16.9 ml 13.9 ml 

Distilled water 12.3 ml 18.4 ml 9.3 ml 13.9 ml 6.3 ml 

10 % Ammonium persulfate 

(Section 2.1.2.4) 

100 µl 150 µl 100 µl 150 µl 100 µl 

TEMED 23 µl 35 µl 23 µl 35 µl 23 µl 
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2.2.4.3  Isoelectric Focussing (IEF) and 2D-PAGE 

Protein samples were prepared to the appropriate concentration and volume for 

the IPG strip size according to Table 2.5. Bromophenol blue was added to the protein 

samples, which were then centrifuged at 12,000 g for 5 min. Protein samples were 

loaded into the positive end of the ceramic IPG strip holders. The IPG strip was added, 

gel-side down, using a forceps, while the holder was tilted slightly to evenly distribute 

the sample along the holder. Care was taken to prevent the trapping of air bubbles 

underneath the strip. The strips were overlaid with Plus One Drystrip Coverfluid 

(Amersham) (1 - 1.5 ml) and subjected to IEF on an IPGphor II IEF Unit using the 

following programme; 

Step  50 V  12 h 

Step  250 V  0.15 h 

Gradient 5000V  2 h 

Step  5000 V  5 h 

Gradient 8000 V  2 h 

Step  8000 V  1 h 

Step  250 V  1 h 

 

Following IEF, the IPG strips were equilibrated in Reduction Buffer (Section 

2.1.6.4) for 20 min, followed by equilibration in Alkylation Buffer (Section 2.1.6.5) for 

20 min. The IPG strips were rinsed in 1 X Electrode Running Buffer (Section 2.1.2.9) 

and placed on top of 12 % SDS-PAGE gels (Table 2.6) using a forceps. The gels were 

overlaid with Agarose Sealing Solution (Section 2.1.6.6). Once set, the gels were placed 

in the PROTEAN Plus Dodeca Cell (BIO-RAD) as per manufacturer’s instructions. The 

gels were electrophoresed in 1 X Electrode Running Buffer (Section 2.1.2.9) overnight 
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at 1.5 W per gel. In the morning, the voltage was increased to 5 W per gel until the dye-

front was 2 cm from the end of the gels. The gels were stained with Colloidal 

Coomassie® Blue (Section 2.2.4.4). 

 

Table 2.5: Protein amounts and volumes for different length IPG Strips  

Strip Length Protein amount Volume of IEF Buffer 

7 cm 125 µg 125 µl 

13 cm 300 µg 250 µl 

 

Table 2.6: Composition for large, 12 % acrylamide, SDS-PAGE Resolving Gels 

No. of Gels 2 10 

1.5 M Tris-HCl pH 8.3 (Section 2.1.2.2) 31.5 ml 157.5 ml 

10 % SDS (Section 2.1.2.1) 1.21 ml 6.05 ml 

30 % Acrylamide, 0.8 % Methylene bis Acrylamide 50.7 ml 253.5 ml 

Distilled water 41.7 ml 208.5 ml 

10 % Ammonium persulfate (Section 2.1.2.4) 405 µl 2.25 ml 

TEMED 105 µl 525 µl 
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2.2.4.4 Colloidal Coomassie® Staining of SDS-PAGE gels 

Following SDS-PAGE, gels were incubated for 3 h or overnight in fixing 

solution (Section 2.1.2.12). Following this period, the gels were washed 3 X 20 min 

with distilled water before being incubated for 1 h in Colloidal Coomassie® stain buffer 

(Section 2.1.2.13). A quantity of Colloidal Coomassie® Blue G-250 (Serva 

Electrophoresis, Germany) was scattered over each gel to attain a concentration of 

approximately 35 mg/ml. Gels were incubated, with stain, for 5 days and washed 

repeatedly with distilled water.  

2.2.4.5  Semi-dry transfer of proteins to NCP 

Nitrocellulose paper (NCP) and six sheets of filter paper were cut to the 

appropriate size of the gel and pre-soaked in Towbin Transfer Buffer (Section 2.1.2.14) 

for 15 min. The protein gels were removed carefully from the electrophoresis unit and 

assembled on the transfer unit in a NCP “sandwich” consisting of 3 sheets of saturated 

filter paper, soaked NCP, protein gel and an additional 3 sheets of saturated filter paper. 

Transfer was carried out at 18 V for 20 min using a semi-dry transfer unit. Ponceau S 

solution was applied to NCP to detect protein transfer with excess stain removed 

through washing with distilled water. 

2.2.4.6  Wet transfer of proteins to NCP  

Nitrocellulose paper (NCP) and two sheets of filter paper were cut to the 

appropriate size of the gel and pre-soaked in wet transfer buffer (Section 2.1.2.15) along 

with two transfer sponges. The protein gels were removed carefully from the 

electrophoresis unit and assembled as follows: sponge, filter paper, NCP, gel, filter 

paper, sponge. The layers were clamped together, ensuring no air bubbles are trapped. 

The clamped unit was submerged in wet transfer buffer (Section 2.1.2.15) in the transfer 
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tank with the NCP oriented next to the cathode and the gel oriented next to the anode. 

An ice pack was placed in the unit or alternatively the transfer unit was placed in a 

container of ice. Transfers were carried out at 100 V for 70 min for small gels or at 15 V 

overnight for large gels. Ponceau S solution was applied to NCP to detect protein 

transfer with excess stain removed through washing with distilled water. 

2.2.4.7  Western Blot Analysis 

Protein transferred to NCP using semi-dry transfer (Section 2.2.4.3) or wet 

transfer (Section 2.2.4.6) was used to carry out Western blot analysis. Blocking buffer 

(Section 2.1.2.16 or Section 2.1.2.17) was applied to the NCP and incubated for 1 h at 

room temperature with gentle rocking. The blocking buffer was poured off the blot and 

primary antibody, diluted in Antibody buffer (Section 2.1.2.18, 2.1.2.19), was added to 

the blot. This was incubated for 1 h at room temperature with gentle rocking. Three 10 

min PBST (Section 2.1.2.21) washes were carried out on the blot. The secondary 

antibody was diluted in antibody buffer (Section 2.1.2.18, 2.1.2.19) and incubated with 

the blot for 1 h at room temperature with gentle rocking. Three 10 min PBST washes 

were carried out and the blot was developed using Supersignal West Pico enhanced 

chemiluminescent (ECL) substrate according to manufacturer’s guidelines (Pierce 

Biotechnology). An alternative chromogenic development system was also employed. 

3, 3’-diaminobenzidine tetrachloride hydrate (DAB) (10 mg) was dissolved in DAB 

Substrate buffer (Section 2.1.2.22) (15 ml). Hydrogen peroxide (7 µl) was added to the 

substrate solution which was then applied to blots. Blots were allowed to develop for 10 

min and distilled water was applied to stop the reaction and reduce background staining.   
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2.2.4.8 Determination of Relative Immunoreactivity of A. fumigatus proteins 

2D-PAGE Coomassie stained gels, Ponceau S stained 2D-PAGE blots and 

corresponding antisera probed immunoblots were aligned using Progenesis™ SameSpot 

Software (Nonlinear Dynamics Ltd, UK). Normalised volumes of aligned Coomassie 

stained spots were related to the normalised volumes of the corresponding spots on the 

antisera-probed immunoblots. The intensity of immunoreactivity relative to the amount 

of protein present was calculated as follows: 

Normalised Volume of Immunospot  = X 

Normalised Volume of Coomassie Stained Spot 

 

High immunoreactivity (H) was indicated if X ≥ 3.5; Low immunoreactivity was 

indicated if X ≤ 0.02; Medium immunoreactivity (M) was indicated if 0.02 < X < 3.5. 

2.2.4.9 Dialysis of protein samples 

Dialysis tubing was pre-soaked in the appropriate buffer for 10 min. Protein 

sample was added to the dialysis tubing with an additional 50% free space included to 

allow for sample volume expansion. The sealed tubing, containing the sample, was 

dialysed against 50 volumes. Dialysis was carried out at 4 °C with stirring. A minimum 

of three buffer changes were carried out at 3 h intervals.  

2.2.4.10  Analysis of Supernatant Proteins from A. fumigatus 

A. fumigatus ATCC 26933 conidia (200 µl: 1 x 10
7
 conidia) were inoculated into 

flasks containing AMM (Section 2.1.5.5) (200 ml) and cultured in static conditions at 

37 °C for periods of 1, 2 and 3 weeks. Culture supernatants were harvested at each time 

point by filtering through miracloth and snap-frozen in liquid nitrogen. Lyophilisation 

of culture supernatants (40 ml) was carried out and resultant samples were stored at -70 
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°C. Samples were resuspended in 10 % (w/v) TCA (Section 2.1.5.20) (5 ml) and 

incubated on ice overnight. Solutions containing precipitated protein were centrifuged at 

1700 g for 15 min at 4 °C, and the supernatant was discarded. Pellets were resuspended 

in ice-cold acetone (2 ml) and centrifuged at 10000 g for 15 min at 4 °C. This washing 

step was repeated twice more and the final pellet was resuspended in 8 M urea (Section 

2.1.2.25). The sample was incubated on ice for 1 h before a final centrifugation step to 

remove insoluble material. Re-solubilised protein was quantified (Section 2.2.4.1) and 

analysed by SDS-PAGE (Section 2.2.4.2). The lane containing each sample was cut 

horizontally into slices and each one was subjected to trypsin digestion (Section 

2.2.6.1). LC-MS analysis (Section 2.2.6.3) was subsequently carried out in order to 

perform a large-scale identification of secreted or external A. fumigatus proteins.    

2.2.4.11 Organic Extraction of A. fumigatus Culture Supernatants 

A. fumigatus culture supernatants (20 ml) were added to chloroform (20 ml) in a 

50 ml tube and agitated vigorously for 3 min, with regular venting of the tube. The 

mixtures were centrifuged at 650 g for 10 min at room temperature to separate the 

organic layer from the aqueous layer. The lower organic layer was retained and stored at 

-20 °C until required. 

2.2.4.12  Rotary evaporation of Organic Extraction Samples 

Organic extracts (Section 2.2.4.11) (20 ml) were placed in a glass evaporation 

bulb. The chloroform was evaporated under vacuum whilst sitting in a water bath set to 

37 
o
C (Heidolph Laborata 4001 efficient, Vacuubrand CVC 2000 II). The dried extract, 

retained in the bulb, was resuspended in HPLC grade methanol (200 µl). The 

resuspended extract was then transferred to clean glass vial and stored at – 20 
o
C.  
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2.2.5 Comparative Metabolite Profile Analysis by Reverse Phase - High 

Performance Liquid Chromatograhy (RP-HPLC) 

2.2.5.1  RP-HPLC Analysis 

Organic extracts from supernatants (Section 2.2.4.11, 2.2.4.12) or intracellular 

fractions (Section 2.2.5.3) were analysed by RP-HPLC with UV detection (Agilent 

1200 system), using a C18 RP-HPLC column (Agilent Zorbax Eclipse XDB-C18; 5 mm 

particle size; 4.6 x 15 mm) at a flow rate of 1 ml/min. A mobile phase of water (Section 

2.1.4.1) and acetonitrile (Section 2.1.4.2), with TFA, was used under various gradient 

conditions (Table 2.7, Table 2.8). Injection volume was set to 20 µl and fractions were 

collected if required. 
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Table 2.7: RP-HPLC Gradient 1 

Time (min) % B % B / min 

0 5  

5 5 95 % Δ B / 20 min 

20 100 4.75 % Δ B / min 

28 100  

30 5  

 

Table 2.8: RP-HPLC Gradient 2 

Time (min) % B % B / min 

0 35  

3 35 25 % Δ B / 6.25 min 

9.25 60 4 % Δ B / min 

10 100  

14 100  

16 35  

 

2.2.5.2  5’-IAF Labelling of Sulphydral groups of A. fumigatus metabolites 

Sodium borohydride (NaBH4) mediated reduction of disulfide bonds, and 

subsequent alkylation with 5’-Iodoacetamidofluorescein (5’-IAF) was carried out 

according to Davis et al. (2011). Briefly, organic extracts from A. fumigatus culture 

supernatants (Section 2.2.4.11; 2.2.4.12) (50 µl) or protein lysates (Section 2.2.5.3) (50 

µl) were reduced by the addition of 500 mM NaBH4 (Section 2.1.5.24) (1.25 µl; 625 

nmoles) and incubation at room temperature for 1 h. Free sulphydral groups were then 
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alkylated by the addition of 5’-IAF (Section 2.1.5.23) (10 µl; 60 nmol) and samples 

were incubated at room temperature for 40 min in the dark. Control samples were 

prepared in-tandem, in which reduction was not carried out prior to 5’-IAF labelling. 

RP-HPLC analysis was carried out using Gradient 1 (Table 2.9) or Gradient 2 (Table 

2.10). MALDI-ToF analysis (Section 2.2.7) was also carried out to ascertain the mass of 

the labelled compound. 

2.2.5.3  Preparation of A. fumigatus Mycelial Lysates for Intracellular Metabolite 

Investigation 

Mycelia, from A. fumigatus liquid cultures (ATCC 26933 and ΔgliK; 72 h; 37 

°C) in Czapek-Dox (Section 2.1.5.9), were harvested by filtering through miracloth 

(Section 2.2.1.1). Protein was extracted from lyophilised mycelia (Section 2.2.2.1) using 

non-reducing lysis buffer (Section 2.1.5.18). Protein lysates (30 µl) were added to PBS 

(Section 2.1.2.20) (105 µl) along with HPLC-grade methanol (15 µl). These solutions 

were centrifuged at 10000 g for 10 min at 4 °C and the supernatants were retained. An 

aliquot (50 µl) of each supernatant was reduced and labelled with 5’-IAF (Section 

2.2.5.2) followed by RP-HPLC analysis (Section 2.2.5.1). 

2.2.5.4 Determination of Sulphydral Groups in A. fumigatus Mycelial Lysates 

Mycelia, from A. fumigatus liquid cultures (ATCC26933 and ΔgliK; 72 h; 37 

°C) in Czapek-Dox (Section 2.1.5.9), was harvested by filtering through miracloth 

(Section 2.2.1.1). Protein was extracted from lyophilised mycelia (Section 2.2.2.1) using 

non-reducing lysis buffer (Section 2.1.5.18). Protein lysates (100 µl) were diluted with 

PBS (400 µl) (Section 2.1.2.20). A control, consisting of non-reducing lysis buffer (100 

µl) in PBS (400 µl) was also prepared. A volume of the control (100 µl) was transferred 

to a 0.1 ml quartz cuvette and this solution was used to blank at 280 nm on a 
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spectrophotometer. The A280nm of the diluted mycelial lysate was measured 

(A280nm(Sample)). A volume of the control (100 µl) was then used to blank at 324 nm. 

A4 (2 µl) (Section 2.1.6.8) was added and the A324nm was measured after 1 min 

(A324nm(Control)). The diluted mycelial lysates (100 µl) was used to blank at 324 nm 

and then A4 (2 µl) (Section 2.1.6.8) was added and the A324nm was read after 1 min 

(A324 nm(Sample)). The concentration of free sulphydral groups ([SH]), relative to 

protein concentration ([Protein]), in the sample was determined using the following 

equations: 

 [Protein] mg/ml = A280nm x5 

 

[SH] nMoles/ml = A324nm(Sample) – A324nm(Control) x 5 

0.0198* 

(*0.0198 is the A4 extinction coefficient) 

[SH] nMoles/ml  = nMoles SH/mg of protein. 

         [Protein] mg/ml 

2.2.6 Mass Spectrometry Methods 

2.2.6.1  In-gel Digestion of SDS-PAGE Samples 

In-gel digestion of SDS-PAGE samples was carried out according to the 

protocol of Shevchenko et al. (2007). Briefly, selected bands or spots from SDS-PAGE 

gels were excised and placed in individual 1.5 ml microfuge tubes. Gel pieces were 

destained by addition of 100 µl of 100 mM ammonium bicarbonate (Section 2.1.3.1) : 

acetonitrile (1:1 v/v). Samples were vortexed periodically for 30 min. Acetonitrile (500 

µl) was added to samples, followed by vortexing until the gel pieces became white and 

shrunk. Acetonitrile was removed and replaced with 50 µl of trypsin, diluted to 13 ng/µl 
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in trypsin buffer (Section 2.1.3.7). Samples were incubated at 4 °C for 2 h, with 

additional trypsin added to cover gel pieces if required. Samples were then incubated at 

37 °C overnight. Gel pieces were subsequently placed in a sonication bath for 10 min 

followed by transfer of the digest supernatant to fresh microfuge tubes. Samples were 

dried to completion using a speedy vac (DNA Speedy Vac Concentrator, Thermo 

Scientific) and resuspended in 0.1% formic acid (Section 2.1.3.8) (20 µl). The samples 

were filtered through 0.22 µm Cellulose Spin-filters (Costar) before transfer to 

polypropylene vials. Care was taken to ensure there was no air trapped in the vials.  

2.2.6.2  In-solution Digestion of Protein Samples 

Solutions that had previously reduced and alkylated (Section 2.2.2.3) were 

subjected to trypsin digestion. Trypsin was diluted to 400 µg/ml in trypsin buffer 

(Section 2.1.3.7). Trypsin solution (5 µl; 2 µg) was added to protein samples (0.1 ml) 

and incubated at 37 °C overnight. Digested samples were diluted in 0.1 % formic acid 

(Section 2.1.3.8) prior to LC-MS analysis. 

2.2.6.3  LC-MS/MS Analysis of Peptide Mixtures 

Peptide mixtures generated from (i) in-gel digestion of protein spots or bands 

from SDS-PAGE (Section 2.2.6.1) or (ii) from in-solution digestion of protein samples 

(Section 2.2.6.2) were analysed using a 6340 Model Ion Trap LC-Mass Spectrometer 

(Agilent Technologies, Ireland) using electrospray ionisation. Samples (Sections 

2.2.6.1, 2.2.6.2) (1 - 5 µl) were loaded onto a Zorbax 300 SB C-18 Nano-HPLC Chip 

(150 mm x 75 µm) with 0.1 % (v/v) formic acid (Section 2.1.3.8) at a flow rate of 4 

µl/min. A high capacity HPLC chip with a 160 nL enrichment column (150 mm 300 Å 

C18) was employed for analysis of samples prepared by in-solution digestion (Section 

2.2.6.2). Peptides were eluted using the appropriate gradient with a post run of 5 min. 
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The eluted peptides were ionised and analysed by the mass spectrometer. MS
n
 analysis 

was carried out on the 3 most abundant peptide precursor ions at each time point, as 

selected automatically by the mass spectrometer. Singly charged ions were excluded 

from analysis by the mass spectrometer. 

2.2.6.4  LC-MS/MS Analysis of A. fumigatus Metabolites 

Metabolites isolated by (i) organic extraction from culture supernatants of A. 

fumigatus (Section 2.2.4.11, 2.2.4.12) or (ii) fractionation following RP-HPLC analysis 

(Section 2.2.5.1) of intracellular metabolites, were analysed by LC-MS/MS. Samples 

were diluted in 0.1 % (v/v) formic acid (Section 2.1.3.8) prior to mass spectrometry and 

were loaded onto a Zorbax 300 SB C-18 Nano-HPLC Chip (150 mm x 75 µm) with 0.1 

% (v/v) formic acid (Section 2.1.3.8) at a flow rate of 4 µl/min. Metabolites were eluted 

using the appropriate gradient with a post run of 5 min. MS
n
 was carried out on the 3 

most abundant precursor ions at each timepoint, with n ranging from 2 to 5, depending 

on the analysis. Singly charged ions were not excluded from analysis, with the precursor 

range adjusted to include ions with m/z between 15 and 2200. 

2.2.7 MALDI-ToF analysis 

Aqueous samples were prepared for MALDI-ToF analysis by direct mixing of 

samples with prepared matrix (Section 2.1.3.11). Matrixed samples (0.5 µl) were 

deposited onto individual positions on the MALDI target slide and allowed to dry. 

Organic samples were applied using a layering technique, whereby matrix (Section 

2.1.3.11) (0.5 µl) was deposited on the MALDI slide and allowed to dry, followed by 

addition of organic sample to the same position. All samples were subjected to delayed 

extraction reflectron MALDI-ToF analysis with a nitrogen laser (337 nm) at 20 kV 

using an Ettan™ MALDI-ToF Pro mass spectrometer (Amersham Biosciences). Each 
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MALDI target slide contained one spot of external calibration mix (LaserBio Labs, 

Proteomix C104) and these along with internal calibrants, Angiotensin III and ACTH 

fragment 18-39, were used to calibrate spectra.  

2.2.7.1  Database Search 

Database searches for identification of proteins were carried out using Spectrum 

Mill MS Proteomics Workbench (Revision A.03.03.084 SR4). Validation criteria were 

set to (i) maximum of two missed cleavages by trypsin, (ii) fixed modification: 

carboxymethylation of cysteines, (iii) variable modifications: oxidation of methionine, 

deamidation of asparagine, (iv) mass tolerance of precursor ions ± 2.5 Da and product 

ions ± 0.7 Da were employed and searches were carried out against a protein database 

of 8 Aspergillus species. Protein grouping was carried out based on the presence of ≥ 1 

shared peptide. Protein identifications were manually verified based on the presence of 

≥ 1 and a Spectrum Mill protein score ≥ 18.0. 

Alternatively, MASCOT MS/MS Ion search, with interrogation of the NCBI 

(National Centre for Biotechnology Information, http://www.ncbi.nlm.nih.gov) 

database, was used for protein identification. Criterion for each search was set at (i) 

Taxonomy: Fungi, (ii) two missed cleavages by trypsin, (iii) fixed modification: 

carboxymethylation of cysteines, (iv) variable modification: oxidation of methionine, 

(v) mass tolerance of precursor ions ± 2Da and product ions ± 1Da. 

2.2.7.2  Bioinformatic Analysis of Identified Proteins 

Proteins identified from LC-MS analysis (Section 2.2.6.3) and database searches 

(Section 2.2.7.1) were managed using the BioEdit Sequence Alignment Editor V 7.0.9.0 

(Hall, 1999) and proteins were characterised using a range of bioinformatics programs 

(Table 2.9). 

http://www.ncbi.nlm.nih.gov/
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Table 2.9: List of programs used to characterise proteins identified by LC-MS.  

Program Name Protein charcterisation performed Program link 

ExPASy Compute 

pI/Mw tool 
Theoretical Mr and pI determination http://web.expasy.org/compute_pi/ 

Phobius Putative transmembrane regions (Kall et al., 2004) http://phobius.sbc.su.se/ 

SignalP Putative signal peptide presence (Petersen et al., 2011) http://www.cbs.dtu.dk/services/SignalP/ 

GRAVY calculator Relative hydrophobicity score calculated http://www.gravy-calculator.de/ 

FungiFun 
Functional annotation based on GO, FunCat and KEGG classification 

schemes (Priebe et al., 2011) 
https://www.omnifung.hki-jena.de/FungiFun/ 

BLAST2GO 
Functional annotation based on BLAST and InterProScan searches 

(Conesa et al., 2005) 

http://www.blast2go.com/b2glaunch/start-

blast2go 
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3 Chapter 3 

3.1 Introduction 

Following the publication of A. fumigatus Af293 (Nierman et al., 2005) genomic 

sequence in 2005, and the more recent sequencing of a second A. fumigatus strain, 

A1163 (Fedorova et al., 2008), numerous projects have been undertaken to characterise 

the proteome of this opportunistic pathogen (Asif et al., 2006; Carberry et al., 2006; 

Kniemeyer et al., 2006; Vödisch et al., 2009; Teutschbein et al., 2010; Cagas et al., 

2011b; Wartenberg et al., 2011; Suh et al., 2012; Wiedner et al., 2012). Traditional 

proteomic strategies have utilised 2D-PAGE separation with subsequent protein 

identification by mass spectrometry (MS). This approach involves the separation of 

complex protein mixtures based on their isoelectric point (pI) in the first dimension, 

followed by molecular mass (Mr) resolution using SDS-PAGE. Resolved proteins are 

subjected to in-gel digestion and resultant peptides are identified by MS coupled with 

database searching. However 2D-PAGE can be limiting for the identification of 

particular subsets of proteins, namely hydrophobic proteins, membrane proteins, and 

proteins with large molecular mass or extreme pI (Kniemeyer et al., 2011). MS-based 

proteomics have developed more recently and provide an alternative method to 2D-

PAGE for proteome profiling. 

The premise of MS-based proteomics is the identification of peptides from 

complex mixtures by mass spectrometry (Aebersold and Mann, 2003). This is preceded 

by enzymatic digestion of protein extracts before fractionation of the resultant peptides. 

The first step involved in proteomics - based mass spectrometry is the imparting of 

charge to peptides, which can be achieved by electrospray ionisation (ESI) or matrix-

assisted laser desorption ionisation (MALDI) (Karas and Hillenkamp, 1988; Fenn et al., 

1989). Electrospray ionisation is usually preceded by nano spray high performance 
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liquid chromatography (HPLC) which facilitates separation of peptides based on their 

relative hydrophobicity. This is typically achieved through the use of a reversed phase 

C18 column, and an appropriate solvent gradient (Finoulst et al., 2011). ESI involves the 

reduction in size of small charged droplets of the analyte as they are directed towards 

the mass analyser via an electric field. Desolvation of droplets during flight results in 

further dispersion into smaller droplets based on electrostatic repulsions. Repetition of 

this cycle produces charged gas phase molecular ions that enter the mass analyser (Han 

et al., 2005). MALDI provides an alternative method of sample ionisation, whereby 

desorption of molecular ions from a crystallised matrix is achieved by irradiation of the 

sample (Albrethsen, 2007). While ESI is capable of producing molecular ions with 

multiple charges, MALDI typically only produces singly charged ions (Karas et al., 

2000). Following ionisation, peptides are separated based on their mass to charge (m/z) 

ratio by the mass analyser. Tandem mass spectrometry (MS/MS) can be carried out 

using ion trap analysers allowing multi-stage fragmentations of selected precursor ions 

(Griffiths and Wang, 2009). MS/MS provides fragmentation patterns of analysed 

peptides in addition to the m/z of intact peptide.  

The advent of shotgun or MS-based proteomics has expanded the range of 

studies in this field in recent years. Shotgun proteomics can take multiple forms 

including, (i) direct LC-MS/MS, (ii) indirect LC-MS/MS and (iii) 2D-LC-MS/MS 

(multidimensional protein identification technology, MudPIT) (Link et al., 1999; 

Washburn et al., 2001). Direct LC-MS/MS involves the on-line separation of complex 

peptide mixtures using a reversed phase nano column with an extended gradient. 

Indirect LC-MS/MS is where complex peptide or protein mixtures are pre-fractionated 

off-line (e.g. by 1D SDS PAGE) before LC-MS/MS analysis (Aebersold and Mann, 

2003). Sample complexity can also be reduced using affinity pre-fractionation, whereby 
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abundant proteins can be removed or reduced in concentration (Pernemalm et al., 2009). 

Affinity fractionation can be achieved through the use of beads possessing a library of 

ligands, facilitating differential binding to a range of proteins and subsequently the 

equalisation of protein concentration ranges (Thulasiraman et al., 2005). Keidel et al. 

(2010) have shown that use of these ligand libraries may be redundant as the affinity of 

proteins for the solid phase beads themselves, based on hydrophobic binding, outweighs 

the specific protein-ligand affinity. Inorganic nanoparticles (e.g. gold nanoparticles 

(AuNPs) also exhibit adherent qualities, with proteins adsorbing to the nanoparticles 

surface and forming a protein shell or ‘corona’ (Casals et al., 2010). Proteins adhering 

with high affinity to the nanoparticle surface form the hard corona (Lundqvist et al., 

2008). These qualities can be exploited to reduce sample complexity prior to MS. 2D-

LC-MS/MS involves the on-line separation of peptides using two capillary columns 

arranged in a series, and fractionating based on two separate peptide attributes (e.g. 

acidity, hydrophobicity) before MS/MS (Link et al., 1999; Washburn et al., 2001). As 

with 2D-PAGE, MS-based proteomics can be used in either a quantitative or a 

qualitative manner. Quantitative methods involve isotope labelling of peptides using 

chemical tags (e.g. isobaric tags for relative and absolute quantification, iTRAQ) or 

through the metabolic introduction of isotopes (e.g. stable-isotope labelling by amino 

acids in cell culture, SILAC) (Ong et al., 2002; Ross et al., 2004). Label-free methods 

of MS-based quantitation, based on spectral counting and peak intensities, are also used 

(Old et al., 2005). 

2D-PAGE based proteomic maps of A. fumigatus have provided a global 

overview of the proteins from mycelia, conidia and the secretome (Asif et al., 2006; 

Carberry et al., 2006; Kniemeyer et al., 2006; Vödisch et al., 2009; Teutschbein et al., 

2010; Wartenberg et al., 2011). Sub-proteome strategies have also been implemented to 
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investigate glutathione binding (Carberry et al., 2006) and mitochondrial proteins 

(Vödisch et al., 2009). The recent emergence of MS-based proteomics studies of A. 

fumigatus has been observed. A large-scale study of the A. fumigatus plasma membrane 

identified 530 associated proteins utilising a combination of 1D PAGE fractionation of 

total proteins followed by peptide separation and identification by 2D-LC-MS/MS 

(Ouyang et al., 2010). This study could not have been undertaken using 2D-PAGE due 

to the incompatibility of hydrophobic proteins, and proteins with transmembrane (TM) 

regions with the detergents used in isoelectric focusing, the first separation stage of 2D-

PAGE (Rabilloud, 2009). Quantitative MS-based proteomics, both label-free and using 

iTRAQ, have been used to comparatively profile the stages of A. fumigatus germination 

(Cagas et al., 2011b; Suh et al., 2012). In addition, a recent MS-based study has 

investigated the proteomic response of A. fumigatus to growth on human serum 

(Wiedner et al., 2012). 

The generation of large volumes of data from global proteomics investigations 

requires a ‘systems biology’ approach to data interpretation. This is aided by the 

availability of various bioinformatics tools, which allow semi-automation of data 

analysis (Conesa et al., 2005; Priebe et al., 2011). These tools include programs for the 

prediction of protein characteristics, such as protein molecular mass and pI based on 

primary structure, relative hydrophobicity, presence of transmembrane helices and 

signals for secretion (Bendtsen et al., 2004; Kall et al., 2004; Petersen et al., 2011). 

Functional categorisation of proteins, detected in large-scale studies, can assist in the 

identification of pathways, processes or subsets of proteins that are active or targeted 

under particular experimental conditions. Functional classification schemes regularly 

used in A. fumigatus studies include Functional Catalogue (FunCat) (Ruepp et al., 

2004), Gene Ontology (GO) (Ashburner et al., 2000) and Kyoto Encyclopedia of Genes 
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and Genomes (KEGG) (Kanehisa et al., 2012). These classification schemes can be 

simultaneously accessed, for a range of fungal species, using the web-based FungiFun 

application (Priebe et al., 2011; https://www.omnifung.hki-jena.de/FungiFun/). FunCat 

is an annotation scheme that provides a multilevel functional classification allowing 

proteins to be grouped into broad first level categories, with more specific categories 

branching from these (Ruepp et al., 2004). GO provides a standardised terminology for 

the description of genes and their products across all organisms. It is divided into three 

sub-categories, describing biological process, molecular function and cellular 

localisation relevant to the gene product (Ashburner et al., 2000). KEGG is unique in 

that it provides graphical representation of various metabolic pathways, displaying the 

relationship between a network of enzymes and metabolites. 

The application of MS-based proteomics to dissect the proteome of A. fumigatus 

has the potential to provide a global overview of the pathways and biological processes 

active under a set of conditions. In addition, bioinformatic analysis can expand the 

characterisation of large datasets generated by MS-based proteomics. The aims of the 

work described in this Chapter were (i) to generate a global profile of the A. fumigatus 

mycelial proteome using MS-based proteomics, (ii) to investigate methods to reduce 

sample complexity prior to MS-based proteomics, (iii) to identify proteins in the 

secretome of A. fumigatus using direct and indirect methods of MS-based proteomics 

and (iv) to characterise the proteome of A. fumigatus using bioinformatic analysis. 

https://www.omnifung.hki-jena.de/FungiFun
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3.2 Results 

3.2.1 Identification of 370 proteins from A. fumigatus mycelia using shotgun mass 

spectrometry 

Mycelia from A. fumigatus shaking cultures were harvested after 48 h in 

Aspergillus minimal media (AMM), and extracted protein was subjected to trypsin 

digestion as described in Sections 2.2.2.3 and 2.2.6.2. Tryptic peptide mixtures were 

separated on extended liquid chromatography gradients and subjected to tandem mass 

spectrometry using the Agilent 6340 Ion Trap LC-MS System (Agilent Technologies) 

(Section 2.2.6.3). 

Utilising a direct shotgun proteomics approach a total of 1844 unique peptides 

were identified, corresponding to 511 unique A. fumigatus proteins. Proteins (n = 370) 

were manually verified, based on the presence of ≥ 2 peptides or a Spectrum Mill 

MS/MS search score ≥ 18.0 (Appendix I). The protein sequences of the entire A. 

fumigatus proteome were obtained from the Aspergillus comparative database provided 

by the Broad Institute (Aspergillus Comparative Sequencing Project, Broad Institute of 

Harvard and MIT (http://www.broadinstitute.org/). The sequences of the proteins 

identified in this study (n = 370) were extracted and the associated theoretical molecular 

mass (tMr) and isoelectric point (tpI) were calculated using the Compute pI/MW tool 

from the ExPASy Proteomics Server. These proteins (n = 370) spanned a theoretical pI 

range of 3.9 to 11.8 and a Mr range of 9 to 434 kDa (Figure 3.1). All peptides identified 

contributed to a sequence coverage range of between 1 and 62 % of the relative 

proteins, with Spectrum Mill scores ranging between 18 and 1266.  

. 

http://www.broadinstitute.org/)
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In order to determine the relative hydrophobicity of identified proteins, the 

grand average of hydropathy (GRAVY) index was calculated using GRAVY calculator 

(www.gravy-calculator.de). The GRAVY index for identified proteins ranged from -

1.632 to 0.483, with positive scores being indicative of hydrophobicity (Figure 3.2a). A 

number of hydrophobic proteins were identified (n = 28; 7.57 % of total identified 

proteins), based on positive GRAVY scores. Additionally, GRAVY scores were 

collected for the entire predicted proteome of A. fumigatus and it was observed that 15.6 

% of the total proteome possess positive GRAVY scores (Figure 3.2). The majority of 

proteins identified by shotgun mass spectrometry (71.3 %) were slightly hydrophilic, 

with GRAVY scores ranging from -0.5 to 0. This is in-line with the total predicted 

proteome of A. fumigatus, where 55.1 % of all predicted proteins fall within this range. 

Using Phobius (phobius.cbr.su.se/), the number of putative transmembrane regions 

present in each identified protein was determined (Figure 3.2b). Proteins with 

transmembrane helices (n = 37; 10.0 % of total identified proteins) were detected. 

Several proteins were detected with 10 and more putative TM regions, including a 

plasma membrane H
+
 - ATPase (AFUA_ 3G07640), an amino acid permease (Gap1) 

(AFUA_7G04290) and 2 ABC transporters (AFUA_1G14330 and AFUA_5G06070). 

One protein, a small oligopeptide transporter (OPT family) (AFUA_2G15240) was 

detected with 14 putative transmembrane regions and a GRAVY score of 0.276263.  

Identified proteins were grouped into functional categories based on the FunCat 

(Functional Catalogue), GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of 

Genes and Genomes) annotations, using the FungiFun application 

(https://www.omnifung.hki-jena.de/FungiFun/) (Priebe et al., 2011). Annotations were 

available for 89.19 %, 86.76 % and 51.89 % of identified proteins using the FunCat, GO 

and KEGG schemes respectively (Figure 3.3). Based on the FunCat classification, 

http://www.gravy-calculator.de/
https://www.omnifung.hki-jena.de/FungiFun
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functional categories that were significantly overrepresented were protein synthesis (n = 

77, p = 1.03 x 10
-20

), energy (n = 86, p = 6.95 x 10
-19

), protein with binding function or 

cofactor requirement (n = 227, p = 1.14 x 10
-12

), transcription (n = 26, p = 1.97 x 10
-9

) 

and cell cycle and DNA processing (n = 46, p = 0.028). Proteins (n = 21; 5.7 %) were 

identified which have no functional classifications using the aforementioned methods. 
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Figure 3.1: Proteome map showing distribution of A. fumigatus proteins based on 

theoretical Mr and pI Proteins identified by shotgun mass spectrometry (n = 370; red) 

are shown overlaid on the total A. fumigatus proteome (black). tMr, theoretical 

molecular mass, axis drawn on logarithmic scale; tpI, theoretical isoelectric point, axis 

drawn on linear scale.  

Theoretical distribution of A. fumigatus 

predicted and observed proteins 
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a. 

 

b. 

 

Figure 3.2: Distribution of proteins identified by shotgun mass spectrometry (MS) 

according to (a) their relative hydrophobicity and (b) the number of putative 

transmembrane regions per protein. Positive GRAVY scores are indicative of 

hydrophobic proteins and negative GRAVY scores represent hydrophillic proteins. (a) 

Relative distribution of GRAVY score across the entire proteome (black) is indicated 

alongside the proteins identified using shotgun MS (grey). (b) The number of putative 

transmembrane regions on each protein identified by shotgun MS is shown. GRAVY, 

grand average of hydropathy; TM, transmembrane; MS, mass spectrometry. 
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Figure 3.3: Distribution of functional annotations of A. fumigatus proteins identified 

using shotgun proteomics strategy. (a) GO (gene ontology), KEGG (Kyoto 

Encyclopedia of Genes and Genomes) and FunCat (Functional Catalogue) classification 

schemes were used for functional annotation utilizing the FungiFun application. A 

number of proteins (n = 21) were identified that possessed no functional classification 

using this system. (b) The functional categorization of the proteins identified here, 

based on the FunCat annotation scheme, are shown. 

Unclassified 

proteins 
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3.2.2 Identification of A. fumigatus secondary metabolite cluster expression at 

protein level 

Proteins identified by shotgun mass spectrometry (n = 370) were mapped based 

on their relative loci on each of the eight A. fumigatus chromosomes, using their gene 

locus identifiers (Figure 3.4a). A number of proteins (n = 14) that comprise a secondary 

metabolite supercluster, involved in the production of pseurotin A and fumitremorgin B, 

were identified (Table 3.2) (Grundmann and Li, 2005; Maiya et al., 2007; Perrin et al., 

2007). In addition, proteins were identified from the gliotoxin biosynthetic cluster on 

chromosome 6 (Gardiner and Howlett, 2005), a putative ETP cluster on chromosome 3 

(Patron et al., 2007) and two clusters responsible for the production of unknown 

metabolites on chromosomes 3 and 4 respectively (Table 3.2). A phosphoglycerate 

kinase PgkA protein (AFUA_1G10350) was also identified, which is predicted to be 

part of the Afpes1 NRPS cluster on chromosome 1 (Nierman et al., 2005). The 

identification of these proteins is indicative of the respective cluster activity under the 

growth conditions used. Interestingly, expression of all of the clusters identified here is 

partially or completely regulated by the transcription regulator LaeA (Figure 3.4b) 

(Perrin et al., 2007). 
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Figure 3.4: (a) Distribution of proteins identified using shotgun mass spectrometry (n = 

370) based on gene locus (blue lines). Identification of proteins (n = 14) from a 

supercluster on chromosome 8, involved in the production of fumitremorgin B, 

pseurotin A and an unknown metabolite (red circle). (b) Summary of secondary 

metabolite gene cluster function and regulation by LaeA. A red box is used to indicate 

clusters from which protein expression was detected by shotgun mass spectrometry. 

From Perrin et al. (2007). 
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Table 3.2: A. fumigatus proteins, involved in secondary metabolism, and identified by shotgun mass spectrometry. 

Cluster 

No
a
 

CADRE ID. 

(AFUA_) 

Protein name Chromosome 

No 

LaeA 

regulation
a
 

Product(s) 

1 1G10350 Phosphoglycerate kinase PgkA (EC 2.7.2.3) 1 Yes Fumigaclavine C 

8 3G13010 Zn-dependent hydrolase/oxidoreductase family protein, putative 3 Yes Putative ETP 

10 3G14665 Unknown function protein 3 Partial Unknown 

10 3G14680 Lysophospholipase 3 (EC 3.1.1.5) (Phospholipase B 3) 3 Partial Unknown 

13 4G14380 Glutathione S-transferase, putative 4 Partial Unknown 

18 6G09740 GliT (Thioredoxin reductase GliT) (EC 1.-.-.-) 6 Yes Gliotoxin 

22 8G00230 Phytanoyl-CoA dioxygenase family protein 8 Yes 

‘Supercluster’ 

producing 

Fumitremorgin B, 

Pseurotin A and an 

unknown metabolite 

22 8G00370 Polyketide synthase, putative 8 Yes 

22 8G00380 DltD N-terminal domain protein 8 Yes 

22 8G00390 O-methyltransferase, putative 8 Yes 

22 8G00400 Unknown function protein 8 Yes 

22 8G00430 Unknown function protein 8 Yes 

22 8G00440 Steroid monooxygenase, putative (EC 1.-.-.-) 8 Yes 
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Cluster 

No
a
 

CADRE ID. 

(AFUA_) 

Protein name Chromosome 

No 

LaeA 

regulation
a
 

Product(s) 

22 8G00480 Phytanoyl-CoA dioxygenase family protein 8 Yes  

 

 

‘Supercluster’ 

producing 

Fumitrmorgin B, 

Pseurotin A and an 

unknown metabolite 

22 8G00500 Acetate-CoA ligase, putative (EC 6.2.1.1) 8 Yes  

22 8G00510 Cytochrome P450 oxidoreductase OrdA-like, putative 8 Yes ‘Supercluster’ 

producing 

Fumitremorgin B, 

Pseurotin A and an 

unknown metabolite 

22 8G00530 Alpha/beta hydrolase, putative 8 Yes 

22 8G00540 Hybrid PKS-NRPS enzyme, putative 8 Yes 

22 8G00550 Methyltransferase SirN-like, putative 8 Yes 

22 8G00580 Glutathione S-transferase, putative 8 Yes  

CADRE ID., A. fumigatus gene annotation nomenclature according to Nierman et al. (2005) and Mabey et al. (2004). 
a
 Clusters numbers and LaeA 

regulation as denoted by Perrin et al. (2007). 
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3.2.3 Identification of 173 proteins from A. fumigatus mycelia using shotgun mass 

spectrometry coupled with gel filtration pre-fractionation 

A. fumigatus mycelia from shaking cultures in AMM were harvested after 48 h. 

Protein was extracted and the soluble portion of the whole cell lysate was fractionated 

following gel filtration chromatography (Section 2.2.3.2). Fractionated proteins, along 

with the insoluble portion of the whole cell lysate, were trypsin digested using the in-

solution method described in Section 2.2.6.2. LC-MS/MS was used to identify A. 

fumigatus proteins from each of the fractions (Section 2.2.6.3).  

Pre-fractionation of the A. fumigatus mycelia proteome, followed by shotgun 

mass spectrometry, resulted in the identification of 768 unique peptides, corresponding 

to 227 unique A. fumigatus proteins. Proteins (n = 173) were manually verified, as 

before, based on the presence of ≥ 2 distinct peptides or a Spectrum Mill score ≥ 18.0. 

Proteins (n = 17) previously not identified by the exclusively shotgun mass 

spectrometry approach outlined in Section 3.2.1 are shown in Table 3.3. Proteins (n = 

156) that were identified by both gel filtration coupled shotgun mass spectrometry and 

shotgun mass spectrometry alone are indicated in Appendix I. 

The proteins identified by gel filtration coupled shotgun mass spectrometry (n = 

173) spanned a theoretical pI range of 4.08 to 11.36 and a Mr range of 9 to 434 kDa. 

Proteins were identified by peptides attributing to between 1 and 65 % sequence 

coverage, with Spectrum Mill scores ranging from 18 to 404. The GRAVY index for 

proteins identified using this method ranges from -1.577 to 0.415, with 6.9 % of these 

proteins possessing a positive GRAVY score. The number of proteins containing 

putative transmembrane regions was determined using Phobius software 

(phobius.cbr.su.se/) and these accounted for 7.5 % of the proteins identified here. The 
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most hydrophobic protein identified using the approach described in this section was an 

amino acid permease (Gap1) (AFUA_7G04290), which possesses 12 putative TM 

regions and a GRAVY score of 0.415. 
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Table 3.3: A. fumigatus mycelia proteins (n = 17) identified by gel filtration coupled shotgun mass spectrometry, previously not identified by shotgun 

mass spectrometry alone. Proteins are arranged in order of increasing CADRE ID. 

CADRE ID. 

(AFUA_) 

Protein name tpI tMr GRAVY 

score 

TM Coverage 

(%) 

Unique 

peptides 

SM 

Score 

1G06940 Chorismate synthase (EC 4.2.3.5) 6.12 44185.92 -0.3466 0 2 1 21.79 

1G09550 Dynein light chain (Tctex1), putative 5.27 15325.41 0.076224 0 9 1 20.03 

1G13780 Histone H4 11.36 11370.35 -0.53883 0 17 1 19.62 

2G10600 NADH-ubiquinone oxidoreductase 299 kDa subunit, 

putative (EC 1.6.5.3) 

5 27541.84 -0.73595 0 4 1 18.27 

2G11340 Phosphatidylglycerol/phosphatidylinositol transfer protein 

(PG/PI-TP) 

5.56 27290.30 -0.0125 0 14 4 54.95 

2G15430 Sorbitol/xylulose reductase Sou1-like, putative (EC 1.-.-.-) 5.96 28220.04 -0.0688 0 12 2 33.85 

3G07710 Nucleolin protein Nsr1, putative 4.68 58498.97 -1.37949 0 4 2 22.87 

3G10920 Telomere and ribosome associated protein Stm1, putative 9.76 36892.45 -1.57734 0 5 2 27.41 

4G10280 Phosphotransmitter protein Ypd1, putative 4.86 21367.02 -0.75393 0 14 2 27.75 

4G11390 Ubiquinol-cytochrome c reductase complex 17 kDa protein 4.08 17895.00 -1.24684 0 12 2 36.6 

4G12850 Calnexin homolog clxA 4.97 61853.81 -0.58295 1 5 3 35.32 
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CADRE ID. 

