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Abstract 

This thesis investigates methods of studying brain energy metabolism with a specific focus 

on the substrates oxygen and glucose.  It details the in vitro development and in vivo 

characterisation of microelectrochemical sensors for the detection of brain tissue oxygen, 

and the in vivo characterisation of oxygen and glucose electrodes in the hippocampus 

utilising the technique of long-term in vivo electrochemistry (LIVE).   

Chapter 1 introduces the brain, energy metabolism and neurochemical analysis focusing on 

oxygen and glucose monitoring in the brain.  Chapter 2 discusses the theory relevant to the 

studies performed in this work, whilst Chapter 3 is a detailed description of sensor 

construction and techniques used for the in vivo and in vitro characterisation of the sensors 

utilised in this thesis. 

The results are divided into five sections. The first of these, Chapter 4, details the in vitro 

characterisation of carbon paste electrodes (CPEs) and a Pt-based electrode modified with a 

membrane, methyl methacrylate (Pt-MMA) and makes comparisons between these two 

types of electrodes for use in vivo.  Following on from the in vitro characterisation chapter, 

Pt-MMA electrodes were fully characterised in vivo and comparisons were made with 

previously published CPE data detailed in Chapter 5. 

The development and standardisation of a metal-free electrode for use in conjunction with 

fMRI studies for the detection of brain tissue oxygen is presented in Chapter 6.  The 

complete in vivo characterisation of the fully characterised fMRI compatible O2 electrode 

developed in the previous chapter is detailed in Chapter 7.  

Chapter 8 demonstrates and characterises the simultaneous recording of oxygen and 

glucose using CPEs and a Pt-based glucose biosensor (Pt/PPD/GOx) in the hippocampus of 

freely-moving animals, and utilises these sensors to monitor brain energy metabolism in 

conjunction with a behavioural task.  Finally, overall conclusions in relation to the work 

presented in this thesis are discussed in Chapter 9. 



1. INTRODUCTION 



Chapter 1: Introduction 

2 

1.1 Introduction 

The complexity of the mammalian brain and its function has been of interest for 

hundreds of years.  The brain and spinal cord make up the central nervous system (CNS) 

and the peripheral nervous system (PNS).  The PNS and CNS work in conjunction to 

regulate homeostasis whilst the PNS is responsible for maintaining it.  The brain has a 

multitude of roles such as sensory input and processing, movement coordination, 

sensation, behaviour (Campbell N, 1990), as well as higher cognitive functions such as 

emotions (anxiety, reward), imaginative thought, memory and language (Reinis & 

Goldman, 1982).  The human brain has been divided into 3 main regions: The forebrain, 

midbrain and hindbrain.  A brief summary of these regions and their functions is listed 

below. 

 Forebrain:  The forebrain is the largest part of the brain, most of which is made 

up of the cerebrum. Other important structures found in the forebrain include the 

thalamus, the hypothalamus and the limbic system. 

o Cerebrum; divided into 2 hemispheres connected by a mass of white 

matter, divided into 4 lobes: 

 Frontal lobe; Cortex (motor cortex). 

 Parietal lobe; Cortex (somatosensory cortex). 

 Temporal lobe; Cortex (auditory cortex). 

 Occipital lobe; Cortex (visual cortex). 

o Cerebral Cortex; grey matter, makes up the surface of each hemisphere 

of the cerebrum. 

o Limbic system; a collection of structures within the forebrain,  is 

important in the formation of memories and in controlling emotions, 

decisions, motivation and learning: 

 Amygdala; memory and emotions. 

 Hippocampus; memory and spatial navigation. 

o Thalamus; relays sensory information to the cerebral cortex. 
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o Hypothalamus; regulates visceral functions, such as temperature, 

reproductive functions, eating, sleeping (circadian rhythm) and the 

display of emotion. 

 Midbrain: The midbrain sits between the forebrain and the hindbrain.  It forms a 

major part of the brainstem; the name given to the part of the brain which 

connects the spinal cord and the forebrain.  

o Dorsal surface (tectrum). 

o Ventral surface; cerebral peduncles, fibre bundles that contain axons that 

travel between the cerebral cortex, brainstem and spinal cord.  These 

divide the brain into two halves and each half is divided by a band of grey 

matter, known as the substantia nigra into anterior and posterior regions.   

These structures are important in sensory processes such as vision and 

movement. 

 Hindbrain:  The hindbrain includes the cerebellum, the pons and the medulla 

oblongata which all function to collectively support vital processes in the body. 

o Cerebellum; co-ordination and error-checking during motor, perceptual 

and cognitive tasks. 

o Medulla oblongata; joined to the spinal cord and controls unconscious, 

essential, bodily functions such as breathing, swallowing, blood 

circulation and muscle tone. 

o The Pons; Located above the medulla, serves as a bridge to connect 

the brainstem and the cerebellum. The pons receives information from 

visual areas to control eye and body movements and also plays a role in 

controlling patterns of sleep and arousal. Information is relayed from the 

pons to the cerebellum to control the co-ordination of muscular 

movements and maintain equilibrium. 

The brainstem is made up of the pons, medulla and midbrain. The medulla connects the 

brain to the spinal cord and its motor and sensory tracts allow communication between 

the brain and the rest of the body.  A schematic of the brain can be seen in Figure 1.1. 
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Figure 1.1: Schematic of the human brain detailing the four lobes of the cerebral cortex, the 

cerebellum and the brain stem.  

 

The two main types of cell found in the brain are neurons and glial cells.  Neurons are 

electrically excitable cells that are the functioning units in the brain which processes and 

transmits information through electrical and chemical signals (Figure 1.2).  Glial cells 

provide support, protection and electrical insulation for neurons.  Activation of neurons 

involves a stimulus which causes an electrical impulse (K
+
, Na

+
, Ca

2+
) known as an 

action potential to pass through the axon to the axon terminal.  The axon terminal 

contains synapses, where neurotransmitter release takes place.  The neurotransmitters 

diffuse across the synaptic cleft and bind to receptors embedded in the postsynaptic 

membrane.  The neurotransmitter molecules are either taken up by another neuron or 

quickly degraded by enzymes, terminating the synaptic response. 



Chapter 1: Introduction 

5 

 

Figure 1.2:  Schematic of a neuron. 

 

This brief outline of the brain regions and their roles show the high complexity of the 

brain not just on an anatomical level but also on a functional and cellular level.  A large 

amount of research has been conducted exploring the structure of the brain as well as the 

roles of neurochemicals in brain metabolism and signalling.   

1.2 Analytical Techniques 

A number of techniques are used to investigate structures, metabolism and 

neurochemicals in the brain ranging from non-invasive techniques such as blood 

oxygenation dependent (BOLD) functional magnetic imaging (fMRI) (Ogawa et al., 

1990; Ogawa et al., 1992), positron emission tomography (PET) (Weaver et al., 2007), 

two-photon fluorescence imaging of NADH (Kasischke et al., 2004), spectroscopic 

analyses, 
1
H-NMR (Mangia et al., 2003) and 

13
C-NMR (Rothman et al., 1992), to 

invasive techniques such as microdialysis (Ungerstedt & Pycock, 1974; Fray et al., 

1996; McNay & Gold, 1999) and in vivo voltammetry (O'Neill et al., 1998; O'Neill & 

Lowry, 2000). 
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1.3 In Vivo Neurochemical Analysis 

1.3.1.1 In Vivo Voltammetry (IVV)  

IVV allows for the direct monitoring of chemicals in the brain’s extracellular fluid 

(ECF). The first reports of voltammetry in the brain date back as far as 1958 (Clark et 

al., 1958; Clark Jr & Lyons, 1965) where oxygen and ascorbic acid were monitored. 