(AFUA_) 

Protein name tpI tMr GRAVY 

score 

TM Coverage 

(%) 

Unique 

peptides 

SM 

Score 

5G03540 Thioredoxin reductase 

 

6.99 42850.34 -0.44482 0 8 3 46.83 

5G05490 Seryl-tRNA synthetase (EC 6.1.1.11) 6.04 54190.19 -0.69494 0 3 1 21.45 

5G11320 Thioredoxin (TrxA) 5.14 11975.72 -0.08182 0 32 2 36.47 

7G01860 Heat shock protein (Sti1), putative 5.83 65031.41 -0.71863 0 8 2 34.43 

7G05470 Electron transfer flavoprotein alpha subunit, putative 5.73 37630.02 0.042222 0 10 3 45.49 

8G04120 Carboxypeptidase S1, putative (EC 3.4.16.6) 5.4 67672.79 -0.31098 0 11 5 81.77 

CADRE ID., A. fumigatus gene annotation nomenclature according to Nierman et al. (2005) and Mabey et al. (2004); tpI, theoretical isoelectric point; 

tMr, theoretical molecular mass; TM, number of transmembrane regions; GRAVY score, grand average of hydropathy; SM score, Spectrum Mill 

protein score.  
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3.2.4 Identification of A. fumigatus proteins adsorbing to gold nanoparticles 

Mycelia from A. fumigatus ATCC26933 shaking cultures in AMM were 

harvested after 48 h. Protein was extracted as described in Section 2.2.2.1 and co-

incubated with 30 nm colloidal gold nanoparticles (Section 2.2.3.3). Gold nanoparticles 

(AuNPs) were extensively washed to remove unbound or loosely bound proteins from 

the nanoparticles surface. Proteins interacting with the surface of the AuNPs were then 

analysed by SDS-PAGE and protein identification was achieved through in-gel trypsin 

digestion of the lanes and LC-MS/MS analysis (Section 2.2.6.1, 2.2.6.3). 

A total of 43 A. fumigatus proteins that form the hard corona (Lundqvist et al., 

2008) of AuNPs (Figure 3.5), were identified by LC-MS/MS and verified based on a 

Spectrum Mill score ≥ 18.0 (Table 3.4). These proteins cover a pI range of 4.77 to 11.46 

and a Mr range of 15 to 83 kDa. The GRAVY scores for the protein identified here 

extend from -1.016 to 0.247, with 3 proteins exhibiting positive GRAVY score, thus 

indicating hydrophobicity. Proteins were identified with up to 3 TM regions (n = 3) 

accounting for 7 % of the total number of proteins interacting with the AuNP surface. 

Using the FungiFun application (https://www.omnifung.hki-jena.de/FungiFun/) 

(Priebe et al., 2011), the proteins identified here were categorized based on their 

functional annotations. Annotations were available for 100 %, 90.7 % and 55.81 % of 

identified proteins using the FunCat, GO and KEGG schemes respectively. Based on 

the FunCat classification, functional categories that were significantly represented in 

this dataset included protein synthesis (n = 16, p = 3.25 x 10
-8

), metabolism (n = 9, p = 

2.206 x 10
-5

) and energy (n = 13, p = 0.0002). Interestingly, a significant majority of the 

proteins identified (n =38/43, 88.4 %; p = 1.18 x 10
-7

) were described as proteins with 

binding function or cofactor requirement, according to this system (Figure 3.5). 

https://www.omnifung.hki-jena.de/FungiFun
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Table 3.3: A. fumigatus mycelia proteins (n = 43) interacting with AuNP surface, identified by 1D-SDS PAGE and LC-MS/MS. Proteins are arranged 

in order of increasing CADRE ID. 

CADRE ID. 

(AFUA_) 

Protein name tpI tMr GRAVY 

score 

TM Coverage 

(%) 

Unique 

peptides 

SM 

Score 

1G03510 ATP synthase gamma chain 7.64 31546.83 -0.22276 0 7 1 19.61 

1G04940 Small COPII coat GTPase sar1 (EC 3.6.5.-) 5.96 21431.73 -0.13333 0 15 2 27 

1G05390 Mitochondrial ADP,ATP carrier protein (Ant), putative 9.97 33321.49 0.046429 2 20 5 74.33 

1G06390 Elongation factor 1-alpha 9.12 50019.60 -0.29565 0 20 7 120.73 

1G07440 Molecular chaperone Hsp70 5.08 69660.29 -0.4105 0 14 5 73.29 

1G09100 60S ribosomal protein L9, putative 9.67 21843.17 -0.31875 0 6 1 18.35 

1G11710 Ribosomal protein 9.88 24252.58 -0.31751 0 5 1 19.71 

1G11730 ADP-ribosylation factor, putative (Adp-ribosylation factor, 

putative) 

5.54 21003.07 -0.27596 0 9 2 29.12 

1G12170 Elongation factor Tu 6.69 48285.99 -0.32227 0 7 2 33.57 

1G14200 Mitochondrial processing peptidase beta subunit, putative (EC 

3.4.24.64) 

5.9 53269.94 -0.32401 0 4 2 44.14 

1G14410 60S ribosomal protein L17 10.64 21666.02 -0.53041 0 4 1 20.78 

2G03290 14-3-3 family protein ArtA, putative 4.77 29101.64 -0.43563 0 5 1 21.25 



120 

 

CADRE ID. 

(AFUA_) 

Protein name tpI tMr GRAVY 

score 

TM Coverage 

(%) 

Unique 

peptides 

SM 

Score 

2G03730 Ctr copper transporter family protein 8.08 28350.07 0.247082 3 6 1 23.49 

2G07970 60S ribosomal protein L19 11.46 24785.90 -1.01611 0 5 2 26.76 

2G09090 Prohibitin, putative 10.02 34280.16 -0.30643 0 8 1 19.12 

2G09210 60S ribosomal protein L10 10.33 25586.74 -0.53722 0 4 1 19.9 

2G09290 Antigenic mitochondrial protein HSP60, putative 5.53 61949.95 -0.09949 0 4 2 38.19 

2G09850 Oxidoreductase, 2-nitropropane dioxygenase family, putative 

(EC 1.-.-.-) 

6.52 37702.48 -0.02873 0 3 1 22.69 

2G10600 NADH-ubiquinone oxidoreductase 299 kDa subunit, putative 

(EC 1.6.5.3) 

5 27541.84 -0.73595 0 4 1 20.74 

2G13530 Translation elongation factor EF-2 subunit, putative 6.51 93198.10 -0.23468 0 7 4 65.38 

3G05350 Histone H2B 10.12 14955.22 -0.68 0 10 1 19.72 

3G05600 60S ribosomal protein L27a, putative 10.44 16761.31 -0.6349 0 10 1 21.15 

3G06970 40S ribosomal protein S9 9.95 26670.60 -0.54768 0 7 1 21.49 

3G07810 Succinate dehydrogenase subunit Sdh1, putative 6.5 71148.03 -0.41314 0 2 1 19.86 

3G08160 ATP-dependent RNA helicase eIF4A (EC 3.6.4.13) 

(Eukaryotic initiation factor 4A) 

5.05 45778.53 -0.20222 0 5 2 28.15 

3G10730 40S ribosomal protein S7e 10.15 22844.25 -0.54677 0 20 2 23.23 
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CADRE ID. 

(AFUA_) 

Protein name tpI tMr GRAVY 

score 

TM Coverage 

(%) 

Unique 

peptides 

SM 

Score 

3G13320 40S ribosomal protein S0 4.81 32122.23 -0.16498 0 7 2 27.53 

4G03880 60S ribosomal protein L7 9.7 34252.62 -0.56869 0 10 2 32.69 

4G06910 Outer mitochondrial membrane protein porin 9.47 36893.97 -0.14029 0 3 1 18.79 

4G07210 Mitochondrial acetolactate synthase small subunit, putative 

(EC 2.2.1.6) 

6.37 35573.55 -0.18012 0 3 1 19.84 

4G10800 40S ribosomal protein S6 10.84 27279.81 -0.88819 0 7 1 25.49 

4G11250 Carbonic anhydrase (EC 4.2.1.1) 8.62 30827.50 -0.04355 0 10 2 36.23 

4G12850 Calnexin homolog clxA 4.97 61853.81 -0.58295 1 2 1 18.98 

5G01970 Glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.12) 6.96 36314.28 -0.11124 0 20 7 106.8 

5G04210 Ubiquinol-cytochrome C reductase complex core protein 2, 

putative (EC 1.10.2.2) 

8.89 48089.24 -0.02565 0 7 2 36.31 

5G06360 60S ribosomal protein L8, putative 10.97 27485.65 -0.53976 0 13 2 28.52 

5G10550 ATP synthase subunit beta (EC 3.6.3.14) 5.3 55620.38 -0.07881 0 10 4 70.17 

6G04740 Actin Act1 5.87 43893.19 -0.20356 0 8 2 31.59 

6G06340 Glucosamine-fructose-6-phosphate aminotransferase 6.24 77286.83 -0.14813 0 1 1 18.87 

6G08810 NADH-ubiquinone oxidoreductase 304 kDa subunit (EC 

1.6.5.3) 

9.28 38191.46 -0.47395 0 1 1 20.4 
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CADRE ID. 

(AFUA_) 

Protein name tpI tMr GRAVY 

score 

TM Coverage 

(%) 

Unique 

peptides 

SM 

Score 

6G13300 GTP-binding nuclear protein Ran, putative 6.91 24077.71 -0.23721 0 3 2 22.8 

8G04000 Acetyl-CoA acetyltransferase, putative (EC 2.3.1.9) 6.4 40908.96 0.067588 0 4 1 18.02 

8G05320 

 

ATP synthase subunit alpha 9.14 59932.73 -0.12824 0 13 5 67.27 

CADRE ID., A. fumigatus gene annotation nomenclature according to Nierman et al. (2005) and Mabey et al. (2004); tpI, theoretical isoelectric point; 

tMr, theoretical molecular mass; TM, number of transmembrane regions; GRAVY score, grand average of hydropathy; SM score, Spectrum Mill 

protein score. 
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Figure 3.5: (a) Schematic representation of a (i) 30 nm colloidal AuNP (red sphere) 

with surrounding hard corona of adherent proteins and  (ii) unbound proteins that do not 

adsorb to the nanoparticle surface. (b) SDS-PAGE of fractions from AuNP incubation 

with A. fumigatus mycelial proteins. M, protein marker; Lane 1, A. fumigatus lysate 

prior to AuNP incubation; Lane 2,  Unbound A. fumigatus proteins following AuNP 

incubation; Lane 3, A. fumigatus proteins adhering to AuNP surface (hard corona). (c) 

The functional categorisation of A. fumigatus mycelial proteins (n = 43), comprising the 

hard corona of AuNPs, using the FunCat annoation scheme. Categories displaying a p 

value < 0.05, as determined by the FungiFun application (Priebe et al., 2011), are shown 

and number of proteins with corresponding annotations are indicated in bold. Some 

proteins have multiple functional annotations. 
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3.2.5 Identification of 42 proteins from A. fumigatus supernatants using 1D-SDS 

PAGE and shotgun mass spectrometry 

Supernatants from A. fumigatus static cultures were harvested after 1, 2 and 3 

weeks of growth in AMM at 37 °C and lyophilized overnight. Dried supernatants were 

subjected to TCA/acetone precipitation (Section 2.2.4.10) and resultant precipitates 

were analysed by SDS-PAGE followed by in-gel trypsin digestion as described in 

Sections 2.2.4.2 and 2.2.6.1. Samples were also subjected to direct in-solution digestion, 

without prior SDS-PAGE, to enable shotgun mass spectrometric identification of 

culture supernatant proteins (Section 2.2.6.2). Tryptic peptide mixtures were analysed 

by LC-MS/MS and proteins were identified through database interrogation using the 

Spectrum Mill Workbench (Section 2.2.6.3, 2.2.7.1). 

Utilising both direct (shotgun) and in-direct (SDS-PAGE) methods of sample 

processing, a total of 42 A. fumigatus proteins were identified from culture supernatants 

(Table 3.5). For the large scale investigation of secreted proteins, SDS-PAGE coupled 

with LC-MS/MS yielded more identifications (n = 39) than the shotgun mass 

spectrometry approach (n = 10). The culture supernatant proteins identified here 

spanned a theoretical pI range of 4.6 to 8.4 and a Mr range of 12 to 106 kDa. Peptides 

identified contributed to a sequence coverage range between 1 and 45 % of the relative 

proteins, with Spectrum Mill scores ranging between 18 and 300. 

Functional annotations were determined for the identified supernatant proteins 

using the FungiFun application application (https://www.omnifung.hki-

jena.de/FungiFun/) (Priebe et al., 2011). Annotations were available for 76.19 %, 78.57 

% and 28.57 % of identified proteins using the FunCat, GO and KEGG schemes 

respectively. Based on the GO classification, biological processes that were 

https://www.omnifung.hki-jena.de/FungiFun
https://www.omnifung.hki-jena.de/FungiFun
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significantly overrepresented included carbohydrate metabolic process (n = 13, p = 4.96 

x 10
-10

), proteolysis (n = 7, p = 1.45 x 10
-6

), pathogenesis (n = 3, p = 0.0001) and 

polysaccharide catabolic process (n = 4, p = 0.0002). Molecular functions that were 

significantly represented in the sample set included hydrolase activity (n = 24, p = 4.19 

x 10
-13

) and peptidase activity (n = 4, p = 0.0016). Proteins were identified (n = 7; 16.7 

%) were identified which have no functional classification using the aforementioned 

methods. 

The relative hydrophobicity of the proteins identified was measured as outlined 

in Section 3.2.1. The GRAVY score was found to range from -0.6741 to 0.4203 with 9 

proteins possessing positive scores (21.43 % of total supernatant proteins identified), 

thus indicating their hydrophobicity. Proteins with putative transmembrane regions 

were detected (n = 3; 7.14 %). One protein, a monosaccharide transporter 

(AFUA_6G03060) was detected with 12 putative TM regions and a GRAVY score of 

0.4203. Interestingly, this highly hydrophobic protein was only detected using the 

shotgun mass spectrometry approach and not the SDS-PAGE coupled method. 

An additional bioinformatics tool was utilized to characterise the proteins 

identified from A. fumigatus culture supernatants. SignalP (Petersen et al., 2011) was 

utilized to determine that 34 (i.e. 79 %) of the proteins identified here possessed a signal 

peptide, that results in their secretion from the organism by classical pathways. 

SecretomeP (Bendtsen et al., 2004) determined that an additional 5 (i.e. 12 %) of the 

proteins identified here are predicted to be secreted by non-classical pathways. Asp-

hemolysin (Asp-HS) (AFUA_3G00590) and a unknown function protein 

(AFUA_6G00180) were not predicted to have a signal peptide or be secreted by a non-

classical pathway, however these proteins have recently been identified in culture 

supernatants of A. fumigatus by Wartenberg et al. (2011) and Upadhyay et al. (2012), 
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respectively. This provides a positive validation of the techniques used here, from 

sample processing to verification of mass spectrometry data. 
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Table 3.5: A. fumigatus supernatant proteins (n = 42) identified by SDS-PAGE and shotgun mass spectrometry, arranged in order of increasing 

CADRE ID. 

CADRE ID. 

(AFUA_) 

Protein name tpI tMr GRAVY 

score 

TM Coverage 

(%) 

Unique 

peptides 

SM 

Score 

SigP/ 

SecP 

1G00980
a,b

 FAD-dependent oxidase, putative (EC 1.5.3.-) 6.76 53642.92 -0.0119 0 26 12 208.07 SigP 

1G10790
a
 Alpha-1,2-mannosidase family protein, putative 5.97 92750.47 -0.36043 0 4 2 38.19 SigP 

1G14560
a,b

 Probable mannosyl-oligosaccharide alpha-1,2-mannosidase 

1B (EC 3.2.1.113) (Class I alpha-mannosidase 1B) 

(Man(9)-alpha-mannosidase 1B) 

5.09 53840.28 -0.22495 0 37 16 299.83 SigP 

1G16190
a
 Probable glycosidase crf1 (EC 3.2.-.-) (Crh-like protein 1) 

(allergen Asp f 9) 

4.6 40283.87 -0.26076 0 6 2 33.67 SigP 

1G16420
a
 GPI anchored protein 5.34 58557.10 -0.30918 0 6 2 35.71 SigP 

1G17410
a
 Probable beta-glucosidase M (EC 3.2.1.21) (Beta-D-

glucoside glucohydrolase M) (Cellobiase M) 

5.14 82681.18 -0.2736 0 4 3 47.28 SigP 

2G00690
a
 Glucoamylase (EC 3.2.1.3) (1,4-alpha-D-glucan 

glucohydrolase) (Glucan 1,4-alpha-glucosidase) 

5.04 67100.35 -0.10301 0 27 11 178.22 SigP 

2G03980
a
 Alpha-1,3-glucanase/mutanase, putative (EC 3.2.1.-) 4.98 54022.65 -0.2123 0 9 3 54.06 SigP 

2G09030
a
 Dipeptidyl-peptidase 5 (EC 3.4.14.-) (Dipeptidyl-peptidase 

V) (DPP V) (DppV) 

5.59 79744.94 -0.41956 0 4 3 44.37 SigP 

2G11340
b
 Phosphatidylglycerol/phosphatidylinositol transfer protein 

(PG/PI-TP) 

5.56 27290.30 -0.0125 0 4 1 18.8 SecP 
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CADRE ID. 

(AFUA_) 

Protein name tpI tMr GRAVY 

score 

TM Coverage 

(%) 

Unique 

peptides 

SM 

Score 

SigP/ 

SecP 

2G12630
a,b

 Allergen Asp f 15 (Allergen Asp f 13) (allergen Asp f 15) 4.61 15943.84 -0.09408 0 15 2 38.33 SigP 

2G16720
a
 DUF1237 domain protein 5.94 61508.47 -0.28444 0 14 5 85.7 SigP 

3G00270
a
 Probable glucan endo-1,3-beta-glucosidase eglC (EC 

3.2.1.39) (Endo-1,3-beta-glucanase eglC) 

4.9 44651.21 0.064126 1 10 3 60.34 SigP 

3G00320
a
 Endo-1,4-beta-xylanase xynf11a (Xylanase xynf11a) (EC 

3.2.1.8) (1,4-beta-D-xylan xylanohydrolase xynf11a) 

6.27 24493.69 -0.36096 0 11 2 30.86 SigP 

3G00590
a,b

 Asp-hemolysin (Asp-HS) 5.29 15198.64 -0.6741 0 45 7 111.53 - 

3G00840
a
 FAD-dependent oxygenase, putative 6.52 55026.25 -0.16785 0 26 10 182.58 SigP 

3G01130
a,b

 Cell wall protein 4.8 19272.88 0.006667 0 10 2 33.27 SigP 

3G02970
a
 Aspergillopepsin, putative (EC 3.4.23.-) 5.02 28013.98 -0.03717 0 10 2 31.69 SigP 

3G03060
a
 Cell wall protein PhiA 5.2 19406.49 -0.19514 0 34 3 57.7 SigP 

3G03080
a
 Endo-1,3(4)-beta-glucanase, putative (EC 3.2.1.6) 5.09 31087.62 -0.20456 0 27 7 135.29 SigP 

4G03240
b
 Cell wall serine-threonine-rich galactomannoprotein Mp1 4.66 27361.21 0.178169 0 4 2 39.53 SigP 

4G03490
a
 Tripeptidyl-peptidase sed2 (EC 3.4.14.-) (Sedolisin-B) 5.3 65838.74 -0.36777 0 1 1 20.59 SigP 

4G03660
a
 Acid phosphatase, putative (EC 3.1.3.2) 5.94 46131.72 -0.34758 0 12 4 64.95 SigP 

4G09030
a
 Aminopeptidase (EC 3.4.11.7) 6.31 106226.80 -0.27671 0 1 1 22.85 SecP 
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CADRE ID. 

(AFUA_) 

Protein name tpI tMr GRAVY 

score 

TM Coverage 

(%) 

Unique 

peptides 

SM 

Score 

SigP/ 

SecP 

4G11800
a
 Oryzin (EC 3.4.21.63) (Alkaline proteinase) (ALP) 

(Elastase) (Elastinolytic serine proteinase) 

6.31 42190.12 -0.1129 0 25 8 139.76 SigP 

4G13750
a
 Penicillolysin/deuterolysin metalloprotease, putative (EC 

3.4.-.-) 

5.71 39404.88 -0.17297 0 11 3 63.45 SigP 

4G13770
a
 Glycosyl hydrolase, putative (EC 3.-.-.-) 5.14 36755.60 0.085028 0 29 6 102.6 SigP 

5G01200
a
 Carboxypeptidase S1, putative (EC 3.4.16.6) 4.84 54122.23 -0.33873 0 18 6 108.44 SigP 

5G01990
a
 BYS1 domain protein, putative 4.8 16026.11 0.102564 0 11 1 21.46 SigP 

5G02040
a
 Extracellular lipase, putative (EC 3.1.1.3) 5.59 31443.21 0.110368 0 13 4 84.65 SigP 

5G02100
a,b

 Unknown function protein 5.13 29461.30 -0.65358 0 20 6 115.73 SecP 

5G02130
a
 Probable alpha-galactosidase B (EC 3.2.1.22) (Melibiase 

B) 

5.1 47214.90 -0.39296 0 15 4 68.46 SecP 

5G03540
a
 Thioredoxin reductase, putative (EC 1.-.-.-) 6.99 42850.34 -0.44482 0 2 1 18.01 SigP 

6G00180
a
 Unknown function protein 8.41 12131.63 -0.33578 1 31 2 38.96 - 

6G00430
a
 IgE-binding protein 4.66 20487.89 0.0735 0 6 1 19.14 SecP 

6G03060
b
 MFS monosaccharide transporter, putative 6.37 58272.82 0.420339 12 4 1 19.08 - 

6G10130
a
 N,O-diacetyl muramidase, putative (EC 3.2.1.-) 6.02 24639.35 -0.16316 0 7 1 23.6 SigP 

6G13270
a
 Exo-beta-1,3-glucanase, putative (EC 3.2.1.58) 5 84183.57 -0.01182 0 25 14 270.43 SigP 
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CADRE ID. 

(AFUA_) 

Protein name tpI tMr GRAVY 

score 

TM Coverage 

(%) 

Unique 

peptides 

SM 

Score 

SigP/ 

SecP 

7G05140
a
 Class III chitinase, putative (EC 3.2.1.14) 4.89 46234.54 0.034152 0 7 2 36.78 SigP 

7G06140
a
 Probable beta-glucosidase L (EC 3.2.1.21) (Beta-D-

glucoside glucohydrolase L) (Cellobiase L) 

5.65 78381.15 -0.16482 0 13 6 106.79 SigP 

8G01410
a,b

 Chitinase (Class V chitinase ChiB1) (EC 3.2.1.14) 5.03 47622.12 -0.33418 0 41 11 218.09 SigP 

8G07120
a
 Beta-1,6-glucanase Neg1, putative (EC 3.2.1.-) 5.51 51430.21 -0.17254 0 17 6 113.66 SigP 

CADRE ID., A. fumigatus gene annotation nomenclature according to Nierman et al. (2005) and Mabey et al. (2004); tpI, theoretical isoelectric point; 

tMr, theoretical molecular mass; TM, number of transmembrane regions; GRAVY score, grand average of hydropathy; SM score, Spectrum Mill 

protein score; SigP, presence of a signal peptide for secretion by classical pathways; SecP, indicates protein is secreted by non-classical pathways.  

a
Protein was identified following SDS-PAGE coupled with LC-MS/MS; 

b
Protein was identified by shotgun mass spectrometry. 
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3.3 Discussion 

An extensive investigation of the A. fumigatus intracellular and extracellular 

proteome was undertaken using a combination of SDS-PAGE, gel filtration and shotgun 

mass spectrometry. This Chapter outlines a global proteomics approach, which was 

carried out using alternative methods to those classically used for mapping the proteome 

of A. fumigatus mycelia, such as 2D-PAGE coupled with mass spectrometry (Carberry 

et al., 2006; Kniemeyer et al., 2006; Vödisch et al., 2009; Teutschbein et al., 2010). 

Utilising the methods outlined in this Chapter a total of 427 unique A. fumigatus 

mycelial and secreted proteins were identified. Proteins identified from the mycelia of 

A. fumigatus ATCC26933, after 48 h in AMM, totalled 390, while 42 proteins were 

identified from the culture supernatants of extended static cultures in AMM.  

The utilisation of shotgun proteomics in this large scale investigation has 

enabled the identification of a number of proteins that are typically difficult to resolve 

using 2D-PAGE. High molecular mass proteins, hydrophobic proteins and proteins with 

transmembrane regions are generally under-represented in 2D-PAGE studies, due to 

their incompatibility with the isoelectric focusing stage or limited separation by SDS-

PAGE (Harder et al., 1999; Rabilloud, 2009). The standard molecular mass resolution 

of A. fumigatus mycelia proteins, using 2D-PAGE, ranges from 10 to 142 kDa 

(Carberry et al., 2006; Kniemeyer et al., 2006; Vödisch et al., 2009). The constraint of 

large molecular mass did not apply to the shotgun proteomic approach used in this 

study, with the identification of 10 proteins possessing a molecular mass greater than 

142 kDa. The largest protein detected was PesO, a hybrid polyketide synthase/ non-

ribosomal peptide synthetase (PKS/NRPS) (AFUA_8G00540), with a theoretical 

molecular mass of 434 kDa. A total of 73 unique peptides were identified from this 

protein contributing to a sequence coverage of 28 %. A. fumigatus pesO has been 



133 

 

previously investigated in targeted and global transcriptomic studies (Da Silva Ferreira 

et al., 2006; Lee et al., 2009a; Vödisch et al., 2011). PesO, the only hybrid PKS/NRPS 

in the A. fumigatus genome, is involved in the production of pseurotin A (Maiya et al., 

2007) and its identification provides evidence of expression of this secondary 

metabolite cluster. A 267 kDa polyketide synthase (AFUA_8G00370) was also 

identified by 10 unique peptides, contributing to 10% sequence coverage. These 

findings represent some of the largest A. fumigatus proteins to be identified by mass 

spectrometry to date. A study by Cagas et al. (2011b) utilised isobaric tagging for 

relative and absolute quantitation (iTRAQ) in order to profile the early development 

proteome of A. fumigatus. This gel-free method of large scale proteomic identification 

extended the molecular mass limits of detection to 9 to 255 kDa. More recently, 

Wiedner et al. (2012) introduced the use of chemical probes, to discern between active 

and inactive enzymes, coupled with quantitative MS. This study further expanded the 

identification of large molecular mass proteins in A. fumigatus, confirming the value of 

alternative methods for proteomic investigation. 

Proteins with extended hydrophobic regions are difficult to analyse by 2D-

PAGE due to their low water solubility and resulting incompatibility with the conditions 

used in isoelectric focusing (Rabilloud, 2009). This has resulted in the majority of 

recent A. fumigatus membrane investigations being carried out utilising SDS-PAGE 

coupled with mass spectrometry or gel-free iTRAQ (Ouyang et al., 2010; Cagas et al., 

2011a). In contrast, proteomic analysis of A. fumigatus mycelia is dominated by the use 

of 2D-PAGE coupled with mass spectrometry (Carberry et al., 2006; Kniemeyer et al., 

2006; Vödisch et al., 2009). These studies have yielded large volumes of information on 

the mycelial proteome of A. fumigatus, however the limitations of 2D-PAGE have 

hindered the identification of hydrophobic proteins and proteins with multiple 
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transmembrane regions from these fractions. A comprehensive mycelial proteome 

reference map, produced by Vödisch et al. (2009), identified proteins with a GRAVY 

score up to 0.158 and fourteen proteins with 1-2 putative TM regions. This correlates to 

4.2 %, of the total identified proteins, possessing TM regions. Here, in comparison, 37 

proteins possessing predicted TM domains were identified from the mycelia of A. 

fumigatus, corresponding to 10 % of the total proteins identified using shotgun mass 

spectrometry alone (Figure 3.2). This represents a substantial increase (2.4 fold) in the 

identification of proteins with TM regions, compared to previous 2D-PAGE based 

studies with similar targets (Vödisch et al., 2009). A small oligopeptide transporter, 

OPTB (AFUA_2G15240), was identified, which is predicted to contain 14 TM helices. 

While the differential regulation of the transcript of the optB gene has been reported 

previously (Da Silva Ferreira et al., 2006; Hartmann et al., 2011), this represents the 

first identification of the gene product at the protein level. Analysis of the entire A. 

fumigatus proteome predicts up to 24 % of total proteins with at least one TM helix 

(Vödisch et al., 2009), and so under-identification of these proteins can result in 

disparity in the interpretation of the proteome under various conditions. This case is also 

mirrored in the identification of hydrophobic proteins, based on positive GRAVY 

scores. Using the shotgun proteomics approach 28 hydrophobic proteins, corresponding 

to 7.6 % of total identified proteins, were detected, including a protein transport protein 

SEC61 alpha subunit (AFUA_5G08130) with a GRAVY score of 0.4828. With 3.4 % 

of mycelia proteins, identified in the 2D-PAGE proteome map of Vödisch et al. ( 2009), 

possessing positive GRAVY scores, this too represents a significant improvement on 

the gel based methods of proteome investigation.  

Functional classification of proteins identified by shotgun mass spectrometry 

revealed that categories describing (i) protein synthesis, (ii) energy, (iii) protein with 
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binding function or cofactor requirement, (iv) transcription and (v) cell cycle and DNA 

processing were significantly represented in the data set. Identification of a large 

number of ribosomal proteins (n = 48) (Figure 3.6) accounts for the high representation 

of the protein synthesis and the protein with binding or cofactor requirement functional 

categories. Despite their abundance in the cell (Warner, 1999), detection of ribosomal 

proteins by 2D-PAGE may be limited due the highly basic or acidic nature of these 

proteins and the relative low molecular mass of the subunits. Vödisch et al. (2009) 

identified 11 ribosomal proteins during the compilation of the mycelial proteome 

reference map of A. fumigatus while no ribosomal proteins were detected in earlier 

proteome maps (Carberry et al., 2006; Kniemeyer et al., 2006). Of the ribosomal 

proteins identified by shotgun mass spectrometry, 42 exhibited a pI ≥ 8.59 and the 

remainder, described as acidic subunits displayed a pI ≤ 5.74. All identified ribosomal 

proteins had a molecular mass ≤ 44 kDa, with 87.5 % having a Mr < 30 kDa. KEGG 

pathway mapping allows visualisation of the ribosomal proteins identified and their 

respective localisation in either the large (60S) or the small (40S) ribosomal subunits 

(Figure 3.6).  
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Figure: 3.6: A. fumigatus ribosomal proteins identified by shotgun mass spectrometry. Green boxes represent ribosomal proteins that have been 

annotated in A. fumigatus according to KEGG pathways (Kanehisa et al., 2012). Boxes with red font and border represent proteins that were identified 

in this study.  
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The functional category describing proteins involved in energy metabolism or 

transfer was also significantly represented from the sample set of proteins identified by 

shotgun mass spectrometry (n = 86; p = 6.95e-18). The majority of the enzymes 

constituting the citrate cycle (TCA) were detected (Figure 3.7), in addition to proteins 

involved in electron transport and energy generation by ATP synthases. This 

observation reflects the growth on glucose as a sole carbon source, whereby glycolysis 

provides a substrate for the TCA cycle which in turn generates energy via the electron 

transport chain. Enzymes were also identified that are involved in the pentose phosphate 

pathway, an alternative route for glucose oxidation which can produce intermediate 

pentoses used in the biosynthesis of nucleic acids or aromatic amino acids. These 

enzymes included 6-phosphogluconate dehydrogenase (AFUA_6G08050) which is 

responsible for the metabolism of 6-phospho-D-gluconate, a derivative of glucose, to D-

ribulose 5-P (Maaheimo et al., 2001). Following the conversion of ribulose-5-P to D-

xylulose 5-P, transketolase TktA (AFUA_1G13500) catalyses the production of 

sedoheptulose 7-P and fructose 6-P in separate reactions (Kleijn et al., 2005). 

Sedoheptulose 7-P can then be metabolised to D-erythrose 4-P, an amino acid 

precursor, by transaldolase (AFUA_5G09120) (Schaaff et al., 1990).  
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Figure 3.7: A. fumigatus proteins identified by shotgun mass spectrometry, involved in the TCA cycle. Green boxes represent proteins that have been 

annotated in A. fumigatus according to KEGG pathways (Kanehisa et al., 2012). Boxes with red font and border represent proteins that were identified 

in this study.

Citrate cycle (TCA Cycle) 
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A number of proteins (n = 21) were identified by shotgun proteomics with no 

functional annotation, based on FunCat, GO and KEGG annotation, using the FungiFun 

application (https://www.omnifung.hki-jena.de/FungiFun/) (Priebe et al., 2011). Many 

of these proteins were annotated as hypothetical proteins (AFUA_1G02290, 

AFUA_1G09130, AFUA_2G02490, AFUA_3G00730, AFUA_3G06460, 

AFUA_3G08440, AFUA_3G14665, AFUA_5G14680, AFUA_6G10450, 

AFUA_8G00400, AFUA_8G00430, AFUA_8G04890, and AFUA_8G05600) and can 

now be reclassified as unknown function proteins (UFPs) as a result of the biochemical 

verification of their translation. Other proteins with unknown functions identified by 

shotgun mass spectrometry include high expression lethality protein (Hel10) 

(AFUA_1G06580), PT repeat family protein (AFUA_2G17000), conserved lysine-rich 

protein (AFUA_4G12450), DUF 89 domain protein (AFUA_5G06710), cipC-like 

antibiotic response protein (AFUA_5G09330), CFEM domain protein 

(AFUA_6G06690), M protein repeat protein (AFUA_6G08660) and dltD N-terminal 

domain protein (AFUA_8G00380). 

Additional bioinformatics analysis, using the program BLAST2GO, enabled the 

putative functional annotation of some of these proteins based on sequence homology to 

proteins on the NCBI database (http://www.blast2go.com/b2glaunch/start-blast2go) 

(Conesa et al., 2005). The unknown function protein (AFUA_2G02490) was re-

annotated by this method as a putative glutamineamidotransferase subunit pdxT, with 

predicted nucleotide binding and transferase activities. Similarly the unknown function 

proteins (AFUA_1G109130, AFUA_1G02290 and AFUA_3G00730) were re-annotated 

as putative transcription factor Btf3, cyanovirin-n family protein and a glutathione s-

transferase, respectively. The remaining proteins retained their original sequence 

descriptions, however GO identifications were assigned to a number of proteins based 

https://www.omnifung.hki-jena.de/FungiFun
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on sequence homology. The unknown function protein (AFUA_8G00400) was 

predicted to have O-methyltransferase activity and this could allude to its function as 

part of the secondary metabolite cluster on Chromosome 8 (Perrin et al., 2007). The M 

protein repeat protein was assigned GO identifications indicating its involvement in 

signal transduction and a localisation designating it as integral to the membrane. The 

DUF89 domain protein (AFUA_5G06710) was denoted putative molecular functions of 

protein serine/threonine phosphatase activity and metal ion binding. The conserved 

lysine-rich protein (AFUA_4G12450) was deemed to have protein and phospholipid 

binding activity, while the PT repeat family protein (AFUA_2G17000) was annotated 

with hydrolase and peptidase activity. This study is the first report to date on the 

unknown function proteins (AFUA_2G02490, AFUA_3G14665, AFUA_8G04890), PT 

repeat family protein and DUF 89 domain protein, with many others accounted for at 

the transcript level only (Sheppard et al., 2005; da Silva Ferreira et al., 2006; Twumasi-

Boateng et al., 2009). These proteins represent targets for future functional genomic or 

comparative proteomic projects to elucidate their role in the fungal cell (Doyle, 2011b).  

Verification of the transcription and translation of genes found in secondary 

metabolite clusters was achieved in this study using shotgun mass spectrometry. 

Proteins identified are putatively found in six clusters, involved in the production of up 

to eight secondary metabolites (SM) (Perrin et al., 2007). Products of these SM clusters 

include up to 4 unknown metabolites, fumitremorgin B (Grundmann and Li, 2005; 

Maiya et al., 2006), pseurotin A (Maiya et al., 2007), gliotoxin (Gardiner and Howlett, 

2005) and a putative ETP (Patron et al., 2007) (Figure 3.8). Perrin et al. (2007) 

annotated a ‘supercluster’ on Chromosome 8 (AFUA_8G00100-AFUA_8G00720) that 

is involved in the production of fumitremorgin B, pseurotin A and possibly an 

additional unknown metabolite (Grundmann and Li, 2005; Maiya et al., 2007). Fourteen 
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proteins identified by shotgun mass spectrometry are annotated members of this 

‘supercluster’, with one identified protein involved in fumitremorgin B production, four 

proteins involved in the pseurotin A biosynthetic portion of the cluster and the 

remaining nine proteins forming part of the cluster producing an unknown metabolite. 

 Phytanoyl-CoA dioxygenase family protein (FtmF) (AFUA_8G00230) was 

identified by 3 unique peptides and a sequence coverage of 14 %. FtmF, a non-heme Fe 

(II) and α-ketoglutarate-dependent dioxygenase, catalyses the conversion of 

fumitremorgin B to verruculogen via endoperoxide bond formation (Steffan et al., 

2009).  This enzyme is also capable of conversion of fumitremorgin B to 12α, 13α-

dihydroxyfumitremorgin C and 13-oxo-verruculogen, by deprenylation and oxidation 

mechanisms respectively (Kato et al., 2011). Verruculogen, like fumitremorgin B, is a 

tremorgenic mycotoxin and has been shown to produce deleterious effects on 

respiratory epithelial cells (Khoufache et al., 2007). The observation of the FtmF 

enzyme suggests the production of fumitremorgin B by A. fumigatus under the 

conditions of culture and its subsequent conversion to verrulculogen. 

Pseurotin A is another metabolite produced by the ‘supercluster’ on 

Chromosome 8 (Figure 3.8) (Maiya et al., 2007). Four enzymes, that form part of the 

pseurotin biosynthetic cluster, were detected here; an alpha/beta hydrolase 

(AFUA_8G00530), a hybrid PKS-NRPS enzyme PesO (AFUA_8G00540), a 

methyltransferase SirN-like (AFUA_8G00540) and a putative glutathione S-transferase 

(AFUA_8G00580) (Carberry et al., 2006). This cluster has demonstrated increased 

expression at both the transcript and protein level under hypoxic conditions (Vödisch et 

al., 2011). Furthermore, up-regulation of the methyltransferase and hybrid PKS-NRPS 

transcripts was also shown  in the mouse lung during experimental aspergillosis 

(Vödisch et al., 2011). As discussed earlier, the hybrid PKS-NRPS, a 434 kDa protein, 
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was identified and represents one of the largest proteins detected by MS in A. fumigatus 

to date. 

The final section of the Chromosome 8 ‘supercluster’ is hypothesised to produce 

a secondary metabolite, however this molecule has remained unidentified. Genes 

predicted to form this cluster span from AFUA_8G00300 to AFUA_8G00520 and nine 

of the corresponding proteins were identified by shotgun mass spectrometry, providing 

strong evidence of the production of this unknown metabolite under the conditions 

utilised here (i.e. minimal media, 37 °C, 200 rpm, dark, 48 h). Vödisch et al. (2011) 

identified two of these proteins, a steroid monooxygenase (AFUA_8G00440) and an 

unknown function protein (AFUA_8G00430), with significant upregulation under 

hypoxic growth conditions. This may suggest the uncharacterised metabolite could be a 

putative virulence factor, as cluster expression is up-regulated in conditions that reflect 

the hypoxic in vivo environment. Indeed, transcript expression of six of the proteins 

identified from this cluster was up-regulated in A. fumigatus Af293 during the initiation 

of murine infection (McDonagh et al., 2008) (Table 3.6). 
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Table 3.6: Differential regulation of a secondary metabolite cluster on Chromosome 8 

in A. fumigatus Af293 during initiation of murine infection 

 

 

 

Differential expression of genes during initiation of murine infection was depicted by a 

colour scale of red (up-) to green (down-regulation). Proteins identified by shotgun 

proteomics are surrounded by a red box. New Accessions., A. fumigatus gene 

annotation nomenclature according to Nierman et al. (2005) and Mabey et al. (2004). 

From McDonagh et al. (2008), supplementary table 6. 
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GliT (AFUA_6G09740), a member of the gliotoxin biosynthesis cluster located 

on Chromosome 6 (Gardiner and Howlett, 2005), is responsible for the oxidation and 

reduction of the disulphide bridge of gliotoxin. This provides a key component of the 

biosynthetic process and also mediates self-protection against the harmful effects of 

gliotoxin (Scharf et al., 2010; Schrettl et al., 2010). Gliotoxin belongs to the 

epipolythiodioxopiperazine (ETP) class of toxins, whose toxicity is mediated by an 

internal disulfide bridge (Patron et al., 2007). Identification of GliT in mycelia extracts 

suggests this cluster is active and work carried out in Chapter 6 confirms the presence of 

gliotoxin in culture supernatants using the conditions described here.  

Zn-dependent hydrolase/oxidoreductase family protein (AFUA_3G13010), 

identified here, belongs to a cluster that may putatively produce an additional ETP in 

A.fumigatus (Patron et al., 2007; Perrin et al., 2007). Patron et al. (2007) identified this 

second ETP cluster, which does not contain the full suite of genes found in the gliotoxin 

biosynthetic cluster (Figure 3.8). Crosstalk between the ETP clusters on Chromosomes 

3 and 6 could potentially be required for the production of this second ETP from A. 

fumigatus.  Three additional proteins were identified, that are associated with secondary 

metabolite clusters on Chromosomes 3 and 4. Phosphoglycerate kinase PgkA 

(AFUA_1G10350) was identified in this study and forms part of a cluster that includes 

the NRPS, Pes1 (AFUA_1G10380) (Nierman et al., 2005). This NRP synthethase has 

recently been linked to the production of fumigaclavine C (O’Hanlon et al., 2012), an 

ergot alkaloid, and PgkA could also be involved in the biosynthetic process of this 

metabolite. A putative glutathione S-transferase (AFUA_4G14380) was identified from 

a cluster on Chromosome 4 with an unknown product. Lysophospholipase 3 

(AFUA_3G14680) and an unknown function protein (AFUA_3G14665) were also 

detected and form part of a cluster with an unidentified product. 
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c. 

 

d. 

 

 
 

Figure 3.8: Arrangement of genes in A. fumigatus secondary metabolite clusters that 

produce (a) fumitremorgin B, (b) pseurotin A, (c) gliotoxin and (d) a putative ETP. A. 

fumigatus gene annotation nomenclature according to Nierman et al. (2005) and Mabey 

et al. (2004). Adapted from (a) Maiya et al. (2006), (b) Vödisch et al. (2011), (c) and 

(d) Patron et al. (2007). 
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A noteworthy observation is that expression of all of the clusters, identified here 

by mass spectrometry, is either partially or fully regulated by LaeA (Perrin et al., 2007). 

LaeA (AFUA_ 1G14660) is a global transcriptional regulator of secondary metabolite 

clusters (Bok and Keller, 2004; Bok et al., 2005; Perrin et al., 2007) and its disruption 

results in reduced virulence. McDonagh et al. (2008) identified a number of LaeA 

regulated secondary metabolite genes that are induced during the initiation of murine 

invasive aspergillosis, including pseurotin A and gliotoxin. This highlights the 

importance of LaeA directed regulation to the success of A. fumigatus as a pathogen.  

In an attempt to reduce the complexity of the A. fumigatus mycelial protein 

lysates, gel filtration chromatography was performed prior to in-solution digestion of 

size fractionated samples and shotgun mass spectrometry. While this pre-fractionation 

approach did not yield as many proteins identifications as shotgun proteomics alone 

(173 and 370 protein identifications, respectively), seventeen unique proteins were 

detected that had not be observed using the shotgun mass spectrometry method alone. 

The proteins identified using gel filtration coupled shotgun mass spectrometry spanned 

a similar range of molecular mass and pI, demonstrating that these factors were not 

limited by the addition of the pre-fractionation step. Similarly, hydrophobic proteins and 

proteins with up to 12 transmembrane regions were detected signifying that these 

attributes were compatible with the addition of the size exclusion step. Interestingly, 

five of the unique proteins, identified using gel filtration pre-fractionation, are involved 

in stress response as denoted by the FunCat classification scheme. Telomere and 

ribosome associated protein, Stm1 (AFUA_3G10920), is predicted to be involved in 

apoptosis-like cell death in response to oxidative stress, based on homology to the yeast 

Stm1 protein (Ligr et al., 2001). The A. nidulans ortholog of the phosphotransmitter 

protein, Ypd1 (AFUA_4G10280), is part a signalling pathway that regulates osmotic 
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stress response (Furukawa et al., 2005). The putative heat shock protein, Sti1 

(AFUA_7g01860), was also identified and expression of this protein has been shown to 

be up-regulated following amphotericin B treatment of A. fumigatus in vitro (Gautam et 

al., 2008). Thioredoxin, TrxA (AFUA_5G11320), is predicted to be involved in the 

oxidative stress response based on homology the A. nidulans TrxA protein (Thön et al., 

2007). Finally, a calnexin homolog, ClxA (AFUA_4G12850), is necessary for growth in 

thermal, nutrient and endoplasmic reticulum stress. Identification of protein expression 

from stress response pathways is valuable as these could present potential therapeutic 

targets. In order, to expand the number of proteins identified using this pre-fractionation 

technique a number of adjustments could be made. Possible improvements to this 

methodology include the use of a number of gel filtration columns arranged in a series 

for improved separation and resolution (Gordon et al., 2010), or the use of extended 

gradients during liquid chromatography. 

The A. fumigatus mycelial protein corona of gold nanoparticles was investigated 

using SDS-PAGE coupled with LC-MS/MS. A total of 43 proteins were found to 

interact strongly with the surfaces of the 30 nm colloidal gold nanoparticles (AuNPs) 

(Table 3.4). This ‘affinity’ purification enabled the identification of three additional 

mycelial proteins that were not detected by either shotgun proteomics alone or gel-

filtration coupled shotgun mass spectrometry. One of these unique proteins was a 

mitochondrial acetolactate synthase small subunit (AFUA_4G07210) that shows 

induction during hypoxia (Vödisch et al., 2011). A prohibitin (AFUA_2G09090) was 

identified, that has been detected in the germ-tubes of A. fumigatus (Suh et al., 2012), 

and Ctr copper transporter family protein (AFUA_2G03730) has not been detected at 

the protein level previously. A note-worthy observation is that a significant majority of 

proteins identified (n = 38, 88.4 %, p = 1.18e-7) were classified as having a binding 
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function or co-factor requirement according to FunCat annotation. This demonstrates a 

potential method by which samples can be enriched for proteins from this functional 

category. A recent review by Kniemeyer et al. (2011) has collated all of the A. 

fumigatus proteomics data generated to that point and has reported that 18.5 % of all 

proteins identified, with FunCat annotations, fall into the category of protein with 

binding function or cofactor requirement. Taking this into account, this method could 

conversely be used to reduce the dynamic range of complex lysates by the removal of 

these proteins.  

Several studies have been carried out to explore the A. fumigatus secretome 

using a variety of growth substrates and proteomic methodologies (Gautam et al., 2008; 

Singh et al., 2010a; Kumar et al., 2011; Wartenberg et al., 2011). Here, two proteomic 

strategies were utilised to obtain maximum characterisation of the A. fumigatus 

secretome; (i) SDS-PAGE coupled with mass spectrometry and (ii) in-solution digestion 

and shotgun mass spectrometry. The former approach yielded 39 A. fumigatus protein 

identifications while the latter detected 10 proteins (Table 3.5). Seven proteins were 

detected using both methods described, resulting in a total of 42 A. fumigatus 

extracellular proteins being identified. These proteins were analysed to determine 

whether they contained a signal peptide for secretion or whether they were part of a 

non-classical secretion pathway using the programs SignalP and SecretomeP 

respectively (Bendtsen et al., 2005; Petersen et al., 2011). This analysis revealed that 34 

of the extracellular proteins identified possessed a signal peptide while 5 were predicted 

to be involved in a non-classical secretion pathway.  

Functional characterisation of the extracellular proteins identified, based on 

FunCat annotation, revealed a significant representation of proteins involved in C-

compound and carbohydrate metabolism (n = 19; p = 1.48 x 10
-5

), as expected based on 



149 

 

its growth on glucose.  Interestingly, despite growth on a minimal media with glucose 

as a sole carbon and energy source, a number of enzymes involved in protein/peptide 

degradation (n = 8, p = 7.5 x 10
-4

) were present. Six proteins were detected, with no 

FunCat, GO or KEGG functional annotations and these proteins were analysed further 

to assign putative functions based on sequence homology using the BLAST2GO 

program (Conesa et al., 2005). Only one of these proteins was assigned a GO annotation 

following this analysis, with methyltransferase activity predicted for the GPI anchored 

protein (AFUA_1G16420). With these limitations of systems-based functional 

predictions, molecular and biochemical methods will need to be implemented to 

elucidate the functions of these proteins and the biological processes in which they are 

involved. 

A number of proteins, identified in the analysis of the secretome, have not been 

reported yet in the literature, including a FAD-dependent oxidase (AFUA_1G00980), 

alpha-1,2-mannosidase family protein (AFUA_1G10790), a GPI anchored protein 

(AFUA_1G16420), a cell wall protein (AFUA_3G01130) and a thioredoxin reductase 

(AFUA_5G03540). In addition several other proteins were described at the transcript 

level previously but no protein identification had been achieved until now. 

Consequently, analysis of the A. fumigatus secretome has verified both the translation of 

these gene products and also confirmed the localisation of the resultant proteins. This 

information may aid in future studies to confirm the functions of these extracellular 

proteins.  

A number of proteins (n = 5) were identified from both mycelial and culture 

supernatant sources including the allergen Asp f9 (AFUA_1G16190), a 

phosphatidylglycerol/phosphatidylinositol transfer protein (PG/PI-TP) 

(AFUA_2G11340), an endo-1,3-beta-glucanase (EglC) (AFUA_3G00270), an 
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aminopeptidase (AFUA_4G09030) and a thioredoxin reductase (AFUA_5G03540). 

Aspf9, a well defined allergen, contains a signal peptide (Petersen et al., 2011) and has 

been detected in culture supernatants (Singh et al., 2010a; Wartenberg et al., 2011), thus 

supporting its detection in the study of secreted proteins performed here. Asp f9 is also 

described as a GPI-anchored protein and is found in the cell membrane of A. fumigatus 

mycelia (Bruneau et al., 2001), thus validating its identification in the mycelial fraction 

of this study. While there are no literature reports on the identification of the PG/PI-TP 

protein in A. fumigatus, its ortholog in Saccharomyces cerevisiae, NPC2, has been 

detected in both intracellular and supernatant fractions of transfected mammalian cells 

(Berger et al., 2005). The EglC protein, a β (1-6)/β (1-3) glucan branching 

transglycosidase, has been identified from both A. fumigatus cell wall fraction 

(Gastebois et al., 2010b) and culture supernatants (Singh et al., 2010a). The 

aminopeptidase has similarly been identified in large scale proteomic studies of mycelia 

proteins (Albrecht et al., 2010) and secreted proteins (Wartenberg et al., 2011). 

Thioredoxin reductase (AFUA_5G03540) has not been reported in any literature to date 

and so this represents the first identification of this protein in A. fumigatus. An ortholog 

of thioredoxin reductase in Aspergillus niger, Sox1, has been identified in the 

extracellular or membrane fraction of A. niger cultures after growth on xylose and 

maltose (Lu et al., 2010). These observations from previous studies validate the 

concurrent identification of proteins in both mycelia and secreted fractions and, in the 

case of EglC and thioredoxin reductase, provide the first evidence of protein localisation 

in A. fumigatus.  

In summary, a MS-based proteomics strategy was applied to investigate the 

mycelial proteome and the secretome of A. fumigatus ATCC26933. Methods to reduce 

sample complexity, and subsequently allow greater proteome characterisation, were also 
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investigated. A total of 427 unique A. fumigatus proteins were identified from this 

study, including 390 mycelial proteins and 42 proteins from the secretome. Many of the 

proteins identified by this MS-based proteomics strategy are typically underrepresented 

in 2D-PAGE studies. Bioinformatic analysis of the resultant datasets identified proteins 

with extremes of molecular mass and pI, hydrophobic proteins and proteins with up to 

14 transmembrane regions. Proteins of unknown function (n = 21) were also identified 

and this study represents the first report of the existence of many of these proteins. 

Additionally, large scale proteomic profiling of A. fumigatus mycelia revealed a number 

of proteins involved in secondary metabolite clusters, providing strong evidence for the 

activation of multiple clusters under the control the transcriptional regulator LaeA in the 

conditions tested. Overall, the findings of this Chapter demonstrate the importance of 

implementing MS-based proteomics, as an adjunct to gel based proteomics, in order to 

comprehensively analyse the biosystems active in A. fumigatus. While MS-based 

proteomics provides a global overview of genome-wide expression under set conditions, 

gel-based proteomics retains its importance in the proteomic tool-belt due to its well-

defined compatibility with immunodetection and comparative analysis. In Chapter 4 

2D-PAGE and immunoblotting will be utilised in an attempt to further characterise the 

immunoproteome of A. fumigatus, while Chapter 5 will rely on comparative 2D-PAGE 

analysis to discern the mechanism of action of gliotoxin relief of oxidative stress in A. 

fumigatus. 
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Immunoproteomic analysis  
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4 Chapter 4 

4.1 Introduction 

Immunoproteomics involves the identification and characterisation of antigenic 

proteins and provides valuable information on the potential involvement of these 

proteins in virulence (Doyle, 2011b). Identification of antigens can be exploited for the 

development of diagnostic tools, as the circulating antibodies directed against specific 

antigens can be utilised as biomarkers of disease (Tjalsma et al., 2008). Identified 

antigens can also be utilised for the development of vaccines directed against the 

pathogen of interest (Kniemeyer, 2011). Current methodologies employed for the study 

of the immunoproteome can be classified as (i) gel-based or (ii) gel-free methods 

(Tjalsma et al., 2008). Gel-free methods include the use of protein microarrays, which 

allow large-scale screening of immunoreactivity against semi-purified or recombinantly 

produced protein (Davies et al., 2005; Tjalsma et al., 2008). The majority of fungal 

immunoproteomics investigations implement gel-based methods for antigen 

identification (Kniemeyer, 2011). The coupling of 2D-PAGE and immunoblotting, with 

subsequent protein identification by mass spectrometry, enables the isolation, detection 

and identification of antigenic proteins (Tjalsma et al., 2008; Doyle, 2011a).  

2D-PAGE involves the separation of protein by pI in the first dimension, 

followed by separation by relative molecular mass in the second dimension by 

electrophoresis (Kniemeyer, 2011). Proteins resolved by 2D-PAGE can be transferred 

electrophoretically from the polyacrylamide gel to a membrane to produce a replication 

of the protein distribution pattern (Tjalsma et al., 2008). Protein transfer from the gel to 

the membrane can be examined through the application of a reversible protein stain 

such as Ponceau S (Krah and Jungblut, 2004). These membranes are subsequently 

blocked to prevent non-specific binding of antibodies, followed by incubation with 
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purified antibodies or serum samples (Krah and Jungblut, 2004). Reactivity of 

antibodies with proteins on the membrane is detected through use of a secondary 

antibody conjugated to an enzyme (Figure 4.1) (Doyle, 2011a). Typical experimental 

design for 2D-PAGE coupled with immunoblotting involves the separation of protein 

extracts in duplicate by 2D-PAGE. Total proteins are visualised on gel 1 by staining, 

using Coomassie blue or silver staining. Gel 2 is transferred to membrane reversibly 

stained to obtain an image of the protein distribution pattern and subsequent 

immunoblotting is carried out (Figure 4.1) (Doyle, 2011a). Using the image of the 

reversibly stained blot as a reference, the immunoreactive proteins on the membrane can 

be aligned against the proteins from the stained gel (Figure 4.1). Following protein 

isolation, mass spectrometry can be utilised to identify the immunoreactive proteins. 

Comprehensive identification and characterisation of antigenic proteins from pathogenic 

organisms can aid in the development of diagnostic tools, in addition to providing 

information on the mechanisms of pathogenesis (Kumar et al., 2011). 

Due to the association of IA with neutropenia or immunosuppression, detection 

of elevated levels of anti-Aspergillus antibodies is often not possible, contributing to the 

difficulty in obtaining a diagnosis (Hope et al., 2005). Instead, detection of circulating 

antigens has been investigated as a diagnostic tool for IA (Mennink-Kersten et al., 

2008). Another form of A. fumigatus related disease involves the colonisation of 

cavities in the lung, formed as a result of pre-existing conditions such as tuberculosis, 

resulting in a mass of hyphae termed an aspergilloma (Ma et al., 2011). Aspergillomas 

occur in approximately 10 to 15 % of individuals with these pulmonary cavities and can 

be detected by radiography or elevated antibody levels (Latge, 1999). Allergic 

bronchopulmonary aspergillosis (ABPA) involves the colonisation of the airways by A. 

fumigatus, resulting in an allergy mediated inflammatory response. 
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Figure 4.1: (a) Schematic representation of steps during gel-based immunoproteomics. 

2D-PAGE involves protein separation by pI, followed by gel-based separation based on 

molecular mass. Next, proteins are transferred from the gel and immobilised on a 

membrane by blotting. (b) Antigenic proteins (immunome) can be detected by applying 

serum to the blot, after which bound antibodies can be visualised by secondary labelled 

antibodies. (c) Two gels are prepared in tandem, with total protein staining carried out 

on gel 1, and immunodetection carried out on gel 2. Detected antigens on gel 2 can be 

isolated from gel 1 for identification by MS. Adapted from Tjalsma et al. (2008) and 

Doyle (2011a). 

a. 

b. 

c. 
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ABPA affects mainly individuals with cystic fibrosis, and is exacerbated by the 

limited ability of CF patients to clear inhaled conidia effectively from the lungs (Pihet et 

al., 2009). Due to the allergic nature of this disease, an elevation of IgE directed against 

A. fumigatus proteins is often associated with ABPA (Hafen et al., 2009). The three 

Aspergillus-related diseases outlined involve the mycelial growth of A. fumigatus in the 

body and highlight the requirement for diagnostic tools for the detection of the fungus 

in this growth phase. 

Following inhalation, A. fumigatus conidia encounter the mucous lining of the 

lungs along with a number of enclosed pattern recognition receptors (PRRs). These 

PRRs can bind to the surface of inhaled conidia and target them for phagocytosis and 

killing by alveolar macrophages (Reid et al., 1997). Engulfed conidia swell inside the 

phagocyte and are subsequently destroyed through the action of reactive oxygen species 

(ROS) (Philippe et al., 2003). Alveolar macrophages are resident in the lung, and 

primarily target conidia for phagocytosis. Conversely, neutrophils are recruited to the 

site of inflammation from the extensive pulmonary vascular system and are capable of 

arresting conidial growth, in addition to targeted killing of hyphae (Bonnett et al., 2006; 

Feldmesser, 2006). Consequently, neutropenic individuals exhibit a high risk for 

developing invasive aspergillosis (Dagenais and Keller, 2009). Activation of PRRs also 

stimulates the maturation of dendritic cells, which function in antigen-presentation and 

prime the T-cell immune response. Th2-type responses can be detrimental to the host as 

they are related to allergy and may result in the development of asthma or allergic 

bronchopulmonary aspergillosis (ABPA). Helper T-cell activation of relevant B-cells, 

following antigen detection, results in the production of antibodies directed against A. 

fumigatus proteins. While these antibodies may not confer resistance to A. fumigatus, 
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their detection at elevated levels may be indicative of diseases such as aspergilloma and 

ABPA (Tillie-Leblond and Tonnel, 2005; Zmeili and Soubani, 2007). 

Prior to the availability of the genomic sequence of A. fumigatus (Nierman et al., 

2005), numerous immunoproteomic studies had been carried out without definitive 

protein identification (Latge, 1999). Recent characterisation of the antigenic proteome 

of A. fumigatus has predominantly been achieved through a combination of 2D-PAGE, 

immunodetection and subsequent protein identification by mass spectrometry. Many 

studies have focused on the identification of A. fumigatus allergens based on the 

presence of reactive IgE in sera from patients with an allergy-based disease (Gautam et 

al., 2007; Singh et al., 2010a, 2010b). Others have expanded on this to incorporate 

identification of IgG reactive proteins from A. fumigatus, in addition to other antibody 

isoforms (IgA and IgM). This was achieved through immunoblotting with sera from 

both patients and animal models of A. fumigatus infection (Asif et al., 2010; Singh et 

al., 2010a, 2010b; Kumar et al., 2011; Shi et al., 2012a). Another distinguishing factor 

between various immunoproteomic studies is the cellular localisation of antigens, 

namely whether they are present intracellularly or extracellularly, and the 

developmental stage they are associated with (i.e. conidia or mycelia). The secretome of 

A. fumigatus presented an attractive target for many immunoproteomic studies, as these 

extracellular proteins were considered to come into direct contact with the host during 

pathogenesis (Kumar et al., 2011). Investigation of culture filtrates has not only 

identified antigenic proteins but has also greatly contributed to the characterisation of 

the A. fumigatus secretome (Gautam et al., 2007; Singh et al., 2010a; Kumar et al., 

2011; Shi et al., 2012a). The identification of antigens localised in germinating conidia 

has also been undertaken, with the identification of 66 proteins by immunoreactivity 

with pooled ABPA patients’ sera (Singh et al., 2010b) and 59 proteins displaying 
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reactivity with rabbit sera following invasive aspergillosis (Asif et al., 2010). While all 

of these studies have utilised sera from sources with high anti-Aspergillus antibody 

titres, normal sera from healthy individuals also represents a source of these antibodies. 

Kurup et al. (2006) noted that sera from normal control subjects exhibited specific IgG1 

reactivity to crude extracts of A. fumigatus proteins and a number of controls showed 

strong IgA2 reactivity. Additionally, Schrettl et al. (2010) noted the widespread 

presence of antibodies from normal sera, directed against the gliotoxin oxidoreductase 

GliT, and exploited this observation for the purification of anti-GliT antibodies using 

recombinant the antigen. 

With the aim of expanding the characterisation of the immunoproteome of A. 

fumigatus, an investigation was carried out to identify proteins reactive with normal 

human sera. This was carried out using the 2D-PAGE, coupled with mass spectrometric 

identification of immunoreactive proteins from the mycelia of this opportunistic 

pathogen. A total of 25 unique proteins were identified, including 13 proteins which had 

previously not been characterised as antigenic. This novel approach, utilising (i) 

mycelia instead of conidia or secreted proteins, and (ii) sera from healthy donors in 

place of disease state sera, has demonstrated expansion of the currently described 

compilation of A. fumigatus antigens. The findings described in this Chapter may be 

relevant for advancing diagnostic tools or provide further elucidation of the mechanisms 

of disease. 
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4.2 Results 

4.2.1 Detection of immunoreactivity to A. fumigatus mycelia proteins in normal 

human sera 

Mycelia were harvested from A. fumigatus ATCC26933 shaking cultures in 

AMM after 48 h and proteins were extracted as outlined in Section 2.2.2.1. Protein 

extracts were separated using SDS-PAGE and gels were transferred to NCP (Section 

2.2.4.5). Following transfer, NCP was cut vertically into strips which were then probed 

with pools of normal human sera (n = 135 serum samples, n = 29 serum pools; 5 serum 

samples/pool). Immunoreactivity directed against A. fumigatus proteins was detected 

using an anti-human IgG - HRP conjugate with a chromogenic substrate, DAB (Section 

2.2.4.7). A section of the gel was stained with Coomassie blue as a reference (Figure 

4.2).  

Immunoreactivity against A. fumigatus mycelia proteins was observed in 93 % 

of sera pools tested (n = 27 pools). Sera pools displayed differential intensities and 

patterns of immunoreactivity, with high immunoreactivity observed from pools shown 

in lanes 6, 7 and 11 (Figure 4.2). Low immunoreactivity was observed in other samples, 

including sera pools in lanes 12 and 13 (Figure 4.2). Further separation of A. fumigatus 

mycelia proteins, using 2D-PAGE and subsequent Western blot analysis, was required 

in order to accurately isolate and identify the immunoreactive proteins. Serum pools 6, 7 

and 11, identified with high relative immunoreactivity, were combined and 

subsequently used to probe 2D-PAGE immunoblots.     
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Figure 4.2: Screen of immunoreactivity of normal human sera samples against A. 

fumigatus mycelia proteins. SDS-PAGE of A. fumigatus ATCC26933 stained with 

Coomassie Blue (Lane 1) and transferred to NCP for western blot analysis (Lanes 2-13). 

NCP strips were probed with pools of normal human sera and immunoreactivity was 

detected using an anti-human IgG - HRP conjugate and DAB as a substrate. Differential 

levels of reactivity were observed, with high reactivity evident in lanes 6, 7 and 11, and 

low reactivity in lanes 12 and 13.  
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4.2.2 2D-PAGE of A. fumigatus ATCC26933 and Western Blot analysis using 

normal human sera 

A. fumigatus ATCC26933 was grown in AMM for 48 h and protein was 

extracted from mycelia as described in Section 2.2.2.2. Protein lysates were 

TCA/acetone precipitated and resuspended in IEF buffer (Section 2.1.6.2) and 

quantitated (Section 2.2.4.1). Protein (300 µg) was separated by pI on pH 3 - 11 strips 

(Section 2.2.4.3) and subsequently by molecular mass by SDS-PAGE on 12 % gels. 

Proteins were transferred to NCP (Section 2.2.4.6) and protein transfer was visualised 

by Ponceau S staining. Western blot analysis was carried out using pools 6, 7 and 11 of 

normal human sera, identified in Section 4.2.1 as displaying immunoreactivity to A. 

fumigatus mycelia proteins. IgG reactivity to A. fumigatus proteins was detected as in 

Section 4.2.1. Additional reference gels were prepared simultaneously and were stained 

with Colloidal Coomassie (Section 2.2.4.4) in order to visualise total proteins and for 

use in the identification of proteins by mass spectrometry. Images of Colloidal 

Coomassie stained gels, Ponceau S stained and DAB developed blots were aligned 

using Progenesis™ SameSpot Software (Nonlinear Dynamics Ltd, UK) (Figure 4.3). 

Following image alignments, 10 protein spots were detected that could be 

matched to distinct spots on the immunoblots. These spots were excised from the gels 

and subjected to in-gel trypsin digestion (Section 2.2.6.1) followed by LC-MS/MS 

analysis (Section 2.2.6.3). 
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Colloidal Coomassie stained 2D-PAGE gel 

of A. fumigatus mycelial proteins 

a. 
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b. 

Ponceau S stained 2D-PAGE blot 

of A. fumigatus mycelial proteins 
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Figure 4.3: Immunoblot analysis for the detection of A. fumigatus ATCC26933 proteins 

reactive with IgG in normal human sera. 2D-PAGE was carried out to separate mycelia 

proteins (300 µg) by pI in the pH range 3 – 11 and molecular mass using 12 % gels. (a) 

Colloidal Coomassie staining was used to visualise total proteins on gels. (b) Gels were 

transferred to NCP and Ponceau S staining was carried out. (c) Blots probed with 

normal human sera displayed some immunoreactivity when developed with DAB. 

Images were aligned using Progenesis™ SameSpot software and locations of 

immunoreactive spots are numbered on all images. 

c. 

2D-PAGE immunoblot blot of A. fumigatus 

mycelial proteins probed with antisera 
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4.2.3 Mass spectrometry analysis of immunoreactive proteins 

From the excised spots (n = 10), 7 distinct proteins were identified by LC-

MS/MS (Table 4.1). The highest reactivity was observed from spot number 9 (Figure 

4.3), identified as a carboxypeptidase S1 (AFUA_8G04120). A translation elongation 

factor EF-1 alpha subunit (AFUA_1G06390; Spot 1) also exhibited relatively high 

immunoreactivity. 

A number of the identified proteins were observed in more than one spot, 

exhibiting different pI or molecular mass. This suggests the occurrence of post-

translational modifications (PTMs) or protein degradation. A cobalamin-independent 

methionine synthase MetH/D (AFUA_4G07360; Spots 4 and 5) was detected in two 

individual spots with apparently differing pIs. Alpha-ketoglutarate dehydrogenase 

complex subunit Kgd1 (AFUA_4G11650; Spots 6, 7 and 8) was detected independently 

in three individual spots (Figure 4.3, Table 4.1). Again these spots displayed different 

apparent pIs but the same molecular mass, as deduced by their position on the gel. This 

is indicative of differential post-translational modification of these proteins. 

In order to enhance the detection of immunoreactivity to A. fumigatus mycelial 

proteins, the amount of protein separated by 2D-PAGE was increased from 300 µg to 

400 µg. The results obtained from this optimised protocol are described in Sections 

4.2.4 and 4.2.5. 
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Table 4.1: A. fumigatus mycelia proteins, immunoreactive with normal human sera, identified by 2D-PAGE and LC-MS/MS. 

Spot No CADRE ID. 

(AFUA_) 

Protein name tpI tMr Coverage 

(%) 

Unique 

peptides 

MASCOT 

Score 

1 1G06390  Translation elongation factor EF-1 alpha subunit 9.12 50019.60 16 7 282 

2 4G10410  Aspartate aminotransferase 8.94 47892.64 31 12 669 

3 6G02470 Fumarate hydratase 9.1 63159.39 28 12 615 

4 4G07360  Cobalamin-independent methionine synthase MetH/D 6.33 86894.57 49 33 1444 

5 4G07360  Cobalamin-independent methionine synthase MetH/D 6.33 86894.57 29 18 842 

6 4G11650  Alpha-ketoglutarate dehydrogenase complex subunit Kgd1, putative 6.47 118900.00 9 7 307 

7 4G11650  Alpha-ketoglutarate dehydrogenase complex subunit Kgd1, putative 6.47 118900.00 7 5 230 

8 4G11650  Alpha-ketoglutarate dehydrogenase complex subunit Kgd1, putative 6.47 118900.00 4 3 100 

9 8G04120 Carboxypeptidase S1 5.4 67672.79 23 8 381 

10 5G04170 Molecular chaperone and allergen Mod-E/Hsp90/Hsp1 4.95 80639.96 15 8 320 

CADRE ID., A. fumigatus gene annotation nomenclature according to Nierman et al. ( 2005) and Mabey et al. (2004); tpI, theoretical isoelectric point; 

tMr, theoretical molecular mass; MASCOT scores > 58 indicate identity or extensive homology (p < 0.05); Spot No. from Figure 4.3. 
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4.2.4 Optimised 2D-PAGE of A. fumigatus ATCC26933 and Western Blot 

analysis using normal human sera 

A. fumigatus ATCC26933 mycelial protein lysates were prepared as in Section 

4.2.2, with the exception of higher protein loading to enhance visualisation of 

immunoreactivity. Protein lysates in IEF buffer (400 µg) was separated initially on pH 3 

- 11 strips (Section 2.2.4.3) and subsequently by SDS-PAGE on 12 % gels. Proteins 

were transferred to NCP (Section 2.2.4.6) and protein transfer was visualised by 

Ponceau S staining. Western blot analysis was carried out using pools 6, 7 and 11 of 

normal human sera, identified in Section 4.2.1 as displaying immunoreactivity to A. 

fumigatus mycelia proteins. IgG reactivity to A. fumigatus proteins was detected as in 

Section 4.2.1. Additional reference gels were prepared simultaneously and were stained 

with Colloidal Coomassie (Section 2.2.4.4) in order to visualise total proteins and for 

use in the identification of proteins by mass spectrometry. Images of Colloidal 

Coomassie stained gels, Ponceau S stained and DAB developed blots were aligned 

using Progenesis™ SameSpot Software (Nonlinear Dynamics Ltd, UK) (Figure 4.4). 

Following image alignments, 28 protein spots were detected that could be 

matched to distinct spots on the immunoblots. Strong immunoreactivity was evident in 

the acidic region of the blot and appeared to be clustered near the top of the gel, 

indicating high molecular mass proteins. Enhanced levels of immunoreactivity were 

observed following optimisation of the method described in Section 4.2.2. The spots 

were excised from the gels and subjected to in-gel trypsin digestion (Section 2.2.6.1) 

followed by LC-MS/MS analysis (Section 2.2.6.3). 
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Colloidal Coomassie stained 2D-PAGE gel 

of A. fumigatus mycelial proteins 

a. 
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b. 

Ponceau S stained 2D-PAGE blot 

of A. fumigatus mycelial proteins 
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Figure 4.4: Optimised immunoblot analysis for the detection of A. fumigatus 

ATCC26933 proteins reactive with IgG in normal human sera. 2D-PAGE was carried 

out to separate mycelia proteins (400 µg) by pI in the pH range 3 – 11 and molecular 

mass using 12 % gels. (a) Colloidal Coomassie staining was used to visualise total 

proteins on gels. (b) Gels were transferred to NCP and Ponceau S staining was carried 

out. (c) Blots probed with normal human sera displayed some immunoreactivity when 

developed with DAB. Images were aligned using Progenesis™ SameSpot software and 

locations of immunoreactive spots are numbered on all images. 

c. 

2D-PAGE immunoblot blot of A. fumigatus 

mycelial proteins probed with antisera 



170 

 

4.2.5 Mass spectrometry analysis of immunoreactive proteins 

From the excised spots (n = 28), 24 distinct proteins were identified by LC-

MS/MS (Table 4.2). The highest reactivity was observed from spot number 10 (Figure 

4.3), identified as a carboxypeptidase S1 (AFUA_8G04120). An aminopeptidase 

(AFUA_2G00220; Spot 14), a 1, 3-β- glucosyltransferase (AFUA_2G05340; Spot 11), 

a fumarate hydratase (AFUA_6G02470; Spots 24 and 25) and an aspartate 

aminotransferase (AFUA_4G10410; Spot 22) also displayed relatively high 

immunoreactivity (Figure 4.4). 

A number of the identified proteins were observed in more than one spot, 

exhibiting different pI or molecular mass. This suggests the occurrence of post-

translational modifications or protein degradation. A woronin body protein HexA 

(AFUA_5G08830; Spots 17, 26 and 27), a fumarate hydratase (AFUA_6G02470; Spots 

24 and 25) and a translation elongation factor EF-1 alpha subunit (AFUA_1G06390; 

Spots 19 and 21) were all detected in more than one spot (Figure 4.4, Table 4.2). 

With the exception of the molecular chaperone and allergen Mod-E/Hsp90/Hsp1 

(AFUA_5G04170; Spot 10; Figure 4.3), all of the antigens identified in Section 4.2.3, 

were also identified following optimisation of immunoprotein detection strategy. This 

demonstrates the improvement of the protocol used, with the identification of an 

additional 18 IgG-reactive proteins following method optimisation.  
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Table 4.2: A. fumigatus mycelia proteins, immunoreactive with normal human sera, identified following optimised 2D-PAGE and LC-MS/MS. 

Spot No CADRE ID. 

(AFUA_) 

Protein name tpI tMr Coverage 

(%) 

Unique 

peptides 

MASCOT 

Score 

 
1

1
 4G11650  Alpha-ketoglutarate dehydrogenase complex subunit Kgd1, putative 6.47 118900.00 9 7 307 

2 6G12930  Mitochondrial aconitate hydratase  6.26 85529.08 38 23 974 

 3
1
 4G07360  Cobalamin-independent methionine synthase MetH/D 6.33 86894.57 32 21 1050 

4 6G10990  NADPH cytochrome P450 reductase (CprA) 5.38 76782.85 11 6 296 

5 8G00440  Steroid monooxygenase 5.48 101032.20 22 16 767 

6 3G14680  Lysophospholipase Plb3  5.39 67416.54 27 16 824 

7 1G12610  Hsp70 chaperone Hsp88 5.08 80044.81 20 13 477 

8 4G08720  Lysophospholipase Plb1  4.59 68143.67 7 5 205 

9 5G07330 Carboxypeptidase S1 4.74 68345.84 15 6 269 

 
10

1
 8G04120 Carboxypeptidase S1 5.4 67672.79 24 8 371 

11 2G05340 1,3-β-glucanosyltransferase Gel4  4.83 58872.59 6 2 100 

12 1G07440  Molecular chaperone Hsp70 5.08 69660.29 44 19 758 

13 4G06820 GPI-anchored cell wall organization protein Ecm33 4.8 41505.47 8 3 102 

14 2G00220  Aminopeptidase 4.99 56702.95 7 2 91 
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Spot No CADRE ID. 

(AFUA_) 

Protein name tpI tMr Coverage 

(%) 

Unique 

peptides 

MASCOT 

Score 

15 2G05910  Hexokinase Kxk 5.06 54209.22 16 4 300 

16 5G10550  ATP synthase F1, beta subunit 5.3 55620.38 62 21 1117 

17 5G08830  Woronin body protein HexA 6.56 49836.57 24 11 471 

18 4G06910 Outer mitochondrial membrane protein porin 9.47 36893.97 60 17 812 

 19
1
 1G06390  Translation elongation factor EF-1 alpha subunit 9.12 50019.60 13 5 185 

20 6G06370  NAD(+)-isocitrate dehydrogenase subunit I 8.42 49745.35 12 5 212 

 
21

1
 1G06390  Translation elongation factor EF-1 alpha subunit 9.12 50019.60 17 5 267 

 
22

1
 4G10410  Aspartate aminotransferase 8.94 47892.64 29 13 642 

23 1G10350  Phosphoglycerate kinase PgkA 6.31 44761.47 60 22 867 

 
24

1
 6G02470 Fumarate hydratase 9.1 63159.39 25 14 596 

 
25

1
 6G02470 Fumarate hydratase 9.1 63159.39 4 3 102 

26 5G08830  Woronin body protein HexA 6.56 49836.57 17 7 226 

27 5G08830  Woronin body protein HexA 6.56 49836.57 31 12 512 

28 2G03610  IMP dehydrogenase 6.25 57958.52 13 7 291 
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CADRE ID., A. fumigatus gene annotation nomenclature according to Nierman et al. ( 2005) and Mabey et al. (2004); tpI, theoretical isoelectric point; 

tMr, theoretical molecular mass; MASCOT scores > 58 indicate identity or extensive homology (p < 0.05); Spot No. from Figure 4.4; 
1
Protein also 

detected in Section 4.2.3, prior to method optimisation. 
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4.2.6 Putative location of immunogenic region on HexA protein 

The woronin body protein HexA (AFUA_5G08830), identified in Section 4.2.5 

was detected at three independent locations on the immunoblot, based on its reactivity 

with IgG in normal human sera. These locations indicated proteins of differing pI and 

molecular mass (Figure 4.4; Spot numbers 17, 26, 27). This protein has a theoretical 

molecular mass of 50 kDa and this correlates well with its identification from spots 26 

and 27. However, spot number 17 represents a protein with a much lower molecular 

mass, indicated by its position at the bottom of the gel.  

Examination of the sequence coverage, obtained from LC-MS/MS analysis of 

each of the independent protein spots, revealed that the peptides identified from the 

proteins in spots 26 and 27 are distributed throughout the entire sequence of the HexA 

protein (Figure 4.5). In contrast, the peptides identified from the protein in spot number 

17 are localised exclusively in the C-terminus of the protein. (Figure 4.5) This 

observation, coupled with its position on the gel, indicate that the protein found in spot 

number 17 is a cleavage or breakdown product of the HexA protein. This low molecular 

mass C-terminal region of the HexA protein (Spot 17) displays a reduced level of 

immunoreactivity compared to that observed from the higher molecular mass HexA  

proteins (Spots 26 and 27).  The reduction in immunoreactivity to the C-terminus 

section of the HexA protein (Spot 17) subsequently indicates the immunogenic epitope 

is predominantly located on the N-terminal region of this protein. 
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Figure 4.5: Identification of the woronin body protein HexA in three independent spots 

and distribution of peptides detected from each. Peptides identified following trypsin 

digestion and LC-MS/MS analysis of each protein spot are shown in red. Peptides 

detected from spot 17 correspond exclusively to the C-terminal of the HexA protein. 

Spot 26 

  1 MYSVESKFERDSRRDAQRTANLDFDARVPIPFSVFPSSYRSDAVPETTLT 

 51 RVEGEVNLDRTSHVEREDTRTSAPLPDPRVYGREEVDIHISKDRLHAPSR 

101 KGDDFQVIYEDRAHKDSRVPEVELSRERWKRSENNAKQNKNKNNTSTRRS 

151 GDVLKAVSAKKVAPQAQTRADEKASYQLTQKARYRESTSRYEPLPPKPVY 

201 DQALESQLDITEREYRRRTDPTYDVNLSYGRHQAPVDSYQAYQPQQTSDV 

251 SLHRSKTEIDVSYDKAYTPKPLETRKGDSFSRSELTVESVPSRPSSASSI 

301 SQVKVLKPYTAIDQPPARKMGYYDDDGNYHSFRRGVERAVDRITHPFHHH 

351 HHHHDREEVVIADERGPVRYRDGVREDVRIVEPRASKTTAESVPIPCHFI 

401 RIGDILILQGRPCQVIRISVSPQTGQHRYLGVDLFTRQLQEESSFVSNPS 

451 PSVVVQTMLGPVYKTYRILDLHEDGTITAMTETGDVKQALPVVTQGQLFR 

501 KIRDAFSEGRGSVRALVINDGGRELVVDYKVIHGSRL  

 

Spot 27  

  1 MYSVESKFERDSRRDAQRTANLDFDARVPIPFSVFPSSYRSDAVPETTLT 

 51 RVEGEVNLDRTSHVEREDTRTSAPLPDPRVYGREEVDIHISKDRLHAPSR 

101 KGDDFQVIYEDRAHKDSRVPEVELSRERWKRSENNAKQNKNKNNTSTRRS 

151 GDVLKAVSAKKVAPQAQTRADEKASYQLTQKARYRESTSRYEPLPPKPVY 

201 DQALESQLDITEREYRRRTDPTYDVNLSYGRHQAPVDSYQAYQPQQTSDV 

251 SLHRSKTEIDVSYDKAYTPKPLETRKGDSFSRSELTVESVPSRPSSASSI 

301 SQVKVLKPYTAIDQPPARKMGYYDDDGNYHSFRRGVERAVDRITHPFHHH 

351 HHHHDREEVVIADERGPVRYRDGVREDVRIVEPRASKTTAESVPIPCHFI 

401 RIGDILILQGRPCQVIRISVSPQTGQHRYLGVDLFTRQLQEESSFVSNPS 

451 PSVVVQTMLGPVYKTYRILDLHEDGTITAMTETGDVKQALPVVTQGQLFR 

501 KIRDAFSEGRGSVRALVINDGGRELVVDYKVIHGSRL 

 

Spot 17 

  1 MYSVESKFERDSRRDAQRTANLDFDARVPIPFSVFPSSYRSDAVPETTLT 

 51 RVEGEVNLDRTSHVEREDTRTSAPLPDPRVYGREEVDIHISKDRLHAPSR 

101 KGDDFQVIYEDRAHKDSRVPEVELSRERWKRSENNAKQNKNKNNTSTRRS 

151 GDVLKAVSAKKVAPQAQTRADEKASYQLTQKARYRESTSRYEPLPPKPVY 

201 DQALESQLDITEREYRRRTDPTYDVNLSYGRHQAPVDSYQAYQPQQTSDV 

251 SLHRSKTEIDVSYDKAYTPKPLETRKGDSFSRSELTVESVPSRPSSASSI 

300 SQVKVLKPYTAIDQPPARKMGYYDDDGNYHSFRRGVERAVDRITHPFHHH 

351 HHHHDREEVVIADERGPVRYRDGVREDVRIVEPRASKTTAESVPIPCHFI 

401 RIGDILILQGRPCQVIRISVSPQTGQHRYLGVDLFTRQLQEESSFVSNPS 

451 PSVVVQTMLGPVYKTYRILDLHEDGTITAMTETGDVKQALPVVTQGQLFR 

501 KIRDAFSEGRGSVRALVINDGGRELVVDYKVIHGSRL  
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4.3 Discussion 

Immunoreactivity of proteins from mycelial lysates of A. fumigatus 

ATCC26933, with sera from healthy individuals, was investigated using SDS-PAGE 

and Western blot analysis. Positive reactivity was observed against 93 % of pooled sera 

samples tested (Figure 4.2), which reflects the constant exposure to environmental 

strains of A. fumigatus. Indeed, previous in-house studies investigating the antigenicity 

of recombinantly produced A. fumigatus proteins from the gliotoxin biosynthesis cluster 

noted a similarly high amount of healthy individuals that were seropositive for IgG 

directed against the respective antigens. Through ELISA screening, 63 % (n = 93) 

exhibited immunoreactivity against recombinantly produced GliG (AFUA_6G09690) 

(Prof. Sean Doyle, personal communication). The gliotoxin oxidoreductase, GliT, also 

demonstrated extensive immunoreactivity with normal serum samples and this was 

utilised for the purification of anti-GliT antibodies (Schrettl et al., 2010). While this 

immunoreactivity would be relatively low compared to sera from patients with A. 

fumigatus-related infections (e.g. ABPA or aspergillosis), this nevertheless provides a 

way to expand the characterisation of A. fumigatus antigens. Differential levels of 

reactivity were observed between sera pools, and those displaying the highest 

immunoreactivity were used to identify IgG reactive A. fumigatus antigens. The method 

utilised in Section 4.2.1 describes an efficient way by which to screen large numbers of 

serum samples for the presence of immunoreactivity, for subsequent use in targeted 

immunoproteomics studies. 

2D-PAGE was used to resolve the mycelial proteins, and subsequently, identify 

immunoreactive proteins with confidence. This initially yielded the identification of 7 

unique IgG-reactive A. fumigatus proteins from 10 individual spots (Table 4.1). 

Subsequently, optimisation of the protocol was carried out in order to improve the 
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detection of immunoreactive A. fumigatus mycelial proteins. By increasing the amount 

of protein separated by 2D-PAGE from 300 µg (Section 4.2.2) to 400 µg (Section 

4.2.4), a total of 24 unique proteins were identified from 28 individual protein spots 

displaying IgG-reactivity by Western blot analysis (Table 4.2). A substantial majority of 

the antigenic proteins detected in Section 4.2.2 (n = 6/7; 85.7 %), were also identified 

following optimisation of the immunodetection strategy (Section 4.2.4) demonstrating 

validation of the results through reproducibility. The molecular chaperone and allergen 

Mod-E/Hsp90/Hsp1 (AFUA_5G04170; Spot 10; Figure 4.3), was not detected 

following protocol optimisation and this may be accounted for by the substantial 

increase in the intensity of immunoreactivity observed from the carboxypeptidase S1 

(AFUA_8G04120; Spot 10; Figure 4.4). This high level of immunoreactivity may have 

masked the detection of the molecular chaperone and allergen Mod-E/Hsp90/Hsp1, 

located adjacent to it (Figure 4.6). The optimisation of the immunodetection protocol 

resulted in the identification of an additional 18 IgG-reactive A. fumigatus proteins 

(Table 4.2), demonstrating a substantial improvement in the efficacy of the method, 

without significant loss in sensitivity. Collectively, this strategy resulted in the 

identification of 25 A. fumigatus proteins reactive with IgG from healthy individuals. 
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Figure 4.6: Increase in intensity of immunoreactivity following optimisation of immunodetection 

strategy. Carboxypeptidase S1 (X) masks the detection of the molecular chaperone and allergen 

Mod-E/Hsp90/Hsp1 (Y) following an increase in the amount of protein separated by 2D-PAGE, 

from (a) 300 µg to (b) 400 µg.  
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A number of proteins were detected that exhibited relatively high 

immunoreactivity with sera from healthy subjects. These proteins included a 

carboxypeptidase S1 (AFUA_8G04120), an aminopeptidase (AFUA_2G00220), a 1,3-

β-glucosyltransferase (AFUA_2G05340), a fumarate hydratase (AFUA_6G02470) and 

an aspartate aminotransferase (AFUA_4G10410) (Figure 4.4). Several proteins were 

identified from multiple spots; woronin body protein HexA (AFUA_5G08830; Spots 

17, 26 and 27; Figure 4.4) was identified from three individual spots, differing in both 

pI and molecular mass. HexA, identified from Spot 17, was positioned at the bottom of 

the gel, indicating a protein with a lower molecular mass than predicted and may be the 

result of protein degradation. Presence of multiple isoforms of the HexA protein has 

been demonstrated previously, with its identification from 12 individual spots in the 

mitochondrial proteome map of A. fumigatus (Vödisch et al., 2009). This observation 

was confirmed by the detection of peptides exclusively from the C-terminal section of 

the HexA protein by LC-MS/MS (Figure 4.5) and further discussion of this protein will 

be undertaken later in the Chapter. Translation elongation factor EF-1 alpha subunit 

(AFUA_1G06390; Spots 19 and 21; Figure 4.4) was identified from two spots with 

apparent differing molecular masses. Fumarate hydratase (AFUA_6G02470; Spots 24 

and 25; Figure 4.4) was identified from two spots which appeared to have the same 

molecular mass but differed slightly in pI¸ based on their positions side-by-side on the 

gel (Figure 4.4). This occurrence was also observed for cobalamin-independent 

methionine synthase MetH/D (AFUA_4G07360; Spots 4 and 5; Figure 4.3) and alpha-

ketoglutarate dehydrogenase complex subunit, Kgd1 (AFUA_4G11650; Spots 6, 7 and 

8; Figure 4.3). This indicates the presence of isoforms of these proteins, possibly as a 

result of post-translational modifications. Additionally, the detection of 

immunoreactivity against multiple protein isoforms provides validation of the results 

obtained, as it demonstrates binding of IgG to antigenic proteins is specific.   
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Thirteen proteins were identified, which had not been previously detected in A. 

fumigatus as antigens, representing a significant expansion of the currently established 

immunoproteome (Table 4.3). Among these, a hexokinase Kxk was identified, 

displaying 54 % sequence identity with the Candida albicans hexokinase Hxk2p 

(BLAST E-value = 0.0). An outer mitochondrial membrane protein porin 

(AFUA_4G06910) was also detected, with 42 % sequence identity to the outer 

membrane mitochondrial porin Por1p from C. albicans (BLAST E-value = 2 x 10
-78

). 

These C. albicans proteins demonstrated IgG-reactivity following incubation of protein 

lysates with sera from patients with systemic candidiasis (Pitarch et al., 2004). 

Immunoreactivity of these A. fumigatus orthologs demonstrates the antigenicity of these 

proteins and thus validates their identification as part of the immunoproteome. The 

remaining immunoreactive proteins identified here, have previously been characterised 

as antigenic and/or allergenic in A. fumigatus, based on their IgG or IgE reactivity 

respectively. Immunoproteomic studies carried out on A. fumigatus germlings and 

secretome have identified eleven of the antigens described here. Two 

lysophospholipases, Plb1 (AFUA_4G08720) and Plb3 (AFUA_2G03610), were 

identified, that have also been detected in the immunosecretome of A. fumigatus by 

Singh et al. (2010a). These proteins contain a signal peptide for secretion (Petersen et 

al., 2011) and are involved in the degradation of phospholipids making them an 

important virulence factor (Abad et al., 2010). The well characterised allergens, 

molecular chaperone and allergen Mod-E/Hsp90/Hsp1 (AFUA_5G04170),  molecular 

chaperone Hsp70 (AFUA_1G07440), Hsp70 chaperone, Hsp88 (AFUA_1G12610) 

were identified, which have previously been detected in germlings based on their IgE 

reactivity (Singh et al., 2010b). IgG-reactivity has previously been shown against 

inosine 5’-monophosphate (IMP) dehydrogenase (AFUA_2G03610), aspartate 

aminotransferase (AFUA_4G10410) and fumarate hydratase (AFUA_6G02470), using 
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sera from A. fumigatus immunised rabbits (Asif et al., 2010). Phosphoglycerate kinase 

PgkA (AFUA_1G10350), cobalamin-independent methionine synthase MetH 

(AFUA_4G07360), ATP synthase F1 beta subunit (AFUA_5G10550) and 

mitochondrial aconitate hydratase (AFUA_6G12930) have been shown previously to 

exhibit IgG and IgE reactivity (Asif et al., 2010; Singh et al., 2010b). Detection of these 

previously characterised immunogens provides validation of the experimental process, 

despite the use on non-disease state sera.  
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Table 4.3: IgG-reactive proteins (n = 13) identified in this study, previously not classified as antigenic in A. fumigatus 

Spot No CADRE ID.  Protein name tpI tMr Intensity of immunoreactivity
1
 

 (AFUA_)    L M H 

1 4G11650  Alpha-ketoglutarate dehydrogenase complex subunit Kgd1 6.47 118900.00    

4 6G10990  NADPH cytochrome P450 reductase (CprA) 5.38 76782.85    

5 8G00440  Steroid monooxygenase 5.48 101032.20    

9 5G07330 Carboxypeptidase S1 4.74 68345.84    

10 8G04120 Carboxypeptidase S1 5.4 67672.79    

11 2G05340 1,3-β-glucanosyltransferase Gel4  4.83 58872.59    

13 4G06820 GPI-anchored cell wall organization protein Ecm33 4.8 41505.47    

14 2G00220  Aminopeptidase 4.99 56702.95    

15 2G05910  Hexokinase Kxk 5.06 54209.22    

17 5G08830  Woronin body protein HexA 6.56 49836.57    

18 4G06910 Outer mitochondrial membrane protein porin 9.47 36893.97    

19 1G06390  Translation elongation factor EF-1 alpha subunit 9.12 50019.60    

20 6G06370  NAD(+)-isocitrate dehydrogenase subunit I 8.42 49745.35    

21 1G06390  Translation elongation factor EF-1 alpha subunit 9.12 50019.60    
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Spot No CADRE ID.  Protein name tpI tMr Intensity of immunoreactivity
1
 

 (AFUA_)    L M H 

26 5G08830  Woronin body protein HexA 6.56 49836.57    

27 5G08830  Woronin body protein HexA 6.56 49836.57    

CADRE ID., A. fumigatus gene annotation nomenclature according to Nierman et al. ( 2005) and Mabey et al. (2004); tpI, theoretical isoelectric point; 

tMr, theoretical molecular mass; Spot No. from Figure 4.4; 
1
Iintensity of immunoreactivity on immunoblot relative to intensity of the corresponding 

spot on the Coomassie stained 2D-PAGE gel; L, low relative intensity; M, medium relative intensity; H, high relative intensity (Section 2.2.4.8). 
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In addition to identification in the mycelia, many of the IgG-reactive proteins 

identified here have also exhibited differential developmental or cellular localisation. 