However, Adams and co-workers (Kissinger et al., 1973; Adams, 1976) are credited 

with pioneering the technique.  Many different methodologies have been developed such 

as constant potential amperometry (CPA), cyclic voltammetry (CV), differential pulse 

amperometry (DPA), fast scan voltammetry (FCV) and chronoamperometry.  The basis 

of voltammetric techniques is that a chemical is either oxidised or reduced at the 

sensor’s surface by applying a potential.  The measured faradaic current is proportional 

to the concentration of the chemical at the active surface of the sensor (Marsden et al., 

1988; Adams, 1990).  IVV is a popular choice for neurochemical monitoring and there 

are a number of electroactive species present in the ECF that have been detected using 

this technique such as ascorbic acid (O'Neill & Fillenz, 1985a; Boutelle et al., 1989; 

O'Neill, 1995), homovanillic acid (HVA) (O'Neill & Fillenz, 1985b), uric acid (UA) 

(O'Neill, 1990), nitric oxide (Brown et al., 2005; Finnerty et al., 2012a; Finnerty et al., 

2012b) and oxygen (Lowry et al., 1996; Bolger & Lowry, 2005; Bolger et al., 2011b).  

However, the detection of non-electroactive species such as enzymatic substrates and 

amino acids are not possible without the use of modified electrodes discussed in Section 

1.4.  Biosensors have been developed to monitor substrates such as glucose (Lowry et 

al., 1994b; Hu & Wilson, 1997a; Fillenz & Lowry, 1998; Lowry et al., 1998a; Lowry et 

al., 1998b; Dixon et al., 2002), glutamate (Kulagina et al., 1999; McMahon et al., 

2006a, b; McMahon et al., 2007; Qin et al., 2008; Tian et al., 2009) and lactate (Hu & 

Wilson, 1997b). 

IVV is superior to microdialysis (Section 1.3.1.2) in terms of temporal resolution with 

real-time data acquisition, minimal ECF depletion, smaller probe size and IVV is now 

possible using wireless technology (Serra et al., 2007; Bazzu et al., 2009; Calia et al., 

2009; Russell et al., 2012).  However, the disadvantages of this technique are issues with 
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selectivity and sensitivity, therefore limiting the amount of analytes it is possible to 

measure. The differences in behaviour of the sensors in a tissue matrix and buffer 

solution (Cheng et al., 1979; Dayton et al., 1983; Nicholson & Syková, 1998) can also 

cause disparities between the sensitivity, stability and selectivity of the sensors.  

1.3.1.2 Microdialysis 

Microdialysis is a popular technique for in vivo neurochemical analysis. It allows for the 

sampling of metabolites and neurochemicals. The technique was developed in 1974 

(Ungerstedt & Pycock, 1974) and uses the principle of dialysis.  A membrane in the 

form of a microdialysis probe (Figure 1.3) is implanted into the brain tissue and is 

perfused with a liquid know as the perfusate (i.e. aCSF).  The perfusate equilibrates with 

the ECF by means of diffusion.  The extent of equilibration is dependent on factors such 

as flow rate, membrane length and molecular size.  The dialysate is collected and 

analysed usually by high performance liquid chromatography (HPLC). 



Chapter 1: Introduction 

8 

 

Figure 1.3: Schematic of a microdialysis probe. 

 

Microdialysis in combination with a suitable detection technique allows for the 

monitoring of time-dependent changes in local tissue chemistry (neurotransmitter release 

and reuptake, drug delivery and energy metabolism) in particular brain regions.  

Microdialysis also allows for the detection of basal concentrations of particular analytes 

as well as physiologically or pharmacologically stimulated release.  The technique has 

proven to be useful in the clinical environment where it has been used to routinely 

monitor head injury patients (Goodman et al., 1999; Hutchinson et al., 2000; Glenn et 

al., 2003) and allowed for the detection of ischemia and secondary brain injury via the 

identification of markers (Zauner et al., 1997; Sarrafzadeh et al., 2003; Vespa et al., 

2003).  The main disadvantages of microdialysis (classical) is its poor temporal 

resolution (30-60 mins (Feuerstein et al., 2010)), although recently reports of real-time 

(30 s) microdialysis with on-line electrochemical detection have been described (Parkin 

et al., 2003; Hopwood et al., 2005; Parkin et al., 2005), depletion of ECF chemicals and 
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large probe size.  However, it is by far superior to other techniques as it offers unlimited 

selectivity for analytes.  

1.4 Electrochemical Sensors 

The advantages of IVV have previously been discussed in Section 1.3.1.1.  The analyses 

of specific substrates is dependent on whether a method of detection for that particular 

substrate has been developed and if so can it be reliably detected without interference 

from other species present in the ECF.  The specificity and selectivity of 

microelectrochemical sensors will be discussed in the subsequent sections.  A chemical 

sensor is a device that transforms chemical information into an analytically useful signal. 

Chemical sensors contain usually two basic components connected in series: a chemical 

(molecular) recognition system (receptor) and a transducer.  Biosensors are chemical 

sensors in which the recognition system utilises a biochemical mechanism (Cammann, 

1977; Clark et al., 1987). 

1.4.1 Biosensors 

There are three sub-divisions of amperometric biosensors (Thévenot et al., 2001).  They 

are categorised by the means by which the electrons reach the electrode surface and are 

defined by the term generation of amperometric biosensors (Wang, 1993). 

 First-generation:  Monitor the consumption of oxygen (McArthur et al., 1962) 

or the production of hydrogen peroxide (H2O2) (Updike & Hicks, 1967).  For the 

oxidation of H2O2 to occur a large over-potential is required which potentially 

results in interference from other oxidisable species such as ascorbic acid. 

 Second-generation:  Include a mediator species which acts as an electron 

transfer agent.  This eliminates the biosensor’s dependence on oxygen which 

removes the need for the high over-potential (El Atrash & O'Neill, 1995).  

However, leaching of potentially toxic mediators from the immobilisation matrix 

(O'Neill & Lowry, 2000) have been reported. 



Chapter 1: Introduction 

10 

 Third-generation:  Involve direct electron transfer between the redox site of the 

enzyme and the active surface of the electrode.  Examples of these biosensors 

include the organic-conducting-salts, examples being tetrathiafulvalene (TTF) 

and tetracyanoquinodimethane (TCNQ) (Albery et al., 1985).  The presence of 

these salts make the surface highly reversible and stable to enzymes (Bartlett, 

2003).  These biosensors have been shown to involve a mediated mechanism 

implying second-generation behaviour (O'Neill & Lowry, 2000).   

This body of work employs first-generation biosensors.  The immobilisation of the 

biological recognition unit of the electrode is one of the main challenges of biosensor 

construction.  The amount of enzyme present on the surface of the electrode has a direct 

effect on the sensitivity of the electrode.  Enzyme immobilisation can be achieved using 

a number of techniques such as physisorption, cross-linking or entrapment in or behind a 

membrane or a mixture of these methods (Pantano & Kuhr, 1995; Eggins, 2002).   

One of the principal difficulties with IVV is the presence of endogenous electroactive 

species.  For first-generation biosensors the principal interferent is ascorbic acid (AA).  

AA oxidises at similar potentials to that of H2O2.  Polymer membranes have been 

employed for interference rejection.  These polymer layers which have a low 

permeability to interferents but still remain permeable to H2O2 are deposited on the 

surface of the electrode.  1,2-diaminobenzene (o-phenylenediamine) has these 

characteristics when electropolymerised onto the electrode surface (Chiba et al., 1987; 

Almeida et al., 1990; Sasso et al., 1990; Lowry & O'Neill, 1994; Losito et al., 2003).  o-

PD also allows incorporation of enzymes into the structure which allowed for the 

successful development of the glucose biosensor containing the enzyme glucose oxidase 

(Lowry et al., 1998b). 

1.5 Oxygen 

Brain tissue oxygen (O2) is one of the most important energy substrates for brain energy 

metabolism with brain cells critically dependent on a continuous supply.  It is thought 

that at any given time the brain consumes approximately 20% of the total O2 used by the 
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body.  O2 is delivered by the blood and the tissue concentration is determined by the 

balance of supply and utilisation (Magistretti et al., 2000).  Molecular O2 was one of the 

first substances to be detected voltammetrically in vivo in the brain (Clark et al., 1958; 

Clark Jr & Lyons, 1965) and in peripheral tissue (Clark Jr & Clark, 1964).  In different 

brain regions the O2 turnover rate varies and it has been established that the cerebral 

cortex has a higher turnover rate than others (Nair et al., 1987).  The concentration of O2 

in the brain varies as supply is altered in different layers of the brain tissue (Baumgärtl et 

al., 1989) and is dependent on the tissue heterogeneity (Murr et al., 1994; Lubbers & 

Baumgärtl, 1997).  O2 tissue concentrations have been reported to range from 40 µM 

(Murr et al., 1994),  50 µM (Zimmerman & Wightman, 1991), 60 µM (Zauner et al., 

1995) to 80 µM (McCreery et al., 1990). 

Carbon-based electrodes such as glassy carbon (Clark Jr & Clark, 1964), carbon fiber 

electrodes (Zimmerman & Wightman, 1991; Zimmerman et al., 1992; Venton et al., 

2003), carbon epoxy (Bazzu et al., 2009) and carbon paste electrodes (Lowry et al., 

1996; Lowry et al., 1997; Bolger & Lowry, 2005; Bolger et al., 2011b) are commonly 

used  for detecting changes in tissue O2.  Carbon electrodes have their advantages and 

disadvantages over noble metal electrodes.  The main advantage of carbon fibre 

electrodes (CFEs) and carbon paste electrodes (CPEs) for use in vivo are that they are 

less susceptible to surface poisoning than noble metal electrodes, which usually require 

the addition of a protective membrane (Wisniewski et al., 2000; Zhao et al., 2001; 

Gifford et al., 2006).  CFEs (Zimmerman & Wightman, 1991) are advantageous due to 

their small diameter (5-50 µm), however if placed closely to blood vessels or  

metabolically active sites the O2 concentration can vary (Lowry et al., 1997).  CPEs are 

advantageous as in vivo they are stable over long periods (O'Neill, 1993; O'Neill & 

Lowry, 1995; O’Neill, 2005; Bolger et al., 2011b).  CPEs have a diameter of 200 µm 

greater than the scale of the capillary zone (<100 µm) (Silver, 1965) which allows 

detection of average tissue O2 levels.  However due to their size they do cause greater 

tissue damage than noble metal electrodes.   

Platinum(Pt)-based electrodes have been shown to be a potential alternative to CPEs to 

monitor brain tissue O2 (Bolger et al., 2011a).  Pt electrodes are easier to manufacture 
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than CPEs and have a smaller diameter (125 µm) resulting in less tissue damage which 

makes them more desirable for use. However, they are prone to surface poisoning 

characteristic of metal-based electrodes and therefore require protective membranes 

making them only suitable for use in short-term experiments.  

1.6 Brain Energy Metabolism 

Increases in brain energy metabolism requirements are thought to have been met by an 

increase in blood flow that delivers glucose and oxygen to the extracellular 

compartment, according to the classical model of brain energy metabolism (Siesjö, 

1978).  In this model there is close coupling between blood flow and the delivery and 

utilisation of glucose and oxygen.  This theory has been replaced by the 

compartmentalisation model known as the astrocyte-neuron-lactate shuttle (ANLS) 

theory (Pellerin & Magistretti, 1994).  This theory hypothesises that lactate produced by 

the astrocytes is used as an energy source by activated neurons.  A causal sequence of 

events is postulated to lead to the uptake of lactate by the neurons, beginning with the 

release of glutamate from nerve terminals upon stimulation whereupon it enters the 

astrocytes surrounding the synaptic complex.  The uptake of glutamate is Na
+
-dependent 

and stimulates Na/K ATPase leading to the uptake of glucose into the astrocytes.  This 

glucose undergoes glycolysis which results in the production of lactate which is 

exported into the extracellular space whereupon it is subsequently taken up by the 

neurons for its ultimate oxidative phosphorylation.  In summary this model suggests that 

increased energy requirements of activated neurons are met by the utlisation of lactate 

not glucose by these neurons and the lactate is being provided by astrocytic glycolysis, 

stimulated by the uptake of glutamate.  This model has been supported by experiments 

using brain slices (Schurr et al., 1988), cell cultures (Tsacopoulos & Magistretti, 1996) 

and NMR (Sibson et al., 1998), however this theory has had many challenges as 

discussed by Fillenz (2005).  The temporal relationships between these processes cannot 

be examined using these techniques therefore in vivo neurochemical analysis has been 

used to monitor changes in metabolic substrates.  As these techniques can be utilised in 

freely-moving animals it is possible to related changes in neuronal activity to specific 

brain regions. 
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Microdialysis has been employed to examine brain energy metabolism.  Using this 

technique it has been demonstrated that there is a stimulation-dependent increase in 

lactate correlated to glutamate uptake (Fray et al., 1996; Demestre et al., 1997) and it 

has been shown that there is a dissociation between increases in regional cerebral blood 

flow (rCBF) and increases in ECF glucose (Fray et al., 1996).  These results support 

employment of lactate as an energy substrate and they also propose that glucose in the 

EC compartment is not directly resulting from the blood vascular compartment. The 

immediate source of EC glucose has led to debate amongst advocates of the 

compartmental model as it has been found that astrocytes in cell culture export lactate 

and not glucose (Dringen et al., 1993) which has led to Magistretti and Pellerin (1996) 

suggesting that glucose enters the EC space directly from the blood stream. 

As discussed previously IVV allows for investigations of the functions and roles of 

specific neurochemicals in neuronal signalling, drug actions, and well-defined 

behaviours in real-time.  A glucose biosensor for use in vivo has been developed for the 

detection of brain glucose (Lowry et al., 2002).  The Pt/PPD/GOx electrode is an 

amperometric biosensor and was constructed by immobilising the enzyme glucose oxide 

(GOx) onto a platinum microelectrode via the polymererisation of poly (o-

phenylenediamine) (PPD) on the electrode surface.  This biosensor was characterised in 

vitro (Lowry et al., 1994a; Lowry et al., 1994b) and subsequently modified, implanted 

and characterised in vivo in freely-moving rats (Lowry et al., 1998b).  The 

characterisation of the Pt/PPD/GOx electrode established the electrode had a high 

sensitivity, selectivity and was not hindered by endogenous species in the brain resulting 

in fowling.  This sensor has been utilised to study brain energy metabolism (Fillenz & 

Lowry, 1998; Lowry & Fillenz, 2001) and is used in conjunction with and oxygen 

(carbon paste) electrodes to simultaneously monitor glucose and oxygen levels in the 

hippocampus (Chapter 8). 