The conidia proteome map of Teutschbein et al. (2010) identified five of these antigens 

as being enriched or abundant in the conidia of A. fumigatus; Hsp70 chaperone Hsp88 

(AFUA_1G12610), translation elongation factor EF-1 alpha subunit (AFUA_1G06390), 

molecular chaperone Hsp70 (AFUA_1G07440), phosphoglycerate kinase PgkA 

(AFUA_10350) and mitochondrial aconitate hydratase (AFUA_6G12930). 

Additionally, an outer mitochondrial membrane protein porin (AFUA_4G06910), 

alpha-ketoglutarate dehydrogenase complex subunit Kgd1 (AFUA_4G11650), woronin 

body protein HexA (AFUA_5G08830), molecular chaperone and allergen Mod-

E/Hsp90/Hsp1(AFUA_5G04170) and NAD(+)-isocitrate dehydrogenase subunit I 

(AFUA_6G06370) were found in the early development proteome of A. fumigatus 

germlings (Cagas et al., 2011b; Suh et al., 2012). Two glycosylphosphatidylinositol 

(GPI)-anchored proteins were detected, 1,3-β-glucanosyltransferase Gel4 

(AFUA_2G05340) and GPI-anchored cell wall organization protein Ecm33 

(AFUA_4G06820), with locations on the plasma membrane (Bruneau et al., 2001), are 

involved in assembly of the cell wall (Chabane et al., 2006; Gastebois et al., 2010a). 

Proteins with signal peptides for secretion included an aminopeptidase 

(AFUA_2G00220), two separate carboxypeptidases (AFUA_5G07330, 

AFUA_8G04120) and NADPH cytochrome P450 reductase CprA (AFUA_6G10990) 

(Petersen et al., 2011). The majority of the remaining proteins were detected in 

germinating conidia or the secretome based on their immunoreactivity as discussed 

earlier (Asif et al., 2010; Singh et al., 2010a, 2010b). The occurrence of these proteins 

extracellularly or in early developmental stages, in addition to intracellularly in the 

mycelia, may explain the development of immunoreactivity directed against these 

proteins. Routine environmental exposure to A. fumigatus involves inhalation of 
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conidia, followed predominantly by their clearance from the lungs before mycelia 

development (Murdock et al., 2011). This would result in the host, in the absence of A. 

fumigatus-related disease, predominantly encountering proteins of the conidia, early 

germlings and secreted proteins.  

Upon detailed review of the literature, on the proteomic response of A. 

fumigatus to stress, it was observed that the immunogenic proteins identified here have 

been shown to be up-regulated in response to heat shock, oxidative stress, hypoxia and 

interactions with host cells (Lessing et al., 2007; Sugui et al., 2008; Albrecht et al., 

2010; Fraczek et al., 2010; Morton et al., 2011; Vödisch et al., 2011). Seven of the 

antigens herein detected have been found to be up-regulated in response to heat shock, 

brought about by a temperature shift from 30°C to 48°C (Albrecht et al., 2010). The 

heat shock proteins, Hsp88, Hsp90 and Hsp70, were up-regulated, in addition to the 

translation elongation factor EF-1 alpha subunit, hexokinase Kxk, cobalamin-

independent methionine synthase MetH/D and alpha-ketoglutarate dehydrogenase 

complex subunit Kgd1. This may reflect the temperature shift from ambient to 37°C, 

experienced by conidia upon entering of the pulmonary alveoli. We speculate that up-

regulation of these proteins could account for their presentation to the adaptive immune 

system and the subsequent generation of an antibody response. Cobalamin-independent 

methionine synthase MetH/D and Hsp88 also showed Yap1 dependent induction in 

response to oxidative stress in the form of H2O2 (Lessing et al., 2007). The molecular 

chaperone and allergen Mod-E/Hsp90/Hsp1, in addition to other A. fumigatus allergens, 

is also up-regulated in response to H2O2 (Fraczek et al., 2010). Inhaled conidia are 

exposed to oxidative stress, in the form of reactive oxygen species (ROS) generated by 

alveolar macrophages and polymorphonuclear leucocytes (PMNLs). Another 

environmental condition that inhaled conidia encounter is a limited oxygen supply and 
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the inability of A. fumigatus to adapt a hypoxia response is coupled with its loss of 

virulence (Willger et al., 2008). Vödisch et al. (2011) identified 59 proteins that were 

up-regulated in A. fumigatus ATCC46645 following cultivation in hypoxic compared to 

normoxic conditions, including 10 of the IgG-reactive proteins detected here. 

Comparative analysis of the entire mycelial proteome revealed up-regulation of 

phosphoglycerate kinase PgkA (AFUA_1G10350), asparate aminotransferase 

(AFUA_4G10410) and steroid monooxygenase (AFUA_8G00440) in response to 

hypoxia. A sub-proteomic investigation of the mitochondria also revealed significant 

up-regulation of 1,3-β-glucanosyltransferase Gel3 (AFUA_2G05340), 

lysophospholipases Plb1 and Plb3 (AFUA_4G08720 and AFUA_3G14680), GPI-

anchored cell wall organisation protein Ecm33 (AFUA_4G06820), outer mitochondrial 

membrane protein porin (AFUA_4G06910), ATP synthase F1, beta subunit 

(AFUA_5G10550) and mitochondrial aconitate hydratase (AFUA_6G12930) in 

response to hypoxia. Conversely, an additional antigenic protein, woronin body protein 

HexA (AFUA_5G08830) was observed as being down-regulated in hypoxia (1.7 fold) 

in the whole mycelia proteome comparison. However a truncated version of this protein 

was significantly up-regulated in hypoxic conditions (5.68 fold) upon comparison of the 

mitochondrial fractions (Vödisch et al., 2011). This differential regulation may be 

explained by the fact that many isoforms of the HexA protein are resolved by 2D-PAGE 

and these proteins have more relative abundance in the mitochondria (Vödisch et al., 

2009). These conditions of increased temperature, hypoxia and oxidative stress are 

similar to those encountered by conidia upon entering the alveoli of the lungs. We 

postulate that up-regulation of the immunoreactive proteins identified here, in response 

to stress, may allude to the development of an adaptive immune response directed 

towards them. 
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Numerous comparative transcriptomic and proteomic studies have been carried 

out previously to characterise the regulation of genes and proteins of A. fumigatus in 

response to host cells. These, in addition to experiments aiming to replicate 

environmental conditions within the host, provide valuable information on the 

mechanisms of A. fumigatus virulence. Upon exposure of A. fumigatus conidia to 

human neutrophils, three of the antigens identified here were found to be up-regulated at 

the transcript level (Sugui et al., 2008). Phosphoglycerate kinase PgkA 

(AFUA_1G10350), aspartate aminotransferase (AFUA_4G10410) and mitochondrial 

aconitate hydratase (AFUA_6G12930) transcripts were all up-regulated following 

incubation of conidia with neutrophils for 1.5 h. These results were replicated when 

conidia were incubated with neutrophils from patients with chronic granulomatous 

disease (CGD), which are defective in the production of ROS, thus excluding the 

influence of ROS on the regulation of these genes (Sugui et al., 2008). Aspartate 

aminotransferase (AFUA_4G10410) was also found to be up-regulated following 

incubation of A. fumigatus conidia with airway epithelial cells, in addition to the 

putative IMP dehydrogenase (AFUA_2G03610) (Oosthuizen et al., 2011) also 

identified here. The transcripts of two lysophospholipases, Plb1 (AFUA_4G08720) and 

Plb3 (AFUA_2G03610), were observed to be up-regulated in the presence of lecithin, a 

constituent of human lung surfactant, in a directed study using quantitative PCR (Shen 

et al., 2004). Additionally, the antigenic woronin body protein HexA 

(AFUA_5G08830) was up-regulated following 9 and 12 h incubation with immature 

human dendritic cells (Morton et al., 2011) and the molecular chaperone and allergen 

Mod-E/Hsp90/Hsp1 (AFUA_5G04170) was up-regulated following co-incubation with 

macrophages (Fraczek et al., 2010). We hypothesize that up-regulation of these genes, 

in the host-pathogen response, may increase the opportunity for presentation to the 

adaptive immune system and thus explain the development of their immunoreactivity. 
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The independent detection of the woronin body protein HexA 

(AFUA_5G08830) from three separate locations by 2D-PAGE provided an interesting 

observation on the putative position of antigenic epitope on the protein (Figure 4.3). As 

discussed above the occurrence of multiple isoforms of the HexA protein has been 

observed in previous 2D-PAGE studies, with its identification from 12 independent 

spots on the mitochondrial and 2 spots in the mycelia protein map (Vödisch et al., 

2009). This phenomenon indicates the presence of modified versions of the protein, 

with different pIs and molecular masses as deduced by the positions of the spots on the 

gel. Alterations of the isoelectric point of the protein, without a change in apparent 

molecular size could result from post-translational modifications such as 

phosphorylation. Identification of HexA from spots 26 and 27 (Figure 4.4), was in 

agreement with the theoretical molecular mass (tMr = 50 kDa) and pI (6.56) of the 

protein. In contrast, the identification of HexA from spot 17 did not correlate to the tMr, 

with its position on the gel indicative of a much smaller protein. Interrogation of the 

peptides identified from each of the HexA protein spots (Spot numbers: 17, 26 and 27; 

Figure 4.4) revealed that while broad sequence coverage of the proteins from spots 26 

and 27 was achieved, peptides identified from spot 17 were confined exclusively to the 

C-terminal section (Figure 4.5). The level of immunoreactivity to the truncated HexA 

protein, observed in spot 17, is lower than that observed from the intact HexA proteins 

in spots 26 and 27, which indicates the antigenic epitope recognised by human IgG may 

predominantly be contained on the N-terminal section of the protein. Truncation of the 

protein may therefore result in loss of the IgG binding site or weaken the affinity of the 

IgG towards it.  

In summary, the work described in this Chapter expands the characterisation of 

the A. fumigatus immunoproteome. Proteins (n = 25) were identified as IgG-reactive 
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antigens, through 2D-PAGE and Western blot analysis using sera from healthy 

individuals. This work represents the first classification of 13 of these proteins as 

immunogenic which signifies a substantial extension of the currently recognised 

collection of A. fumigatus antigens. Many of these IgG-reactive antigens, identified 

from the mycelia of A. fumigatus, were also detected previously in the secretome of A. 

fumigatus or additionally are associated with early developmental stages of growth. 

Additionally 19 of these immunogenic proteins have been described, in comparative 

proteomics studies, to be up-regulated in response to cellular stress or in response to 

interactions with host cells. These conditions of stress, including heat-shock, oxidative 

stress, hypoxia and exposure to host cells, may mimic the internal host environment 

encountered by the routinely inhaled conidia of A. fumigatus. We postulate that the up-

regulation of these proteins may account for their presentation to the immune system 

and the subsequent generation of an antibody response to A. fumigatus in healthy 

individuals. In addition to the characterisation of the A. fumigatus immunoproteome, 

2D-PAGE coupled with Western blot analysis enabled the putative location of the 

dominant immune-epitope on the HexA protein to be identified. The reduction in the 

relative intensity of immunoreactivity to the C-terminal fragment of the HexA protein 

indicates the antigenic epitope is located predominantly on the N-terminal section of the 

protein. Further work would be required to isolate the exact location of the antigenic 

epitope on the HexA protein however this work provides guidance for the direction of 

future investigations. The reactivity of disease-state sera with mycelial proteins in future 

studies could expand the field of A. fumigatus immunoproteomics further. However, the 

use of sera from healthy individuals represents a novel baseline method by which to 

characterise the immune response to A. fumigatus in the absence of disease.  The global 

characterisation of the proteome of A. fumigatus, using MS-based proteomics as 

described in Chapter 3, and immunoproteomics, as described in this Chapter, provides a 
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comprehensive overview of the systems operating in this opportunistic pathogen, both 

in vitro and in vivo. In Chapter 5, phenotypic analysis of A. fumigatus will be carried out 

in response to a combination of stresses and comparative proteomics will be utilised in 

order to elucidate the cellular mechanisms differentially regulated in these conditions. 
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5 Chapter 5 

5.1 Introduction 

Large-scale MS-based proteomics studies, as described in Chapter 3, can 

provide a global overview of the many biochemical systems active in an organism under 

a given set of conditions. The traditional proteomics strategy, comprising 2D-PAGE 

coupled with MS for protein identification, has been utilised in countless comparative 

studies, for relative quantitation of changes in the proteome constituents, in addition to 

detection of post-translational modifications (PTMs) (Rabilloud et al., 2010). 

Comparative 2D-PAGE has extended the understanding of pathways which respond to 

various forms of stress in A. fumigatus (Lessing et al., 2007). Often, comparative 2D-

PAGE studies are undertaken following observation of altered growth phenotypes, 

either due to exogenous stress and/or genetic mutations (Doyle, 2011b). 2D-PAGE has 

been carried out to elucidate the mechanisms involved in response to hypoxia (Vödisch 

et al., 2011; Barker et al., 2012), oxidative stress (Lessing et al., 2007), heat shock 

(Albrecht et al., 2010), gliotoxin (Schrettl et al., 2010; Carberry et al., 2012) and anti-

fungal agents (Gautam et al., 2008, 2011; Singh et al., 2012) in A. fumigatus. 

Additionally, 2D-PAGE-based proteomics can identify putative targets of specific 

genes, through comparative analysis of the proteome changes following gene 

disruption. For example, investigation of the bZIP-like transcription factors AfYap1 

(Lessing et al., 2007) and HapX (Hortschansky et al., 2007), the nonribosomal peptide 

synthetase Pes3 (O’Hanlon et al., 2011), the glucosidase 1 AfCwh41 (Zhang et al., 

2009) and cell wall biosynthesis proteins (Bruneau et al., 2001) employed this 

approach.  

Lessing et al. (2007) investigated the proteomic response of A. fumigatus to 

exogenous H2O2, and identified differential expression of 28 proteins, with functions 
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ranging from stress-response and antioxidant properties to amino acid metabolism. 

Many of these proteins represented putative targets of the transcriptional regulator 

AfYap1, based on inference from similar studies in yeast. Accordingly, disruption of the 

Afyap1 gene, resulted in H2O2- and menadione-sensitive phenotypes. Comparative 2D-

PAGE analysis of wild-type and the Afyap1 mutant, following exposure to H2O2, 

revealed altered expression of 29 proteins that could putatively be controlled by 

AfYap1. This revealed the Afyap1-dependent expression of a number of catalases, heat 

shock proteins and factors involved in protein synthesis in response to H2O2, and 

highlighted the importance of this transcriptional regulator in the response to oxidative 

stress. 

A study carried out by Carberry et al. (2012) charted the proteomic response of 

A. fumigatus to gliotoxin and observed the differential regulation of 27 unique proteins. 

These included the down-regulation of a catalase and a peroxiredoxin, proteins involved 

in the relief of oxidative stress. A member of the gliotoxin biosynthetic cluster, gliT, 

encodes a gliotoxin oxidoreductase, which imparts protection to exogenous gliotoxin 

(Scharf et al., 2010; Schrettl et al., 2010). GliT has been demonstrated to catalyse 

gliotoxin reduction, with the concurrent oxidation of NADPH to NADP
+
 and 

transcription and translation of GliT are induced by exogenous gliotoxin  (Schrettl et al., 

2010). Additionally Scharf et al. (2010) characterised the FAD-dependent oxidation of 

reduced gliotoxin, in a reaction that generates ROS. In the absence of the GliT protein, 

significant sensitivity to exogenous gliotoxin is observed in A. fumigatus and 

transformation of the gliT gene into other gliotoxin-sensitive fungi resulted in acquired 

resistance to the metabolite (Schrettl et al., 2010). 

Another member of the gliotoxin biosynthetic cluster is gliK (Gardiner and 

Howlett, 2005), which encodes a protein with a putative gamma-glutamyl 
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cyclotransferase (GGCT) domain (Gallagher et al., 2012). As described in Chapter 1, 

the GliK protein has remained experimentally uncharacterised until recently. Work 

presented in Chapter 6, demonstrates that the GliK protein is essential for the 

biosynthesis of gliotoxin and absence of this protein results in increased sensitivity to 

exogenous gliotoxin and to H2O2 (Gallagher, 2010; Gallagher et al., 2012). GliK also 

appears to be involved in gliotoxin efflux, with increased accumulation of exogenously 

added gliotoxin observed in the deletion strain, ΔgliK (Gallagher, 2010; Gallagher et al., 

2012). Characterisation of the systems involved in the interaction of gliotoxin with A. 

fumigatus ΔgliK could facilitate a greater understanding of both the role of GliK in the 

cell and the influence of gliotoxin-imposed stress on A. fumigatus.  

The effect of combinatorial stresses is emerging as a new focus of investigation, 

due to the simultaneous exposure of organisms to distinct stresses in their environment. 

As discussed in Chapter 1, A. fumigatus is exposed to an array of physical, chemical and 

host-associated stresses as a human pathogen, including heat shock, hypoxia and 

oxidative stress. Kaloriti et al. (2012) have demonstrated the influence of combinatorial 

stresses on C. albicans and C. glabrata. These authors noted that coupling of oxidative 

stress to either osmotic or nitrosative stress significantly decreases growth or viability of 

the yeast cells, relative to either stress applied in isolation. The molecular response of 

fungi to a combination of stresses has largely gone uncharacterised, with limited large-

scale transcriptomic or proteomic analyses performed in this area to date (Kaloriti et al., 

2012). Comparative proteomics of A. fumigatus, examining the response to stresses, 

applied singularly or in tandem, could elaborate on the mechanisms influenced by the 

exposure to combinatorial stresses. 
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The work presented in this Chapter stemmed from the hypothesis that, based on 

the observed increase in sensitivity of A. fumigatus ΔgliK to gliotoxin and H2O2 

individually (Gallagher, 2010), an additive or synergistic effect may be observed by 

combining the stresses. In light of any alteration of phenotype, comparative 2D-PAGE 

would identify alterations to the proteome in response to a combination of challenges. 

These proteomic profiles may reveal the pathways and molecular mechanisms affected 

by exposure to a combination of gliotoxin and H2O2. Additionally, analysis of the 

proteome of A. fumigatus ΔgliK in response to gliotoxin may further elucidate a 

possible function for the yet unclassified, GliK protein. Thus, the aims of the work 

carried out in this Chapter were; (i) to carry out phenotypic analysis of A. fumigatus 

ATCC26933 and ΔgliK in response to simultaneous challenge with gliotoxin and H2O2, 

(ii) to investigate changes to the proteome of A. fumigatus in response to co-addition of 

gliotoxin and H2O2 and (iii) to investigate the proteome of A. fumigatus ΔgliK in 

response to exogenous gliotoxin.  
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5.2 Results  

5.2.1 Phenotypic analysis of A. fumigatus ATCC26933 and ΔgliK in response to a 

combination of gliotoxin and H2O2  

Following the observation that growth of A. fumigatus ΔgliK is significantly 

inhibited relative to the wild-type in the presence of gliotoxin (≥ 1 µg/ml; p < 0.001 ) or 

H2O2 (≥ 1 mM; p < 0.001 ) individually (Gallagher, 2010; Gallagher et al., 2012), the 

effect of combining these stresses was investigated. Plate assays were carried out in 

order to determine the combined phenotypic response of A. fumigatus, ATCC26933 and 

ΔgliK, to gliotoxin plus H2O2 (Section 2.1.5.21). A. fumigatus, ATCC26933 and ΔgliK, 

were exposed to gliotoxin (1 - 10 µg/ml) and H2O2 (0 - 1 mM) in Czapek-Dox agar 

(Section 2.1.5.10), individually and in combination. Equivalent volumes of methanol 

were added to appropriate plates as a solvent control for gliotoxin, and the radial growth 

of replicate colonies was measured at 72 h. 

The radial growth of A. fumigatus ATCC26933 (wild-type) was significantly 

attenuated in the presence of 10 µg/ml gliotoxin (p < 0.001), whereas lower gliotoxin 

concentrations (≥ 1 µg/ml) were sufficient to significantly inhibit growth of ΔgliK (p < 

0.01) (Figure 5.1a and Figure 5.2a). Similarly, A. fumigatus ΔgliK demonstrated 

significantly higher sensitivity to H2O2, with p < 0.05 at 0.5 mM and p < 0.001 at 1 mM 

H2O2 (Figure 5.1b and Figure 5.2b). No growth of A. fumigatus ΔgliK was visible in 

Czapek-Dox agar plates supplemented with 1 mM H2O2 at 72 h. Unexpectedly, co-

addition of gliotoxin and H2O2 resulted in reduced H2O2 sensitivity in both A. fumigatus 

wild-type and ΔgliK (Figure 5.1c, Figure 5.2c and d). This relief of H2O2-induced 

growth inhibition was achieved in a dose-dependent manner, where 10 µg/ml gliotoxin 

was sufficient to restore radial growth to the same level as observed for gliotoxin alone. 
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Gliotoxin-mediated relief of H2O2-induced growth inhibition was observed for both 

wild-type and ΔgliK strains of A. fumigatus.  
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Figure 5.1: Phenotypic analysis demonstrating the individual and combined effects of 

gliotoxin (0-10 μg/ml) and H2O2 on A. fumigatus ATCC26933 and ∆gliK. (a) Gliotoxin 

(10 μg/ml) significantly inhibits A. fumigatus ∆gliK growth, relative to ATCC26933. (b) 

H2O2 (1 mM) completely inhibits A. fumigatus ∆gliK growth, compared to ATCC26933. 

(c) Gliotoxin (1-10 μg/ml) relieves H2O2–mediated growth inhibition of both A. 

fumigatus ATCC26933 and ∆gliK in a dose dependent manner.  
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Figure 5.2: Graphical representation of phenotypic analysis shown in Figure 5.1. 

Individual and combined effects of gliotoxin (0-10 μg/ml) and H2O2 on A. fumigatus 

ATCC26933 (wild-type) and ∆gliK. (a) Gliotoxin (10 μg/ml) significantly inhibits A. 

fumigatus ∆gliK growth, compared to wild-type. (b) H2O2 (1 mM) completely inhibits 

A. fumigatus ∆gliK growth, relative to wild-type. (c and d) Gliotoxin (1-10 μg/ml) 

relieves H2O2–mediated growth inhibition of both A. fumigatus ATCC26933 (wild-

type) and ∆gliK in a dose dependent manner. Co-addition of gliotoxin (10 μg/ml) and 

H2O2 (1 mM) recovered growth to the same level as the gliotoxin control (10 μg/ml). 

*** indicates p < 0.001, * indicates p < 0.05, ns indicates not significant (p > 0.05).
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5.2.2 Comparative 2D-PAGE analysis of A. fumigatus ATCC26933 following 

exposure to a combination of H2O2 and gliotoxin 

In order to elucidate the mechanisms involved in gliotoxin-mediated relief of 

H2O2-induced stress in A. fumigatus ATCC26933, a comparative 2D-PAGE study was 

undertaken. A. fumigatus ATCC26933 was grown in Sabouraud dextrose medium for 24 

h prior to addition of one of the four treatments outlined in Table 5.1. Mycelia (n = 

5/treatment) were harvested after 4 h and protein was extracted as described in Section 

2.2.2.2. TCA/acetone precipitation was carried out on protein lysates prior to 

resuspension of protein in IEF buffer (Section 2.1.6.2). Protein was separated on pH 4 - 

7 IEF strips, followed by resolution by SDS-PAGE (Section 2.2.4.3). Colloidal 

Coomassie staining was carried out on gels, with subsequent protein spot analysis using 

Progenesis™ SameSpot software (Section 2.2.4.4). Gels from all four treatments were 

aligned (n = 20; 5 gels/treatment) and subsets of treatments were compared as outlined 

in Figure 5.3. 

 

Table 5.1: Treatments carried out on A. fumigatus ATCC26933, with addition of 

gliotoxin, H2O2 and/or methanol indicated.  

Treatment Gliotoxin (µg/ml)
1 H2O2 (mM)

2 
Methanol

3 

Solvent Control - -  

Gliotoxin alone 10 

 

- - 

H2O2 alone - 2  

Gliotoxin and H2O2 

(Co-addition) 

10 2 - 

1
Gliotoxin stock (500 µl) (Table 2.1) added per 50 ml culture. 

 2
 H2O2 stock (100 µl) 

(Table 2.1) added per 50 ml culture. 
3
Methanol (500 µl) added per 50 ml culture as a 

solvent control for gliotoxin. 
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Figure 5.3: Comparison sets used for analysis of 2D-PAGE of A. fumigatus 

ATCC26933 following gliotoxin and H2O2 exposure, individually and combined. 

Arrows point to control gels in each comparison set. Comparison sets include (i) 

Gliotoxin alone v Solvent Control, (ii) H2O2 alone v Solvent control, (iii) Co-addition v 

Solvent control, (iv) Co-addition v Gliotoxin alone, (v) Co-addition v H2O2 alone. 
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Proteins spots (n = 29) were found to be significantly differentially expressed (p 

< 0.05) under these conditions (Figure 5.4). Three of these proteins spots had a fold 

increase ≥ 1.5 fold (p < 0.05) and two had a fold decrease ≥ 1.5 fold (p < 0.05), 

following exposure to gliotoxin alone relative to the solvent control (Comparison (i)). 

Six proteins spots exhibited a fold increase ≥ 1.5 fold (p < 0.05), following exposure to 

H2O2 alone relative to the solvent control (Comparison (ii)). Nine of these proteins spots 

had a fold increase ≥ 1.5 fold (p < 0.05) and three showed a fold decrease ≥ 1.5 fold (p 

< 0.05), under gliotoxin/H2O2 co-addition relative to the solvent control (Comparison 

(iii)). Nine proteins spots presented with a fold increase ≥ 1.5 fold (p < 0.05) and one 

had a fold decrease ≥ 1.5 fold (p < 0.05), in the co-addition relative to exposure to 

gliotoxin alone (Comparison (iv)). Seven proteins spots yielded a fold increase ≥ 1.5 

fold (p < 0.05) and six had a fold decrease ≥ 1.5 fold (p < 0.05), in the co-addition 

relative to H2O2 alone (Comparison (v)). Redundancy was noted, with some protein 

spots included in multiple comparison sets, resulting in the differential expression of 29 

unique protein spots. These protein spots were excised and subjected to in-gel trypsin 

digestion (Section 2.2.6.1), followed by LC-MS/MS analysis for protein identification 

(Section 2.2.6.3). 
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a. 

Colloidal Coomassie stained 2D-PAGE gel 

of A. fumigatus mycelial proteins; 

Solvent control 
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b. 

Colloidal Coomassie stained 2D-PAGE gel 

of A. fumigatus mycelial proteins; 

Gliotoxin alone 
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c. 

Colloidal Coomassie stained 2D-PAGE gel 

of A. fumigatus mycelial proteins; 

H2O2 alone 
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d. 

 

 

 

Figure 5.4: 2D-PAGE analysis of A. fumigatus ATCC26933 (a) solvent control, (b) 

following exposure to gliotoxin (10 µg/ml) for 4 h, (c) following exposure to 2 mM 

H2O2 for 4 h, (d) following exposure to a combination of gliotoxin (10 µg/ml) and H2O2 

(2 mM) for 4 h. The proteins were first separated on pH 4 – 7 strips followed by SDS-

PAGE. Proteins found to be significantly differentially expressed (p < 0.05), after 

analysis using Progenesis™ SameSpot software, are numbered. 

Colloidal Coomassie stained 2D-PAGE gel 

of A. fumigatus mycelial proteins; 

Gliotoxin and H2O2 combined 



207 

 

5.2.3 Identification of differentially expressed proteins by LC-MS/MS 

LC-MS/MS analysis was used to identify the 29 protein spots differentially 

expressed following challenges with gliotoxin and H2O2, individually or in combination 

(Tables 5.2 and 5.3). Protein expression was assessed for all conditions relative to the 

solvent control (Table 5.2) The expression of proteins after gliotoxin/ H2O2 co-exposure 

was also assessed relative to the individual treatments of gliotoxin alone or H2O2 alone 

(Table 5.3). In total, 28 unique proteins were identified by LC-MS/MS, from 29 excised 

protein spots. Molecular chaperone and allergen Mod-E/Hsp90/Hsp1 (termed Hsp90) 

(AFUA_5G04170) was identified from two distinct spots (Spots 743 and 924; Figure 

5.4). The positions of these protein spots indicate proteins with low and high molecular 

masses, respectively, and may be indicative of protein degradation or cleavage.  

Proteins (n = 13) were significantly altered in expression following co-addition 

relative to H2O2 alone (p < 0.05) (Table 5.3, Comparison set (v)). Proteins up-regulated 

in the co-addition included those with oxidation-reduction activity. GliT, a gliotoxin 

oxidoreductase (Scharf et al., 2010; Schrettl et al., 2010), was up-regulated in the co-

additive condition relative to H2O2 alone (5.0 fold) but was not induced by H2O2 alone 

(Figure 5.5, Tables 5.2 and 5.3). A decrease in expression of proteins associated with 

response to stress was observed following gliotoxin/ H2O2 co-exposure, relative to H2O2 

alone. Hsp90 and the oxidative stress protein Svf1 were down-regulated in the co-

addition (2.1 and 1.7 fold, respectively), reflective of the relief of H2O2-induced stress 

(Table 5.3, Comparison set (v)). An increase in expression of the Ran-specific GTPase 

and the proliferating cell nuclear antigen (PCNA), involved in cell-cycle regulation and 

DNA-repair (Baumer et al., 2000; Burkovics et al., 2009), respectively, was also 

observed in the co-addition analysis (Table 5.3). The class V chitinase, associated with 

cell autolysis (Yamazaki et al., 2007), was expressed at a significantly lower level in the 
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co-addition relative to H2O2 alone (p < 0.05) (Table 5.3, Comparison set (v)). Two 

hydrolases, isochorismate family hydrolase and the HAD family hydrolase, were up-

regulated when both gliotoxin and H2O2 were present (Table 5.3). Proteins involved in 

amino acid and nucleic acid metabolism (Valerius et al., 2001; Sieńko et al., 2007), 

glutamine amidotransferase:cyclase and methylenetetrahydrofolate reductase, were also 

differentially expressed (Table 5.3). Additionally an unknown function protein 

(AFUA_6G03460) was detected, which underwent a 2.7 fold decrease in expression in 

the co-addition scenario, relative to H2O2 alone (Table 5.3). 
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Untreated control

Gliotoxin alone 

(10 µg/ml)

H2O2 alone 

(2 mM)

Gliotoxin (10 µg/ml) 

and H2O2 (2 mM), 

combined

AFUA_6G09740

GliT

 

Figure 5.5: Increased expression of the gliotoxin oxidoreductase GliT in response to 

gliotoxin but not H2O2. GliT expression was increased following exposure to exogenous 

gliotoxin alone (4.6 fold) and in combination with H2O2 (4.7 fold), relative to the 

solvent control. No significant difference in expression of GliT was detected upon 

exposure of A. fumigatus to H2O2 alone, relative to the control (p > 0.05), indicating 

GliT expression is mediated by gliotoxin only. 
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Table 5.2: Proteins undergoing significant differential expression
1
 in A. fumigatus ATCC26933 following exposure to gliotoxin and H2O2, separately 

or combined, relative to the solvent control. Protein identification was achieved by 2D-PAGE and LC-MS/MS. 

Protein name Gliotoxin 

v Control
2 

(i) 

H2O2  

v Control
2 

(ii) 

Co-addition 

v Control
2 

(iii) 

Sequence 

coverage 

% 

tMr 

(Da) 

CADRE 

ID. 

(AFUA_) 

Spot 

No. 

        
14-3-3 family protein ArtA - ↑  1.9 ↑  2.1 46 29102 2G03290 703 

ATP synthase gamma chain, mitochondrial precursor, putative - ↑  1.6 ↑  1.9 38 31547 1G03510 891 

Molecular chaperone and allergen Mod-E/Hsp90/Hsp1 - ↑  2.0 - 8 80640 5G04170 743 

Unknown function protein - ↑  2.3 - 10 63462 6G03460 887 

14-3-3 family protein - ↑  1.9 - 38 30104 6G06750 685 

Thioredoxin reductase Trr1/Trr2 - ↑  1.6 - 18 42190 4G12990 493 

Thioredoxin reductase GliT ↑  4.6 - ↑  4.7 16 36004 6G09740 634 

Proteasome component Pre8 ↓  1.8 -  27 30463 7G05870 761 

Succinate dehydrogenase subunit Sdh1 ↑  1.5 -  18 71148 3G07810 294 

Translation elongation factor EF2 subunit ↑  1.6 -  9 93198 2G13530 697 

Bifunctional purine biosynthetic protein Ade1 ↓  1.7 -  9 86419 6G04730 141 
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Protein name Gliotoxin 

v Control
2 

(i) 

H2O2  

v Control
2 

(ii) 

Co-addition 

v Control
2 

(iii) 

Sequence 

coverage 

% 

tMr 

(Da) 

CADRE 

ID. 

(AFUA_) 

Spot 

No. 

Proliferating cell nuclear antigen (PCNA) - - ↑  7.5 8 24034 1G04900 700 

Glycyl-tRNA synthetase - - ↓  1.9 4 79100 5G05920 199 

Cytochrome c peroxidase Ccp1 - - ↑  1.8 14 40379 4G09110 714 

Unknown function protein - - ↑  1.9 26 27921 3G00730 797 

Isochorismatase family hydrolase - - ↑  1.6 31 20904 6G12220 821 

NADH-ubiquinone dehydrogenase 24 kDa subunit - - ↑  1.8 12 29771 2G09130 897 

Xanthine-guanine phosphoribosyl transferase Xpt1, putative - - ↑  1.9 28 19505 4G04550 896 

Methylenetetrahydrofolate reductase (MTHFR) - - ↓  1.6 10 69279 2G11300 273 

Glutamine amidotransferase:cyclase - - ↓  2.0 27 60190 2G06230 899 

1
p< 0.05; 

2
Fold increase (↑) or decrease (↓) of protein upon exposure of A. fumigatus ATCC26933 to gliotoxin alone, H2O2 alone or the co-addition, 

relative to control. CADRE ID., A. fumigatus gene annotation nomenclature according to Nierman et al. (2005) and Mabey et al. (2004); tMr, 

theoretical molecular mass; Spot No, according to Figure 5.4; Co-addition: incubation with gliotoxin and H2O2 in combination.(i, ii, iii) indicates 

comparison sets as described in Figure 5.3. 
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Table 5.3: Proteins undergoing significant differential expression
1
 in A. fumigatus ATCC26933 following exposure to a combination of gliotoxin and 

H2O2 (co-addition), relative to the control, gliotoxin alone or H2O2 alone. Protein identification was achieved by 2D-PAGE and LC-MS/MS. 

Protein Name Co-addition 

v Control
2
 

(iii) 

Co-addition 

v Gliotoxin
2
 

(iv)
 

Co-addition 

v H2O2
2
 

(v) 

Sequence 

coverage 

% 

tMr 

(Da) 

CADRE 

ID. 

(AFUA_) 

Spot 

No. 

        
Proteasome component Pre8 - ↑  2.6 - 27 30463 7G05870 761 

HAD superfamily hydrolase - ↑  2.4 ↑  1.6 22 27360 5G08270 911 

Hsp70 chaperone BiP/Kar2 - ↓  1.6 - 24 73385 2G04620 227 

Proliferating cell nuclear antigen (PCNA) ↑  7.5 ↑  7.9 ↑  2.3 8 24034 1G04900 700 

F-actin capping protein alpha subunit - ↑  1.8 - 18 30422 6G10060 694 

ATP synthase gamma chain, mitochondrial precursor, putative ↑  1.9 ↑  1.7 - 38 31547 1G03510 891 

Glucosamine-6-phosphate isomerase/6-

phosphogluconolactonase family 

- ↑  2.1 - 3 93269 1G02980 751 

Isochorismatase family hydrolase ↑  1.6 ↑  1.7 ↑  1.5 31 20904 6G12220 821 

NADH-ubiquinone dehydrogenase 24 kDa subunit ↑  1.8 ↑  1.8 ↑  1.5 12 29771 2G09130 897 

Xanthine-guanine phosphoribosyl transferase Xpt1, putative ↑  1.9 ↑  1.7 - 28 19505 4G04550 896 

Thioredoxin reductase GliT ↑  4.7 - ↑  5.0 16 36004 6G09740 634 
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Protein Name Co-addition 

v Control
2
 

(iii) 

Co-addition 

v Gliotoxin
2
 

(iv)
 

Co-addition 

v H2O2
2
 

(v) 

Sequence 

coverage 

% 

tMr 

(Da) 

CADRE 

ID. 

(AFUA_) 

Spot 

No. 

Class V chitinase - - ↓  1.5 24 43638 3G11280 548 

Unknown function protein - - ↓  2.7 10 63462 6G03460 887 

NADH-quinone oxidoreductase, 23 kDa subunit - - ↑  1.8 12 25752 1G06610 920 

Molecular chaperone and allergen Mod-E/Hsp90/Hsp1 - - ↓  2.1 6 80640 5G04170 924 

Glutamine amidotransferase:cyclase ↓  2.0 - ↓  1.6 27 60190 2G06230 899 

Methylenetetrahydrofolate reductase (MTHFR) ↓  1.6 - ↓  1.6 10 69279 2G11300 273 

Ran-specific GTPase-activating protein 1 - - ↑  2.0 13 27644 5G12180 759 

Oxidative stress protein Svf1 - - ↓  1.7 9 43421 5G11820 530 

14-3-3 family protein ArtA ↑  2.1 - - 46 29102 2G03290 703 

Glycyl-tRNA synthetase ↓  1.9 - - 4 79100 5G05920 199 

Cytochrome c peroxidase Ccp1 ↑  1.8 - - 14 40379 4G09110 714 

Unknown function protein ↑  1.9 - - 26 27921 3G00730 797 

1
 p < 0.05; 

2
Fold increase (↑) or decrease (↓) of protein in the co-addition, relative to the solvent control, gliotoxin alone or H2O2 alone. CADRE ID., A. 

fumigatus gene annotation nomenclature according to Nierman et al. (2005) and Mabey et al. (2004); tMr, theoretical molecular mass; Spot No, 

according to Figure 5.4; Co-addition: incubation with both gliotoxin and H2O2. (i, ii, iii) indicates comparison sets as described in Figure 5.3. Data 

from comparison set (iii) (Co-addition v Control) from Table 5.2 is included for ease of analysis. 
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5.2.4 Comparative 2D-PAGE analysis of A. fumigatus ΔgliK following exposure 

to gliotoxin 

Following the observation in Section 5.2.1 that A. fumigatus ΔgliK exhibited 

increased sensitivity to exogenous gliotoxin, 2D-PAGE was carried out to investigate 

the proteome changes associated with this phenotype. A. fumigatus ΔgliK was cultured 

in Sabouraud dextrose broth for 24 h before addition of gliotoxin (10 µg/ml) or the 

equivalent volume of methanol as a control (n = 5, respectively). After 4 h, mycelia 

were harvested and protein was extracted as described in Section 2.2.2.2. Protein lysates 

were subjected to TCA/acetone precipitation before resuspension in IEF buffer (Section 

2.1.6.2) and separation on pH 4 - 7 strips (Section 2.2.4.3). Following separation of 

proteins by SDS-PAGE, Colloidal Coomassie staining was carried out to visualise total 

proteins on the gels (Section 2.2.4.4). Progenesis™ SameSpot software was 

subsequently used to analyse the stained gels, and protein spots demonstrating 

significant differential expression were located (Figure 5.6).  

Protein spots (n = 33) were found to be differentially expressed in A. fumigatus 

ΔgliK upon exposure to gliotoxin (10 µg/ml) for 4 h. Nineteen of these proteins spots 

had a fold increase ≥ 1.5 (p < 0.05), while the remaining fourteen protein spots 

exhibited a fold decrease ≥ 1.5 (p < 0.05) in response to gliotoxin. These protein spots 

were excised from the gels and subjected to trypsin digestion as described in Section 

2.2.6.1. LC-MS/MS analysis was carried out to ascertain the identity of these proteins 

(Section 2.2.6.3). 
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a. 

Colloidal Coomassie stained 2D-PAGE gel 

of A. fumigatus ΔgliK mycelial proteins; 

Solvent control 
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b. 

 

 

 

Figure 5.6: 2D-PAGE analysis of A. fumigatus ΔgliK (a) control, (b) following 

exposure to gliotoxin (10 µg/ml) for 4 h. The proteins were first separated on pH 4 – 7 

strips followed by SDS-PAGE. Proteins found to be significantly differentially 

expressed (p < 0.05), after analysis using Progenesis™ SameSpot software, are 

numbered.  

Colloidal Coomassie stained 2D-PAGE gel 

of A. fumigatus ΔgliK mycelial proteins; 

Gliotoxin (10 µg/ml) 
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5.2.5 LC-MS/MS identification of differentially expressed proteins 

Proteins (n = 30) were identified by LC-MS/MS, from the 31 protein spots 

differentially regulated in A. fumigatus ΔgliK, following exposure to gliotoxin for 4 h 

(Table 5.4). Translation elongation factor eEF-3 (AFUA_7G05660; Spot 297; Figure 

5.6) showed the largest fold increase in response to exogenous gliotoxin, while pyruvate 

dehydrogenase E1 component alpha subunit (AFUA_1G06960; Spot 1200; Figure 5.6) 

displayed the largest decrease. 

Up-regulation of eighteen protein spots, corresponding to seventeen distinct A. 

fumigatus proteins, was observed in ΔgliK in response to gliotoxin (Table 5.4). A 

decrease in expression of thirteen distinct A. fumigatus proteins was detected in 

gliotoxin-exposed ΔgliK (Table 5.4). Cobalamin-independent methionine synthase 

MetH/D (AFUA_4G07360) was identified from two independent spots positioned 

alongside each other on the gel (Spots 600 and 607, Figure 5.6) and was up-regulated 

1.9 and 2.2 fold respectively, following gliotoxin exposure. The positions of these 

protein spots indicated that the proteins had the same molecular mass but differed 

slightly in pI. These slight changes in pI may be a result of post-translational 

modification of the protein. Down-regulation of thirteen proteins was observed in A. 

fumigatus ΔgliK upon exposure to gliotoxin (Table 5.4). Two isoforms of the thiazole 

biosynthesis enzyme, encoded by the pyrithiamine resistance gene (ptrA) from A. 

oryzae were also identified. This gene was used as a selection marker in the generation 

of the gliK deletion strain.  

Proteins undergoing significant differential expression in A. fumigatus ΔgliK 

following exposure to gliotoxin include those involved in translation, amino acid 

metabolism, those exhibiting regulatory roles and endoplasmic reticulum (ER) 
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associated proteins. The translation initiation factor EifCb, translation elongation factors 

EF3, eEF3 and G1 and the alanyl-tRNA synthetase are involved in translation (Triana-

Alonso et al., 1995; Kapp and Lorsch, 2004; Towpik, 2005; Jackson et al., 2010). A 

number of proteins are involved in the processes surrounding amino acid metabolism. 

Specifically, cobalamin-independent methionine synthase MetH/D and the 

methylenetetrahydrofolate reductase are associated with methionine biosynthesis 

(Sieńko et al., 2007; Suliman et al., 2007). Diphthamide synthase is involved in 

histidine modification (Liu et al., 2004), while glycine dehydrogenase and alanine 

aminotransferase catalyse the reversible catabolism of glycine and alanine, respectively 

(Piper et al., 2002; Garcia-Campusano et al., 2009). Homogentisate 1,2-dioxygenase is 

associated with tyrosine and phenylalanine degradation (Schmaler-Ripcke et al., 2009). 

Regulatory proteins identified here include a subunit of protein phosphatase 2A (PP2A) 

and the zinc finger protein ZPR1, which each have distinct roles in the control of 

transcription and translation (Mishra et al., 2007; Kaul et al., 2011). Protein disulphide 

isomerise Pdi1 also exhibits a regulatory role and is associated with the ER-unfolded 

protein response (Gauss et al., 2011). Several other ER-associated proteins were 

identified, including CRAL/TRIO domain protein, aspartic endopeptidase Pep2 and the 

vesicular fusion protein Sec17 (Schnabl et al., 2003; Parr et al., 2007; Perry et al., 2009) 
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Table 5.4: Proteins undergoing a significant change in expression
1
 in A. fumigatus ΔgliK following exposure to gliotoxin (10 µg/ml), relative to the 

solvent control. Protein identification was achieved by 2D-PAGE and LC-MS/MS. 

Protein name Fold Change
2
 Sequence 

coverage % 

tMr (Da) CADRE ID. 

(AFUA_) 

Spot No. 

Proteins Upregulated following Gliotoxin Addition:      

Translation elongation factor eEF-3 ↑ 5.6 8 117768.4 7G05660 297 

Alanyl-tRNA synthetase ↑ 3.0 4 113714.5 8G03880 368 

Eukaryotic translation initiation factor 3 subunit EifCb ↑ 2.7 5 85065.4 1G02030 542 

Translation elongation factor G1 ↑ 2.5 19 87877.7 4G08110 575 

Heat shock protein Hsp98/Hsp104/ClpA ↑ 2.2 13 111096.9 1G15270 370 

Glycine dehydrogenase ↑ 2.2 18 115203.5 4G03760 389 

Cobalamin-independent methionine synthase MetH/D ↑ 2.2 5 87736.8 4G07360 607 

Vesicular-fusion protein Sec17 ↑ 2.0 31 32840.9 2G12870 1699 

CTP synthase ↑ 2.0 27 64869.3 7G05210 794 

Cobalamin-independent methionine synthase MetH/D ↑ 1.9 14 87736.8 4G07360 600 

Aminopeptidase ↑ 1.9 35 106227.3 4G09030 479 
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Protein name Fold Change
2
 Sequence 

coverage % 

tMr (Da) CADRE ID. 