1.7 Conclusions 

In summary, the use of in vivo voltammetry (IVV) and microelectrochemical sensors 

provides advancements in the exploration of metabolic processes such as neurovascular 
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coupling present in the mammalian brain. IVV can provide real-time monitoring of 

metabolic substrates and neurotransmitters which can translate as a useful tool for a 

better understanding of the metabolic and chemical processes in the healthy brain, 

disease states and aid in the development of therapeutic applications such as drug 

discovery.  It also has the potential to be an invaluable clinical tool for the monitoring of 

brain metabolism. 

This thesis details the in vitro development and in vivo characterisation of 

microelectrochemical sensors for the detection of brain tissue oxygen and the in vivo 

characterisation of oxygen and glucose electrodes in the hippocampus.  This chapter 

(Chapter 1) introduces the brain, brain energy metabolism and neurochemical analysis 

focusing on oxygen and glucose monitoring in the brain.  Chapter 2 discusses the theory 

relevant to the studies performed in this work, whilst Chapter 3 is a detailed description 

of sensor construction and techniques used for the in vivo and in vitro characterisation of 

the sensors utilised in this thesis. The in vitro characterisation of CPEs and a Pt-based 

electrode modified with a membrane (MMA) which is potentially suitable for use in the 

clinical environment, and the comparisons between these two types of electrodes are 

presented in Chapter 4.  Chapter 5 details the in vivo characterisation of the Pt-MMA 

electrode characterised in the previous chapter. The development and standardisation of 

a metal-free electrode for use in conjunction with fMRI studies for the detection of brain 

tissue oxygen is presented in Chapter 6 and the full in vivo characterisation of this 

electrode is described in Chapter 7.  Chapter 8 demonstrates and characterises the 

simultaneous recording of oxygen and glucose in the hippocampus of freely-moving 

animals and the use of these sensors to monitor brain energy metabolism in conjunction 

with a behavioural task.  Overall conclusions in relation to the work presented in this 

thesis are discussed in Chapter 9. 
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2.1 Introduction 

This primary aim of this thesis is the in vitro development and subsequent in vivo 

characterisation of microelectrochemical sensors for the detection of brain tissue oxygen 

and the in vivo characterisation of oxygen and glucose electrodes in the hippocampus.  In 

order to accomplish this, two voltammetric electrochemical techniques were employed 

during the course of this project, these being cyclic voltammetry (CV) and constant 

potential amperometry (CPA).  The theory relating to these two techniques is described in 

Section 2.3 and Section 2.4. 

The various oxygen electrodes were characterised using voltammetry by their sensitivity 

(nA/µM) to O2 and R
2
 value.  The Pt-based glucose oxidase (Pt/PPD/GOx) electrodes were 

calibrated by means of their response to the substrate, using Michaelis-Menten kinetics 

(Vmax and KM) and interferent rejection.   

 

The theory of mass transport is a major parameter in all of these techniques, the motion of 

reactants and products to and from the active surface of the electrode. This theory details 

the processes which take place in the bulk liquid medium; it is described in Section 2.2. 

The second process which is involved in all electrochemical techniques is the electron 

transfer which takes places as a species is oxidised or reduced at the active surface. The 

general reaction for this process is detailed in Equation 2.1. 

The generalised equation for the oxidation and reduction of a species at an electrode surface 

is: 
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 neO R  

Equation 2.1 

Where O is the oxidised species, R is the reduced species and n is the number of electrons 

involved in the reaction. 

Mass transport of the reactant to the active surface of the electrode and electron transfer are 

the two main processes involved in this reaction. 

2.2 Mass Transport 

In order to react, a species at an electrode needs to be transported from bulk solution to the 

electrode surface. 

There are three forms of mass transport that can influence an electrolysis reaction. 

 Diffusion 

 Convection 

 Migration 

Diffusion occurs in all solutions and arises from local uneven concentrations of reagents. 

Entropic forces act to adjust these uneven distributions of concentration and are therefore 

the main driving force for this process. Diffusion is described by Fick’s first law (Equation 

2.2): 
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x

c
DJ





 

Equation 2.2 

Where J is the diffusional flux, D is the diffusion coefficient and 
x

c




 is the concentration 

gradient in direction x. The negative sign signifies that material moves down a 

concentration gradient. 

 

Figure 2.1:  A volume segment dx of solution with a concentration gradient, where a flux J is flowing 

from the area of higher concentration to the area of lower concentration.  

Fick’s second law (Equation 2.3) describes how the concentration of material varies as a 

function of time (t) and this can be predicted from the first law 

2

2

x

c
D

t

c










 

Equation 2.3
 

Where c is the concentration and t is time. The steeper the change in concentration, the 

greater the rate of diffusion.  A steady-state current response is obtained: 0












t

c
(no 

change in c with t) for microelectrodes with diameter of between 5-300 µm (O'Neill et al., 

1998) where currents are small and minimal substrate is consumed.  

For any co-ordinate system  is substituted into Equation 2.2 to give Equation 2.4. 

dx 

J(x,t) J(x+dx,t) 

x+dx x 



Chapter 2: Theory 

31 

cDJ 2  

Equation 2.4 

For all geometries, a generalised version of Fick’s second law (Equation 2.3) is: 

cD
t

c 2



 

Equation 2.5 


 
is the Laplace operator, which has varied forms depending upon the coordination of the 

systems.  Electrodes with different geometries have dissimilar forms of the Laplace 

operator. 

For planar (disk) electrodes the species can uniformly access the electrode from the bulk 

solution.  The change in current with respect to time calculated using Fick’s second law 

results in the Cottrell equation (Equation 2.6): 

t

cDnFA
nFAJI





 

Equation 2.6 

Where I is the current measured at the active surface of an area A at time t.  The bulk 

concentration of the species is denoted by c . D is the diffusion coefficient, J is the flux, n 

the number of electrons and F is Faraday’s constant. 

For an electrode of a cylindrical shape with a diameter greater than 50 µm the Laplacian 

Operator takes the form of (Brett & Brett, 1993): 
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Equation 2.7 

In order to solve Fick’s 2
nd

 Law, and thus find the flux variation in time and the diffusion 

limited current, it is necessary to define conditions for the system to obey. These conditions 

specify concentration and/or spatial characteristics, and are defined in relation to time, i.e. 

at t=0. 

Fick’s 1
st
 Law, a species R at the surface of an electrode it is found that the flux, ),0( tJR , is 

proportional to the current density 
A

i
.  This is because the total number of electrons 

transferred per unit time must be proportional to the quantity of R reaching the surface in 

that time t. 

0

0
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Equation 2.8 

where i  is the current, A  is the surface area of the electrode, F  is the Faraday constant 

and n is the number of electrons transferred per molecule that reacts at the surface.   

2.3 Cyclic Voltammetry 

Cyclic voltammetry (CV) is an electrochemical technique which involves the application of 

a triangular waveform potential to drive a redox reaction (Figure 2.2).  An initial potential 

(Ei) where no oxidation occurs, is applied to the working electrode.  The potential is 

increased at a constant scan rate (v) to the maximum potential (Emax).  The scan is then 

reversed until the initial potential has been reached.  As the potential is decreased back to 

the initial starting potential any species that was oxidised on the forward sweep is reduced.  

There is a delay between scans to prevent the previous scan influencing the next scan and 
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measurements are performed in quiescent solutions so that mass transport is diffusion 

controlled. 

 

Figure 2.2:  A cyclic voltammogram potential waveform. 

Two types of current are generated when performing CV.  Current generated from the 

electrochemical process is known as the Faradaic current, fi . The capacitance current, ci , 

know as the background current never dissipates, resulting in constant changes to the 

double layer charge.  It is necessary to subtract the background current which is obtained 

before addition of an analyte to the buffer solution.  This allows for observation of the 

Faradaic current resulting from electrochemical processes of specific analytes of interest.  

 

Figure 2.3:  A typical current-potential profile for a CV of a reversible redox speices. 

Epa 

ipa 

ipc 

Epc 

Potential 

Current 
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Considering the reversible system detailed in Figure 2.3 at Ei only R is present in the system 

so no electron transfere takes place.  As the potential sweeps to positive potentials, electron 

transfer is induced as R is oxidised to O.  Initially the rate of transfer, or the rate of 

oxidation, is limited by the potential. Once a sufficient potential is reached then all R 

reaching the surface is oxidised to O. Further increases in potential from this moment do 

not result in an increased rate of reaction. The process is now being controlled by diffusion 

resulting in larger currents. This occurs until the reverse potential commences. The 

maximum anodic current, ipa, is a balance between the increasing electrochemical rate 

constant, kox, and decreasing surface concentration of R. Before Epa is reached a rapidly 

increasing kox controls i, and at potentials higher than Epa diffusion controls the rate of 

reaction, illustrated in Figure 2.3. 

2.4 Constant Potential Amperometry 

The voltammetric technique used most frequently throughout this project was constant 

potential amperometry (CPA).  During CPA the current resulting from the oxidation or 

reduction of an analyte is recorded, occurring from the application of a fixed applied 

potential.  Diffusion is the only form of mass transport considered to be occurring within 

the system (Section 2.2).  After the initial application of a fixed potential the capacitance 

currents associated with the charged layers at the active surface of the electrode decay, 

resulting in steady-state diffusion-limited currents associated only with substrate reaction at 

the surface.  The applied potentials used in this project were chosen so that all substrate 

reaching the surface of the electrode was oxidised/reduced which is known as 

overpotential.  Therefore, amperometric current measured at the electrode is directly 

proportional to analyte concentration at all times.  The current measured is the sum of two 

contributing factors (Equation 2.9); the Cottrell current ( coti ) and the steady-state current    (

ssi ).  
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ssiiI cotamp   

Equation 2.9 

The Cottrell component disappears for large values of time, t, and the steady-state current 

predominates. It is these diffusion-limited steady-state currents which are reported in this 

work and for a reversible or irreversible reaction they are given by Equation 2.10 (Forster, 

1994). 

r

nFAcD
iss   

Equation 2.10 

where A  is the surface area of the electrode, F  is the Faraday constant, D is the diffusion 

coefficient, c is the concentration, r is the radius of the electrode and n is the number of 

electrons transferred. 

However, additional factors such as the geometry or the insulation thickness of the 

electrode (Dayton et al., 1980) have an effect on ssi . As a result a geometric factor G is 

incorporated into the equation to consider these influences resulting in Equation 2.11. 

r

nFADc
Giss   

Equation 2.11 

Despite theoretical reports of true steady-state behaviour not being reached by 

microelectrodes, a quasi-steady-state is achieved (Aoki, 1993). This is dependant on, and 

proportional to, the radius of the electrode.  
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2.5 Measurement of Dissolved Oxygen 

Electrochemical oxygen electrodes are founded on the electrocatalytic reduction of oxygen 

at the working electrode surface.  A number of mechanisms have been proposed for this 

reaction including a four-electron transfer Equation 2.12) which occurs in a single-step 

without the formation of intermediates (Damjanovic et al., 1967). 

OHeHO 22 244  

 

Equation 2.12 

A two-step process (Equation 2.13 Equation 2.14) has also been reported where hydrogen 

peroxide is formed as a measurable intermediate (Hoare, 1968).   

222 22 OHeHO  

 

Equation 2.13 

 

OHeHOH 222 222  

 

Equation 2.14 

Equation 2.12 involves a
e4 pathway, resulting in the reduction of 2O  to OH  or OH2 .  

This reduction may involve a peroxide intermediate adsorbed on the electrode surface but 

does not result in peroxide being present in the solution phase.  The two-step process 

involves the peroxide species, present in the solution phase.  2O  results from the 

decomposition of the peroxide species (Equation 2.15) and is recycled via the reaction 

(Equation 2.13) with the overall reaction being a 
e4 pathway.  
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2222 22 OOHOH   

Equation 2.15 

(Damjanovic et al., 1967) proposed that oxygen reduction is a multi-electron process that 

involves a number of series-parallel pathways.  These pathways are indicated by the rate 

constants 1k , 2k  and 3k  corresponding to the reactions in Equation 2.13, Equation 2.14 

Equation 2.15 respectively. 

 

Figure 2.4:  Proposed mechanism for reduction of oxygen in aqueous electrolytes for Pt electrodes 

(Damjanovic et al., 1967). 

2.6 Enzymes 

Enzymes are biological catalysts which increase the rate of metabolic reactions.  They are 

globular proteins, consisting of long chains of amino acids which are folded into a specific 

shape.  The active site acts as the catalyst where the substrate binds and converts to a 

product. Enzymes are highly substrate specific and this specificity makes them extremely 

desirable in the fabrication of biosensors. Immobilisation of an enzyme on the electrode 

surface allows its corresponding substrates concentration to be monitored indirectly by 

electrochemical means. 

Glucose oxidase, an oxidoreductase enzyme is used in this body of work.  Oxidoreductase 

enzymes catalyse the oxidation and reduction of their respective substrates.  In order for the 

oxidase enzymes to catalyse redox reactions, molecular oxygen (O2) must be present.  

Flavin adenine dinucleotide (FAD) is the reactive redox site of these enzymes and it binds 

the O2 after the enzyme and substrate reaction has taken place in order to convert the 

enzyme back to its original form thus enabling it to react with another substrate molecule.  
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The general scheme of an oxidase enzyme reaction process at the surface of a first 

generation biosensor is illustrated in Figure 2.5.  H2O2 is produced when the FAD is 

oxidised and this reacts at the electrode surface to produce a current. 

 

Figure 2.5:  Generalised reaction mechanism of an oxidase enzyme on a first generation biosensor. The 

blue arrows represent reduction and red arrows indicate oxidation. 

2.6.1 Enzyme Kinetics 

The intricate nature of the active site of an enzyme is what allows it to selectively react 

with only one or a limited number of substrates, which leads to complex reaction 

mechanisms.  The overall kinetic parameters of a specific reaction can be determined by 

examining these reactions in a generalised manner.  A single substrate enzyme-catalysed 

reaction where one substrate-binding site is present results in the following general enzyme 

kinetic equation (Equation 2.16).   

E + S ES E + P
k1

k-1

k2

k-2

 

Equation 2.16 

where E  is the enzyme, S  is the substrate , ES  is the enzyme-substrate complex, P  is the 

resulting product of the reaction and k refers to the rate constants for each specific reaction 

Initially it is found in a reaction that the concentration of the product is low and thus the 

reverse reaction of product to the enzyme-substrate complex, indicated by k-2 is negligible. 

H2O2 

O2 

Enzyme/FAD 

Enzyme/FADH

Substrate 

Product 

Electrode 

Active 

Surface 
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When experiments were limited to the initial period of the reaction, it follows that the 

product concentration is negligible and the formation of ES  from product by pathway 2
k  

can be dismissed.  As a result Equation 2.16 becomes Equation 2.17: 

E + S ES E + P
k1

k-1

k2  

Equation 2.17

 

Michaelis and Menten (1913) derived the rate equation for enzyme catalysis, in which the 

steady-state approximation can be applied to the formation and destruction of the enzyme-

substrate complex, ES .  The rate of change of the concentration of ][ES  with time is 

shown in the Equation 2.18. 