(AFUA_) 

Spot No. 

Alanine aminotransferase ↑ 1.9 31 55135.5 6G07770 1034 

Methylenetetrahydrofolate reductase (MTHFR) ↑ 1.8 39 69278.9 2G11300 815 

Mitochondrial processing peptidase alpha subunit, putative ↑ 1.7 8 63997 1G11870 863 

Xanthine-guanine phosphoribosyl transferase Xpt1, putative ↑ 1.7 29 19505.5 4G04550 2105 

Isochorismatase family hydrolase ↑ 1.7 26 20904.6 6G12220 2135 

Pyruvate dehydrogenase complex component Pdx1 ↑ 1.5 27 35523.1 3G08270 1509 

GNAT family acetyltransferase ↑ 1.5 39 29061.1 5G00720 1951 

Proteins Downregulated following Gliotoxin Addition:      

Pyruvate dehydrogenase E1 component alpha subunit, putative ↓ 2.8 47 41709.5 1G06960 1200 

Ran gtpase activating protein 1 (RNA1 protein) ↓ 2.4 8 46228.2 3G07680 1002 

Protein phosphatase 2a 65kDa regulatory subunit ↓ 2.3 7 69220 1G05610 753 

Diphthine synthase  ↓ 2.1 24 31492.2 1G14020 1549 

Homogentisate 1,2-dioxygenase (HmgA) ↓ 2.1 26 50255.6 2G04220 1066 

Aspartic endopeptidase Pep2 ↓ 2.1 20 43355.1 3G11400 1372 

Zinc finger protein ZPR1 ↓ 2.1 23 53620 6G10470 2553 
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Protein name Fold Change
2
 Sequence 

coverage % 

tMr (Da) CADRE ID. 

(AFUA_) 

Spot No. 

CRAL/TRIO domain protein ↓ 2.0 27 46169.8 5G03690 910 

Translation elongation factor EF2 subunit ↓ 1.9 11 93428.8 2G13530 1459 

Thiamine biosynthesis protein (Nmt1) ↓ 1.9 38 38323 5G02470 1470 

Oxidoreductase, 2OG-Fe(II) oxygenase family ↓ 1.8 13 43013.2 1G01000 1386 

Nucleosome assembly protein Nap1  ↓ 1.8 28 48336.4 5G05540 839 

Protein disulfide isomerase Pdi1 ↓ 1.6 31 56187.2 2G06150 870 

1
 p < 0.05; 

2
Fold increase (↑) or decrease (↓) of protein upon exposure to gliotoxin (10 µg/ml), relative to the solvent control. CADRE ID., A. fumigatus 

gene annotation nomenclature according to Nierman et al. (2005) and Mabey et al. (2004); tMr, theoretical molecular mass; Spot No, according to 

Figure 5.5. 
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5.3 Discussion 

Exposure of mammalian cells to gliotoxin has been shown to increase the 

production of ROS, while H2O2 induces oxidative stress (Pardo et al., 2006). Both 

conditions also result in numerous alterations to the proteome of A. fumigatus (Lessing 

et al., 2007; Schrettl et al., 2010; Carberry et al., 2012). Co-addition of gliotoxin and 

H2O2 to A. fumigatus was expected to result in an additive or synergistic effect, due to 

the combination of two inducers of oxidative stress. Paradoxically, phenotypic analysis 

described in this Chapter revealed an alternate effect of the co-exposure of A. fumigatus 

ATCC26933 and ΔgliK to gliotoxin and H2O2. While A. fumigatus ΔgliK exhibited 

significant growth inhibition upon exposure to gliotoxin or H2O2 individually, gliotoxin 

was observed to relieve H2O2-induced inhibition in a concentration-dependent manner. 

This relief of H2O2-induced stress was also observed in A. fumigatus ATCC26933 

indicating that the mechanism involved was not dependent on the disruption of the gliK 

gene. Comparative 2D-PAGE identified changes in protein expression associated with 

gliotoxin-mediated relief of H2O2-induced stress. Differential expression of 29 protein 

spots was observed, upon comparison of the conditions tested (Figure 5.3), 

corresponding to 28 unique A. fumigatus proteins (Tables 5.2 and 5.3). Proteins (n = 13) 

were differentially regulated following exposure to a combination of H2O2 (2 mM) and 

gliotoxin (10 µg/ml), relative to H2O2 (2 mM) alone, and may aid in the elucidation of 

the mechanisms involved in gliotoxin-mediated relief of H2O2-induced stress. These 

proteins (n = 13) were extracted from Table 5.3 and presented in Table 5.5 for clarity 

(Comparison set (v)). Of these, seven proteins showed increased expression and six 

showed decreased expression in response to the co-addition of gliotoxin and H2O2, 

relative to H2O2 alone. The increased expression of proteins with predicted or 

demonstrated oxidoreductase activity in response to gliotoxin and H2O2 in combination, 

relative to H2O2 alone, was observed. These proteins included the gliotoxin 
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oxidoreductase GliT, NADH-quinone oxidoreductase (23 kDa subunit) and NADH-

ubiquinone dehydrogenase (24 kDa subunit), with 5.0, 1.8 and 1.5 fold increase in 

expression, respectively. Proteins exhibiting a decrease in expression included the 

stress-response proteins, Hsp90 and oxidative stress protein Svf1. Proteins (n = 30) 

differentially expressed in A. fumigatus ΔgliK following exposure to gliotoxin were 

identified, in an effort to characterise the increased sensitivity of the deletion strain to 

gliotoxin. Increased expression of 17 unique proteins and decreased expression of 13 

proteins was observed in A. fumigatus ΔgliK following incubation with gliotoxin (10 

µg/ml) for 4 h (Table 5.4).  

The combined effects of gliotoxin and H2O2 were investigated to determine the 

effects of co-addition on A. fumigatus. Phenotypic analysis of A. fumigatus ATCC26933 

and ΔgliK, grown in the presence of gliotoxin (0 - 10 µg/ml) and H2O2 (0 - 1 mM), was 

carried out. While at 1 mM H2O2, growth of A. fumigatus ATCC26933 and ΔgliK were 

both significantly inhibited (p < 0.001, respectively), relief of this inhibition was 

observed upon growth on a combination of gliotoxin and H2O2. Relief of H2O2-

mediated stress was achieved by gliotoxin in a concentration-dependent manner, with 

growth on gliotoxin (10 µg/ml) plus H2O2 (1 mM) exhibiting no significant difference 

to growth on gliotoxin (10 µg/ml) alone (Figures 5.1c and 5.2c and d). Choi et al. 

(2007) noted that gliotoxin catalysed H2O2 reduction, mediated by the thioredoxin redox 

system. The authors proposed that gliotoxin replaces 2-cys peroxiredoxin as an electron 

acceptor, in the reduction of H2O2 to H2O in mammalian cells (Figure 5.7). The 

inhibition by gliotoxin of H2O2-induced human umbilical vein endothelial cell 

(HUVEC) angiogenesis, in a dose-dependent manner, was also observed (Choi et al., 

2007).  
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Figure 5.7: Schematic representation of thioredoxin-dependent H2O2-reducing activity 

of gliotoxin. Gliotoxin disulfide can be reduced by thioredoxin-SH groups. From Choi 

et al. (2007). 
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Alterations in protein expression after exposure of A. fumigatus ATCC26933 to 

a combination of gliotoxin (10 µg/ml) and H2O2 (2 mM) were investigated, relative to 

exposure to H2O2 (2 mM) alone (Figure 5.8). The increase in expression of three 

proteins involved in oxido-reduction processes was noted, with a fold increase of 5.0, 

1.5 and 1.8 observed for the gliotoxin oxidoreductase GliT (AFUA_6G09740), NADH-

ubiquinone dehydrogenase (24 kDa subunit) (AFUA_2G09130) and NADH-quinone 

oxidoreductase (23 kDa subunit) (AFUA_1G06610), respectively. The gliotoxin 

oxidoreductase GliT is encoded by a member of the gliotoxin biosynthetic cluster (gli) 

(Gardiner and Howlett, 2005) and is responsible for the oxidation and reduction of the 

disulphide bridge of gliotoxin (Scharf et al., 2010; Schrettl et al., 2010). In addition to a 

key role in the gliotoxin biosynthetic process, this action also mediates self-protection 

against the harmful effects of gliotoxin (Scharf et al., 2010; Schrettl et al., 2010). 

Expression of GliT is induced by the presence of exogenous gliotoxin (Schrettl et al., 

2010; Carberry et al., 2012) and this induction was also observed in this study (Tables 

5.2 and 5.3). Increased expression of GliT was detected following exposure to gliotoxin 

alone (4.6 fold) and combined with H2O2 (4.7 fold) relative to the solvent control 

(Figure 5.4 and 5.5). There was no significant alteration to expression of GliT in 

response to H2O2 alone (p > 0.05) and this demonstrates that GliT expression is not 

regulated by H2O2 and up-regulation in the co-addition condition is solely a result of 

gliotoxin presence. GliT may be involved in the protection of A. fumigatus against 

H2O2-induced stress, as induction of expression by gliotoxin, correlates with relief of 

H2O2 sensitivity (Figure 5.10). While A. fumigatus ΔgliT is not significantly sensitive to 

H2O2, relative to the parent strain (Schrettl et al., 2010), the substantial increase in GliT 

expression, as induced by exogenous gliotoxin, may provide a protective mechanism 

against H2O2. 
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Table 5.5: Proteins (n = 13) exhibiting significant differential expression
1
 in A. fumigatus ATCC26933 following the co-addition of gliotoxin and 

H2O2, relative to H2O2 alone. Data extracted from Table 5.3 and re-charted for clarity. 

Protein Name Co-addition 

v Control 

(iii) 

Co-addition 

v Gliotoxin 

(iv) 

Co-addition  

v H2O2 

(v) 

CADRE ID. 

(AFUA_) 

Spot No. 

Proteins Up-regulated in Co-addition v H2O2      

Thioredoxin reductase GliT ↑  4.7 - ↑  5.0 6G09740 634 

Proliferating cell nuclear antigen (PCNA) ↑  7.5 ↑  7.9 ↑  2.3 1G04900 700 

Ran-specific GTPase-activating protein 1 - - ↑  2.0 5G12180 759 

NADH-quinone oxidoreductase (23 kDa subunit) - - ↑  1.8 1G06610 920 

HAD superfamily hydrolase - ↑  2.4 ↑  1.6 5G08270 911 

Isochorismatase family hydrolase ↑  1.6 ↑  1.7 ↑  1.5 6G12220 821 

NADH-ubiquinone dehydrogenase (24 kDa subunit) ↑  1.8 ↑  1.8 ↑  1.5 2G09130 897 

Proteins Down-regulated in Co-addition v H2O2      

Unknown function protein - - ↓  2.7 6G03460 887 

Molecular chaperone and allergen Mod-E/Hsp90/Hsp1 - - ↓  2.1 5G04170 924 

Oxidative stress protein Svf1 - - ↓  1.7 5G11820 530 

Glutamine amidotransferase:cyclase ↓  2.0 - ↓  1.6 2G06230 899 

Methylenetetrahydrofolate reductase ↓  1.6 - ↓  1.6 2G11300 273 

Class V chitinase - - ↓  1.5 3G11280 548 
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1
p < 0.05; Fold increase (↑) or decrease (↓) of protein in the co-additive condition, relative to the solvent control, gliotoxin alone or H2O2 alone. Co-

addition: incubation with both gliotoxin and H2O2. CADRE ID., A. fumigatus gene annotation nomenclature according to Nierman et al. (2005) and 

Mabey et al. (2004); Spot No, according to Figure 5.4. Red border indicates proteins (n = 13) differentially regulated in the co-addition, relative to 

H2O2 alone.  
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The expression of two additional proteins, involved in the oxidation-reduction 

process, was increased in the combined treatment of gliotoxin and H2O2, relative to 

H2O2 alone. The NADH ubiquinone dehydrogenase (24 kDa subunit) displayed an 

increase in expression during H2O2 and gliotoxin co-addition, relative to the solvent 

control (1.8 fold), gliotoxin alone (1.8 fold) and H2O2 alone (1.5 fold) (Table 5.5). This 

indicates that expression of this protein is affected by the combination of gliotoxin and 

H2O2, but not by the individual treatments. Increased expression of NADH-quinone 

oxidoreductase (23 kDa subunit) was also observed following exposure of A. fumigatus 

to a combination of gliotoxin and H2O2, relative to H2O2 alone (1.8 fold). Up-regulation 

of transcripts of both of these proteins has previously been demonstrated in A. fumigatus 

in response to the anti-malarial agent, artemisinin (Gautam et al., 2011). Artemisinins 

contain an endoperoxide bridge, essential for mediation of anti-malarial activity 

(O’Neill et al., 2010). These up-regulated proteins form part of complex I of the 

mitochondrially-located electron transport chain (ETC) and are involved in the 

oxidation of NADH from the citric acid cycle to NAD
+
 (Lin and Guarente, 2003). 

Although complex I is actually a source of ROS in the electron transport chain 

(Voulgaris et al., 2012), components of the ETP, including the alternative oxidase 

AoxA, are involved in fungal resistance to oxidative stress (Grahl et al., 2012). 

Additionally, generation of low-levels of ROS can elicit a signalling mechanism that 

promotes survival (Trachootham et al., 2008). Alternatively, increased expression of 

components of the ETC could be indicative of increased energy requirement due to 

recovery of growth in the co-exposure condition (Figure 5.10). 

The proliferating cell nuclear antigen (PCNA) exhibited a 2.3 fold increase in 

expression following incubation with a combination of gliotoxin and H2O2, relative to 

H2O2 alone. Moreover, expression of this protein was also dramatically up-regulated in 

the co-addition condition, relative to gliotoxin alone (7.9 fold) and the solvent control 
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(7.5 fold) (Figure 5.8, Table 5.5). This suggests that PCNA is induced by H2O2 

(approximately 5 fold) and not by exposure to gliotoxin alone. Clearly, a combination of 

H2O2 with gliotoxin leads to further induction of this protein. The PCNA protein forms 

a complex around the DNA strand and has a role in the regulation of DNA replication 

and repair. Indeed, PCNA is involved in the process of DNA-repair following H2O2-

mediated damage (Burkovics et al., 2009) and acts as an anchor to the DNA template 

for binding partners (Zamir et al., 2012). The increase in PCNA expression observed in 

response to H2O2, alone or coupled with gliotoxin, may therefore be indicative of H2O2-

induced DNA damage in these conditions. Furthermore, additional induction of PCNA 

expression in the co-addition condition relative to H2O2, alone, may account for the 

recovery of growth, due to enhanced DNA repair capacity (Figure 5.10). Detection of 

DNA damage in each of the conditions tested could deduce whether further induction of 

this repair mechanism contributes to the gliotoxin mediated recovery from H2O2-

induced growth inhibition. 

 

 

Figure 5.8: Fold expression of the proliferating cell nuclear antigen (PCNA) upon 

exposure to gliotoxin alone, H2O2 alone and co-addition of gliotoxin and H2O2, relative 

to the control.  

Control Gliotoxin     H2O2 Co-addition 
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The Ran-specific GTPase-activating protein 1 (AFUA_5G12180) is also 

significantly induced by growth in gliotoxin combined with H2O2, relative to H2O2 

alone (2.0 fold, p < 0.05). This protein did not demonstrate any differential regulation 

relative to either the solvent control or gliotoxin treatment alone which may indicate 

that expression of this protein is down-regulated in the presence of H2O2 alone, and 

expression returns to a basal level upon co-addition of gliotoxin. The Ran-specific 

GTPase-activating-protein 1 is involved in the up-regulation of protein degradation 

through ubiquitination and also functions in the regulation of nuclear import/export 

(Baumer et al., 2000). Depletion of the S. cerevisiae ortholog of this protein, Yrb1, 

correlates with cell-cycle arrest, underlining the importance of this protein during 

mitosis (Baumer et al., 2000). The level of Ran GTPase-activating protein 1 may 

account for the growth inhibition observed in the presence of H2O2 alone, relative to a 

combination of gliotoxin and H2O2 (Figure 5.1). The subsequent increase in expression 

of this protein upon incubation with gliotoxin and H2O2 in combination coincides with 

the recovery from H2O2-induced stress. Thus, the control of factors involved in cell-

cycle regulation may be critical in the gliotoxin-mediated relief of H2O2-induced growth 

inhibition. 

The increased expression of two hydrolases was also observed in the presence of 

gliotoxin and H2O2, relative to H2O2 alone. The isochorismatase family hydrolase was 

observed to increase 1.5 fold and the HAD superfamily hydrolase increased 1.6 fold in 

this comparison. Additionally, the HAD superfamily hydrolase exhibited increased 

expression in the co-addition condition, relative to gliotoxin alone (2.4 fold) (Table 5.5), 

indicating that regulation of expression of this protein is affected by both gliotoxin and 

H2O2. Isochorismatase family hydrolase catalyses the production of pyruvate and 2,3-

dihydroxybenzoate from isochorismate (Soanes et al., 2008), and orthologs of this 

protein were up-regulated in A. niger in response to DTT and in A. oryzae and A. 
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nidulans in response to hypoxia (Guillemette et al., 2007; Terabayashi et al., 2012). 

Conversely, the HAD superfamily hydrolase is observed to be down-regulated in A. 

fumigatus in response to hypoxic conditions (Vödisch et al., 2011). While no defined 

metabolic role has been determined for the HAD superfamily hydrolase in Aspergillus 

species, an orthologous protein in Penicillium brasiliensis is necessary for adherence to 

host cells and the transcript was up-regulated in the transition from conidia to mycelial 

growth phases (Hernández et al., 2010; Ndez et al., 2012). The up-regulation of these 

hydrolases, in addition to the other proteins discussed, may mediate the relief of H2O2-

induced stress, and could be further investigated by targeted deletion of the respective 

genes. 

Proteins involved in the response to cellular stress were observed to undergo a 

decrease in expression in the co-addition condition, relative to H2O2 alone. A decrease 

in expression of Hsp90 (2.1 fold) and the oxidative stress protein Svf1 (1.7 fold) was 

noted. Hsp90 displayed up-regulation in the presence of H2O2 alone, relative to the 

solvent control (2.0 fold), with this response reversing upon co-incubation with 

gliotoxin. In line with these observations at the proteomic level, the transcript of Hsp90 

was also reported to be up-regulated in A. fumigatus in response to exogenous H2O2 

(Fraczek et al., 2010). Hsp90 is a stress-induced protein involved in the refolding of 

denatured proteins and signal transduction (Fraczek et al., 2010; Franzosa et al., 2011). 

The decrease in expression of the Hsp90 may be a result of a decrease in oxidative 

stress, correlating with the relief of growth inhibition observed. However Hsp90 

transcripts were also noted to decrease during A. fumigatus biofilm growth in a time-

dependent manner (Bruns et al., 2010b). This decrease in expression coincided with an 

increase in gliotoxin production by the biofilm and may point to Hsp90 regulation 

directly by gliotoxin itself. Quantitative RT-PCR or western blot analysis could be 

employed, respectively, to determine if expression or translation of Hsp90, are regulated 
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by gliotoxin. The decreased expression of the Svf1 protein, with a nuclear localisation 

and a role in the response to oxidative stress (Brace et al., 2005; Teutschbein et al., 

2010), is also indicative of the attenuation of oxidative stress in the co-addition 

condition relative to H2O2 alone (Figure 5.10).  

A decrease in expression of the class V chitinase in the presence of a 

combination of gliotoxin and H2O2 (1.5 fold) was observed, relative H2O2 alone. This 

protein belongs to subgroup A of fungal/bacterial chitinases which are associated with 

fungal growth and autolysis (Alcazar-Fuoli et al., 2011; Hartl et al., 2012). The 

orthologous A. nidulans protein, ChiB, has demonstrated involvement in the autolysis of 

the fungal mycelia in response to stress (Yamazaki et al., 2007). A higher level of 

expression of this protein, in the presence of H2O2 alone, may indicate the occurrence of 

mycelial autolysis, which could have been stimulated by the presence of oxidative 

stress. This autolysis could also account for the growth-inhibited phenotype observed in 

the presence of H2O2 alone (Figure 5.1). 

Proteins involved in amino acid and nucleotide metabolism underwent a 

decrease in expression in the presence of gliotoxin and H2O2 combined, relative to H2O2 

alone. Glutamine amidotransferase:cyclase and methylenetetrahydrofolate reductase 

both underwent a 1.6 fold decrease in expression, relative to H2O2 alone. Additionally, 

expression of these proteins were down-regulated, 2.0 fold and 1.6 fold respectively, in 

the co-addition condition, relative to the solvent control. Considering these 

observations, H2O2 does not appear to be involved in the regulation of these proteins. 

Instead, gliotoxin, either independently or in combination with H2O2, is responsible for 

the decrease in expression of these proteins. Glutamine amidotransferase:cyclase 

catalyses two steps in the biosynthesis of histidine, producing both a histidine precursor 

and 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR), an intermediate of the 

purine biosynthetic process, thus linking these pathways (Valerius et al., 2001). 
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Interestingly, a bifunctional purine biosynthetic protein Ade1 was observed to be down-

regulated in the presence of gliotoxin relative to the solvent control (1.7 fold) (Figure 

5.9). Conversely, xanthine-guanine phosphoribosyl transferase Xpt1, was observed to 

be up-regulated in the presence of gliotoxin and H2O2 combined, relative to the solvent 

control (1.9 fold) and gliotoxin alone (1.7 fold), indicating expression of this protein is 

influenced by H2O2. Indeed, Lessing et al. (2007) observed an increase in expression of 

this protein following exposure to H2O2 for 45 min. The Xpt1 protein is involved in the 

salvage pathway of purine nucleotide biosynthesis, whereby XMP and GMP are formed 

from their precursors, xanthine and guanine, respectively (Guetsova et al., 1999) 

(Figure 5.9). Additionally, Carberry et al. (2012) noted the up-regulation of another 

component of the purine salvage pathway, adenine phosphoribosyltransferase, in 

response to exogenous gliotoxin. These observations indicate that de novo purine 

biosynthesis is down-regulated in the presence of gliotoxin and the alternative salvage 

pathway is utilised in its place (Figure 5.9). Methylenetetrahydrofolate reductase forms 

part of the methionine biosynthesis pathway, and catalyses the conversion of 5,10-

methylenetetrahydrofolate (THF) to 5,-methylTHF (Sieńko et al., 2007). This provides 

a co-substrate for the production of methionine from homocysteine. Together, these 

observations underline the influence of gliotoxin and H2O2, either alone or in 

combination, on amino acid and nucleotide biosynthesis in A. fumigatus. Furthermore, 

while no definitive functions have been demonstrated for the unknown function protein 

(AFUA_6G03460), computational analysis has assigned the function of D-alanine-D-

alanine ligase to this protein (www.Aspergillusgenome.org). This protein is observed to 

be up-regulated in the presence of H2O2 (2.3 fold), relative to the solvent control, with 

expression returned to basal level upon the co-addition of gliotoxin. This extends the 

influence of gliotoxin and H2O2 to include alanine metabolism. 

http://www.aspergillusgenome.org/
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Figure 5.9: (a) Overview of the regulation of the purine metabolic pathway by gliotoxin 

and H2O2, either alone or in combination. Enzymes and pathways undergoing an 

increase in expression, relative to the solvent control, are indicated in red and decreased 

expression is indicated in green. Metabolites are indicated in black. Ade1, bifunctional 

purine biosynthetic protein; Xpt1, xanthine-guanine phosphoribosyltransferase; Apt1, 

adenine phosphoribosyltransferase. Enzymes of the histidine and de novo purine 

a. 

b. 
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biosythesis converging pathways, glutamine amidotransferase:cyclase and Ade1, are 

down-regulated in response to gliotoxin. Expression of enzymes involved in the purine 

salvage pathways, Xpt1 and Apt1, is up-regulated in the presence of H2O2 and 

gliotoxin, repsectively, relative to a solvent control (Lessing et al., 2007; Carberry et al., 

2012). Figure adapted from pathway.yeastgenome.org. (b) Structures of intermediate 

molecules in the purine and histidine biosynthesis pathway; 5-aminoimidazole 

ribonucleotide (AIR), N-succinyl-5-aminoimidazole-4-carboxamide ribonucleotide 

(SAICAR), 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR)  and inosine 

monophosphate (IMP).     
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Figure 5.10: Outline of factors possibly contributing to the relief of H2O2-induced stress by gliotoxin (cause) and proteins differentially regulated 

which reflect the associated relief of stress (effect). 
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Gliotoxin (1-10 µg/ml) significantly inhibited the growth of A. fumigatus ΔgliK, 

relative to ATCC26933 wild-type (p < 0.001) (Figures 5.1a and 5.2a). As a member of 

the gliotoxin biosynthetic cluster on Chromosome 6 (Gardiner and Howlett, 2005), the 

function of the gliK-encoded protein has not yet been definitively reported. Results that 

will be discussed in Chapter 6 reveal GliK to be essential for the production of gliotoxin 

and disruption of this gene results in impaired efflux of exogenously applied gliotoxin 

(Gallagher, 2010; Gallagher et al., 2012). The changes in protein expression in A. 

fumigatus ΔgliK, exposed to gliotoxin (10 µg/ml), relative to a solvent control, were 

analysed (Table 5.4). Proteins (n = 30) were differentially expressed in A. fumigatus 

ΔgliK following incubation with gliotoxin for 4 h. Expression of proteins involved in 

translation and amino acid metabolism were altered in the presence of exogenous 

gliotoxin, in addition to proteins associated with the endoplasmic reticulum. Regulatory 

proteins also displayed significant changes in expression in A. fumigatus ΔgliK 

following exposure to gliotoxin, relative to the solvent control (p < 0.05). 

Cellular translation appears to be significantly affected by the application of 

exogenous gliotoxin to  A. fumigatus ΔgliK. The translation elongation factors eEF3 and 

G1 displayed a 5.6 and 2.5 fold increase in expression, respectively, following exposure 

to gliotoxin, along with the eukaryotic translation initiation factor 3 subunit EifCb (2.7 

fold increase). Conversely, the translation elongation factor EF2 subunit was observed 

to decrease in expression (1.9 fold), relative to the control. This is an opposing effect to 

that observed in the wild-type strain, whereby application of exogenous gliotoxin 

resulted in a 1.6 fold increase in expression of EF2, relative to the solvent control. The 

contrasting regulation of EF2 in response to exogenous gliotoxin could account for the 

differences in sensitivity observed between the growth of A. fumigatus wild-type and 

ΔgliK (Figure 5.1). The process of eukaryotic translation begins with the formation of 

the 80S ribosome complex at the start codon of mRNA and requires a number of 



238 

 

translation initiation factors (Jackson et al., 2010). EifCb is a subunit of eIF3, which in 

co-ordination with eIF1, eIF1A and eIF3j, mediates the dissociation of ribosome 

complexes following termination of translation. This allows the ribosome subunits to be 

recycled for future translation events. The 40S ribosomal subunit retains the bound 

initiation factors and forms the 43S pre-initiation complex, which can attach to mRNA 

and commence scanning for the start codon (Jackson et al., 2010). This protein is 

essential for translation and upon disruption of the ortholog in A. nidulans, sgdA, 

germination was impaired (Osherov and May, 2000). The initiation stage of translation 

is believed to be the rate-limiting step of the entire process due to its complexity (Arava 

et al., 2003). Consequently, the up-regulation of the EifCb protein is indicative of the 

escalation of protein synthesis in A. fumigatus ΔgliK in response to exogenous 

gliotoxin.  

Following translation initiation, aminoacyl-tRNAs (aa-tRNA) are recruited to 

the mRNA:80S ribosome complex and the polypeptide chain is extended. The cytosolic 

eukaryotic translation elongation factors eEF3 and EF2 were observed to be 

alternatively regulated in A. fumigatus ΔgliK in the presence of exogenous gliotoxin, 

with a 5.6 fold increase and 1.9 fold decrease in expression noted respectively. The 

eEF3 protein is a fungal-specific member of the tranlation elongation process and is 

required for the binding of aa-tRNA to the A site and detachment of deacetylated-tRNA 

from the E site of ribosomes (Triana-Alonso et al., 1995; Kapp and Lorsch, 2004). This 

action is mediated through an interaction with the aa-tRNA transporter, eEF1A, at the 

ribosome A site, and ATP hydrolysis activity for the reciprocal control of the E site 

(Anand et al., 2003). As eEF1A also exhibits a role in actin binding and bundling, up-

regulation of the eEF3 protein may promote the protein synthesis activity of eEF1A, in 

lieu of cytosketeton assembly (Gross and Kinzy, 2005; Anand et al., 2006). While 

eEF1A was not observed to be differentially expressed in A. fumigatus ΔgliK following 
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exposure to gliotoxin, a zinc finger protein ZPR1 underwent a decrease in expression 

(2.1 fold). The ZPR1 protein binds to eEF1A and regulates transcription and the cell 

cycle (Yanaka et al., 2009). ZPR1 competes with eEF1Bα for binding to eEF1A and can 

consequently regulate translation elongation in response to growth stimuli (Mishra et 

al., 2007). Interestingly, expression of eEF1B is induced in A. fumigatus ATCC26933 in 

response to exogenous gliotoxin (Carberry et al., 2012). Reduction in the levels of 

ZPR1 in mammalian cells has been shown to negatively affect DNA replication and 

transcription, and ultimately leads to cell-cycle arrest (Gangwani, 2006). The ZPR1 

transcript is highly induced during A. fumigatus conidial germination (Lamarre et al., 

2008) and down-regulation of this protein may account for the significant growth 

inhibition observed in the ΔgliK strain in response to gliotoxin.  

Contrary to the up-regulation of eEF3 in response to gliotoxin, a second 

elongation factor EF2 was down-regulated in this condition (1.9 fold). EF2 facilitates 

the translocation of the tRNA-mRNA complex from the ribosomal A to the P-site and 

the P to the E-site, through GTP hydrolysis (Taylor et al., 2007). This action allows 

incoming cognate aa-tRNA to occupy the A-site and the process repeats to extend the 

polypeptide chain (Figure 5.11). The EF2 transcript has been reported to be down-

regulated during biofilm growth, in a time-dependent manner and correlating with an 

increase in gliotoxin production (Bruns et al., 2010b). This may be indicative of the 

regulation, either directly or indirectly, by gliotoxin of EF2 expression. The observed 

decrease in EF2 expression in gliotoxin exposed-ΔgliK may correlate with a reduced 

rate of translation due to disruption of the polypeptide elongation process. 

Correspondingly, the down-regulation of two EF2-associated proteins, diphthine 

synthase (2.1 fold) and protein phosphatase 2a (PP2A) (65kDa regulatory subunit) (2.3 

fold), was also observed in A. fumigatus ΔgliK in the presence of exogenous gliotoxin. 

EF2 possesses a unique post-translationally modified histidine residue, diphthamide, 
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which has been shown to be the target of the diphtheria toxin in inactivating eukaryotic 

EF2 (Liu et al., 2004). While diphthamide modification of EF2 is not essential for 

translational elongation, disruption of this residue has been linked to an increase in 

frame-shifting and so is important in maintaining translational fidelity (Ortiz et al., 

2006). The observed reduction in expression of diphthine synthase may be a direct 

result of the down-regulation of EF2 as diphthamide is a post-translational modification 

(PTM) exclusively found on the EF2 protein (Greganova et al., 2011). A subunit of the 

PP2A protein, involved in regulation of EF2 activity was also down-regulated in A. 

fumigatus ΔgliK in the presence of gliotoxin. Regulation of EF2 activity is achieved 

through phosphorylation, a process mediated by the EF2 kinase and PP2A. 

Phosphorylation of EF2 by EF2 kinase results in inactivation of the elogation factor, 

while de-phosphorylation, and consequently re-activation, is achieved through the 

action of PP2A (Kaul et al., 2011). The presence of PP2A has been demonstrated 

previously to be important in S. cerevisiae for resistance to the reducing agent, DTT, 

with a null mutant exhibiting increased sensitivity to the dithiol-containing agent (Rand 

and Grant, 2006). Decrease in the the amount of PP2A in gliotoxin-treated ΔgliK may 

result in negative regulation of EF2 activity and subsequently, a reduction in the rate of 

translational elongation. Despite up-regulation of other members of the translational 

machinery, decreased copy numbers, activity and fidelity of the EF2 protein could 

reduce the overall rate of translation through disruption of the elongation stage. No such 

inhibition of translation was noted in the wild-type upon exposure to gliotoxin (Table 

5.3) (Carberry et al., 2012), and in fact, up-regulation of EF2 was noted instead. This 

may account for the significant growth inhibition noted in A. fumigatus ΔgliK relative to 

the wild-type, following exposure to gliotoxin. (Figures 5.1 and 5.2).         
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Figure 5.11: Overview of fungal translation elongation. EF1A and EF3 interact to 

deliver aa-tRNA to the A-site of the ribosome and subsequently remove deacetylated-

tRNA from the E-site. Translocation of tRNA-mRNA complexes, from the A and P 

sites to the P and E sites respectively, is mediated by EF2. Proteins up-regulated in A. 

fumigatus ΔgliK in response to gliotoxin are shown in red, with down-regulated proteins 

shown in green. Adapted from Chakraburtty (2001). 



242 

 

In addition to translation factors, enzymes involved in the wider protein 

synthesis and processing mechanisms were also differentially regulated in A. fumigatus 

ΔgliK upon exposure to gliotoxin. An increase in the presence of two independant 

protein spots, both identified as cobalamin-independent methionine synthase MetH/D, 

was noted (1.9 and 2.2 fold, respectively). MetH/D has been shown to be a target of the 

transcriptional activator yap1 in A. fumigatus and expression of this protein is induced 

in the presence of oxidative stress (Lessing et al., 2007). In fungi, the production of 

methionine from homocysteine is catalysed by MetH/D and in C. albicans this enzyme 

has been shown to be essential for cell viability (Suliman et al., 2007). Homocysteine 

induces up-regulation of A. nidulans methionine synthase (Kacprzak et al., 2003), in 

addition to positive regulation of methylenetetrahydrofolate reductase expression 

(MTHFR) (Sieńko et al., 2007). Additionally, significantly increased expression of 

MTHFR was observed in gliotoxin-exposed ΔgliK (1.8 fold; p < 0.05) (Figure 5.12). 

This is a contrasting scenario to that observed in A. fumigatus wild-type, whereby 

down-regulation of MTHFR was noted in response to gliotoxin and H2O2 combined, 

relative to the solvent control. These observations may be indicative of elevated 

homocysteine levels in A. fumigatus ΔgliK, but not in the wild-type, following exposure 

to gliotoxin. High levels of homocysteine can be toxic to the cell, and must be 

metabolised to either methionine or cysteine to prevent its detrimental effects (Kacprzak 

et al., 2003).  

Methionine produced from homocysteine can either be used in protein synthesis 

or alternatively enter the methionine cycle, whereby it is metabolised to form S-

adenosylmethionine (SAM) (Suliman et al., 2007). SAM is a ubiquitous cellular methyl 

donor and is utilised by methyltransferases for DNA, protein and metabolite 

methylation reactions (Grillo and Colombatto, 2008). Indeed, as discussed earlier, SAM 

is required for the production of diphthamide though utilisation by diphthine synthase.  
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Figure 5.12: Overview of methionine biosynthesis, coupled with the methyl cycle, in 

fungi. Proteins increased in expression in gliotoxin-exposed A. fumigatus ΔgliK are 

denoted in red font. GDC, glycine decarboxylase complex; THF, tetrahydrofolate; CH2-

THF, 5,10-methyleneTHF; CH3-THF, 5-methylTHF; MTHFR, 

methylenetetrahydrofolate reductase; MetH/D, cobalamin-independent methionine 

synthase. Adapted from Suliman et al. (2007).  
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Methionine synthase couples the methyl cycle and the methionine biosynthesis 

cycle through the methylation of homocysteine and the subsequent regeneration of 

tetrahydrofolate (THF) (Figure 5.12). An additional step in the methyl cycle, involving 

the conversion of THF to 5,10-methyleneTHF, is usually catalysed by serine 

hydroxymethyltransferase, with the simultaneous metabolism of serine and formation of 

glycine (MacFarlane et al., 2008). However, in the presence of excess glycine or a 

limited pool of 5,10-methyleneTHF, this step can be catalysed by the mitochondrial 

glycine decarboxylase complex (GDC) (Piper et al., 2000). A subunit of this complex, 

glycine dehydrogenase, was also noted to increase in expression in A. fumigatus ΔgliK 

following incubation with gliotoxin (2.2 fold) and suggests the overall up-regulation of 

the methyl cycle in this condition (Figure 5.12). 

Alanine aminotransferase catalyses the conversion of pyruvate and L-glutamate 

to 2-oxoglutarate and L-alanine in a reversible reaction (Garcia-Campusano et al., 

2009). Subsequently, alanine is ligated to tRNA by alanyl-tRNA synthetase, for use in 

translation. Both alanine aminotransferase and alanyl-tRNA synthetase were increased 

in expression in A. fumigatus ΔgliK following exposure to gliotoxin (1.9 and 3.0 fold, 

respectively), further demonstrating the influence of exogenous gliotoxin on protein 

synthesis in A. fumigatus ΔgliK. 

Proteins involved in response to stress induced by disulphide bond reducing 

agents were also differentially expressed in A. fumigatus ΔgliK following incubation 

with gliotoxin. Protein disulphide isomerase Pdi1 and protein phosphatase PP2A 

undergo a decrease in expression in A. fumigatus ΔgliK upon exposure to gliotoxin, 1.6 

fold and 2.3 fold, respectively. Isochorismatase family hydrolase, also associated with 

reductive stress, increased in expression (1.7 fold), in gliotoxin-exposed A. fumigatus 

ΔgliK. The reducing agent, dithiothreitol (DTT) efficiently reduces target disulphide 

bonds, with the concurrent formation of a stable internal disulphide bond. DTT is often 
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utilised to induce endoplasmic reticulum (ER)-stress in in vitro studies as it elicits the 

unfolded protein response (UPR) (Perrone et al., 2005; Rand and Grant, 2006; 

Guillemette et al., 2007). Expression of protein disulphide isomerase Pdi1 and 

isochorismatase family hydrolase has previously been shown to be increased in A. niger 

in the presence of DTT (Guillemette et al., 2007). Additionally, the presence of a point 

mutation in the pdi1 gene in S.cerevisiae correlated with a decrease in resistance to 

DTT, demonstrating the involvement of Pdi1 in the protection against redox stress 

(Gauss et al., 2011). PP2A also has a role in protection against-DTT induced stress as 

disruption of the orthologous gene in S. cerevisiae  resulted in increased DTT sensitivity 

(Rand and Grant, 2006). The regulatory role of PP2A was discussed earlier with regard 

to elongation factor 2 EF2. An additional target of PP2A is the anti-apoptotic BCL-2 

protein located in the endoplasmic reticulum. Phosphorylated BCL-2 is targeted for 

degradation and lower levels of the BCL-2 protein correlate with an increase in 

apoptosis associated with ER-stress (Lin et al., 2006) (Figure 5.13a). PP2A regulates 

the anti-apoptotic activity of BCL-2 by dephosphorylating it and thus preventing 

targeted degradation of this protein (Lin et al., 2006) (Figure 5.13a). These authors also 

demonstrated an increase in H2O2-induced apoptosis following disruption of PP2A 

expression, and down-regulation of this protein may explain the increased H2O2 

sensitivity observed in A. fumigatus ΔgliK. As discussed in Chapter 1, a pro-apoptotic 

member of the Bcl-2 family, Bak, is involved in gliotoxin mediated apoptosis of 

mammalian cells (Figure 1.8) (Pardo et al., 2006), and points to further involvement of 

this group of apoptosis regulators in gliotoxin sensitivity. Protein disulphide isomerase 

Pdi1 is associated with the endoplasmic reticulum (ER) and functions in reduction, 

oxidation or disulphide-dithiol interchange (Stolf et al., 2011) (Figure 5.13b). Through 

these functions, Pdi1 acts as a molecular chaperone and executes the re-folding of 

mispaired disulphide containing proteins, forming an integral part of the unfolded 
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protein response (UPR) to ER-stress (Xiao et al., 2004). Consequently, down-regulation 

of the Pdi1 and PP2A proteins in gliotoxin-exposed ΔgliK may account for the observed 

increase in sensitivity to the redox molecule due to ineffective activation of the UPR. 

The UPR is a signalling pathway that is activated upon the detection of an accumulation 

of misfolded proteins in the ER, which may elicit toxic effects if not removed (Richie et 

al., 2009). A transmembrane protein Ire1p, is responsible for triggering the translation 

of a transcription factor Hac1 that regulates the expression of UPR-related genes 

involved in folding and secretion (Back et al., 2005). Interestingly, the Ran GTPase 

activating protein 1 RNA1 is required for the Ire1p nuclear import and subsequent Hac1 

translation (Goffin et al., 2006). The RNA1 protein was reduced in expression in 

gliotoxin exposed- ΔgliK which could result in an attenuated UPR in response to ER-

stress. 
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Figure 5.13: Proteins involved in response to ER-stress, downregulated in A. fumigatus 

ΔgliK upon exposure to gliotoxin. (a) BCL-2 can be dephosphorylated by PP2A (green) 

in the ER and provides anti-apoptotic activity (i). Loss of PP2A activity results in 

degradation of phosphorylated BCL-2 (ii) and an associated increase in apoptosis 

susceptibility in the presence of death stimuli (e.g. H2O2). (b) Protein disulphide 

isomerase (PDI) carries out oxidation, reduction and isomerase reactions to facilitate 

correct folding of proteins containing free sulphydrals in the ER. Downregulation of 

both PP2A and protein disulphide isomerase is observed in A. fumigatus ΔgliK 

following incubation with gliotoxin. Image from Okada et al. (2010). 

a. 

b. 
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Differential regulation of other ER associated proteins was detected in A. 

fumigatus ΔgliK following incubation with gliotoxin. This includes CRAL/TRIO 

domain protein and aspartic endopeptidase Pep2, which are down-regulated, and the 

vesicular-fusion protein Sec17, which is up-regulated in A. fumigatus ΔgliK in response 

to gliotoxin. The CRAL/TRIO domain protein exhibits homology with the S. cerevisiae 

Sfh5 protein, which is involved in phosphatidyinositol transfer and is localised in the 

peripheral endoplasmic reticulum (Schnabl et al., 2003). Aspartic endopeptidase Pep2 is 

enriched in the conidia of A. fumigatus and expression of this protein is further induced 

in response to hypoxia and neutrophil exposure (Asif et al., 2006; Sugui et al., 2008; 

Teutschbein et al., 2010; Vödisch et al., 2011). The orthologous protein in S.cerevisiae, 

Pep4, is processed through the ER and Golgi before maturation and localisation in the 

vacuole, where it elicits the maturation of various other hydrolases (Parr et al., 2007). 

S.cerevisiae Pep4 is involved in protein degradation following stress and is important 

for protein turnover after oxidative damage (Marques et al., 2006). Mutants deficient in 

this protein exhibit an increase in ROS accumulation correlating with a higher rate of 

apoptosis, underlining the significance of this protein for the maintenance of cellular 

homeostasis following the induction of stress (Carmona-Gutiérrez et al., 2011). 

Accordingly, the reduction in Pep2 expression, as observed in gliotoxin-exposed ΔgliK, 

may potentiate the harmful effects of exogenous gliotoxin. The vesicular fusion protein 

Sec17, involved in vesicle-mediated protein transport between the ER and Golgi (Perry 

et al., 2009), was up-regulated in A. fumigatus ΔgliK in the presence of gliotoxin. This 

may be suggestive of additional protein trafficking, either within the cell or for 

secretion, following A. fumigatus ΔgliK exposure to gliotoxin. Overall, these 

observations point to the altered systems biology within the ER in A. fumigatus ΔgliK, 

following gliotoxin-induced stress. Interestingly, Carberry et al. (2012) noted the up-

regulation of the Cu, Zn superoxide dismutase SOD1, in A. fumigatus in response to 
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exogenous gliotoxin. In yeast, sod1 expression is induced in response to ER stress and, 

along with maintenance of NADP(H) levels, is critical for cell survival in this condition 

(Tan et al., 2009). No differential expression of SOD1 was noted in gliotoxin-treated 

ΔgliK and, in the presence of ER-stress, might be required to reduce levels of 

superoxide anions. Elevated superoxide anions, in the absence of SOD1, negatively 

affect UPR induction and exacerbate ER-stress (Tan et al., 2009).  

A subset of proteins demonstrated altered expression in both A. fumigatus wild-

type and ΔgliK, in response to gliotoxin. Isochorismatase family hydrolase and the 

aminopeptidase (AFUA_4G09030) were both observed to undergo an increase in 

expression in A. fumigatus wild-type and ΔgliK, exposed to gliotoxin (Tables 5.2 and 

5.4) (Carberry et al., 2012). Additionally Carberry et al. (2012) noted the up-regulation 

of the β subunit of the mitochondrial processing peptidase (MPP) in gliotoxin-exposed 

A. fumigatus wild-type, while increased expression of the MPP α subunit was observed 

following A. fumigatus ΔgliK incubation with gliotoxin. Due to the analogous 

regulation of these proteins in both wild-type and ΔgliK, in response to gliotoxin, it is 

unlikely that they contribute to the change in gliotoxin-sensitivity. Interestingly, some 

proteins detected in both A. fumigatus wild-type and ΔgliK following gliotoxin 

exposure, were regulated in opposite directions. Differential regulation of these proteins 

may account for the altered gliotoxin-sensitivity observed between the wild-type and 

ΔgliK strains of A. fumigatus. Methylenetetrahydrofolate reductase (MTHFR), thiamine 

biosynthesis protein Nmt1 and elongation factor 2 EF2 displayed differential regulation 

in A. fumigatus wild-type compared to ΔgliK in response to gliotoxin. As discussed 

earlier expression of MTHFR, involved in the methyl cycle, can be regulated by 

homocysteine (Sieńko et al., 2007) and this may suggest higher levels of homocysteine 

in A. fumigatus ΔgliK relative to wild-type following exposure to gliotoxin. The activity 

of EF2 can be controlled by PP2A, whereby lower levels of this regulatory protein in 
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gliotoxin-exposed ΔgliK could result in a higher amount of phosphorylated, and so 

inactive, EF2 (Kaul et al., 2011). In contrast expression of EF2 is increased in A. 

fumigatus wild-type in response to gliotoxin. Disruption of translation elongation in 

gliotoxin exposed-ΔgliK could explain the respective growth inhibition, relative to the 

wild-type. The thiamine biosynthesis protein Nmt1 was up-regulated in A. fumigatus 

ATCC26933 in response to gliotoxin (Carberry et al., 2012), while it was down-

regulated in this condition in ΔgliK. Thiamine biosynthesis is self-regulating, with the 

presence of excess thiamine eliciting the activation of a riboswitch and consequently 

inhibiting the translation of the biosynthesis enzyme (Wachter, 2010). The differential 

regulation of this gene in A. fumigatus wild-type compared to ΔgliK, could be an 

indirect result of the presence of the pyrithiamine resistance gene (ptrA) in ΔgliK, 

incorporated as a selection marker during the generation of the mutant strain (Gallagher, 

2010). The ptrA gene codes for an enzyme involved in thiamine biosynthesis, with a 

riboswitch that is resistant to the antagonist action of pyrithiamine (Kubodera et al., 

2000). As a result, differential regulation of this protein may result from the 

transformation process instead of gliK loss. 