 
][][]][[ 211 ESkESkSEk

dt

ESd
 

 

Equation 2.18 

where ][E  is the concentration of unbound enzyme and ][ES  the concentration of the 

bound enzyme.  Therefore, the total enzyme concentration 0][E , can be substituted into 

Equation 2.18 by Equation 2.19. 

][][][ 0 ESEE 
 

Equation 2.19 

Combining these two equations and applying the steady-state approximation, where, 

 
0

dt

ESd
, it is found:  

    021101   ESkESkSESkSEk ]][[][][
 

Equation 2.20 

From Equation 2.20 it is possible to isolate the concentration of the enzyme-substrate 

complex, giving: 
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    1

21

0

][

][][
][

k

kk
S

SE
ES







  

Equation 2.21 

Replacing the constants  
1

21

k

kk   with KM, the Michaelis constant, further simplifies the 

equation.  Resulting in:  

MKS

SE
ES




][

][][
][ 0  

Equation 2.22 

But the overall rate of reaction, v, is solely dependent on the concentration of the enzyme-

substrate complex and the rate of formation of products, k2, thus: 

          

Equation 2.23 

][ES  has been isolated in order to allow its substitution into the following relationship 

where overall rate of reaction (the rate of formation of products), 2k   is solely dependent on 

it.   

     ][ESk2    

Equation 2.24 

where   is the overall rate of reaction.  Substituting gives: 

     MKS

SEk




][

][][ 02
  

Equation 2.25 

When substrate concentration is very high all the enzyme exists only as enzyme-substrate 

complex and the limiting initial velocity (rate), maxV , is reached.  Hence, ][S >>KM and  
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     02max ][EkV 
   

Equation 2.26 

and therefore,  

     MKS

SV




][

][max
  

Equation 2.27  

Further assuming that substrate is present in a much higher concentration than the enzyme, 

then the initial substrate concentration, [S]0, is much greater than the initial enzyme 

concentration, 0][S  is much greater than the initial enzyme concentration 0][E  then 

0][][ SS  and as a result Equation 2.27 becomes the Michaelis-Menten equation: 

     
MKS

SV




0

0

][

][max  

Equation 2.28 

where   is the rate of reaction, maxV  is the maximal rate of reaction, 0][S
 
is the initial 

substrate concentration and MK is the Michaelis constant. 

A rectangular hyperbola is observed when v  is plotted against 0][S  as displayed in Figure 

2.6.  From this graph both maxV   and MK  can be obtained as shown, with MK being ][S

where 
2
maxV

 . 
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Figure 2.6:  Graph of the reaction rate, v, against substrate concentration, [S]0, for an enzyme 

concentration, [E]0 for a single substrate enzyme catalysed reaction resulting from the Michaelis-

Menten equation (Equation 2.28). 

The hyperbolic response can be seen in Figure 2.6, when more than one molecule of 

substrate binds to a single molecule of enzyme. If each binding site on the enzyme is 

similar and independent the response observed will still be hyperbolic.  If there is an 

increase in affinity to a binding site where the binding of a substrate to one active site on 

the enzyme increases the affinity of other sites on the enzyme to bind more molecules of 

substrate then sigmoidal kinetics are observed, known as the co-operative effect (Ricard & 

Cornish-Bowden, 1987).  The Michaelis-Menten Hill-type equation (Lowry & O'Neill, 

1992; Lowry et al., 1994) is used to quantify the deviation from hyperbolic, idealised 

kinetics and the constants, Vmax and KM,  in this body of work.  It uses the constant α which 

was introduced following work on the aggregation of hæmoglobin and oxygen (Hill, 1910; 

Stryer, 1988).   















][
1

max

S

K

V
i

M

 

Equation 2.29 

where i  indicates the current observed from the electro-oxidation of H2O2 at the surface of 

the electrode. α is used as a measure of deviation from the ideal Michaelis-Menten 

behaviour, with ideal behaviour α=1.  An α value of 2 is indicative of sigmoidal kinetics.   

 

 

KM 
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2.7 Structures and Reactions 

2.7.1 Hydrogen Peroxide 

First generation biosensors (Section 1.4.1) utilising enzymes produce stoichiometrically 

equivalent amounts of H2O2 as the enzyme-substrate reaction occurs.  Platinum is 

commonly used as the electrode material of choice to detect the production of H2O2 (Hall et 

al., 1998).  The process is well known and characterised as a two-electron process 

(Hickling & Wilson, 1951; Lingane et al., 1963).  It is based on a thin oxide film forming 

on the surface of the platinum, with which the H2O2 interacts, similar to that proposed for 

palladium (Gorton, 1985). The mechanism for the oxidation is outlined below in three 

equations (Hall et al., 1998) 

  eHOOH 22222  

Equation 2.30 

22222 2)( OOHPtOHOHPt   

Equation 2.31 

  eHOHPtOHPt 22)(2 22  

Equation 2.32 

 

The complex formation between the oxide film and hydrogen peroxide is described in 

Equation 2.30 and Equation 2.31 describes the breakdown of this complex releasing water 

and oxygen and leaving behind an unoxidised metal surface. Finally in Equation 2.32 it is 

seen that the water recombines with the platinum surface to release two protons and two 

electrons. It is these electrons which produce the current that is measured and related 

directly to the concentration of substrate in solution. 
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2.7.2 Glucose 

The enzyme glucose oxidase is an oxidoreductase enzyme discussed in Section 2.6.  It 

catalyses the oxidation of β-D-glucose into D-glucono-1,5-lactone, which then hydrolyses 

to gluconic acid (Wilson & Turner, 1992) as can be seen in Figure 2.7.  H2O2 is produced 

when the FAD is oxidised and this reacts at the electrode surface to produce a current.  

 

Figure 2.7:  Reaction mechanism for the oxidation of β-D-glucose into D-glucono-1,5-lactone. 

2.7.3 Electropolymerisation of o-Phenylenediamine 

Poly-o-phenylenediamine (PPD) can be polymerised onto the active surface of the 

electrode by electropolymerisation in a neutral electrolyte to form an insulating polymer 

(Malitesta et al., 1990). This insulating film of PPD prevents further electropolymerisation, 

thereby resulting in a reproducible coating.  This coating blocks out any interferent species 

larger than the o-phenylenediamine monomer (Sasso et al., 1990) and therefore it has been 

used as an interference rejection layer in biosensor design (Lowry et al., 1994; Lowry & 

O'Neill, 1994; Rothwell et al., 2010).  Little is still known about the structure of PPD and 

the mechanism by which polyimerisation occurs, particularly under neutral conditions (Li 

et al., 2002). Two different structures of PPD are proposed which appear to be dependent 

on polymerisation conditions.  Under conditions of low pH (<1) it is believed that the 

structure is a phenazine-like ‘ladder’ structure, see Figure 2.8.  This is the most commonly 

reported structure, supported by work on infrared, Raman and UV-Vis spectroscopy, quartz 
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microcrystal balance studies, radiometry and electrochemical techniques (Bilal et al., 

2011).   

 

 

Figure 2.8:  Proposed phenazine “ladder” like structures of PPD where A: the oxidised form (Sayyah et 

al., 2009) and B: non-oxidised form (Bilal et al., 2011). 

 

The more ‘open’ or polyaniline-like 1,4-substituted benzenoid-quinoid structure (Yano, 

1995) can be seen in Figure 2.9.  A mechanism for the polymerisation of o-PD to PPD with 

the ‘open’ structure has been proposed (Sayyah et al., 2009). In this project this ‘open’ 

polymer that self-insulates as it polymerises producing a film of ca.10 nm (Malitesta et al., 

1990) is hypothesised to be produced under neutral pH conditions. 
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Figure 2.9:  Proposed 1,4-substituted benzenoid-quinoid structure of PPD, ‘open’ structure (Losito et 

al., 2001). 

2.7.4 Ascorbic Acid  

Ascorbic acid (AA) is one of the main endogenous interferents in electrochemical analysis 

as it’s an electroactive species present in the ECF (Grunewald et al., 1983)  that is readily 

oxidised at metal electrodes, with an E½ in the range -100 to +400 mV vs. SCE (O'Neill et 

al., 1998).  The oxidation of AA at the surface of a platinum electrode involves a 2H
+
, 2e

-
 

mechanism resulting in the production of L-dehydroascorbic acid which rapidly forms an 

electro-inactive open chain product, L-2-3-diketogulonic acid.  The reaction mechanism is 

shown in Figure 2.10. 

  
Figure 2.10:  Reaction mechanism for the oxidation of AA to the electro-inactive product L-2,3-

diketogulonic acid 
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2.8 Data Analysis 

Constant potential amperometry (CPA) experiments were performed and relevant data was 

extracted using LabChart 6 software.  Data was exported and either preliminarily processed 

in Microsoft
®
 Excel

®
 or directly analysed in GraphPad Prism

®
 5. 

2.8.1 Linear and Non-Linear Regression 

Linear regression fit was the most commonly used analysis in this body of work and was 

applied to O2 calibrations performed in vitro.  Non-linear regression fits taking the form of 

the Michaelis-Menten equation and the modified Hill-Type equation (see Section 2.6.1) 

were applied to in vitro glucose, enzymatic calibrations. Regression analyses allowed for 

comparisons and for further statistical analysis to be performed. 

2.8.2 Statistical Analysis 

Parametric t-tests allowed for the comparison of two data sets with a quantitative 

examination of the statistical difference between the results.  Unpaired t-tests were 

performed on the mean of the data for the majority of analysis.  However, paired t-tests 

were performed on individual data sets for particular analysis where appropriate.  GraphPad 

InStat
®
 as well as GraphPad Prism

®
 5 was used for t-tests.  Area under the curve (AUC) 

analysis was performed on normalised in vivo data to determine the mean change from the 

baseline signal.  For multiple comparisons, repeated-measures and mixed-factorial analysis 

of variance tests (ANOVA) with either standard Tukey-Kramer Multiple Comparison or 

Bonferroni post-hoc analysis used, where appropriate. 

The P value is a probability, where 0 ≤ P ≤ 1.  It describes the statistical difference between 

two values and allows one to decide whether or not it is significantly different.  Small P 

values indicate that the sampled populations have different means (i.e. difference is 

unlikely to be due to chance) and that the results are significantly different. The standard 

95% confidence interval was used for these tests, so a P-value less than 0.05 would indicate 
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that there was a significant difference between the two sets of data analysed, whereas a P-

value higher than 0.05 would indicate no significant difference.   

 

For one-way ANOVA, the F value (F-test) is used to assess whether the expected values of 

a quantitative variable within several pre-defined groups differ from each other and df 

denotes the degrees of freedom. 

The R
2
 value is a measure of the goodness of fit of a data set to a regression (linear and 

non-linear), where 0 ≤ R
2
 ≤ 1.  An R

2
 value of 1 indicates a perfect fit, where all points lie 

directly on the line or curve which is proposed as the fit. A value of 0 indicates that there is 

no relationship between the X and Y values in the data set and that it is not possible to 

assign the chosen trend, linear or non-linear, to them. 

2.8.3 Current Densities 

For electrodes with varying physical dimensions to be compared it is necessary to convert 

current values into current density values ( J ).  This allows for current per unit area, J  

(µA.cm
-2

), to be calculated. Equation 2.33 gives the formula for calculation of the current 

density: 

A

I
J 

 

Equation 2.33 

where J  is the current density, I  is the current and A  is the area of the active surface of 

the electrode.   
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2.8.4 Dissolved Oxygen – Temperature dependence 

For oxygen calibrations performed at 37°C the dissolved oxygen (Do) was determined to be 

214 µM for air saturated solutions and 1020 µM for O2 saturated solutions.  These values 

were calculated using Do = 6.856 mg/L for an air saturated (21 % O2) solution. 
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3.1 Introduction 

This experimental chapter details the design, fabrication and characterisation, in vitro and 

in vivo, of various sensors for the detection of energy substrates in the brain.  The 

electrodes are based on previous sensor development work by the Lowry research group 

(O'Neill et al., 1998).  Carbon paste based electrodes were founded on work by (Lowry et 

al., 1996), carbon composite electrodes on work by (Bazzu et al., 2009),  a standardised 

sensor for O2 detection in an fMRI scanner based on a carbon fibre electrode (Lowry et al., 

2010) and platinum-based sensors on work by (Lowry et al., 1994).   

Sections 3.2 and 3.3 describe computer-based instrumentation, chemicals, enzymes and 

solutions.  The preparation of various electrodes are detailed in section 3.4 as well as 

electrode modifications in section 3.5. 

Electrochemical experiments in vitro are detailed in section 3.6 and all in vivo procedures 

and experiments in section 3.7. 

3.2 Computer-Based Instrumentation, Equipment & Software 

All electrochemical experiments throughout the course of this work involved the use of: 

 A computer  

 An interface:  A Powerlab
®
 or e-corder 

 A potentiostat:  A Biostat or Quadstat 

3.2.1 Potentiostat, CPU & Data Acquisition 

All in vitro electrochemical experiments (constant potential amperometry, CPA) and cyclic 

voltammetry, CV) were performed using a low noise potentiostat (Biostat IV, ACM 

Instruments, Cumbria, UK). Data acquisition was performed using a PowerLab
®
 interface 
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system (ADInstruments Ltd; Oxford, UK) and a Logiq notebook computer (Clevo, 

Berkshire, UK) or an Apple iMac Computer.  The software packages used were LabChart 

for Windows and iMac (Version 6) and EChem for Windows Version 1.5.2 

(ADInstruments Ltd.). 

In vivo freely-moving CPA experiments were performed using low noise potentiostats 

(Biostat IV, ACM Instruments, Cumbria, UK, and Biostat II, with a head-stage amplifier 

from Electrochemical and Medical Systems (EMS), Newbury,UK.  Data acquisition was 

performed using a PowerLab
®
 interface system (ADInstruments Ltd; Oxford, UK) and an 

Apple iMac Computer.  The software package used was LabChart for Mac (Version 6.1). 

In vivo +-maze based CPA experiments were performed using a QuadStat (Model EA164) 

and data acquisition was performed using an e-corder 410 (Model ED410).  The software 

packages used was Edaq chart (Version 5) for Windows. 

The graphical and statistical analysis of acquired data was performed using Microsoft Excel 

2010, GraphPad InStat
®
 and Prism

® 
(Version 5.01) from GraphPad Software, Inc. 

California, USA. 

3.2.2 Additional Equipment 

Air pump: The air pump used for O2 experiments was a Rena Air 200 from RENA
®
, France 

Anaesthetic unit: A multi-system set-up consisting of a vaporiser for induction (Univentor 

400 Anaesthesia unit), an air pump (Stellar S3), an induction chamber with a 1.4 L 

capacity, a gas routing switch and stereotaxic inhalation mask which were all supplied from 

Agnthos, Sweden. 

Carbon fibre bundle wire: Goodfellow Cambridge Ltd; UK. 

Carbon fibre wire (PVA coated 1mm):  World Precision Instruments, Hertfordshire, UK. 