Finally, expression of the gliotoxin oxidoreductase GliT was not detected by 

comparative 2D-PAGE to be differentially regulated in A. fumigatus ΔgliK in the 

presence of gliotoxin. As discussed previously, GliT is involved in protection from 

exogenous gliotoxin and the expression of this protein is induced in the presence of the 

toxin (Figure 5.4) (Schrettl et al., 2010; Carberry et al., 2012). Furthermore, an increase 

in the expression of the gliT transcript was observed in A. fumigatus ΔgliK following 

gliotoxin exposure, as was observed for the wild-type strain (Dr. Grainne O’ Keeffe, 

personal communication). While transcriptional up-regulation of a gene does not always 

correlate with translation, we postulate that this is not the case here. Absence of GliT in 

A. fumigatus ATCC26933 has been shown to result in complete growth inhibition in the 
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presence of exogenous gliotoxin (10 µg/ml) (Schrettl et al., 2010). While exogenous 

gliotoxin (10 µg/ml) also significantly inhibited the growth of A. fumigatus ΔgliK (p < 

0.001), growth was still evident at 63.3 ± 1.67 % (n = 3) of the control. Considering 

this, the enhanced sensitivity of A. fumigatus ΔgliK to gliotoxin does not appear to be 

caused by the absence of GliT protein. Alternatively, we propose that GliT may be 

secreted from the cell in gliotoxin-exposed ΔgliK. Numerous studies, mainly 

immunological in nature, have detected GliT in the culture supernatants of A. fumigatus 

and antibodies directed against GliT have been proposed for use as an immunological 

biomarker of A. fumigatus infection (Kumar et al., 2011; Shi et al., 2012a, 2012b). In 

fact, an increase in expression of the vesicular-fusion protein Sec17, in gliotoxin-treated 

ΔgliK, could be indictive of this altered secretion. Enhanced secretion of GliT from A. 

fumigatus ΔgliK could also account for the observed increase in sensitivity of the A. 

fumigatus gliK deletion strain to gliotoxin. Exogenous gliotoxin could be reduced 

externally by secreted GliT and mediate some protection from the oxidised molecule. 

With lower concentrations of internal GliT than the wild-type, A. fumigatus ΔgliK 

would be more susceptible to the cytotoxic effects of any gliotoxin that may be taken up 

by the cell. While further analysis on the secretome of A. fumigatus ΔgliK would be 

required to prove this hypothesis definitively, this nevertheless represents a positive step 

in the characterisation of gliotoxin-induced sensitivity in the gliK mutant. 

In summary, the work described in this Chapter illustrates the alteration of A. 

fumigatus wild-type and ΔgliK growth in response to the combined stresses of gliotoxin 

and H2O2, with the complementary analysis of the resultant proteomic changes. 

Gliotoxin was observed to relieve H2O2-induced growth inhibition in both A. fumigatus 

wild-type and ΔgliK, in a dose-dependent manner, suggesting a common relief 

mechanism in both strains. Comparative proteomic analysis of A. fumigatus wild-type 

revealed the up-regulation (n = 7) and down-regulation (n = 6) of proteins upon co-
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addition of gliotoxin and H2O2, relative to growth on H2O2 alone (≥ 1.5 fold difference, 

p < 0.05). Additionally, proteomic analysis of A. fumigatus ΔgliK revealed proteins 

undergoing an increase (n = 17) or a decrease (n = 13) in expression upon exposure to 

gliotoxin (≥ 1.5 fold difference, p < 0.05). Proteins involved in oxidation-reduction, 

DNA repair and cell-cycle regulation were expressed at a higher level in A. fumigatus 

wild-type under co-addition conditions, compared to growth in the presence of H2O2 

alone. Down-regulated proteins included those typically induced in response to 

oxidative stress and an autolysis-associated protein. An increase in selected 

oxidoreductase expression in response to gliotoxin, including GliT, may account for the 

relief of H2O2-associated oxidative stress. In turn, the observed decrease in stress-

induced proteins is reflective of the absence of oxidative stress in the co-addition 

condition. The proteomic response of A. fumigatus ΔgliK following gliotoxin exposure, 

revealed the perturbation of translation, amino acid metabolism and proteins associated 

with the endoplasmic reticulum (ER). This points to the induction of ER-stress by 

gliotoxin in the absence of GliK.  

Overall, these proteomic profiles provide an insight into the pathways and 

mechanisms involved in the interaction of A. fumigatus with gliotoxin. The systems 

altered in response to a combination of gliotoxin and H2O2 have been identified and this 

can be utilised to direct future investigations. Targeted gene deletion could elucidate 

whether the proteins identified in this study were essential for the gliotoxin-mediated 

relief of H2O2-induced growth inhibition (cause), or if their differential regulation was a 

down-stream effect of growth recovery (effect). Additionally, the unknown function 

protein GliK, has been explored for its role in the interaction of gliotoxin with A. 

fumigatus. Mechanisms altered in reposnse to exogenous gliotoxin were identified in 

the gliotoxin-sensitive mutant ΔgliK, and may point to the mode of action of gliotoxin 

in cells lacking the gliotoxin biosynthetic cluster or GliK orthologs. In Chapter 6, the 
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contribution of GliK to gliotoxin biosynthesis will be investigated and the effect that 

deletion of gliK has on the metabolome of A. fumigatus will be determined. 
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6 Chapter 6 

6.1 Introduction 

Subsequent to proteomic characterisation of A. fumigatus, comparative profiling 

of low molecular mass metabolites can also be used in functional analyses to elucidate 

the impact of gene deletion from an organism. As discussed in Chapter 5, deletion of 

gliK from A. fumigatus results in increased sensitivity to exogenous gliotoxin and to 

H2O2. In order to determine the effect of GliK absence on the metabolite profile, namely 

gliotoxin production, a comparative metabolite investigation was carried out. Utilising 

RP-HPLC, MALDI-ToF, LC-MS/MS analysis, in addition to chemical modification of 

metabolites for enhanced detection and functional group identification, the metabolite 

profiles of A. fumigatus ATCC26933 and ΔgliK were analysed and compared. 

Culture conditions and sample preparation utilised for metabolite analysis 

present a wide opportunity for differential expression and profiling of compounds. 

Optimisation of culture media, incubation time, temperature and level of culture 

agitation can be used for efficient targeted production of specific metabolites or 

alternatively, to profile a range of compounds simultaneously (Dombrink-Kmizman and 

Blackburn, 2005; Atalla et al., 2008). A number of groups have optimised production of 

secondary metabolites (SM), including mycotoxins and pharmaceutical compounds, 

from microorganisms (Feng and Leonard, 1998; Casas López et al., 2003; Dombrink-

Kmizman and Blackburn, 2005; Atalla et al., 2008). Mevinolin and lovastatin, utilised 

as competitive inhibitors of cholesterol biosynthetic enzymes, have been effectively 

isolated from A. terreus, through selection of appropriate carbon and nitrogen sources 

(Casas López et al., 2003; Atalla et al., 2008). The mycotoxin patulin was most 

efficiently produced from Penicillium species when cultured in potato dextrose broth 

(PDB) supplemented with manganese (Dombrink-Kmizman and Blackburn, 2005). The 
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production of sterigmatocystin by A. nidulans is supported on nitrate as a nitrogen 

source while these conditions repress aflatoxin production in A. parasiticus (Feng and 

Leonard, 1998; Price et al., 2005), highlighting the importance of culture condition 

optimisation for SM analysis. Similarly, sample preparation prior to analysis can also 

affect the range of metabolites characterised. Aqueous or organic extractions can target 

compounds with varying polarity. While methanol-water mixtures can be utilised for 

the extraction of polar compounds, chloroform partitions non-polar (hydrophobic) 

compounds for subsequent analysis (Villas-Bôas et al., 2005).  

Metabolite analysis methods include RP-HPLC, MS-based methods and thin-

layer chromatography (TLC) (Kosalec et al., 2005; Dettmer et al., 2007; Lee et al., 

2009a; Davis et al., 2011a; Willmann et al., 2011). TLC was traditionally utilised for 

separation of metabolites from a range of organisms and can be used analytically or 

preparatively, as a purification technique for additional targeted analysis (Frisvad et al., 

2008). RP-HPLC is the favoured chromatography practice for metabolite analysis and 

can be used independently or coupled with MS for characterisation of compounds (Lei 

et al., 2011). RP-HPLC involves separation of compounds based on their relative 

partitioning between a stationary phase (e.g. C18) and a mobile phase (Kazakevich and 

LoBrutto, 2007). Optimisation of separation gradients can enable efficient resolution of 

multiple metabolites using a single analysis (Sulyok et al., 2007). Bouligand et al. 

(2006) utilised an optimised RP-HPLC gradient program for the separation of 

glutathione and the main associated precursor molecules, with subsequent confirmation 

of identity by MS/MS analysis. MS analysis can be conducted in positive ion or 

negative ion mode, with use of both amenable to extended metabolite identification (Lei 

et al., 2011). Ion-trap instruments are capable of performing multiple rounds of MS on 

selected precursor ions to generate fragmentation patterns, in addition to measuring the 



256 

 

mass of the relevant  molecule (Dettmer et al., 2007). Neutral losses from the precursor 

ions provide information about putative functional groups and may allude to the identity 

of the ion (Dettmer et al., 2007). Interpretation of the mass of molecules of interest can 

be complicated by the presence of adducts of the ion. Common adducts detected include 

H
+
, Na

+
, K

+
 and H2O, which alter the observed mass of the molecular ion by a value of 

1.003, 21.982, 37.957. or 18.01, respectively (Brown et al., 2009b). Additionally, the 

presence of isotopes of elements can augment the observed size of the molecular ion 

and correct identification of the monoisotopic peak is essential for accurate mass 

determination (Varghese et al., 2012). Another factor for consideration in molecular ion 

mass determination is the presence of multiply charged species. Mass spectrometry 

measures the mass-to-charge ratio (m/z), and multiplicity of charge can be determined 

by analysing the corresponding isotopic peaks. For example, presence of a C13 isotope 

in a singly charged molecule will result in an isotopic peak of M + 1, whereas the same 

peak on a doubly charged molecule will give M + 0.5 (Brown et al., 2009b). The 

phenomenon of dimer formation (2M+H)
+
 can also result during MS analysis, which 

can aid in the validation of correct mass assignment to the molecular ion (Muschik and 

Veenstra, 2009). Once a molecular mass has been deduced for the metabolite of interest, 

the respective fragmentation pattern generated during electrospray ionisation (ESI) can 

be used as a fingerprint for future comparisons with a standard to confirm the assigned 

identification (Brown et al., 2009b).  

Chemical derivatisation can be used to enhance the characterisation of the 

metabolome. Methods utilised include metabolic labelling (e.g., feeding experiments 

with labelled precursor metabolites) or chemical labelling (e.g., conjugation of 

fluorescent compound) (Halket et al., 2005; Feldberg et al., 2009). Chemical labelling 

of the ETP-type toxin, gliotoxin, carried out by Davis et al. (2011b) enabled accurate 
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identification of gliotoxin by RP-HPLC and MS, with increased sensitivity. Reduction 

of the disulphide bond of gliotoxin, followed by alkylation of the free sulphydral groups 

using 5’-iodoacetamidofluorescein (5’-IAF), produced a di-acetamidofluorescein 

derivative (GT-(AF)2) (Davis et al., 2011b) (Figure 6.1). This strategy also effectively 

labelled another ETP, sporidesmin A, and resulted in an increase sensitivity of detection 

by RP-HPLC, in addition to confirmation of identity through MALDI-ToF analysis. 

Additionally, chemical labelling of metabolites can alter the hydrophobicity of 

compounds, consequently modifying their retention profile on RP-HPLC analysis. This 

process can enable the characterisation and purification of hydrophilic molecules that 

are incompatible with RP-HPLC in their native state (Ruhaak et al., 2010).  

To date, elucidation of the gliotoxin biosynthetic mechanism has involved the 

use of functional genomics, whereby effects of disruption of genes in the gli cluster 

have been monitored (Balibar and Walsh, 2006; Bok et al., 2006; Kupfahl et al., 2006; 

Scharf et al., 2010, 2011; Schrettl et al., 2010; Davis et al., 2011a). Deletion of a gene 

involved in secondary metabolite (SM) biosynthesis could result in accumulation of 

intermediates and offer insight into the role of the respective protein in the biosynthetic 

pathway (Sanchez et al., 2012). Disruption of the gliG gene, encoding a glutathione-S-

transferase (GST) in A. fumigatus, resulted in the loss of gliotoxin production and the 

coincident appearance of an alternative metabolite with m/z 263 (Davis et al., 2011a; 

Scharf et al., 2011). These authors independently verified this molecule as an off-

pathway shunt metabolite and identified GliG as the enzyme responsible for thiolation 

of the gliotoxin precursor. Similarly, following the deletion of gliT, absence of gliotoxin 

production was noted, with the appearance of a molecule corresponding to the m/z of a 

monothiol form gliotoxin (Schrettl et al., 2010). 
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Figure 6.1: Chemical structures of (a) gliotoxin, (b) sporidesmin A and (c) proposed 

structure of di-acetamidofluorescein gliotoxin (GT-(AF)2). 

a. 

b. 

c. 
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Forseth et al. (2011) subsequently performed comparative metabolomic 

profiling of A. fumigatus following the deletion of the transcriptional regulator gliZ, 

with the identification of 19 gliZ-dependent metabolites (Figure 6.2). Identification of 

gliZ-dependent compounds with varying structural motifs, revealed the extent to which 

the gli cluster contributes to the metabolome of A. fumigatus (Figure 6.2).  

Our hypothesis was that investigation of the metabolome of the gliK deletion 

strain may reveal whether GliK has a role in gliotoxin biosynthesis. Additionally, 

alterations to the metabolite profile following deletion of gliK may allude to the 

mechanisms associated with the altered phenotypes observed in A. fumigatus ΔgliK 

relative to the wild-type. Consequently, the aims of the work presented in this Chapter 

were (i) to identify optimal culture conditions for gliotoxin production in A. fumigatus 

ATCC26933, (ii) to determine the effect of gliK deletion on gliotoxin production, (iii) to 

characterise changes to the intracellular and extracellular metabolome of A. fumigatus 

ATCC26933 following deletion of gliK.  
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Figure 6.2: GliZ-dependent metabolites identified from A. fumigatus, demonstrating 

intermediate polarity. Novel metabolites are indicated in red. From Forseth et al. 

(2011). 
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6.2 Results 

6.2.1 Identification of Culture Conditions for Enhanced Gliotoxin Production by 

A. fumigatus ATCC26933 

In order to comprehensively characterise the effect of deletion of gliK on 

gliotoxin production in A. fumigatus, optimal conditions for gliotoxin production were 

investigated using A. fumigatus ATCC26933 (wild-type). A. fumigatus wild-type was 

inoculated into each of the following media (i - iv) and incubated at 37 °C in the dark at 

200 rpm:   

(i) YES (Section 2.1.5.11) 

(ii) RPMI (Section 2.1.5.12) 

(iii) AMM (Section 2.1.5.5) 

(iv) Czapek-Dox Broth (Section 2.1.5.9) 

Culture supernatants were harvested at 48 and 72 h, and chloroform was used to 

perform organic extractions on the supernatants (Section 2.2.4.11). The dried organic 

extracts (Section 2.2.4.12) were resuspended in a minimal volume of HPLC-grade 

methanol and analysed by RP-HPLC using a 5 to 95 % acetonitrile gradient (Section 

2.2.5.1; Table 2.7, Gradient 1). A reference standard of commercially produced 

gliotoxin was analysed in tandem.  

Gliotoxin was observed to be optimally produced in Czapek-Dox medium 

following a culture time of 72 h. Standard gliotoxin was detected at a retention time 

(RT) of 13.390 min by RP-HPLC analysis (Figure 6.3a). Equivalent peaks, at retention 

times of 13.424 and 13.404 min, were detected from the organic extracts of culture 

supernatants collected from Czapek-Dox cultures at 48 h and 72 h respectively (Figure 

6.3, b and c). This equates to gliotoxin concentration levels of 5.61 and 11.20 µg/ml, in 

culture supernatants collected from Czapek-Dox cultures at 48 h and 72 h respectively. 
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Figure 6.3: RP-HPLC analysis of gliotoxin production by A. fumigatus wild-type in 

Czapek-Dox medium. Organic extracts of culture supernatants (48 h and 72 h; 37 °C) 

were subjected to RP-HPLC analysis and absorbance was monitored at 254 nm. (a) 

Gliotoxin standard (2 µg) elutes at RT = 13.390 min. (b) A. fumigatus ATCC26933 

wild-type strain at 48 h secreted gliotoxin (RT = 13.424 min). (c) A. fumigatus 

ATCC26933 wild-type strain at 72 h secreted gliotoxin (RT = 13.402 min). 

a. 

b. 

c. 
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6.2.2 Comparative analysis of A. fumigatus ATCC26933, wild-type and ΔgliK, 

extracellular metabolites 

Organic extracts from A. fumigatus ATCC26933, wild-type and ΔgliK, culture 

supernatants were compared by RP-HPLC, MALDI-ToF MS and LC-MS/MS to 

determine whether deletion of gliK resulted in an alteration of the extracellular 

metabolome. The culture conditions identified in Section 6.2.1, as optimal for gliotoxin 

production, were used for extracellular metabolite comparisons. 

6.2.2.1   RP-HPLC analysis of organic extracts from A. fumigatus ATCC26933, 

wild-type and ΔgliK, culture supernatants 

Comparative RP-HPLC analyses were performed on organic extracts from A. 

fumigatus ATCC26933, wild-type and ΔgliK,
 

culture supernatants (37 °C; 72 h; 

Czapek-Dox broth). Gliotoxin standards (2 µg; 20 µl) were analysed alongside these 

samples and absorbance was monitored at 254 nm (Figure 6.4).  

Gliotoxin standard eluted at a retention time of 13.516 min with a peak area of 

1423.42. Organic extracts from wild-type supernatants yielded an absorbance (RT = 

13.50 ± 0.0044 min) with peak area range of 6433 ± 119.7. This correlated with the 

retention time of gliotoxin as deduced by comparison with the commercial standard. 

Gliotoxin was not detectable in organic extracts from A. fumigatus ΔgliK culture 

supernatants by RP-HPLC (Figure 6.4). A number of peaks were observed to increase in 

intensity in culture supernatants from ΔgliK, relative to the wild-type (RT = 13.236, 

14.257, 15.207 and 15.676 min) (Figure 6.4). Further analyses were required to 

characterise these differentially produced compounds and to confirm the absence of 

gliotoxin from ΔgliK culure supernatants. 
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Figure 6.4: Comparative RP-HPLC analysis of organic extracts from A. fumigatus 

ATCC26933 wild-type and ΔgliK culture supernatants. Organic extracts of culture 

supernatants (72 h; 37 °C, Czapek-Dox broth) were subjected to RP-HPLC analysis and 

absorbance was monitored at 254 nm. (a) Gliotoxin standard (2 µg) elutes at RT = 

13.516 min with a peak area of 1423.42. (b) A. fumigatus ATCC26933 wild-type strain 

secretes gliotoxin with a peak area of 6433 ± 119.7 (RT = 13.502 min). (c) Gliotoxin is 

not detectable in culture supernatants of A. fumigatus ΔgliK. An increase in the presence 

and intensity of a number of peaks is evident in A. fumigatus ΔgliK (indicated by red 

asterix), relative to wild-type. 

c. 

b. 

a. 
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6.2.2.2   Reduction and alkylation of organic extracts from A. fumigatus, wild-type 

and ΔgliK, culture supernatants 

Further investigation was carried out to determine if gliotoxin was produced by 

ΔgliK. Reduction of the disulphide bond of gliotoxin and subsequent alkylation of the 

thiol groups with 5’-IAF results in formation of diacetamidofluorescein-gliotoxin (GT-

(AF)2) (Figure 6.1) (Davis et al., 2011b). This compound exhibits a shift in retention 

time upon analysis by RP-HPLC, in addition to an increased molar absorptivity relative 

to gliotoxin. Reduction of organic extracts of A. fumigatus ATCC26933, wild-type and 

ΔgliK, culture supernatants (37 °C; 72 h; Czapek-Dox broth) was carried out using 

sodium borohydride (NaBH4) as described in Section 2.2.5.2. Control samples were 

prepared in tandem, which omitted the NaBH4-mediated reduction of gliotoxin (non-

reduced (NR) + 5’-IAF). Following 5’-IAF labelling, RP-HPLC analysis was carried 

out for the detection of GT-(AF)2 using gradient 2 (Table 2.8) (Figure 6.5). 

Gliotoxin displayed an additional peak at retention time of 5.261 min following 

NaBH4 reduction and 5’-IAF alkylation (R + 5’-IAF). This represents 

diacetamidofluorescein-gliotoxin (GT-(AF)2). An equivalent labelled species was 

observed in organic extracts from wild-type culture supernatants (RT = 5.134 ± 0.01325 

min) indicating the presence of GT-(AF)2 following reduction and alkylation. No GT-

(AF)2 peak was detected in organic extracts from ΔgliK culture supernatants following 

reduction and alkylation, further confirming the absence of gliotoxin from A. fumigatus 

ΔgliK. 

In addition to RP-HPLC analysis, MALDI-ToF MS was used to determine if 

GT-(AF)2 was present in ΔgliK samples (Section 2.2.5.4). MALDI-ToF MS detected a 

compound with a molecular mass of 1102.9 Da ((M + H)
+
), equating to the molecular 

mass of GT-(AF)2, in organic extracts from wild-type culture supernatants (Figure 
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6.6a). No equivalent compound was detected in organic extracts from ΔgliK
 
culture 

supernatants using this method (Figure 6.6b). Based on RP-HPLC and MALDI-ToF MS 

analysis, GT-(AF)2 was not detectable in organic extracts from ΔgliK culture 

supernatants, leading to the conclusion that gliotoxin biosynthesis is abolished 

following deletion of gliK. 
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Figure 6.5: RP-HPLC analysis of reduced and alkylated organic extracts of A. 

fumigatus ATCC26933, wild-type and ΔgliK, culture supernatants. Absorbance 

detection at 254 nm is shown for all samples. (a) Gliotoxin standard (2 µg). GT-(AF)2 

was detected at RT = 5.261 min. (b) A. fumigatus wild-type. GT-(AF)2 was detected at 

RT = 5.160 min. (c) A. fumigatus ΔgliK. No GT-(AF)2 was detected (indicated by the 

asterix). R + 5’-IAF, Reduced with NaBH4 and alkylated with 5’-IAF; NR + 5’-IAF, 

non-reduced and alkylated with 5’-IAF. 

a. 

b. 

c. 
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Figure 6.6: (a) MALDI-ToF analysis reveals diacetamidofluorescein-gliotoxin (GT-

(AF)2) (m/z 1102.9) (Davis et al., 2011b) following reduction and alkylation of organic 

extracts from A. fumigatus ATCC26933 wild-type (b) GT-(AF)2 is not present in 

organic extracts of A. fumigatus ΔgliK. 

a. 

b. 
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6.2.2.3   Analysis of A. fumigatus ATCC26933, wild-type and ΔgliK, metabolite 

profiles by LC-MS/MS 

Comparative analyses of organic extracts from A. fumigatus ATCC26933, wild-

type and ΔgliK, culture supernatants were carried out by LC-MS/MS (Section 2.2.6.4). 

Alignment of total ion chromatographs (TIC) of wild-type and ΔgliK organic extracts 

was performed (Figure 6.7) and revealed distinct differences in the relevant metabolite 

profiles.  

Singly charged ions were not excluded from ESI LC-MS/MS analyses. Organic 

extracts of A. fumigatus wild-type and ΔgliK culture supernatants yielded two distinct 

spectra on LC-MS/MS analysis (Figure 6.7). Wild-type extracts produced spectra with 

dominant peaks between retention times 6.7 and 6.9 min. These peaks are attributable to 

the elution of gliotoxin, confirmed by the presence of the precursor ion ((M + H)
+
 = 

327.2) and characteristic product ions ((M + H)
+
 = 263, 245, 227) (Figure 6.8b) 

(Schrettl et al., 2010). LC-MS/MS analysis confirmed the absence of gliotoxin 

production, and revealed the presence of metabolites, of (M+H)
+
 = 394 and 396, which 

were significantly more abundant in culture supernatants of A. fumigatus ΔgliK (p = 

0.0024, fold difference = 24.1; p = 0.0003, fold difference = 9.6, respectively). These 

species ((M+H)
+
 = 394 and 396) were targeted for MS

2 
(Figure 6.8, c and d) and appear 

to be related compounds that differ by 2 Da. This relationship is evident by the same 

difference between their relative product ion base peaks ((M + H) 
+
 = 338 and 340, 

respectively). The presence of dimers of these compounds is also noted ((2M + H) 
+
 = 

787 and 791 respectively. These ions are all singly charged as deduced by interrogating 

the isotopic peaks of each compound. This analysis confirms the abolition of gliotoxin 

biosynthesis in A. fumigatus following deletion of gliK, and coincides with the 

substantial increase in production of two extracellular compounds with (M+H)
+
 = 394 
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and 396. These compounds may represent stable intermediates of the gliotoxin 

biosynthetic process, which accumulate consequent to gliK deletion. Alternatively, 

these molecules may be shunt metabolites, formed as a result of the relative instability 

of on-pathway intermediates as observed in A. fumigatus ΔgliG (Davis et al., 2011a).
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Figure 6.7: Total ion chromatographs (TIC) of organic extracts from culture 

supernatants of A. fumigatus wild type (black) and ΔgliK (red) cultures as analysed by 

LC-MS/MS, (a) in list view and (b) overlaid. 

a. 

b. 
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Figure 6.8: (a) Total ion chromatograph (TIC) of organic extracts from wild-type 

(black) and ΔgliK (red) culture supernatants, overlaid. (b) Gliotoxin (m/z = 327.2) was 

identified in the mass spectra from the wild-type culture supernatant but was not found 

in the ΔgliK
 
culture supernatants. Comparative profiling identified compounds (m/z = 

394.3; 396.3) that were present at higher amounts in organic extracts of ΔgliK,
 
relative 

a. 

b. 

c. 

d. 
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to wild-type culture supernatants. Mass spectra from the molecular species (c) m/z = 

394.3 and (d) m/z = 396.3 are shown. Selected precursor ions from MS are indicated in 

red text, with resultant MS
2
 spectra included directly below. 
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6.2.3 Comparative analysis of A. fumigatus ATCC26933, wild-type and ΔgliK, 

intracellular metabolites 

Following on from the observation in Section 6.2.2, that deletion of gliK results 

in the loss of gliotoxin production from A. fumigatus, comparative analysis of the 

intracellular metabolome was undertaken. Lysates from A. fumigatus ATCC26933, 

wild-type and ΔgliK mycelia were analysed by RP-HPLC and LC-MS/MS to determine 

whether ΔgliK exhibited an altered intracellular metabolome. The culture conditions 

identified in Section 6.2.1, as optimal for gliotoxin production, were used for 

extracellular metabolite comparisons. 

6.2.3.1   Analysis of intracellular A. fumigatus ATCC26933, wild-type and ΔgliK
, 

metabolite profiles by RP-HPLC 

Mycelia from A. fumigatus ATCC26933, wild-type and ΔgliK, were harvested at 

72 h, following growth in Czapek-Dox broth at 37 °C (Section 2.1.5.9). Protein extracts 

were prepared using non-reducing lysis buffer (Section 2.1.5.18, 2.2.2.1). Small-scale 

organic extractions were performed in the protein lysates and comparative RP-HPLC 

analyses were carried out on the resultant organic extracts from A. fumigatus 

ATCC26933 and ΔgliK (Figure 6.9). RP-HPLC analysis revealed no substantial 

differences between the metabolic profile of the organic extracts from wild-type and 

ΔgliK mycelial lysates (Figure 6.9). Consequently, additional investigation was required 

to determine any differences between the intracellular metabolome of ΔgliK relative to 

wild-type. 
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Figure 6.9: Comparative RP-HPLC analysis of organic extracts from A. fumigatus 

ATCC26933 (a) wild-type and (b) ΔgliK mycelial lysates. Absorbance was monitored at 

254 nm. 

a. 

b. 



276 

 

6.2.3.2   Quantitation of free sulphydrals present in lysates from A. fumigatus, 

wild-type and ΔgliK, mycelia 

The quantity of free sulphydral groups present in mycelial lysates of A. 

fumigatus wild-type and ΔgliK, was measured using an Aldithiol-4® titration (Section 

2.2.5.4). Aldithiol-4® measures the concentration of free thiols in a sample, but does 

not distinguish between thiols from proteins or small molecular mass metabolites. 

Control samples, consisting of the non-reducing lysis buffer (Section 2.1.5.18) were 

subjected to titration with Aldrithiol-4®, and used to determine baseline absorbance 

changes. The concentration of total free sulphydrals (of proteinaceous or non-

proteinaceous origin) per mg of protein was significantly higher in the A. fumigatus 

ΔgliK lysates compared to the wild-type (p = 0.0028; n = 3; fold difference = 2.2) 

(Figure 6.10). This result signifies the presence of elevated intracellular thiols in ΔgliK, 

which may be related GliK absence. 

 

Figure 6.10: Relative concentration of free sulphydral groups per unit of protein 

(SH/mg protein). Concentration of free sulphydral groups, relative to protein 

concentration, in lysates of A. fumigatus ΔgliK (grey) is significantly higher than wild-

type (black) (p = 0.0028; n = 3; fold difference = 2.2). 

** 
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6.2.3.3   Alkylation of lysates from A. fumigatus, wild-type and ΔgliK, mycelia 

Based on the observation of a significantly higher concentration of sulphydrals 

in mycelial lysates of A. fumigatus ΔgliK, relative to wild-type, further investigation 

was carried out. Mycelial lysates, were examined for the presence of free sulphydrals or 

disulphide bonds, using reduction and alkylation as described in Section 2.2.5.2 (Davis 

et al., 2011b). Non-reduced samples were prepared concurrently, without NaBH4-

mediated reduction prior to alkylation with 5’-IAF (NR + 5’-IAF). RP-HPLC analysis 

was carried out to assess any differential alkylation that occurs as a result of the deletion 

of gliK. 

Reduction and subsequent alkylation of protein lysates with 5’-IAF (R + 5’-

IAF), revealed two peaks in each sample at RT = 12.07 ± 0.001732 (n = 3) and 14.07 ± 

0.002186 (n = 3) min (Figure 6.11). These peaks were attributable to un-reacted 5’-IAF, 

as deduced by comparison with the control sample. An additional peak, not present in 

the control sample, was detected in both wild-type and ΔgliK at RT = 11.71 ± 0.003 min 

(n = 6) and was indicative of a 5’-IAF labelled compound (Figure 6.11). An equivalent 

absorbance was observed in the non-reduced A. fumigatus lysates, following 5’-IAF 

labelling (NR + 5’-IAF) at RT = 11.72 ± 0.0115 min (n = 6) (Figure 6.12). This signifies 

that the 5’-IAF labelled compound contains at least one free sulphydral group as 

reduction was not required prior to alkylation with 5’-IAF. This 5’-IAF labelled 

intracellular compound, termed AF11.7, was present at significantly higher levels in 

ΔgliK compared to wild-type (p = 0.0343; n = 6; 5.7 fold difference) based on the 

relative peak areas from RP-HPLC analysis. An increase in the intracellular 

concentration of this sulphydral containing metabolite in ΔgliK, correlates with the 

observations from Aldrithiol-4® titrations (Section 6.2.3.2). Fractionation was utilised 
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to purify the 5’-IAF labelled compound, from both wild-type and ΔgliK for further 

characterisation by LC-MS/MS. 

 

Figure 6.11: RP-HPLC analysis of A. fumigatus ATCC26933, wild-type and ΔgliK, 

mycelial lysates, with NaBH4-mediated reduction prior to 5’-IAF labelling (R + 5’-

IAF). Absorbance detection at 254 nm is shown for all samples. (a) Lysis buffer control 

R + 5’-IAF. Unreacted 5’-IAF was detected at RT = 12.067; 14.069 min. (b) A. 

fumigatus wild-type R + 5’-IAF. A 5’-IAF labelled metabolite (AF11.7) eluted at RT = 

11.714 min (red arrow). (c) A. fumigatus ΔgliK R + 5’-IAF. A 5’-IAF labelled 

metabolite (AF11.7) eluted at RT = 11.708 min (red arrow), with a substantially higher 

intensity than observed in wild-type. R + 5’-IAF, Reduced with NaBH4 and alkylated 

with 5’-IAF.  

a. 

b. 

c. 
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Figure 6.12: Overlaid RP-HPLC analysis of A. fumigatus ATCC26933 wild-type 

(black) and ΔgliK (red) mycelial lysates, with no reduction prior to 5’-IAF labeling (NR 

+ 5’-IAF). A 5’-IAF labelled metabolite, eluted at RT = 11.706 min (AF11.7; red 

arrow), and was present at significantly higher amounts in A. fumigatus ΔgliK than in 

wild-type (p = 0.0343). Unreacted 5’-IAF was detected at RT = 12.068; 14.074 min 

(indicated by asterix). Absorbance detection is shown at 254 nm. NR + 5’-IAF; non-

reduced and alkylated with 5’-IAF. 

 

a. 

AF11.7 
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6.2.3.4   LC-MS/MS analysis of 5’-IAF labelled intracellular metabolite 

In order to ascertain the molecular mass of the 5’-IAF labelled metabolite 

purified from A. fumigatus wild-type and ΔgliK mycelial lysates in Section 6.2.3.3, LC-

MS/MS was carried out. To facilitate LC-MS/MS analysis, fractions corresponding to 

AF11.7 were collected following RP-HPLC of alkylated mycelial lysates (Section 

6.2.3.3). Fractions were dried to completion and resuspended in 10 % (v/v) methanol, 

0.1 % (v/v) formic acid (Section 2.1.3.9). A control sample, consisting of the equivalent 

fraction from alkylation of the lysis buffer was also analysed. The ubiquitous 

monothiol, glutathione (GSH), was also subjected to alkylation with 5’-IAF and the 

resultant labelled molecule was also fractionated and analysed by LC-MS/MS. 

Total ion current (TIC) chromatographs of the fractions from wild-type and 

ΔgliK 5’-IAF labelled lysates, each display two peaks at retention times between 5.9 

and 6.0 min (Figure 6.13a). These peaks are both attributable to a compound with 

(M+H)
+
 = 617.3 (Figure 6.13b). This compound is present at significantly higher levels 

in the ΔgliK (NR + 5’-IAF) relative to the wild-type lysates (p < 0.001; n = 6; fold 

difference = 4.96), as observed previously by RP-HPLC (Figure 6.12). No equivalent 

compound was detected in the control samples. A number of doubly charged molecular 

species were detected ((M+2H)
2+

 = 309.2, 287.2), formed as a result of double 

protonation of the molecular ion ((M+H)
+
 = 617. 3) or of product ions ((M+H)

+
 = 

573.3) respectively (Figure 6.13b). MS
2
 fragmentation of selected precursor ions is 

shown (Figure 6.13c). Notably, alkylation of GSH with 5’-IAF produces a compound 

with (M+H)
+
 = 695.3 (Figure 6.13d), as would be predicted based on the theoretical 

molecular mass of acetamidofluorescein-glutathione (GS-AF). Importantly, this 

excludes GSH as a candidate for the elevated, monothiol, intracellular metabolite.  
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Figure 6.13: (a) Total ion chromatograph (TIC) of the 11-12 min fraction from RP-

HPLC analyses of 5’-IAF labelled mycelia lysates of A. fumigatus ATCC26933 wild-

type (black) and ΔgliK (red). The equivalent fraction from 5’-IAF labelling of GSH 

(blue) and lysate buffer (green), are also shown. (b) Mass spectra of the compounds 

observed at retention times of 5.9-6.0 min, from each of the A. fumigatus samples, 

revealed a singly charged molecule with (M+H)
+
 = 617.3 along with two doubly 

charged molecules with m/z = 309.2 and 287.3 respectively. These compounds were not 

found in the mass spectra of the 5’-IAF labelled buffer control or GSH. (c) MS
2
 

analyses of each of these three ions was carried out.  (d) Mass spectra of the compound 

observed at retention times of 6.0-6.2 min in the 5’-IAF labelled GSH samples revealed 

a singly charged molecule with (M+H)
+
 = 695.3, correlating to acetamidofluorescein-

glutathione, along with two doubly charged molecules with m/z = 348.2 and 283.6. 
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The mass of the 5’IAF labelled precursor ion ((M + H)
+
 = 617.3; M = 616.3) is 

partially attributable to the conjugated fluorophore and this was deducted to determine 

the mass of the original metabolite. The molecular mass of the labelled molecule (m/z 

617.3) indicates that the metabolite contains a single free thiol group, as each 

acetamidofluorescein moiety contributes 388.3 Da to the overall mass. Alkylation with 

5’-IAF (Mr = 515.2 Da), results in derivatisation of a thiol group (-SH) with 

acetamidofluorescein, and the concurrent loss of hydrogen iodide (HI; Mr = 127.9 Da). 

The mass of the intracellular, monothiol metabolite was 229 Da (M229), as deduced by 

subtracting the acetamidofluorescein moiety from the precursor mass (616.3 - (515.2 - 

127.9)).  

The mass of this metabolite, combined with the presence of a single thiol, did 

not correlate with any metabolites characterised from A. fumigatus and also did not 

yield an identification from any well cited or extensively studied fungal metabolites. 

This lack of prior identification in A. fumigatus may have stemmed from the difficulty 

associated with purification of the native metabolite due to the hydrophilic nature of the 

molecule. Chemical derivatisation of M229 with 5’-IAF was required in order to impart 

hydrophobicity to the compound and enable subsequent purification and 

characterisation using RP-HPLC. The fragmentation pattern observed for the 5’-IAF 

labelled metabolite (AF11.7) included a neutral loss of 44 (617.3 - 573.3), a neutral loss 

of 59 (573.3 - 514.3) and a neutral loss of 126.2 (514.3-388.1) (Figure 6.13). Extensive 

analysis of the literature lead to the identification of a selenium (Se) -containing 

compound, selenoneine, with a m/z of 278 (Yamashita and Yamashita, 2010). 

Selenoneine is a selenium analogue of a sulphur-containing molecule, ergothioneine 

(EGT). Ergothioneine (C9H15N3O2S) is a hydrophilic molecule which possesses a 

molecular mass of 229 Da, and exists as a tautomer of a thiol and thione form (Figure 
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6.14). Additionally, the fragmentation pattern observed for AF11.7 corresponds with 

that reported for ergothioneine, upon deduction of the mass of the acetamidofluorescein 

moiety (Nikodemus et al., 2011; Tepwong et al., 2012). The identified neutral loss of 44 

(617.3 - 573.3) corresponded to the loss of COO
-
, neutral loss of 59 (573.3 - 514.3) 

corresponded to N(CH3)3
+
 and a neutral loss of 126.2 (514.3-388.1) corresponded to 

C5N2H6S (Figure 6.14). The identification of the 5’-IAF labelled metabolite as 

ergothioneine was thus confirmed based on: (i) agreement between predicted molecular 

mass of 5’-IAF labelled metabolite and ergothioneine (both 229 Da), (ii) presence of a 

single thiol group, (iii) hydrophilic nature and (iv) fragmentation pattern evidence 

(Yamashita and Yamashita, 2010). To my knowledge this is the first identification of 

ergothioneine in A. fumigatus. This analysis confirmed the presence of elevated levels 

of ergothioneine in A. fumigatus ATCC26933 following deletion of gliK.  
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Figure 6.14: (a) Chemical structure of (i) acetamidofluorescein ergothioneine (ERG-

AF), and two of the product ions generated fom MS/MS (ii, iii). The 

acetamidofluorescein moiety is indicated in red. (b) The thiol (i) and thione (ii) 

tautomers of ergothioneine. Image from (Gallagher et al., 2012). 

 

(i) (ii) 

a. 

b. 
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6.3 Discussion 

The work presented in this Chapter involved the characterisation of the 

metabolome of A. fumigatus following deletion of gliK from the gli cluster (Gardiner 

and Howlett, 2005; Gallagher et al., 2012). Most significantly, deletion of gliK resulted 

in the abolition of gliotoxin production. Absence of gliotoxin in ΔgliK coincided with 

the significantly elevated levels of two metabolites ((M + H)
+
 = 394 and 396), which 

contained no detectable free sulphydrals or disulphide bonds. These compounds may 

represent shunt metabolites or intermediates from the gliotoxin biosynthetic pathway. 

Intracellular free sulphydral levels were significantly higher in A. fumigatus ΔgliK, 

relative to wild-type. This was attributable to the significantly increased concentration 

of intracellular ergothioneine (EGT; C9H15N3O2S) in A. fumigatus ΔgliK, relative to the 

parent strain, and represents the first identification of ergothioneine in A. fumigatus. 

Alteration in the intracellular ergothioneine levels may provide insight into the role of 

GliK in A. fumigatus. 

To date, the function of GliK in gliotoxin biosynthesis is unknown. Deletion of 

gliP, gliZ, gliI, gliG and gliT, corresponding to an NRPS, a transcription factor, a 

carbon-sulphur lyase, a glutathione-S-transferase and a gliotoxin oxidoreductase 

respectively, has resulted in the abrogation of gliotoxin production (Bok et al., 2006; 

Cramer et al., 2006; Kupfahl et al., 2006; Scharf et al., 2010, 2011, 2012a; Schrettl et 

al., 2010; Davis et al., 2011a; Forseth et al., 2011). In order to accurately distinguish 

between gliotoxin production in A. fumigatus ATCC26933, wild-type and ΔgliK, 

conditions were identified for optimal gliotoxin production in ATCC26933. Culture in 

Czapek-Dox broth resulted in high gliotoxin yields at 48 h, with further increase in 

gliotoxin detected at 72 h. Gliotoxin, detected by RP-HPLC, was present in 48 h culture 

supernatants of ATCC26933 wild-type at a concentration of 5.61 µg/ml and this rose to 
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11.20 µg/ml at 72 h. Based on these observations, gliotoxin production in ΔgliK was 

analysed relative to wild-type following culture in Czapek-Dox for 72 h. RP-HPLC of 

organic extracts from culture supernatants revealed a dramatically altered metabolite 

profile in ΔgliK, compared to wild-type. This profile indicated the absence of gliotoxin 

in ΔgliK and also revealed the coincident increase in intensity of a number of other 

peaks. Reduction and alkylation with 5’-IAF was employed to increase the sensitivity of 

gliotoxin detection by RP-HPLC and MALDI-ToF (Davis et al., 2011b). Overall, no 5’-

IAF labelled gliotoxin (GT-(AF)2) was detected by RP-HPLC or MALDI-ToF in ΔgliK, 

while this compound was identified from wild-type (Figures 6.5 and 6.6). Further 

confirmation of gliotoxin absence from culture supernatants of ΔgliK, was provided by 

LC-MS/MS. Abolition of gliotoxin production following deletion of gliK, implies a role 

for GliK in the gliotoxin biosynthesis pathway (Gallagher et al., 2012). 

In the absence of gliotoxin production in ΔgliK, two hydrophobic metabolites 

were detected by LC-MS/MS with (M + H)
+
 = 394 and 396. While low levels of these 

compounds were detectable in culture supernatants from A. fumigatus wild-type, 

significantly higher levels were present in ΔgliK (p = 0.0024, fold difference = 24.1; p = 

0.0003, fold difference = 9.6, respectively). These compounds appeared to be related, 

based on analogous fragmentation patterns, producing product ions with (M + H)
+
 = 

338 and 340, respectively. This 2 Da difference in compounds can sometimes be 

attributable to the presence of an oxidised (S-S) or reduced ((-SH)2) disulphide bond. 

However, reduction and alkylation of these samples did not detect the presence of a 

disulphide bond or free sulphydrals. Interestingly, organic extracts from ΔgliK culture 

supernatants produce no growth inhibitory effects on A. fumigatus wild-type, while 

wild-type extracts significantly inhibited radial growth of ΔgliK (Gallagher et al., 2012). 

The growth inhibition associated with wild-type extracts, correlates with the enhanced 
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sensitivity of ΔgliK to gliotoxin. The elevated levels of the m/z 394 and 396 

extracellular metabolites in ΔgliK did not produce growth inhibitory effects in A. 

fumigatus wild-type, indicating these compounds are not auto-toxic. These extracellular 

compounds, possessing higher molecular mass(es) than gliotoxin, could represent off-

pathway shunt metabolites of gliotoxin production. Deletion of gliG from A. fumigatus 

has been shown to abolish gliotoxin biosynthesis, with the coincident production of a 

shunt metabolite, 6-benzyl-6-hydroxy-1-methoxy-3-methylene-piperazine-2,5-dione 

(Davis et al., 2011a). Interestingly, these external metabolites (m/z 394-396) were 

absent from the culture supernatants of ΔgliG, indicating that production of m/z 394-396 

is GliG-dependant (Gallagher et al., 2012). This is indicative of GliK functionality 

occurring after GliG in the gliotoxin biosynthetic pathway as evidenced by the 

accumulation of these GliG-dependent products in the gliK deletion strain (Figure 6.15). 

In order to ascertain whether these extracellular metabolites were shunt metabolites or 

on-pathway biosynthetic intermediates, preliminary feeding experiments were carried 

out. These consisted of the addition of ΔgliK metabolites (m/z 394-396) to wild-type 

lysates, however no conversion of the extracellular metabolites to gliotoxin was 

detected. Interestingly, these compounds (m/z 394-396) did not correlate to any of the 

masses attributable to gliZ dependent metabolites identified by Forseth et al. (2011).  

Differential profiling of the intracellular metabolome of A. fumigatus 

ATCC26933, wild-type and ΔgliK¸ was carried out to characterise changes resulting 

from the deletion of gliK. Initially, examination of organic extracts from mycelial 

lysates presented no substantial changes to the internal metabolite profile, as determined 

by RP-HPLC (Figure 6.9). As this analysis was limited to non-polar intracellular 

compounds, further investigation was performed using aqueous mycelial extracts of 

wild-type and ΔgliK. 



289 

 

 

Figure 6.15: Schematic of the mechanistic positioning of GliG preceding GliK in the 

gliotoxin biosynthetic pathway. In A. fumigatus wild-type, the presence of both GliG 

and GliK results in the production of gliotoxin. Gliotoxin production is abolished in 

ΔgliK, with the concurrent accumulation of m/z 394/396. Deletion of gliG also results in 

the loss of gliotoxin production, in addition to the loss of m/z 394/396. This indicates 

that the production of m/z 394/396 is dependent on the presence of GliG. It is yet 

unclear whether m/z 394/396 are on-pathway intermediates of the gliotoxin biosynthetic 

process or shunt metabolites. 
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Aldrithiol-4® titrations, to detect total free thiols, revealed a significant increase 

in the concentration of free sulphydral groups in mycelial lysates of ΔgliK compared to 

wild-type (p = 0.0028) (Figure 6.10). A fold increase of 2.2 was observed in the total 

free sulphydral concentration, relative to protein, in A. fumigatus ΔgliK. The 

consequences of elevated levels of free sulphydrals in ΔgliK may alter the cellular redox 

potential (Murray et al., 2011). The converse may also be true, with a perturbation in 

the redox status of ΔgliK, resulting in the increase in intracellular free thiols. This 

disturbance could affect processes such as transcriptional regulation (Murray et al., 

2011), and may account for the distinct proteomic profiles of A. fumigatus wild-type 

and ΔgliK following gliotoxin treatment (Chapter 5). 

Comparative RP-HPLC analysis of aqueous mycelial extracts from A. fumigatus 

wild-type and ΔgliK did not reveal any detectable differences due to relatively large 

proportion of hydrophilic compounds present. These hydrophilic molecules were not 

retained by the C18 column and eluted prior to the gradient. In order to investigate the 

observed variance in sulphydral content between wild-type and ΔgliK mycelial extracts, 

alkylation with 5’-IAF was utilised (Davis et al., 2011b). This strategy ultimately 

revealed significantly elevated levels of ergothioneine in A. fumigatus ΔgliK (p = 

0.0343; n = 6; fold difference = 5.7). The identification of ergothioneine was supported 

by multiple factors, outlined in Table 6.1. Significantly, this represents the first 

identification of ergothioneine in A. fumigatus. 
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 Table 6.1: Factors contributing to the identification of 5’-IAF labelled metabolite (AF11.7) as ergothioneine 

 5’-IAF labelled metabolite Ergothioneine 

Molecular mass: 229 Da 229 Da 

Number of free thiol groups 1 1  

Exists as a thione-thiol tautomer 

Physical properties Hydrophilic Hydrophilic 

MS fragmentation pattern: Neutral loss: 44 (COO
-
) 

Neutral loss: 59 (C(NH3)3) 

Neutral loss: 126 (C5N2H6S) 

Neutral loss: 43.9862 (COO
-
) 

Neutral loss: 59.0733 (C(NH3)3) 

Neutral loss: 126.03 (C5N2H6S) 

 Fragmentation pattern of ergothioneine taken from Tepwong et al. (2012). 
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Ergothioneine is a sulphur-containing derivative of histidine, produced by fungi 

and mycobacteria (Figure 6.14) (Paul and Snyder, 2010; Seebeck, 2010; Bello et al., 

2012). Ergothioneine is a tautomer and predominantly exists in the thione at 

physiological pH rather than the thiol form (Figure 6.14) (Hand et al., 2005; Paul and 

Snyder, 2010). The existence of ergothioneine as a thione imparts additional stability to 

the metabolite (Jayaram et al., 2008). Consequently, ergothioneine has a higher redox 

potential than glutathione (GSH) and so is less susceptible to oxidation into the 

disulphide form (Carlsson et al., 1974; Jayaram et al., 2008). The anti-oxidant 

properties of ergothioneine were demonstrated to be more potent than uric acid, GSH or 

Trolox® (a water-soluble derivative of Vitamin E), with regard to scavanging capacity 

for peroxynitrates, hydroxyl and peroxyl radicals in vitro (Franzoni et al., 2006). 

Additionally inhibition of ergothioneine biosynthesis correlates with increased 

sensitivity of conidia to peroxides, but not superoxide, in the ascomycete Neurospora 

crassa (Bello et al., 2012).  

The mechanisms of ergothioneine biosynthesis have been investigated in 

mycobacteria with the identification of a cluster of genes involved in production of the 

molecule (Figure 6.16a) (Seebeck, 2010). Mycobacterial ergothionine biosynthesis 

involves tri-methylation of the histidine via EgtD, with S-adenosylmethionine (SAM) as 

the methyl donor. Interestingly, enzymes involved in the biosynthesis of SAM and 

modification of histidine were differentially regulated in A. fumigatus ΔgliK in response 

to gliotoxin (Chapter 5) and this will be discussed in more detail in Chapter 7. 

Incorporation of the sulphydral group into ergothioneine is through conjugation with γ-

glutamyl cysteine and is mediated by EgtB in an iron-dependent manner. Subsequent 

cleavage of the glutamate group by EgtC and loss of pyruvate result in the formation of 

ergothioneine (Seebeck, 2010). A fungal ergothioneine biosynthesis gene, NcEgt-1, was 
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also identified in the ascomycete Neurospora crassa, with domains analogous to both 

EgtB and EgtD (Bello et al., 2012). The ortholog of this gene in A. fumigatus is 

DUF323 domain protein (AFUA_2G15650) with 47 % identity and 61 % sequence 

similarity to NcEgt-1 (http://blast.ncbi.nlm.nih.gov/Blast.cgi). This may represent a 

fusion protein, containing a domain with homology to SAM-dependent 

methyltransferases, in addition to a split domain with homology to formylglycine-

generating sulfatase enzyme (Figure 6.16b) (Seebeck, 2010; Bello et al., 2012). 

Ergothioneine biosynthesis has been shown to be up-regulated significantly in 

the mushroom Ganoderma neo-japonicum following addition of methionine to the 

media (Lee et al., 2009b). This may result from conversion of methionine to SAM, 

which is subsequently utilised for methylation of histidine in the initial step of 

ergothioneine biosynthesis (Figure 6.16). Interestingly, ergothioneine production was 

observed to increase upon disruption of mycothiol production in Mycobacterium 

smegmatis (Ta et al., 2011). This may indicate cross-talk between secondary metabolite 

biosynthesis pathways and may account for the similiar observation in A. fumigatus 

upon abrogation of gliotoxin biosynthesis. These authors noted that elevated 

ergothioneine did not compensate for the loss of mycothiol with regard to cumene 

hydroperoxide (CuOOH) resistance, indicating the redox role of ergothioneine may be 

more limited than previously noted.  

Ergothioneine, while not synthesised by mammals, is absorbed in the diet and 

concentrated in specific tissues in the body via the action of an ergothioneine transporter 

(ETT) (Gründemann et al., 2005; Gründemann, 2012). Ergothioneine has been noted to 

accumulate in tissues associated with oxidative stress exposure including the kidneys, 

liver, erythrocytes, ocular lens and seminal fluid (Hand and Honek, 2005). Paul and 

Snyder (2010) demonstrated, using RNAi, that ETT-depleted HeLa cells were more 

http://blast.ncbi.nlm.nih.gov/Blast.cgi
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sensitive to oxidative stress and ergothioneine could prevent H2O2-induced apoptosis. 

These authors also verified that ergothioneine directly scavenges hydroxyl radicals and 

superoxide, protecting proteins from H2O2-induced oxidation and blocking DNA 

damage in HeLa cells. Protection against H2O2-induced DNA damage by ergothioneine 

was also noted in PC12 neuronal cells (Colognato et al., 2006). Ergothioneine was 

found to inhibit the TNF-α or H2O2 -mediated transcription and release of IL-8 and the 

transactivation of NFκB in A549 alveolar epithelial cells (Rahman et al., 2003). 

Ergothioneine was also observed to indirectly protect against GSH depletion, through 

inhibition of NFκB activation (Rahman et al., 2003). 
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Figure 6.16: (a) Biosynthesis of ergothioneine in mycobacteria. The cluster codes for a 

γ-glutamyl cysteine synthetase (EgtA), an FGE-like protein (EgtB), a glutamine 

amidotransferase (EgtC), a SAM-dependent methyltransferase (EgtD) and a PLP-

binding protein (EgtE). Adapted from Seebeck (2010). (b) Annotation of multiple 

conserved domains in N. crassa NcEgt-1, indicating a possible fusion protein that is 

essential for ergothioneine production in N. crassa.  From Bello et al. (2012). 

a. 

b. 
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Interestingly sulphurisation of the methylated precursor of ergothionine involves 

γ-glutamyl cysteine, while GSH provides the sulphur moieties in gliotoxin biosynthesis 

(Figures 6.16 and 6.17b) (Seebeck, 2010; Davis et al., 2011a; Scharf et al., 2011). This 

observation may help explain the increased ergothionine levels in A. fumigatus 

following deletion of gliK. The GliK protein contains a conserved γ-glutamyl 

cyclotransferase (GGCT) -like domain, as determined by blastp analysis of the protein 

sequence (http://blast.ncbi.nlm.nih.gov/Blast.cgi). Proteins with GGCT activity catalyse 

the production of pyroglutamic acid (5-oxoproline) from γ-glutamyl containing 

dipeptides. This enzyme forms part of the γ-glutamyl cycle and is involved in the 

catabolism of glutathione (L-γ-glutamyl-L-cysteinyl-glycine; GSH) (Oakley et al., 

2010) (Figure 6.17a). This putative function of GliK is supported by the observation of 

elevated ergothioneine levels in ΔgliK compared to wild-type. Expression of a GGCT-

like protein would result in cleavage of γ-glutamyl dipeptides, including γ-glutamyl 

cysteine. This enzymatic catabolism of γ-glutamyl cysteine could reduce the amount of 

substrate (i.e. γ-glutamyl cysteine) available for sulphurisation of the ergothionine 

precursor. Accordingly, absence of the GliK protein, with a GGCT-like domain, could 

result in increased availability of γ-glutamyl cysteine leading to enhanced ergothioneine 

biosynthesis. While the role of GliK in gliotoxin biosynthesis is yet unclear, GliK may 

catalyse the removal of one or both L-glutamate moieties from the di-glutathionylated 

product of GliG (Figure 6.17b). This function has putatively been assigned to the 

dipeptidase GliJ (Gardiner and Howlett, 2005), however no functional genomic or 

biochemical analysis has been performed to confirm this. Alternatively, there may be a 

link between the γ-glutamyl cycle and gliotoxin production. As glutathione is essential 

in the gliotoxin biosynthetic process (Davis et al., 2011a; Scharf et al., 2011) (Figure 

6.17b), disruption of the γ-glutamyl cycle, by deletion of a putative GGCT, may 

contribute to the loss of gliotoxin production in ΔgliK.  

http://blast.ncbi.nlm.nih.gov/Blast.cgi
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Figure 6.17: (a) Outline of the γ-glutamyl cycle. 1, γ-glutamyl cysteine synthetase; 2, 

glutathione synthetase; 3, γ-glutamyl transpeptidase; 4, γ-glutamylcyclotransferase 

(GGCT) 5, 5-oxoprolinase. GGCT (red circle) is involved in the catabolism of 

glutathione (GSH). Adapted from Oakley et al. (2008) (b) Sub-section of the proposed 

gliotoxin biosynthetic pathway, demonstrating the incorporation of GSH molecules into 

the gliotoxin precursor molecule. This thiolation step is catalysed by the glutathione-S-

transferase, GliG. Adapted from Davis et al. (2011a). 
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In summary, RP-HPLC, MALDI-ToF, LC-MS/MS and selective chemical 

modification were utilised to comparatively characterise the intracellular and 

extracellular metabolome of A. fumigatus ATCC26933 following deletion of gliK. 

Analysis of culture supernatants revealed the absence of gliotoxin production in A. 

fumigatus ΔgliK, demonstrating for the first time that GliK is essential for gliotoxin 

biosynthesis in A. fumigatus. The absence of gliotoxin in A. fumigatus ΔgliK coincided 

with significantly increased levels of extracellular metabolites, with m/z 394-396, 

relative to the parent strain. These extracellular metabolites (m/z 394-396), may 

represent on-pathway intermediates or shunt metabolites of gliotoxin biosynthesis, 

accumulating in the absence of GliK. Future work required to characterise these 

metabolites will be described in Chapter 7. Investigation of the intracellular 

metabolome revealed significantly elevated levels of free thiols in A. fumigatus ΔgliK 

compared to wild-type. This phenomenon was attributable to the significant increase in 

levels of a monothiol-containing metabolite in A. fumigatus ΔgliK. This metabolite was 

subsequently identified as ergothioneine and the work described in this Chapter 

represents the first detection of this metabolite in A. fumigatus. The presence of elevated 

levels of ergothioneine in ΔgliK, may support the putative function of GliK as a γ-

glutamyl cyclotransferase. Overall, the results presented in this Chapter represent a 

progression in the characterisation of an unknown function protein, GliK, highlighting it 

as an essential protein in the gliotoxin biosynthetic process, after the GliG step. 

Metabolomic profiling, coupled with comparative proteomics analysis carried out in 

Chapter 5, provides further insight into the cellular mechanisms affected by deletion of 

gliK and these will be discussed in more detail in Chapter 7. 
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7 Chapter 7: Discussion 

7.1 Overview 

This discussion will (i) consider the implications of the expansion of the A. 

fumigatus proteome and immunoproteome achieved by the present effort and (ii) 

contextualise the global effects of gliotoxin-associated biochemistry in A. fumigatus. 

The epoch of genome sequencing has facilitated substantial progress in the 

characterisation of the transcriptome and proteome of A. fumigatus and related species 

(Carberry et al., 2006; Jørgensen et al., 2009; Vödisch et al., 2009; Albrecht et al., 

2011; Pusztahelyi et al., 2011). While technologies utilised for transcriptomics enable 

global analysis on a genome-wide scale, proteomics of A. fumigatus is still in its 

formative years (Kniemeyer, 2011). Furthermore, despite the advanced capabilities of in 

silico genome annotation, the function of many genes, and their resultant products, 

remains undetermined (Teutschbein et al., 2010). Targeted gene deletion and 

comparative profiling have been employed to determine gene function and to identify 

the systems influenced by the presence of the respective protein (Hortschansky et al., 

2007; Lessing et al., 2007; Doyle, 2011b; O’Hanlon et al., 2011; Hagag et al., 2012). 

The status of A. fumigatus as the second leading cause of invasive fungal infection 

necessitates comprehensive proteomic profiling of this organism, which may facilitate 

the identification of mechanisms contributing to pathogenicity (Thornton, 2008; 

Kniemeyer, 2011). To this end, the focus of the work presented in this thesis has been 

the progression of proteomic and immunoproteomic analysis of A. fumigatus, in 

addition to the use of comparative proteomic and metabolic profiling to identify the 

biological networks affected by gliotoxin in A. fumigatus. Resultant data has revealed 

insights into the phenomenon of gliotoxin-mediated recovery from H2O2-induced 

growth inhibition, and use of a gliotoxin sensitive mutant of A. fumigatus, ΔgliK, has 
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identified putative mechanisms by which gliotoxin toxicity is elicited. Furthermore, the 

influence of a protein of unknown function, GliK, on the metabolite profile of A. 

fumigatus was demonstrated for the first time (Gallagher et al., 2012). Coupled with 

comparative proteomic profiling, this presents a multi-dimensional view of the systems 

influenced following deletion of gliK from A. fumigatus. 

7.2 Global Proteomic and Immunoproteomic Characterisation of A. fumigatus 

Implementation of an MS-based proteomics approach lead to the identification 

of 427 non-redundant proteins from the mycelia and supernatant of A. fumigatus. 

Through use of gel-free preparations, proteins identified spanned a wide molecular mass 

and pI range, and included proteins containing multiple transmembrane regions, as well 

as hydrophobic proteins. Proteins identified extended from 9 to 434 kDa, with multiple 

proteins (n = 10) possessing a molecular mass ≥ 142 kDa. Computational prediction of 

the number of transmembrane (TM) regions revealed the identification of proteins with 

up to 14 TM helices in addition to detection of hydrophobic proteins. These capabilities 

superseded those attainable using the traditional 2D-PAGE approach of proteome 

mapping (Carberry et al., 2006; Vödisch et al., 2009; Teutschbein et al., 2010).  

Large-scale gel-free proteomics identified a number of proteins (n = 20) encoded 

by genomic clusters, with predicted or proven roles in secondary metabolite 

biosynthesis. Proteins (n = 14) which form part of a ‘supercluster’ on Chromosome 8 

were identified, including proteins involved in the production of pseurotin A (Maiya et 

al., 2007) and fumitremorgin B (Grundmann and Li, 2005; Maiya et al., 2006) 

metabolism. An additional nine proteins were detected from this ‘supercluster’, which 

are predicted to be involved in the biosynthesis of an unidentified metabolite. Detection 

of protein expression of multiple members of this predicted secondary metabolite 

cluster strongly indicates that this cluster is active under the growth conditions 
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employed. This information may prove essential in prospective studies for identification 

of this uncharacterised metabolite. Identification of the gliotoxin oxidoreductase GliT, a 

member of the gliotoxin biosynthetic cluster, was achieved using MS-based proteomics 

(Gardiner and Howlett, 2005; Scharf et al., 2010; Schrettl et al., 2010). Gliotoxin 

production was detected in these conditions following extracellular metabolite analysis, 

thus confirming that detection of this protein, GliT, correlated with cluster activity and 

metabolite biosynthesis. A putative Zn-dependent hydrolase/oxidoreductase family 

protein was also detected from the second ETP cluster in A. fumigatus. This cluster is 

positioned on Chromosome 3 (AFUA_3G12870 - AFUA_3G13010) and contains a 

partial number of ETP biosynthesis genes relative to the gliotoxin cluster (Patron et al., 

2007). Cross-talk may be essential between these two ETP clusters in order to complete 

biosynthesis of distinct products, and co-expression of proteins from both clusters may 

support this theory. All cluster proteins identified in this condition are either partially or 

fully regulated by the transcription factor LaeA, a global regulator of secondary 

metabolism (Bok and Keller, 2004; Bok et al., 2005; Perrin et al., 2007). Thus, LaeA 

activity was indirectly determined through a global proteomics investigation. 

Methods to reduce sample complexity will continue to expand proteome 

characterisation (Millioni et al., 2011; Zhang et al., 2011). Coupling of MS-based 

shotgun proteomics with pre-fractionation based on protein size facilitated the 

identification of an additional 17 proteins that were not detected using the direct 

method. Ion exchange chromatography (SCX) is regularly utilised in MS-based 

proteomics, for pre-fractionation of peptides prior to LC-MS/MS, in a bid to expand the 

capacity for protein identification (Washburn et al., 2001; Ouyang et al., 2010). Pre-

incubation with gold nanoparticles (AuNPs) represents an alternative, efficient manner 

by which to fractionate complex lysates (Cedervall et al., 2007; Keidel et al., 2010). A. 



303 

 

fumigatus proteins adhering to the surface of 30 nm AuNPs were predominantly 

categorised as proteins with binding function or co-factor requirement according to 

FunCat annotation (Ruepp et al., 2004). Compilation of proteomic data from A. 

fumigatus studies revealed that this functional category has the highest representation 

from all proteins identified (Kniemeyer et al., 2011). Consequently, the ability to 

partition, and remove, these proteins could enrich low abundance proteins.  

Characterisation of the secretome of A. fumigatus was undertaken and yielded 

successful identification of 42 unique proteins. This study on the extracellular fraction 

of A. fumigatus expands the number of currently reported secreted proteins, with cross-

validation of the in silico annotation methods, SignalP and SecretomeP. A number of 

unknown function proteins (n = 7), were identified from culture supernatants and 

knowledge of their secretion could contribute to the functional annotation of these 

proteins in future studies. Secreted proteins have long been investigated for their 

potential use as biomarkers of infection or as putative virulence factors (Wartenberg et 

al., 2011). Thus, extensive characterisation of the secretome of A. fumigatus may 

contribute to understanding mechanisms of pathogenicity, or alternatively, identify 

enzymes with potential biotechnological applications (Ferreira de Oliveira and De 

Graaff, 2011; Kniemeyer, 2011). 

The secretome of A. fumigatus has been extensively targeted for the 

identification of antigenic and allergenic proteins (Gautam et al., 2007; Singh et al., 

2010a; Shi et al., 2012a, 2012b). Intracellular proteins also represent potential targets of 

the immune system, and recent studies have identified immunogenic proteins from 

conidia or early germlings of A. fumigatus (Asif et al., 2010; Singh et al., 2010b). 

Classically, mycelial lysates were used to identify immunoreactive proteins from A. 

fumigatus (Latge, 1999), however, no analogous studies have been completed since the 
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sequencing of the genome. A. fumigatus-related disease is not required for the 

development of antibodies, and anti-A. fumigatus antibodies are present in most healthy 

individuals, albeit at low levels, as a consequence of routine environmental exposure 

(Latge, 1999). Indeed, utilising sera pools from healthy individuals, immunoreactivity 

was observed against A. fumigatus mycelial lysates in 93 % of the human sera tested. 

The mycelial targets of anti-A. fumigatus IgG (n = 25) were identified following 2D-

PAGE separation and immunoblotting with human sera pools. Antigens identified 

included previously characterised immunogenic A. fumigatus proteins (n = 12), 

including the molecular chaperones Hsp70, Hsp88 and Hsp90 (Singh et al., 2010b), 

providing validation of the detection and identification strategies employed. 

Furthermore, expansion of the immunome of A. fumigatus was achieved, by 

identification of thirteen additional immunoreactive proteins, with previously 

unidentified antigenicity. These included two carboxypeptidases (AFUA_5G07330 and 

AFUA_8G04120), 1,3-β-glucanosyltransferase Gel4 (AFUA_2G05340) and a putative 

aminopeptidase (AFUA_2G00220). As these aforementioned proteins have not been 

detected in either secretome or conidial/early germling proteome maps to date (Gautam 

et al., 2007; Neustadt et al., 2009; Singh et al., 2010a, 2010b; Teutschbein et al., 2010; 

Cagas et al., 2011b; Wartenberg et al., 2011; Suh et al., 2012), their immunodetection 

may have been hampered in previous studies by their localisation exclusively in 

mycelia. Thus, targeting mycelial lysates for identification of A. fumigatus antigens 

represents a significant development in immunome characterisation.  

Identification of antigenic proteins not only serves to present new vaccine 

targets or diagnostic markers of infection, but may also provide insight into the 

mechanisms of pathogenicity and the in vivo conditions experienced by A. fumigatus in 

the host (Tjalsma et al., 2008; Doyle, 2011b; Thornton et al., 2012). The majority of the 
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proteins identified as antigenic in this study have previously demonstrated increased 

expression in response to various forms of stress (n = 19/25). These stresses, including 

heat shock, hypoxia, oxidative stress and exposure to host cells, are likely encountered 

by A. fumigatus in the human lung (Figure 7.1) (Lessing et al., 2007; Sugui et al., 2008; 

Albrecht et al., 2010; Morton et al., 2011; Oosthuizen et al., 2011; Vödisch et al., 

2011). Heat-shock was observed to result in up-regulation of seven of the antigens 

herein identified, with eleven hypoxia-induced proteins identified as immunogenic 

(Figure 7.1). Through H2O2-induced oxidative stress, increased expression of multiple 

antigenic and allergic proteins is noted, including Hsp88, Hsp90 and cobalamin-

independent methionine synthase MetH/D. Oxidative stress reflects the exposure of 

inhaled conidia and mycelia to ROS generated by macrophages and neutrophils in the 

lung (Philippe et al., 2003; Brown et al., 2009a). Furthermore, incubation of A. 

fumigatus with neutrophils, airway epithelial cells, dendritic cells and host-associated 

factors similarly induces proteins identified here as antigenic (Figure 7.1) (Shen et al., 

2004; Sugui et al., 2008; Morton et al., 2011; Oosthuizen et al., 2011). We postulate 

that increased expression of these proteins, following exposure to the host environment, 

could indicate a role for these proteins in the pathobiology of A. fumigatus. In addition, 

enhanced expression of these proteins could increase the opportunity for presentation to 

the immune system and consequently account for development of immunoreactivity. 

Based on these observations of stress-induced antigen expression, it is clear that in vitro 

conditions that mimic host environments, possibly through combination of stresses, 

could enable further characterisation of immunome of A. fumigatus. Moreover the 

observation of ubiquitous, low-level immunoreactivity against A. fumigatus antigens 

presents the opportunity for purification of anti-Aspergillus antibodies from healthy 

individuals which may contribute to diagnostic tool development. 
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Figure 7.1: Summary of proteins, identified in this thesis as antigenic, that have previously been shown to undergo increased expression in 

response to various forms of host-associated stress.  
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7.3 Gliotoxin-associated mechanisms in A. fumigatus 

Combinatorial stress induction in A. fumigatus was investigated using H2O2 and 

gliotoxin, in a bid to uncover any synergistic or additive phenotypic response. In an 

unexpected phenomenon, H2O2-induced growth inhibition of A. fumigatus ATCC26933 

was actually relieved by gliotoxin, in a dose-dependent manner (0 - 10 µg/ml). This 

antagonistic effect was similarly noted using the gliotoxin and H2O2-sensitive mutant A. 

fumigatus ΔgliK. Choi et al. (2007) identified gliotoxin as a small molecule targeting 

the mammalian thioredoxin redox system, with the concurrent oxidation of NADPH and 

reduction of H2O2. These authors postulated that gliotoxin replaced 2-cys-peroxiredoxin 

(Prx) as an electron acceptor, consequently eliciting an anti-oxidant function through 

elimination of H2O2. Gliotoxin was demonstrated to execute this function in vitro and 

additionally was observed to suppress H2O2-induced angiogenesis in a dose-dependent 

manner (Choi et al., 2007). We posit that an analogous scenario may occur in A. 

fumigatus, whereby gliotoxin redox cycling may serve to reduce H2O2 (Figure 7.2). This 

redox cycling may be mediated by the thioredoxin redox system, as observed in the 

mammalian model, or alternatively may be facilitated by the gliotoxin oxidoreductase 

GliT (Figure 7.2). GliT was observed to be significantly up-regulated in the co-addition 

scenario relative to the presence of H2O2 alone (5.0 fold, p < 0.05), with exogenous 

gliotoxin exclusively responsible for the induction of expression. Schrettl et al. (2010) 

demonstrated that GliT exhibits NADPH-dependent gliotoxin reductase activity and 

proposed that gliotoxin may form part of an anti-oxidant defence system within A. 

fumigatus. Interestingly, intracellular GliT was not observed to undergo significant 

induction in A. fumigatus ΔgliK following exposure to gliotoxin, and this may account 

partly for the significantly enhanced sensitivity of this mutant to gliotoxin.  
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Figure 7.2:  Model of gliotoxin (GT) replacing 2-cys peroxiredoxin in (a) the thioredoxin redox system, with the reduction of H2O2 and 

the oxidation of NADPH or (b) putative model of NADPH-dependent reduction of gliotoxin by the gliotoxin oxidoreductase GliT. 

Adapted from Zhu et al. (2012). TrxR, thioredoxin reductase; Trx, thioredoxin. 
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For the proposed model of GliT-gliotoxin mediated reduction of H2O2 to hold 

true, basal intracellular levels or extracellular GliT would have to be sufficient to 

perform gliotoxin, and consequently H2O2, reduction. In vitro analysis to confirm this 

model is required. Many of the proteins undergoing significant differential expression in 

the response to co-addition of gliotoxin and H2O2, relative to H2O2 alone, appear to 

reflect the relief of both stress and growth inhibition associated with the former 

condition. These proteins include Hsp90 and the oxidative stress protein Svf1, which 

decreased in expression, coincident with gliotoxin-mediated relief of H2O2-induced 

growth inhibition. This indicates the reduction in oxidative stress caused by H2O2 upon 

co-application of gliotoxin. The class V chitinase, associated with autolysis in response 

to stress (Yamazaki et al., 2007), was observed to decrease in expression in the co-

addition condition. Higher relative levels of this protein, expressed in the presence of 

H2O2, may account for the growth inhibition observed, due to elevation of H2O2-

induced cell lysis. Decrease of expression of this chitinase, consequent to gliotoxin co-

addition, may lead to reduction in autolysis, possibly due to relief of the triggering 

stress. Similarly the Ran-specific GTPase activating protein 1, involved in cell cycle 

regulation (Baumer et al., 2000), is differentially regulated in the co-addition scenario 

relative to H2O2 alone. Decreased levels of this protein, as observed in the presence of 

H2O2 alone, are associated with cell cycle arrest. An increase in the Ran-specific 

GTPase activating protein 1 upon co-addition of gliotoxin and H2O2, correlates with 

recovery of growth inhibition and again may be reflective of the relief of H2O2-induced 

stress. Increased expression of proteins from the electron transport chain (ETC), namely 

NADH quinone oxidoreductase and NADH ubiquinone dehydrogenase, in the co-

addition condition may also be attributable to the relief of growth inhibition, and 

indicate an associated increase in cellular energy requirement to support growth (Fernie 

et al., 2004). Altogether, these proteins appear to reflect the growth recovery associated 
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with co-addition of gliotoxin and H2O2, and may represent the ‘effect’ rather than the 

‘cause’ of this relief.  

As discussed previously, GliT may contribute to the gliotoxin-mediated reversal 

of H2O2-induced growth inhibition, representing a possible candidate for the ‘cause’ of 

this relief. The proliferating cell nuclear antigen PCNA may represent another possible 

contributor to this growth recovery. The role of PCNA in DNA replication and repair 

has been demonstrated, and this protein is involved in the response to H2O2-induced 

DNA damage (Burkovics et al., 2009). While PCNA increases in expression in response 

to H2O2 alone, further induction is observed upon co-addition of gliotoxin (2.3 fold, p < 

0.05). This may increase the capacity for repair of DNA damage caused by H2O2 and 

contribute to the growth recovery associated with the co-addition condition. Up-

regulation of purine salvage was also noted in the combinatorial condition, and this may 

further support the increase in DNA repair in this condition with the elevation in 

nucleotide recycling. Down-regulation of de novo purine biosynthesis is elicited by 

gliotoxin in the co-addition scenario, as indicated by decreased expression of glutamine 

amidotransferase:cyclase and the bifunctional purine biosynthetic protein Ade1. Up-

regulation of the purine salvage pathway is demonstrated through increased expression 

of adenine and xanthine-guanine phosphoribosyltransferases, Apt1 and Xpt1, 

respectively. Combined, these proteomic alterations indicate that gliotoxin-mediated 

relief of H2O2-induced growth inhibition may be facilitated by redox cycling of 

gliotoxin, possibly involving GliT, and the elevated capacity for DNA damage repair. 

Further targeted investigation of these mechanisms, involving in vitro biochemical 

analysis and measurement of relative DNA damage, would confirm the hypotheses 

revealed by comparative proteomics. 
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The mechanisms of gliotoxin-mediated toxicity were probed using a gliotoxin-

sensitive mutant of A. fumigatus, ΔgliK. Deletion of gliK resulted in the abrogation of 

gliotoxin biosynthesis and led to a significant increase in sensitivity to exogenous 

gliotoxin, relative to the parent strain (Gallagher et al., 2012). Biological systems 

affected by gliotoxin application to A. fumigatus ΔgliK included protein synthesis, the 

methyl cycle, regulatory systems (e.g. apoptosis and cell-cycle regulation) and 

mechanisms associated with endoplasmic reticulum (ER) stress. 

Dysregulation of proteins/enzymes involved in translation was observed in A. 

fumigatus ΔgliK upon exposure to gliotoxin, which may have contributed to the 

observed growth inhibition associated with this treatment (Figure 7.3). A number of 

proteins involved in translation initiation and elongation were observed to increase in 

expression, including the translation initiation factor 3 subunit EifCb (2.7 fold), and the 

translation elongation factors eEF3 and G1 (5.6 and 2.5 fold, respectively). EifCb is 

essential for translation and initiation is deemed as the rate-determining step in this 

process (Osherov and May, 2000; Arava et al., 2003). While this observation appears to 

indicate that translation is up-regulated in gliotoxin-exposed A. fumigatus ΔgliK, 

differential regulation of other translation-associated factors is concurrently observed. 

The translation elongation factor EF2 undergoes a decrease in expression (1.6 fold) in 

addition to down-regulation of proteins involved in post-translational modification 

(PTM) and regulation of EF2, namely diphthine synthase and protein phosphatase 2a 

(PP2A), respectively. Diphthine synthase is involved in the incorporation of an EF2 

exclusive PTM, consisting of a modified histidine residue (Liu et al., 2004), while 

PP2A dephosphorylates EF2, thus re-activating the elongation factor (Kaul et al., 2011). 

Decreased levels of EF2, coupled with reduction of EF2 activity may result in 

disruption of translation in A. fumigatus ΔgliK, following gliotoxin addition. 
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Conversely, EF2 expression is induced in A. fumigatus ATCC26933 in response to 

gliotoxin (Carberry et al., 2012), and this differential expression may account for the 

significant growth inhibition associated with gliotoxin-exposed A. fumigatus ΔgliK, 

relative to the parent strain. 

Gliotoxin was observed to elicit an effect on a number of components of the ER 

in A. fumigatus ΔgliK, and this may be suggestive of ER-associated stress as a 

mechanism for gliotoxin toxicity (Figure 7.3). Decreased expression of protein 

disulphide isomerise Pdi1, with an integral role in the unfolded protein response (UPR) 

to ER-stress (Xiao et al., 2004), was observed in A. fumigatus ΔgliK following gliotoxin 

exposure. Pdi1 acts as a chaperone and is involved in the oxidation, reduction and 

reorganisation of incorrectly paired protein disulphides. Gliotoxin can form mixed 

disulphides with proteins, and through redox cycling can mediate mispairing of protein 

disulphides (Bertling et al., 2010). Therefore, lower expression of Pdi1 in A. fumigatus 

ΔgliK in the presence of gliotoxin could result in an accumulation of misfolded proteins, 

and subsequently elicit toxic effects (Richie et al., 2009). In addition to a role in 

translation, PP2A also executes a regulatory function in the ER, through de-

phosphorylation of the anti-apoptotic factor BCL-2, thus preserving BCL-2 from 

degradation (Lin et al., 2006). Reduction in PP2A levels in gliotoxin-treated A. 

fumigatus ΔgliK could correspond with an increase in apoptosis, mediated by BCL-2 

degradation. This observation is echoed in the mammalian model, whereby the Bcl-2 

family member, Bak, is central to gliotoxin-induced apoptosis (Pardo et al., 2006). 

Regulation of the UPR is further affected in A. fumigatus ΔgliK by decreased expression 

of the Ran GTPase activating proteins RNA1 in response to gliotoxin. RNA1 is 

indirectly required for induction of UPR-related gene expression, by facilitating Ire1p 

transport into the nucleus (Back et al., 2005; Goffin et al., 2006). Further observation of 
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differential regulation of ER-associated proteins (CRAL/TRIO protein, aspartic 

endopeptidase Pep2 and vesicular fusion protein Sec17) supports the hypothesis that 

gliotoxin-mediated toxicity in sensitive organisms involves ER-stress and possibly the 

coincident induction of apoptosis. Moreover, attenuation of protein synthesis is induced 

by the UPR (Lai et al., 2007), and this may account for the dysregulation of translation 

observed in gliotoxin-exposed A. fumigatus ΔgliK. 

Expression of enzymes involved in the methyl cycle of A. fumigatus ΔgliK was 

also observed to undergo significant induction in the presence of gliotoxin (Figure 7.3). 

Increased expression of cobalamin-independent methionine synthase in this condition is 

indicative of enhanced methionine production, which may lead to elevated levels of S-

adenosylmethionine (SAM) (Barak et al., 2003). SAM, formed by the adenosylation of 

methionine, is a major source of methyl groups for a range of biomolecules including 

proteins, nucleic acids and secondary metabolites (Kanai et al., 2012). SAM-mediated 

methylation of the sulphydral groups of gliotoxin may represent a potential defence 

mechanism against the toxin, as di-methylated gliotoxin does not undergo redox 

cycling, and thus exhibits abated activity (Nishida et al., 2005). This may account for 

the multiple S-methylated GliZ-dependent molecules, potentially generated via the 

gliotoxin biosynthetic process (Forseth et al., 2011). 

Observation of significantly elevated levels of ergothioneine in A. fumigatus 

ΔgliK may also result from increased availability of methionine and SAM. Biosynthesis 

of ergothioneine is intrinsically linked to the methionine biosynthetic cycle, with SAM 

responsible for providing the three methyl groups on the α-amino group of the 

precursor, histidine (Seebeck, 2010). This relationship is re-inforced by the observation 

that supplementation of growth media with methionine, results in the increased 

production of ergothioneine in several mushroom species (Lee et al., 2009b, 2009c). 
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Thus, increased synthesis of methionine, and consequently SAM, may account for the 

increased levels of ergothioneine in A. fumigatus ΔgliK. Differential regulation of 

methylenetetrahydrofolate reductase (MTHFR) in gliotoxin exposed-A. fumigatus wild-

type and ΔgliK could be a consequence of the sensitive phenotype noted in the latter. 

Specifically, while MTHFR expression decreases in gliotoxin-exposed A. fumigatus 

wild-type, an increase in expression in noted upon exposure of A. fumigatus ΔgliK to 

gliotoxin. Indeed, MTHFR transcription and translation is induced by ER-stress 

(Leclerc and Rozen, 2008), further underlining the prediction of ER-associated stress in 

the gliotoxin sensitive mutant A. fumigatus ΔgliK. This presents a mechanism by which 

gliotoxin mediates toxicity in sensitive organisms and further investigation to confirm 

the induction of ER-stress by gliotoxin could confirm whether this effect is specific to 

A. fumigatus ΔgliK or a universal mode of action. 

Deletion of gliK resulted in significantly altered phenotypic and proteomic 

responses to gliotoxin, and consequently metabolome analysis of ΔgliK revealed 

substantial modification of the intra and extracellular metabolome of A. fumigatus. The 

previously uncharacterised protein, GliK, was demonstrated to be essential for gliotoxin 

biosynthesis in A. fumigatus. Loss of gliotoxin production in ΔgliK correlated with a 

significant increase in levels of extracellular hydrophobic metabolites (m/z 394-396), 

representing putative intermediates or shunt metabolites of the gliotoxin biosynthetic 

pathway. Absence of these metabolites in A. fumigatus ΔgliG indicates the production 

of these molecules is GliG-dependent, and accumulation of m/z 394-396 in ΔgliK 

supports the hypothesis that the biological activity of GliG precedes that of GliK in 

gliotoxin biosynthesis.  
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Figure 7.3: (a) Summary and (b) schematic representation of cellular functions and biosynthetic processes altered in A. fumigatus ΔgliK.  

b. 
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Purification and identification of these metabolites (m/z 394-396) would further 

inform the model of gliotoxin biosynthesis and could elucidate the specific role played 

by GliK in the pathway. This strategy was implemented previously to determine the 

roles of GliI and GliG in gliotoxin biosynthesis (Davis et al., 2011a; Scharf et al., 

2012a).  

Significantly, this thesis describes the first reported detection of ergothioneine in 

A. fumigatus (Gallagher et al., 2012), and GliK absence resulted in significantly 

elevated levels of this poorly characterised, but ubiquitous, thione-thiol tautomer. A 

conserved gamma-glutamyl cyclotransferase (GGCT)-like domain was recently 

annotated in GliK, indicating the function of this protein may be connected to the 

cleavage of γ-glutamyl groups from dipeptides. This putative function could point to the 

role of GliK in gliotoxin biosynthesis, through removal of one or both γ-glutamyl 

moieties from the di-glutathionylated gliotoxin precursor (Figure 1.7). Furthermore, 

GGCT activity may explicate the elevation in ergothioneine levels in A. fumigatus 

ΔgliK, as the biosynthesis of ergothioneine involves incorporation of a γ-glutamyl 

dipeptide (γ-glutamyl cysteine), as deduced in Mycobacterium (Seebeck, 2010). 

Therefore, absence of GliK could lead to reduced catabolism of the substrate of 

ergothioneine biosynthesis. Biochemical confirmation of GGCT activity in GliK may 

aid in the elucidation of the specific role of this protein in gliotoxin biosynthesis. As 

ergothioneine has not been examined in A. fumigatus to date, the role of this molecule in 

the redox environment has not been taken into consideration. Ergothioneine, could 

potentially contribute to the enhanced sensitivity of A. fumigatus ΔgliK to gliotoxin, 

through reduction of gliotoxin and consequent disruption of gliotoxin efflux (Gallagher 

et al., 2012). Further investigation of this molecule is required to determine the 

contribution of ergothioneine levels to the redox status of A. fumigatus and other 



318 

 

filamentous fungi. In this regard, it is recommended that determination of ergothioneine 

levels should be incorporated into future functional investigations of oxidative stress. 

To conclude, this study expands the proteomic characterisation of A. fumigatus 

and contributes to the expansion of the immunome. Additionally, mechanisms affected 

by gliotoxin in A. fumigatus have been extrapolated, and inform the role of gliotoxin as 

both a toxin, in sensitive organisms, and a potential anti-oxidant in A. fumigatus. Finally 

cross-talk between the gliotoxin and ergothioneine biosynthesis was identified, 

extending our comprehension of the fungal metabolome. Altogether, this study 

contributes to the global and targeted characterisation of protein and metabolite systems 

operating in A. fumigatus, while revealing many interesting avenues for future 

investigations.
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9 Appendix I 

Table: A. fumigatus mycelial proteins (n = 370) identified by shotgun mass spectrometry, described in Section 3.2.1, arranged in order of increasing 

CADRE ID. 

CADRE ID. 

(AFUA_) 

Protein name tpI tMr GRAVY 

score 

TM Coverage 

(%) 

Unique 

peptides 

SM 

Score 

1G00420
a
 Carboxypeptidase S1, putative (EC 3.4.16.-) 5.29 60133.23 -0.36148 0 14 6 89.07 

1G00990
a
 Short chain dehydrogenase/reductase family protein (EC 1.-.-) 10.08 29491.36 -0.43065 0 28 6 100.04 

1G01000
a
 Oxidoreductase, 2OG-Fe(II) oxygenase family 5.33 42635.58 -0.27273 0 32 9 162.75 

1G01010 Polyketide synthase, putative 5.52 231309.97 -0.18823 0 1 2 24.62 

1G02070 Cytochrome C1/Cyt1, putative (EC 1.10.2.2) 8.29 35125.88 -0.34796 1 16 3 53.62 

1G02290 Unknown function protein  4.37 11774.74 -0.46981 0 29 2 41.04 

1G02550
a
 Tubulin alpha-1 subunit 4.98 50025.27 -0.32098 0 40 12 200.92 

1G02980 6-phosphogluconolactonase, putative (EC 3.1.1.31) 8.59 93269.00 -0.46791 0 3 2 32.51 

1G03100 ATP synthase delta chain, mitochondrial, putative (EC 3.6.3.14) 5.27 17640.15 0.007273 0 12 2 26.07 

1G03390
a
 60S ribosomal protein L12 9.36 25728.56 -0.28312 0 31 4 68.2 

1G03510
a
 ATP synthase gamma chain 7.64 31546.83 -0.22276 0 31 5 97.15 

1G03610 Unknown function protein 6.93 32100.69 -0.36879 0 11 3 45.96 

1G03720 UPF0136 domain protein 10.22 16880.62 0.322785 4 15 1 20.49 

1G04070
a
 Eukaryotic translation initiation factor eIF-5A 5.58 21164.02 -0.41146 0 28 4 72.6 

1G04150 Tartrate dehydrogenase, putative (EC 1.1.1.93) 6.91 24077.71 -0.23721 0 18 4 55.45 



361 

 

CADRE ID. 

(AFUA_) 

Protein name tpI tMr GRAVY 

score 

TM Coverage 

(%) 

Unique 

peptides 

SM 

Score 

1G04190
a
 Polyadenylate-binding protein, cytoplasmic and nuclear (PABP) 

(Poly(A)-binding protein) (Polyadenylate tail-binding protein) 

5.74 81445.19 -0.72019 0 1 1 18.95 

1G04320 40S ribosomal protein S8 6.85 40561.75 0.017507 0 26 4 66.26 

1G04530 Ribosomal L18ae protein family 10.69 17403.46 -0.5 0 16 2 39.67 

1G04540
a
 NADH-cytochrome b5 reductase 2 (EC 1.6.2.2) (Mitochondrial 

cytochrome b reductase) 

5.55 39791.00 -0.35472 0 24 6 107.14 

1G04660 Ribosomal protein L15 11.5 27762.26 -0.89698 0 9 2 27.34 

1G04850 Dynein light chain type 1, putative 7.83 14884.96 -0.54453 0 17 1 19.98 

1G04940 Small COPII coat GTPase sar1 (EC 3.6.5.-) 5.96 21431.73 -0.13333 0 7 1 21.65 

1G05080
a
 60S ribosomal protein P0 5.11 33495.33 -0.02173 0 39 7 129.44 

1G05340 40S ribosomal protein S19 9.56 24835.26 -0.50045 0 6 2 31.56 

1G05390
a
 Mitochondrial ADP,ATP carrier protein (Ant), putative 9.97 33321.49 0.046429 2 25 9 158.7 

1G05500
a
 40S ribosomal protein S12 5.33 33444.95 -0.39795 0 17 2 34.27 

1G05630
a
 40S ribosomal protein S3, putative 9.18 29201.46 -0.31053 0 31 7 120.51 

1G06210 N-acetylglucosamine-phosphate mutase (EC 5.4.2.3) 5.79 61515.88 -0.19541 0 3 1 19.19 

1G06300 Proteasome regulatory particle subunit (RpnF), putative 5.71 52886.47 -0.21359 0 3 1 22.03 

1G06390
a
 Translation elongation factor EF-1 alpha subunit 9.12 50019.60 -0.29565 0 34 12 216.04 

1G06580
a
 High expression lethality protein Hel10 6.36 21808.80 -1.35072 0 17 2 34.1 

1G06770
a
 40S ribosomal protein S26 10.88 13468.86 -0.7563 0 12 1 19.76 

1G06790 Importin beta-3 subunit, putative 4.66 121431.97 -0.13169 0 2 1 21.57 
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CADRE ID. 

(AFUA_) 

Protein name tpI tMr GRAVY 

score 

TM Coverage 

(%) 

Unique 

peptides 

SM 

Score 

1G06830
a
 60S acidic ribosomal protein P1 (AfP1) 4.1 11128.40 0.096396 0 47 3 53.65 

1G06960 Pyruvate dehydrogenase E1 component alpha subunit, putative (EC 

1.2.4.1) 

6.36 41479.04 -0.46432 0 16 5 79.12 

1G07380 Glutamate synthase Glt1, putative (EC 1.4.1.13) 5.98 234290.73 -0.28923 0 1 2 27.65 

1G07440
a
 Molecular chaperone Hsp70 5.09 69660.29 -0.4105 0 47 21 372.95 

1G08810 Glycerol-3-phosphate dehydrogenase, mitochondrial (EC 1.1.99.5) 6.71 76830.19 -0.27745 1 6 3 36.25 

1G09100
a
 60S ribosomal protein L9, putative 9.67 21843.17 -0.31875 0 36 7 111.78 

1G09130 Unknown function protein 8.56 76550.12 -0.48047 0 2 1 22.2 

1G09330 Eukaryotic translation initiation factor 3 subunit F (eIF3f) 4.81 37198.51 -0.26203 0 6 2 35.8 

1G09440 40S ribosomal protein S23 10.46 15900.70 -0.52414 0 18 1 19.9 

1G09660 Mitochondrial 2-oxodicarboxylate carrier protein, putative 9.82 33200.53 0.034098 2 6 1 20.8 

1G09970 Eukaryotic translation initiation factor 3 subunit H (eIF3h) 5.96 41014.53 -0.36603 0 5 1 19.02 

1G10130
a
 Adenosylhomocysteinase (EC 3.3.1.1) 5.82 48490.04 0.060538 0 22 7 121.07 

1G10350
a
 Phosphoglycerate kinase (EC 2.7.2.3) 6.31 44761.47 -0.21487 0 44 16 255.96 

1G10630
a
 S-adenosylmethionine synthase (EC 2.5.1.6) 5.66 42195.98 -0.21318 0 46 11 180.66 

1G10910
a
 Tubulin beta, putative 4.79 51794.00 -0.37876 0 41 11 191.9 

1G11120
a
 Unknown function protein 4.47 34722.07 -0.52277 0 6 1 21.39 

1G11130 60S ribosomal protein L6 10.15 22453.03 -0.635 0 19 3 47.34 

1G11190
a
 Eukaryotic translation elongation factor 1 subunit Eef1-beta, 

putative 

4.54 30142.49 -0.76353 0 22 4 82.16 
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CADRE ID. 

(AFUA_) 

Protein name tpI tMr GRAVY 

score 

TM Coverage 

(%) 

Unique 

peptides 

SM 

Score 

1G11710
a
 Ribosomal protein 9.88 24252.58 -0.31751 0 12 2 39.81 

1G11730 ADP-ribosylation factor, putative 5.54 21003.07 -0.27596 0 24 3 48.95 

1G12070 Glycine cleavage system H protein 4.75 18626.88 -0.11886 0 18 2 31.79 

1G12170
a
 Elongation factor Tu 6.69 48285.99 -0.32227 0 19 5 86.05 

1G12610 Heat shock protein Hsp88, putative (Hsp70 chaperone Hsp88) 5.08 80044.81 -0.53796 0 12 6 99.11 

1G12800 Isocitrate dehydrogenase, NAD-dependent (EC 1.1.1.41) 8.72 41727.08 -0.12234 0 17 6 81.92 

1G12890
a
 60S ribosomal protein L5, putative 8.59 35482.98 -0.83734 0 41 9 175.12 

1G13090 Anthranilate synthase component ii, putative (EC 4.1.1.48) (EC 

4.1.3.27) (EC 5.3.1.24) (Anthranilate synthase multifunctional 

protein TrpC, putative) (EC 4.1.3.27) 

5.93 82231.73 -0.10157 0 4 2 33.66 

1G13140 G-protein complex alpha subunit GpaA/FadA 5.04 40769.47 -0.38895 0 12 3 39.34 

1G13470 Prohibitin complex subunit Phb1, putative 9 31024.45 -0.21357 0 10 2 24.57 

1G13490
a
 Spermidine synthase (EC 2.5.1.16) 5.24 15674.03 -0.12222 0 7 2 34.27 

1G13500
a
 Transketolase TktA (EC 2.2.1.1) 6.13 74827.91 -0.2076 0 22 9 166.75 

1G14200
a
 Mitochondrial processing peptidase beta subunit, putative (EC 

3.4.24.64) 
5.9 53269.94 -0.32401 0 15 7 100.66 

1G14220 Fibrillarin (Fibrillarin, putative) (Nucleolar protein NopA) 10.29 32572.25 -0.34872 0 6 1 18.36 

1G14330 ABC transporter, putative 6.82 168183.61 -0.10995 12 2 3 38.31 

1G14410
a
 60S ribosomal protein L17 10.64 21666.02 -0.53041 0 24 5 85.68 

1G14550
a
 Superoxide dismutase [Mn], mitochondrial (EC 1.15.1.1) (allergen 

Asp f 6) 

7.13 23390.47 -0.49333 0 6 1 19.78 
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1G14570 Phosphoribosyl-AMP cyclohydrolase, putative (EC 1.1.1.23) 5.46 92881.52 -0.05883 0 8 3 40.59 

1G14780 BAP31 domain protein, putative 9.05 24133.35 0.058019 3 11 2 28.76 

1G15020
a
 40S ribosomal protein S5, putative 6.92 37605.90 -0.11257 0 18 3 68.43 

1G15140 Mitochondrial phosphate carrier protein (Mir1), putative 9.38 33849.07 0.263777 0 41 8 145.07 

1G15730
a
 40S ribosomal protein S22 9.67 14674.04 -0.18231 0 26 2 40.26 

1G16190 Probable glycosidase crf1 (EC 3.2.-.-) (Crh-like protein 1) (allergen 

Asp f 9) 

4.6 40283.87 -0.26076 0 6 2 37.68 

1G16840
a
 Translationally-controlled tumor protein homolog (TCTP) 11.17 22811.93 -0.89602 0 26 4 64.98 

2G02100
a
 Dihydrolipoyl dehydrogenase (EC 1.8.1.4) 8.32 54971.13 -0.13762 0 21 7 113.06 

2G02490 Unknown function protein 9.6 42498.89 -0.2381 0 3 1 18.45 

2G03010 Cytochrome c subunit Vb, putative 5.28 23916.77 -0.57905 0 12 2 29.4 

2G03120 Probable glycosidase crf2 (EC 3.2.-.-) (Crh-like protein 2) 4.67 46710.32 -0.37133 1 5 2 31.92 

2G03290
a
 14-3-3 family protein ArtA, putative 4.79 29101.64 -0.43563 0 49 12 216.68 

2G03380 Alkaline serine protease 9.72 13437.77 0.007087 0 28 2 38.99 

2G03510
a
 Carboxypeptidase 5 (Pheromone processing carboxypeptidase 

(Sxa2), putative) (EC 3.4.16.-) 

6.4 40908.96 0.067588 0 14 6 105.6 

2G03720
a
 Peptidyl-prolyl cis-trans isomerase (EC 5.2.1.8) 8.76 22290.17 -0.24634 0 28 5 74.93 

2G03870 FK506-binding protein 2 (EC 5.2.1.8) (Peptidyl-prolyl cis-trans 

isomerase) (PPIase) (Rotamase) 

5.35 14637.79 -0.11269 0 11 1 20.69 

2G04310 Argininosuccinate synthase (EC 6.3.4.5) 5.49 41670.35 -0.22989 0 8 3 39.2 
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2G04620
a
 Hsp70 chaperone BiP/Kar2, putative 4.91 73384.68 -0.37485 0 7 5 77.06 

2G04710
a
 Cytochrome b5, putative 5.35 23911.94 -0.23134 2 9 2 32.82 

2G04980 Tyrosine decarboxylase, putative (EC 4.1.1.-) 5.58 55059.10 -0.10613 0 2 1 23.71 

2G05910
a
 Hexokinase Kxk, putative (EC 2.7.1.1) 5.06 54209.22 -0.22347 0 10 3 52.73 

2G06150
a
 Protein disulfide isomerase Pdi1, putative (EC 5.3.4.1) 4.58 56186.92 -0.32998 0 16 5 93.39 

2G07380 Ribosomal protein L18 11.81 20853.36 -0.49402 0 25 4 71.97 

2G07420 Actin-bundling protein Sac6, putative 5.78 72478.63 -0.31502 0 4 2 37.25 

2G07970 60S ribosomal protein L19 11.46 24785.90 -1.01611 0 26 6 84.04 

2G08370
a
 Glutathione S-transferase, putative (EC 2.5.1.-) 9.32 16074.71 0.250345 3 15 2 35.13 

2G09210 60S ribosomal protein L10 8.96 55206.83 -0.32926 0 23 4 66.97 

2G09290
a
 Antigenic mitochondrial protein HSP60, putative 5.53 61949.95 -0.09949 0 25 10 141.07 

2G09650
a
 Aspartate transaminase, putative (EC 2.6.1.1) 8.6 51182.79 -0.23262 0 9 3 50.57 

2G09790 Glucose-6-phosphate isomerase (EC 5.3.1.9) 5.91 61315.46 -0.26148 0 5 2 41.54 

2G09850
a
 Oxidoreductase, 2-nitropropane dioxygenase family, putative (EC 

1.-.-.-) 
6.52 37702.48 -0.02873 0 8 2 36.28 

2G09960
a
 Mitochondrial Hsp70 chaperone (Ssc70), putative 6.02 74465.27 -0.38219 0 18 9 129.38 

2G10070 Carbamoyl-phosphate synthase, large subunit (EC 6.3.5.5) 5.87 129214.48 -0.16009 0 7 5 80.49 

2G10090 40S ribosomal protein S15, putative 10.38 19849.10 -0.72706 0 20 2 46.39 

2G10100
a
 60S acidic ribosomal protein P2 (AfP2) (allergen Asp f 8) 4.29 11141.34 -0.11712 0 23 2 40.76 
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2G10440 40S ribosomal protein S11 8.42 45746.17 -0.3055 0 36 4 59.86 

2G10500 40S ribosomal protein Rps16, putative 10.19 15971.55 -0.39231 0 29 5 73.33 

2G11060
a
 Acyl CoA binding protein family 5.72 17309.63 -0.29051 0 25 2 38.68 

2G11150 Secretory pathway gdp dissociation inhibitor 5.33 52280.27 -0.38803 0 9 3 41.5 

2G11260 3-isopropylmalate dehydratase (EC 4.2.1.33) (Alpha-IPM 

isomerase) (Isopropylmalate isomerase) 

5.62 84076.50 -0.23629 0 3 2 26.4 

2G11850
a
 60S ribosomal protein L3 (allergen Asp f 23) 10.18 44444.67 -0.62959 0 5 2 30.87 

2G11940 Adenylosuccinate lyase Ade13, putative (EC 4.3.2.2) 6.22 54739.59 -0.29979 0 3 1 18.15 

2G12400 ATP synthase oligomycin sensitivity conferral protein, putative (EC 

3.6.3.14) 

9.65 24389.11 -0.1674 0 26 6 87.02 

2G12870 Vesicular-fusion protein sec17 5.32 32840.78 -0.54589 0 4 1 18.24 

2G13110 Cytochrome c 10.06 26271.16 -0.47191 0 10 2 26.5 

2G13240 V-type ATPase, B subunit, putative (EC 3.6.3.14) 5.73 56418.17 -0.32411 0 15 5 91.8 

2G13290 GYF domain protein 6.7 214986.29 -0.54821 0 1 2 22.08 

2G13530
a
 Translation elongation factor EF-2 subunit, putative 6.51 93198.10 -0.23468 0 34 22 400.25 

2G13680 Calcium/calmodulin-dependent protein kinase, putative (EC 

2.7.11.17) 

6.09 48721.50 -0.4341 0 8 2 27.83 

2G13860 Histone H4 11.36 11386.34 -0.54369 0 28 3 56.87 

2G14990 Tubulin subunit TubB 5.03 50441.50 -0.33659 0 15 5 73.82 

2G15240 Small oligopeptide transporter, OPT family 7.64 89268.85 0.276263 14 5 3 46.54 
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2G15290
a
 DUF636 domain protein 6.27 14849.09 -0.24338 0 17 1 23.17 

2G15760 Ubiquitin-activating enzyme E1 5.11 114685.85 -0.36089 0 1 1 20.67 

2G16010
a
 Prolyl-tRNA synthetase (EC 6.1.1.15) 6.23 71010.65 -0.51177 0 3 1 18.01 

2G16090 Karyopherin alpha subunit, putative 4.97 60683.84 -0.27917 0 2 1 23.31 

2G16200 Uracil phosphoribosyltransferase (EC 2.4.2.9) 5.53 24357.12 0.139648 0 5 1 18.17 

2G16370 60S ribosomal protein L32 11.28 14966.79 -0.61374 0 9 1 22.29 

2G17000
a
 PT repeat family protein 10.84 27279.81 -0.88819 1 3 4 59.45 

2G17110
a
 Cdc48p (Cell division control protein Cdc48) (EC 3.6.1.-) 5.09 90218.23 -0.35946 0 21 13 212.67 

3G00270
a
 Probable glucan endo-1,3-beta-glucosidase eglC (EC 3.2.1.39) 

(Endo-1,3-beta-glucanase eglC) (Laminarinase eglC) 

4.9 44651.21 0.064126 1 24 8 167.1 

3G00730
a
 Unknown function protein 5.11 27920.69 -0.27903 0 12 2 40.86 

3G00880 UPF0619 GPI-anchored membrane protein 4.68 21605.40 -0.09589 0 11 2 26.79 

3G04170 Pyruvate dehydrogenase E1 beta subunit PdbA, putative (EC 

1.2.4.1) 

5.59 48427.44 -0.33393 0 12 4 66.35 

3G04210 Fatty acid synthase alpha subunit FasA 6.09 204599.82 -0.32649 0 2 2 42.03 

3G05350
a
 Histone H2B 10.12 14955.22 -0.68 0 10 1 20.61 

3G05370
a
 Dihydrolipoamide succinyltransferase, putative (EC 2.3.1.61) 10.33 25586.74 -0.53722 0 9 4 66.76 

3G05450 Glutamate carboxypeptidase, putative (EC 3.-.-.-) 5.47 53015.24 -0.32824 0 8 2 31.97 

3G05600 60S ribosomal protein L27a, putative 10.44 16761.31 -0.6349 0 26 3 43.92 

3G06140 Cytoskeleton assembly control protein Sla2, putative 5.46 118383.10 -0.6418 0 3 2 29.48 
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3G06460
a
 Conserved hypothetical protein 9.46 18915.55 -0.61796 1 13 1 22.18 

3G06530 Sulfate adenylyltransferase (EC 2.7.7.4) (ATP-sulfurylase) (Sulfate 

adenylate transferase) (SAT) 

6.57 64333.17 -0.40488 0 9 3 47.43 

3G06610 Proteasome regulatory particle subunit (RpnE), putative 6.76 58444.39 -0.41319 1 5 2 25.69 

3G06840
a
 40S ribosomal protein S4, putative 4.77 59751.47 -0.21517 0 28 6 101.54 

3G06960 60S ribosomal protein L21, putative 10.23 17980.83 -0.56266 0 14 1 18.16 

3G06970 40S ribosomal protein S9 5.56 44846.27 -0.48014 0 14 4 53.53 

3G07430
a
 Peptidyl-prolyl cis-trans isomerase (EC 5.2.1.8) 7.75 17741.20 -0.25031 0 39 5 87.1 

3G07640
a
 Plasma membrane H+-ATPase Pma1 (EC 3.6.3.6) 5.22 108992.15 0.042206 10 31 26 445.15 

3G07810 Succinate dehydrogenase subunit Sdh1, putative 6.5 71148.03 -0.41314 0 10 5 68.73 

3G08160
a
 ATP-dependent RNA helicase eIF4A (EC 3.6.4.13) (Eukaryotic 

initiation factor 4A)(Translation initiation factor1) 

5.46 27670.46 -0.26532 0 15 6 120.92 

3G08380
a
 Inorganic diphosphatase, putative (EC 3.6.1.1) 7.62 43623.57 -0.42096 0 39 9 154.09 

3G08430 Mitochondrial phosphate carrier protein, putative 9.55 44335.33 -0.11216 2 7 3 38.42 

3G08440 Unknown function protein 9.43 14742.25 -1.18175 0 21 2 28.49 

3G08580 Glycine-rich RNA-binding protein, putative 5.7 12809.85 -0.91356 0 31 2 29.99 

3G08660
a
 Isocitrate dehydrogenase [NADP] (EC 1.1.1.42) 5.61 45768.89 -0.13597 0 7 3 44.53 

3G08980 Threonine synthase Thr4, putative (EC 4.2.3.1) 8.18 56129.61 -0.26897 0 6 2 26.51 

3G09030
a
 Regulatory protein SUAPRGA1 4.88 40094.88 -0.4661 0 10 2 25.95 
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3G09290
a
 Phosphoglycerate mutase, 2,3-bisphosphoglycerate-independent 

(EC 5.4.2.1) 

5.44 57454.24 -0.41615 0 4 2 39.75 

3G09320
a
 Serine hydroxymethyltransferase (EC 2.1.2.1) 7.63 51873.35 -0.28025 0 27 10 162.27 

3G10730
a
 40S ribosomal protein S7e 10.15 22844.25 -0.54677 0 27 3 53.93 

3G11070 Pyruvate decarboxylase (EC 4.1.1.1) 4.83 25438.58 -0.3 0 13 4 63.92 

3G11400
a
 Vacuolar protease A (EC 3.4.23.25) (Aspartic endopeptidase pep2) 

(Aspartic protease pep2) 

4.81 43354.87 -0.13894 0 18 4 69.34 

3G11610 Non-histone chromosomal protein 6 9.07 12078.37 -1.63173 0 14 2 27.52 

3G11690
a
 Fructose-bisphosphate aldolase, class II (EC 4.1.2.13) 6.59 58385.12 -0.25275 0 24 6 107.19 

3G11830 Phosphoglucomutase (PGM) (EC 5.4.2.2) (Glucose 
phosphomutase) 

6.29 60501.49 -0.24973 0 6 3 49.52 

3G12270
a
 Glutathione peroxidase 9.3 25755.79 -0.22596 0 34 7 98.64 

3G12300 60S ribosomal protein L22, putative 5.74 13422.22 -0.41453 0 27 2 36.86 

3G12800 Clathrin-coated vesicle protein (Bud7), putative 5.23 80264.62 -0.33792 0 2 1 21.03 

3G13010 Zn-dependent hydrolase/oxidoreductase family protein, putative 6.79 46099.30 -0.55553 0 3 1 19.51 

3G13320
a
 40S ribosomal protein S0 4.81 32122.23 -0.16498 0 17 3 55.11 

3G13390 Vacuolar ATP synthase subunit d, putative (EC 3.6.3.14) 4.87 40937.45 -0.19146 0 7 1 19.46 

3G13400 Nucleolar protein 58 7.13 64562.60 -0.58613 0 6 2 36.06 

3G13910 NADH-ubiquinone oxidoreductase B18 subunit, putative 8.38 10797.27 -0.80968 0 10 1 20.14 

3G14490
a
 Ketol-acid reductoisomerase (EC 1.1.1.86) 9.32 56353.31 -0.29764 0 22 8 128.12 
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3G14665 Unknown function protein 4.26 14579.46 -0.01136 0 11 1 18.24 

3G14680
a
 Lysophospholipase 3 (EC 3.1.1.5) (Phospholipase B 3) 5.39 67416.54 -0.12889 1 17 8 146.88 

4G00960 6-phosphofructokinase (EC 2.7.1.11) (6PF-1-K) 

(Phosphohexokinase) 

6.68 88713.03 -0.25111 0 2 2 30.97 

4G02790 Carbon-nitrogen family hydrolase, putative 7.04 33796.57 -0.09 0 14 2 32.14 

4G03050
a
 Profilin 5.87 14491.32 -0.12574 0 14 1 20.15 

4G03320
a
 Membrane bound cation transporter, putative 6.67 110475.71 -0.46454 11 2 2 34 

4G03760 Glycine dehydrogenase (EC 1.4.4.2) 6.71 115202.81 -0.1834 0 3 3 32.7 

4G03860 Eukaryotic translation initiation factor 3 subunit C (eIF3c) 5.05 97508.60 -0.5884 0 3 2 33.19 

4G03880 60S ribosomal protein L7 9.7 34252.62 -0.56869 0 12 3 59.3 

4G04460 60S ribosomal protein L13 10.58 24826.73 -0.77078 0 22 5 69.08 

4G04520
a
 Succinyl-CoA synthetase beta subunit, putative (EC 6.2.1.4) 6.2 28538.34 -0.17778 0 15 6 99.82 

4G04810 Rab GTPase SrgA, putative 6.43 22787.78 -0.28689 0 22 3 41.34 

4G05830 Translation initiation factor, putative 5.92 41590.56 0.024031 0 7 2 33.74 

4G06620
a
 Glutamate/Leucine/Phenylalanine/Valine dehydrogenase, putative 

(EC 1.4.1.4) 

5.79 49367.83 -0.17598 0 41 13 218.46 

4G06820
a
 Protein ecm33 4.8 41505.47 -0.00879 0 9 3 49.56 

4G06910
a
 Outer mitochondrial membrane protein porin 5.51 48017.08 -0.03423 0 17 6 99.11 

4G07360
a
 Cobalamin-independent methionine synthase MetH/D (EC 2.1.1.14) 6.33 86894.57 -0.30646 0 28 17 311.27 

4G07580 Translation initiation factor EF-2 gamma subunit, putative 6.87 55187.76 -0.15306 0 6 2 25.55 
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4G07690 Phosphoribosylaminoimidazolecarboxamide formyltransferase/IMP 

cyclohydrolase 

6.39 65027.90 -0.24303 0 5 2 28.8 

4G07700 Clathrin heavy chain 5.29 192938.13 -0.26255 0 5 5 82.63 

4G07710 Pyruvate carboxylase, putative (EC 6.4.1.1) 6.23 131272.97 -0.19899 0 14 12 196.8 

4G07730
a
 60S ribosomal protein L11 10.04 20113.24 -0.6375 0 15 2 38.45 

4G08040 RAB GTPase Ypt5, putative 8.72 23729.95 -0.28853 0 10 2 26.02 

4G08580
a
 Mitochondrial peroxiredoxin Prx1, putative (EC 1.11.1.7) 5.38 23392.65 -0.20657 0 36 5 81.74 

4G08600 Aldehyde dehydrogenase, putative (EC 1.2.1.3) 6.48 60059.63 -0.11127 0 8 3 52.76 

4G08720 Lysophospholipase 1 (EC 3.1.1.5) (Phospholipase B 1) 9.75 17880.81 -0.39758 1 7 4 67.87 

4G09030 Aminopeptidase (EC 3.4.11.7) 6.31 106226.77 -0.27671 0 2 1 24.11 

4G09110 Cytochrome c peroxidase, mitochondrial (CCP) (EC 1.11.1.5) 8.64 40379.25 -0.4571 1 8 2 34.07 

4G10050 Calmodulin 4.69 26660.78 -0.60302 0 12 2 26.98 

4G10350
a
 Polyubiquitin UbiD/Ubi4, putative 6.48 35199.24 -0.47866 0 7 2 41.19 

4G10410 Aspartate aminotransferase, putative (EC 2.6.1.1) 8.94 47892.64 -0.24783 0 19 6 92.91 

4G10770 Fatty acid oxygenase PpoA, putative (EC 1.-.-.-) 6.15 121250.04 -0.32243 0 8 7 104.15 

4G10800 40S ribosomal protein S6 10.72 15832.19 -0.38667 0 19 4 59.56 

4G11050 NADH-ubiquinone oxidoreductase, subunit F, putative (EC 1.6.5.3) 8.44 54560.20 -0.37681 0 6 2 28.74 

4G11250 Carbonic anhydrase (EC 4.2.1.1) 8.62 30827.50 -0.04355 0 4 1 21.11 

4G11340 Saccharopine dehydrogenase Lys9, putative (EC 1.5.1.7) 5.91 49449.90 -0.14222 0 10 3 49.58 
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4G11580 Superoxide dismutase (EC 1.15.1.1) 8.96 25153.31 -0.40568 0 6 1 19.86 

4G11650 Alpha-ketoglutarate dehydrogenase complex subunit Kgd1, putative 

(EC 1.2.4.2) 

3.96 222643.84 -0.66931 0 6 4 59.3 

4G11730 Glycerol dehydrogenase (GldB), putative (EC 1.1.1.72) 5.97 36827.82 -0.44923 0 11 2 25.32 

4G11980 Anthranilate phosphoribosyltransferase, putative (EC 2.4.2.18) 5.5 45969.53 -0.06014 1 4 1 20.31 

4G12450
a
 Conserved lysine-rich protein, putative 5.03 57003.08 -0.78983 0 21 10 156.23 

4G12870 Methylmalonate-semialdehyde dehydrogenase, putative (EC 
1.2.1.27) 

8.27 63864.67 -0.05698 0 5 2 29.36 

4G13120
a
 Glutamine synthetase (EC 6.3.1.2) 5.13 35803.15 -0.22048 0 10 4 59.09 

4G13170
a
 G-protein comlpex beta subunit CpcB 6.06 34979.37 -0.2943 0 27 7 108.29 

4G13500 Aldehyde dehydrogenase, putative (EC 1.2.1.5) 8.44 56426.99 -0.12237 0 4 1 19.53 

4G14000 Tripeptidyl-peptidase sed4 (EC 3.4.14.-) (Sedolisin-D) 4.88 63944.64 -0.15202 0 7 2 42.73 

4G14380 Glutathione S-transferase, putative 7.69 30012.21 -0.24248 0 10 2 35.69 

5G00720 GNAT family acetyltransferase, putative 5.23 29060.93 -0.54395 0 6 1 18.61 

5G01030
a
 Glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.12) 6.17 36140.02 -0.16837 0 34 10 171.11 

5G01440 Allergen, putative (EC 1.-.-.-) 8.44 21950.18 -0.04505 0 19 3 54.01 

5G01860 ARP2/3 complex subunit Arc18, putative 6.31 21149.31 -0.19521 0 7 1 20.65 

5G01970
a
 Glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.12) 6.96 36314.28 -0.11124 0 55 14 246.3 

5G02370 Vacuolar ATP synthase catalytic subunit A, putative (EC 3.6.3.14) 5.83 74912.38 -0.25729 0 9 4 80.82 

5G02470
a
 Thiamine biosynthesis protein (Nmt1), putative) 6.03 38322.82 -0.27193 0 34 7 113.35 
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5G02640 O-methyltransferase, putative (EC 2.1.1.-) 4.95 47749.73 -0.1065 0 20 5 84.57 

5G02750
a
 Cytochrome c oxidase subunit Va, putative 5.62 17991.28 -0.41076 0 34 5 80.84 

5G03020
a
 60S ribosomal protein L4, putative 10.96 40503.89 -0.36166 0 31 10 171.21 

5G03080 Septin 8.8 44414.55 -0.70286 0 6 2 25.3 

5G03490
a
 Nucleoside diphosphate kinase (NDK) (NDP kinase) (EC 2.7.4.6) 7.76 16932.49 -0.14444 0 54 7 112.28 

5G03560 Glutamyl-tRNA synthetase (EC 6.1.1.17) 7.17 81424.25 -0.42965 0 6 2 25.37 

5G03690 Phosphatidylinositol transfer protein sfh5 (PITP sfh5) 4.79 46169.61 -0.54198 1 5 2 32.95 

5G03990 Vacuolar aspartyl aminopeptidase Lap4, putative 6.61 56024.37 -0.2031 0 2 1 19.59 

5G04170
a
 Heat shock protein 90 (65 kDa IgE-binding protein) (Heat shock 

protein hsp1) (allergen Asp f 12) 

4.95 80639.96 -0.62861 0 29 17 281.97 

5G04210
a
 Ubiquinol-cytochrome C reductase complex core protein 2, putative 

(EC 1.10.2.2) 

9.47 36893.97 -0.14029 0 17 6 97.05 

5G04220 Mitochondrial DNA replication protein (Yhm2), putative 9.86 32080.36 -0.0396 0 14 2 37.84 

5G04230
a
 Citrate synthase 8.69 52111.79 -0.2346 0 23 9 149.08 

5G04320 Secretion related GTPase SrgB/Ypt1 6.59 17608.94 -0.40189 0 16 2 29.37 

5G04370
a
 NADH-ubiquinone oxidoreductase, subunit G, putative (EC 1.6.5.3) 5.8 73371.09 -0.37988 0 20 9 143.19 

5G05450 40S ribosomal protein S1 10.05 29200.85 -0.59258 0 15 3 43.67 

5G05500 D-3-phosphoglycerate dehydrogenase (EC 1.1.1.95) 5.98 51483.73 -0.07627 0 2 1 18.34 

5G05540
a
 Nucleosome assembly protein Nap1, putative 4.43 48336.20 -0.84374 0 6 2 29.43 

5G05630 60S ribosomal protein L23 10.26 16125.92 -0.42083 0 18 2 35.28 
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5G06060 E3 ubiquitin ligase complex SCF subunit sconC (Sulfur controller 

C) (Sulfur metabolite repression control protein C) 

4.35 18141.24 -0.65443 0 15 1 23.91 

5G06070 ABC multidrug transporter Mdr1 (EC 3.6.3.-) 6.68 147784.44 0.023573 12 2 2 47.39 

5G06130 Succinyl-CoA synthetase alpha subunit, putative (EC 6.2.1.5) 8.83 34573.54 0.000604 0 4 1 19.76 

5G06360
a
 60S ribosomal protein L8, putative 10.97 27485.65 -0.53976 0 14 2 35.87 

5G06390 Adenosine kinase, putative (EC 2.7.1.20) 5.02 36858.82 -0.18491 0 6 2 28.88 

5G06680 4-aminobutyrate transaminase GatA (EC 2.6.1.19) 4.59 68143.67 -0.16904 0 12 4 67.74 

5G06710 DUF89 domain protein 5.13 54146.46 -0.38583 0 7 2 31.79 

5G06780 Carbamoyl-phosphate synthase arginine-specific small chain (CPS-

A) (EC 6.3.5.5) 

6.65 49336.79 -0.15298 0 3 1 19.87 

5G07120
a
 RNP domain protein 9.15 37138.34 -0.79034 0 20 4 74.99 

5G07780 Squalene epoxidase-like protein (Squalene monooxygenase Erg1) 8.93 52682.51 0.138462 3 19 5 93.4 

5G07890
a
 SsDNA binding protein, putative 10.43 20526.29 -0.3871 0 8 1 18.68 

5G08090 Pyridoxine biosynthesis protein 6.04 32736.71 -0.00617 0 4 1 19.42 

5G08130 Protein transport protein Sec61 alpha subunit, putative 8.41 52221.60 0.482845 10 4 1 20.06 

5G08810 Epoxide hydrolase, putative (EC 3.3.2.9) 5.67 44118.91 -0.22525 0 5 1 18.58 

5G08830
a
 Woronin body protein HexA, putative 6.56 49836.57 -0.8046 0 29 8 134.44 

5G09210
a
 Autophagic serine protease Alp2 (EC 3.4.21.48) 5.57 41139.99 -0.16676 0 18 6 95.94 

5G09230
a
 Transaldolase (EC 2.2.1.2) 6.04 35448.58 -0.13488 0 34 10 166.3 

5G09330
a
 CipC-like antibiotic response protein, putative 5.84 15052.55 -1.13462 0 35 5 85.84 
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5G10370 Iron-sulfur protein subunit of succinate dehydrogenase Sdh2, 

putative (EC 1.3.99.1) 

9.15 33915.92 -0.5689 0 7 2 29.61 

5G10550
a
 ATP synthase subunit beta (EC 3.6.3.14) 5.3 55620.38 -0.07881 0 62 21 415.78 

5G10560 Cytochrome c oxidase subunit V 9.96 22199.62 -0.5398 1 14 3 45.2 

5G10570 Cofilin 5.47 17028.14 -0.4474 0 17 2 39.96 

5G10610 Ubiquinol-cytochrome c reductase iron-sulfur subunit (EC 1.10.2.2) 9.2 32609.47 -0.18154 0 21 4 82.06 

5G10640 Tyrosyl-tRNA synthetase (EC 6.1.1.1) 6.18 43615.23 -0.36113 0 5 1 20.06 

5G11230 RAS protein (RAS small monomeric GTPase RasA) (Ras GTPase) 4.97 23901.11 -0.35352 0 11 2 41.52 

5G11240
a
 Oxidoreductase, short chain dehydrogenase/reductase family 9.51 29575.22 -0.08022 0 7 1 21.27 

5G12180
a
 Ran-specific GTPase-activating protein 1, putative 4.93 27643.55 -1.02955 0 24 5 88.44 

5G12260
a
 Disulfide isomerase (TigA), putative (EC 5.3.4.1) 6.12 40253.93 -0.31304 0 14 3 47.75 

5G12780 Kelch repeat protein 6.47 118900.04 -0.50643 0 13 4 59.13 

5G13450
a
 Triosephosphate isomerase (EC 5.3.1.1) 5.87 28068.18 -0.12266 0 29 4 76.01 

5G14680 Unknown function protein 4.82 20247.02 -0.55084 0 24 4 64.68 

6G02090
a
 ATP synthase subunit E, putative (EC 3.6.3.14) 8.6 26216.90 -0.51293 0 9 2 26.36 

6G02280
a
 Putative peroxiredoxin pmp20 (EC 1.11.1.15) (Peroxisomal 

membrane protein pmp20) (Thioredoxin reductase) (allergen Asp f 
3) 

5.36 18452.98 -0.11607 0 53 9 151.47 

6G02470 Fumarate hydratase, putative (EC 4.2.1.2) 9.1 63159.39 -0.21117 0 16 6 87.93 

6G02630 ATP-dependent RNA helicase sub2 (EC 3.6.4.13) 5.85 50320.48 -0.33482 0 7 2 31 

6G02750
a
 Nascent polypeptide-associated complex subunit beta (NAC-beta) 5.32 20546.17 -0.51183 0 9 1 20.87 
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6G03730 2-methylcitrate dehydratase, putative (EC 4.2.1.79) 8.62 62104.99 -0.27437 0 2 1 18.49 

6G03810
a
 ATP synthase D chain, mitochondrial, putative (EC 3.6.3.14) 9.11 28696.01 -0.19961 0 23 3 55.59 

6G03820
a
 Nascent polypeptide-associated complex subunit alpha (NAC-

alpha) 

4.85 21972.24 -0.70392 0 13 2 39.35 

6G03830 Ribosomal protein L14 9.95 15885.71 -0.3 0 8 1 21.28 

6G04570
a
 Translation elongation factor eEF-1 subunit gamma, putative 7.18 54182.67 -0.35602 0 17 8 142.13 

6G04620 NADH-ubiquinone oxidoreductase B14 subunit, putative (EC 
1.6.5.3) 

8.07 9756.14 -0.54878 0 11 1 19.49 

6G04740
a
 Actin Act1 5.87 43893.19 -0.20356 0 33 10 177.3 

6G04920 NAD-dependent formate dehydrogenase AciA/Fdh (EC 1.2.1.2) 6.08 62998.59 -0.20351 0 13 4 61.19 

6G04970 Phosphoserine aminotransferase (EC 2.6.1.52) 6.36 46893.41 -0.19907 0 7 2 27.15 

6G05110 Mitochondrial import receptor subunit (Tom40), putative 5.65 38216.49 -0.02394 0 8 2 24.91 

6G05210
a
 Malate dehydrogenase, NAD-dependent (EC 1.1.1.37) 6.77 34810.15 0.062121 0 62 12 217.09 

6G06340 Glucosamine-fructose-6-phosphate aminotransferase 6.24 77286.83 -0.14813 0 12 6 94.66 

6G06370 NAD(+)-isocitrate dehydrogenase subunit I (EC 1.1.1.41) 8.42 49745.35 -0.06505 0 16 5 69.05 

6G06690 CFEM domain protein, putative 5.07 19453.62 0.122222 0 8 1 18.03 

6G06750
a
 14-3-3 family protein 4.74 30103.50 -0.53838 0 37 10 159.51 

6G06770
a
 Enolase (EC 4.2.1.11) (2-phospho-D-glycerate hydro-lyase) (2-

phosphoglycerate dehydratase) (allergen Asp f 22) 

5.39 47305.37 -0.31598 0 49 15 280.25 

6G06780 Proteasome regulatory particle subunit Rpt4, putative (EC 3.4.25.1) 5.67 44112.90 -0.34504 0 3 1 18.82 
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6G06870 Casein kinase I homolog, putative 9.62 58779.24 -0.77533 0 4 2 26.48 

6G06900 GTPase Rho1 (Rho GTPase Rho1) 6.09 22530.06 -0.1685 0 17 2 36.01 

6G07430
a
 Pyruvate kinase (EC 2.7.1.40) 5.06 45778.53 -0.20222 0 17 6 113.47 

6G07620 GDP-mannose pyrophosphorylase A (EC 2.7.7.13) 5.92 58445.43 0.000763 0 2 1 18.14 

6G07770 Alanine aminotransferase, putative (EC 2.6.1.-) 5.71 55135.21 -0.13653 0 16 5 93.83 

6G08050
a
 6-phosphogluconate dehydrogenase, decarboxylating (EC 1.1.1.44) 5.86 55799.67 -0.16988 0 36 13 240.2 

6G08660
a
 M protein repeat protein 5.04 131895.88 -0.63293 0 3 2 39.36 

6G08720 5'-methylthioadenosine phosphorylase (Meu1), putative (EC 

2.4.2.28) 

9.95 26670.60 -0.54768 0 16 4 47.34 

6G08810 NADH-ubiquinone oxidoreductase 304 kDa subunit (EC 1.6.5.3) 9.28 38191.46 -0.47395 0 11 3 48.73 

6G09740 GliT (Thioredoxin reductase GliT) (EC 1.-.-.-) 5.44 36003.77 -0.10808 0 12 2 42.69 

6G10450 Unknown function protein 9.32 26688.25 -0.43952 0 12 2 29.74 

6G10650 ATP citrate lyase, subunit 1, putative (EC 2.3.3.8) 8.66 78829.14 -0.06146 0 19 10 163.14 

6G10660 ATP citrate lyase subunit (Acl), putatibe (EC 6.2.1.5) 5.88 52917.75 -0.07119 0 16 5 85 

6G10700 Chaperonin, putative 7.89 13385.50 0.014754 0 18 2 24.68 

6G10990 NADPH cytochrome P450 reductase (CprA), putative (EC 1.6.2.4) 5.38 76782.85 -0.29856 1 5 2 31.2 

6G11850
a
 Unknown function protein 8.68 44191.40 -0.29118 0 18 5 81.19 

6G12170
a
 FK506-binding protein 1A (FKBP) (EC 5.2.1.8) (Peptidyl-prolyl 

cis-trans isomerase) (PPIase) (Rapamycin-binding protein) 

6.57 12129.74 -0.38929 0 41 3 49.35 

6G12280 NADH-ubiquinone oxidoreductase 213 kDa subunit 9.1 21172.84 -0.27056 0 26 3 49.47 
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6G12300 RNP domain protein 9.63 51992.12 -0.81333 0 5 2 29.27 

6G12580 Anthranilate synthase component I, putative (EC 4.1.3.27) 5.7 57019.42 -0.16015 0 8 2 34.41 

6G12660 40S ribosomal protein S10b 9.74 17860.29 -0.96968 0 13 2 29.04 

6G12740
a
 Dienelactone hydrolase family protein (EC 3.1.1.-) 6.16 26942.80 -0.10694 0 28 6 89.17 

6G12830 Protein transport protein sec24 6.15 99701.96 -0.14984 3 3 2 24.84 

6G12930
a
 Mitochondrial aconitate hydratase, putative (EC 4.2.1.3) 6.26 85529.08 -0.35578 0 21 12 187.53 

6G12990 Cytosolic large ribosomal subunit protein L7A 10.21 28877.91 -0.48898 0 18 4 74.86 

6G13250 60S ribosomal protein L31e 10.49 14007.26 -0.68293 0 16 2 22.65 

6G13300 GTP-binding nuclear protein Ran, putative 5.6 46047.01 -0.37651 0 30 4 55.85 

6G13490 Glutamate decarboxylase (EC 4.1.1.15) 5.85 58918.15 -0.40447 0 4 2 29.76 

6G13540 Carboxypeptidase 3 (Carboxypeptidase CpyA/Prc1, putative) (EC 
3.4.16.5) 

5.5 60916.78 -0.39134 0 6 2 29 

6G13550 Ribosomal protein S13p/S18e 10.58 14674.93 -0.86457 0 27 3 44.74 

6G14090 CFEM domain protein 4.09 26811.00 -0.08984 1 3 1 19.49 

7G01460
a
 Ribosomal protein S5 10.54 28304.88 -0.39807 0 27 5 96.66 

7G01830 Pyrophosphorylase (UTP-glucose-1-phosphate uridylyltransferase 

Ugp1, putative) 

6.41 56925.01 -0.25616 0 16 5 83.03 

7G02230
a
 MRNA binding post-transcriptional regulator (Csx1), putative 5.55 39564.22 -0.01456 0 9 4 53.55 

7G02340 L-PSP endoribonuclease family protein (Hmf1), putative 9.08 18015.73 0.017857 0 6 1 18.29 
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7G03740 14-alpha sterol demethylase (14-alpha sterol demethylase Cyp51B) 

(EC 1.14.13.-) 

7.64 58930.86 -0.12538 1 2 1 21.25 

7G04070 Phospho-2-dehydro-3-deoxyheptonate aldolase (EC 2.5.1.54) 6.28 40071.54 -0.31816 0 7 1 19.3 

7G04190 Cyclopropane-fatty-acyl-phospholipid synthase, putative (EC 

2.1.1.79) 

6.4 58957.04 -0.25819 2 9 2 32.5 

7G04210
a
 Tropomyosin, putative 4.91 17867.72 -1.18182 0 8 1 25.13 

7G04290
a
 Amino acid permease (Gap1), putative 8.47 63262.49 0.415437 12 9 5 74.21 

7G05220 Mitochondrial carrier protein, putative 9.06 78228.66 -0.26356 1 10 3 52.38 

7G05290
a
 40S ribosomal protein S13 10.35 16501.34 -0.25946 0 14 2 26.75 

7G05370 Septin AspB 5.91 59344.75 -0.68349 0 4 2 23.33 

7G05450 SUN domain protein (Uth1), putative (EC 3.2.1.-) 5.24 43504.21 -0.29686 0 6 1 23.16 

7G05660
a
 Translation elongation factor eEF-3, putative (EC 3.6.3.-) 5.84 117767.79 -0.2939 0 28 19 313.16 

7G05720
a
 Pyruvate dehydrogenase complex, dihydrolipoamide 

acetyltransferase component, putative (EC 2.3.1.12) 
6.26 52031.59 -0.23711 0 20 8 106.84 

7G05740
a
 Malate dehydrogenase (EC 1.1.1.37) 9.08 35898.07 -0.06676 0 40 8 154.27 

7G06810 L-amino acid oxidase LaoA (EC 1.4.3.2) 6.04 78562.68 -0.3901 0 9 5 73.45 

8G00230 Phytanoyl-CoA dioxygenase family protein FtmF 5.55 32666.51 -0.23093 0 14 3 40.88 

8G00370 Polyketide synthase, putative 6.36 266597.78 -0.13712 0 10 12 208.22 

8G00380
a
 DltD N-terminal domain protein 4.92 32697.21 -0.19555 0 27 5 96.87 

8G00390
a
 O-methyltransferase, putative 5.39 63680.47 0.059578 0 33 6 95.06 
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8G00400
a
 Unknown function protein 5.67 16054.54 -0.19167 0 21 2 35.11 

8G00430
a
 Unknown function protein 5.13 18142.28 -0.58089 0 62 7 121.78 

8G00440
a
 Steroid monooxygenase, putative (EC 1.-.-.-) 5.48 101032.18 -0.30508 0 32 20 363.59 

8G00480
a
 Phytanoyl-CoA dioxygenase family protein 8.89 48089.24 -0.02565 0 20 6 95.95 

8G00500 Acetate-CoA ligase, putative (EC 6.2.1.1) 6.74 79469.45 -0.21248 0 9 3 55.1 

8G00510
a
 Cytochrome P450 oxidoreductase OrdA-like, putative 8.37 60965.12 -0.27481 1 27 11 194.75 

8G00530
a
 Alpha/beta hydrolase, putative 5.57 49101.87 -0.18225 0 32 11 183.05 

8G00540
a
 Hybrid PKS-NRPS enzyme, putative 5.7 434005.61 -0.11183 2 28 73 1266.12 

8G00550
a
 Methyltransferase SirN-like, putative 5.21 29553.68 -0.33395 0 43 11 203.84 

8G00580
a
 Glutathione S-transferase, putative 5.17 26804.76 -0.17511 0 17 5 75.65 

8G01160
a
 Tartrate dehydrogenase, putative (EC 1.1.1.-) 5.41 39695.25 -0.15328 0 17 4 75.02 

8G03880 Alanyl-tRNA synthetase, putative (EC 6.1.1.7) 6.04 113713.99 -0.51147 0 4 3 43.39 

8G03930
a
 Hsp70 chaperone (HscA), putative 5.3 66972.99 -0.31564 0 37 14 254.68 

8G04000
a
 Acetyl-CoA acetyltransferase, putative (EC 2.3.1.9) 9.09 36173.73 -0.46192 0 26 6 105.74 

8G04890 Unknown function protein 4.8 18592.70 -0.08807 1 14 2 41.89 

8G05320
a
 ATP synthase subunit alpha 9.14 59932.73 -0.12824 0 33 17 293.44 

8G05440 Mitochondrial ATPase subunit ATP4, putative (EC 3.6.3.14) 9.36 29727.04 -0.09562 0 24 5 90.29 

8G05580 Acetyl-coA hydrolase Ach1, putative (EC 2.8.3.8) 6.29 58145.20 -0.31543 0 4 1 20.82 
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8G05600
a
 Unknown function protein 9.97 9288.14 -0.89157 0 27 2 32.42 

8G05610
a
 Probable beta-glucosidase btgE (EC 3.2.1.21) (Beta-D-glucoside 

glucohydrolase btgE) (Cellobiase btgE) (Gentiobiase btgE) 

5.81 52639.98 -0.20162 0 12 6 95.11 

8G07210 Hydroxymethylglutaryl-CoA synthase, putative (EC 2.3.3.10) 8.85 55774.49 -0.35788 0 10 3 44.53 

CADRE ID., A. fumigatus gene annotation nomenclature according to Nierman et al. (2005) and Mabey et al. (2004); tpI, theoretical isoelectric point; 

tMr, theoretical molecular mass; TM, number of transmembrane regions; GRAVY score, grand average of hydropathy; SM score, Spectrum Mill 

protein score. 
a
Protein was also identified by gel filtration coupled shotgun mass spectrometry as outlined in Section 3.2.2.  