Chapter 3: Experimental 

56 

Conducting silver epoxy: Circuit Works CW2400, RS Components Ltd; UK. 

Electrode wire: All Teflon
®

 coated platinum, silver and gold wire was obtained from 

Advent Research Materials, Suffolk, UK. 

Electronic Balance: Sartorius LA230D, Sartorius Stedim UK Limited, Dublin. 

Gold clips: In vitro- Fine Science Tools, UK. In vivo - Plastics One, VA, USA. 

Hamilton syringe: Fisher Scientific Ireland, Dublin. 

Heat shrink: RS Components Ltd; UK. 

Incubator: The incubator used for animal recovery a Thermacage MKII supplied by 

Datesand Ltd; UK. 

Insulated Copper wire: 1mm PVA insulated Copper wire, RS Components Ltd; UK. 

Magnetic Stirring Plate: Yellowline IKA MST Mini Magnetic Stirrer, Lennox, Ireland.  

Microscope: The microscope used for electrode preparation was an Olympus SZ51, Mason 

Technology, Dublin.  

pH meter: S20 Seven Easy Multi pH Meter, Mason Technology, Dublin.  

Silica tubing: SGE Analytical Science supplied by VWR International Ltd; Dublin, 

Ireland. 

Solder and soldering iron: Weller - WTCP 51, Farnell, UK. 

Sonicator: Fisherbrand, FB11002, Fisher Scientific Ireland, Dublin. 

Stereotaxic frame: The stereotaxic frame used was sourced from Kopf, CA, USA. 
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Surgical Screws: Plastics One, VA, USA 

Teflon
®
 Pedestal: Plastics One, VA, USA. 

Temperature Probe:  For temperature experiments a magnetic stirrer/hotplate (IKA MST 

Basic C, Lennox Laboratory Supplies Ltd; Dublin, Ireland) was used. Solution temperature, 

were indicated was controlled using a TC1 temperature controller (IKA). 

Vortex: The Vortex (Reax Control, Heidolph, Essex, UK) was used to uniformly mix 

solutions by agitation.  

3.3 Chemicals, Enzymes, Composites and Solutions 

3.3.1 In Vitro Chemicals 

Acetone       Sigma-Aldrich Co. 

Bovine Serum Albumin (Fraction V)    Sigma-Aldrich Co. 

Collodion        Fluka  

Conductive Carbon Paste     SPI Supplies Inc.  

Epoxy Resin       Sigma-Aldrich Co.  

Graphite Powder      Sigma-Aldrich Co. 

L-α-phosphatidylethanolamine (PEA)   Sigma-Aldrich Co. 

Methyl Methacrylate (MMA)     Sigma-Aldrich Co. 

Nitrogen Gas       BOC, Ireland 
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o-Phenylenediamine      Sigma-Aldrich Co. 

Oxygen Gas       BOC, Ireland 

Rhoplex
® 

      General Paints Ltd. 

Silicone oil       Aldrich Chemical Co. 

Sodium Chloride      Sigma-Aldrich Co. 

Sodium Hydroxide      Sigma-Aldrich Co. 

Sodium Phosphate      Sigma-Aldrich Co. 

3.3.2 In Vivo Chemicals 

Acetazolamide (Diamox)     Sigma-Aldrich Co. 

Buprenorphine hydrochloride  (Tamgestic)   Sigma-Aldrich Co. 

Chloral Hydrate      Sigma-Aldrich Co. 

Dental acrylate      Sigma-Aldrich Co. 

Dimethylsulfoxide (DMSO) for molecular biology  Sigma-Aldrich Co. 

Isoflurane       Abbott Laboratories. 

3.3.3 Enzymes 

Glucose oxidase (49180)     Sigma-Aldrich Co. 

Glucose oxidase (Aspergillus niger)    Sigma-Aldrich Co. 
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Glucose oxidase (Aspergillus niger)    Genzyme Chemical Co. 

Glucose oxidase (G2133 50KU)    Sigma-Aldrich Co. 

3.3.3.1 Enzyme substrates 

D-(+)-Glucose       Sigma-Aldrich Co. 

3.3.4 Solutions 

3.3.4.1 In Vitro Solutions 

Artificial Cerebro Spinal Fluid (aCSF) 

This was prepared by dissolving 8.9 g NaCl (0.15 M), 0.298 g KCL (0.004 M), 0.176 g 

CaCl2 (0.0016 M) and 0.204 g MgCl2 (0.021 M) in 1 L of H2O.   

Ascorbic Acid (AA) 

A 0.1 M standard solution was prepared by dissolving 0.176 g in 10 ml H2O.  The solution 

was N2 saturated and prepared freshly before use. 

Bovine Serum Albumin (BSA) 

A 10% (w/v) solution was prepared by dissolving 0.1g in 1 ml H2O. 

Glucose 

A 1 M standard solution was prepared by dissolving 9.01g of glucose in 50 ml H2O.  The 

solution was prepared 24 hours before use and stored at room temperature to allow 

complete mutarotation of the anomers. 
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L-α-phosphatidylethanolamine (PEA) 

A 10% solution was prepared by dissolving 0.140 g in 1 ml H2O. 

o-Phenylenediamine (o-PD) 

A 300 mM (saturated) solution was prepared by dissolving 0.324 g in 10 ml of N2 saturated 

PBS.  A sonic bath was used for a minimum of 10 minutes to agitate the solution and 

ensure maximum dissolution. 

o-Phenylenediamine /Glucose oxidase (o-PD/GOx) 

A 300 mM solution of o-PD was prepared as previously described.  5 mg/ml of GOx was 

incorporated into 5 ml of o-PD solution. 

Phosphate Buffer Saline (PBS) pH 7.4 

This was prepared by dissolving 8.9 g NaCl (0.15 M), 1.76 g NaOH (0.044 M) and 6.86 g   

NaH2PO4.2H2O (0.044 M) in 1 L of H2O.  The pH was adjusted to 7.4 as required and the 

solution was N2 saturated for a minimum of one hour. 

PBS pH 6.5 & 8 

This was prepared by dissolving 8.9 g NaCl (0.15 M), 1.76 g NaOH (0.044 M) and 6.86 g   

NaH2PO4.2H2O (0.044 M) in 1 L of H2O.  The pH was adjusted to pH 6.5 using NaH2PO4 

and pH 8 using NaOH. 

3.3.4.2 In Vivo Solutions 

Chloral Hydrate 

For systemic administration 350 mg/kg/1 ml was prepared in 0.9 % saline solution. 
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Acetazolamide (Diamox) 

For systemic administration 50 mg/kg/1.5 ml was prepared in 0.5 ml 0.9 % saline solution 

and 1 ml DMSO. 

Glucose soultion 

For systemic administration 250 mg/kg/1 ml was prepared in 0.9 % saline solution. 

Normal Saline Solution 

A 0.9% solution was prepared by dissolving 0.9 g NaCl in 100 ml H2O. 

3.3.5 Composites 

Carbon Paste 

0.71 g of graphite powder was mixed with 250 µl of silicone oil.  This was done by 

continuous mixing in a pestle and mortar for 3 hours to ensure that the two components 

were completely amalgamated. 

Carbon Polyvinyl Acetate (PVA) 

Three PVA based composites were used throughout this project with varying amounts of 

graphite powder.  

0.05 g PVA/0.01 g carbon 

0.05 g PVA/0.02 g carbon 

0.05 g PVA/0.03 g carbon 
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The graphite powder was weighed and mixed with PVA using a needle on a non-absorbent 

acetate sheet.  

Carbon Rhoplex
®

 

Rhoplex
®
 based composites were used throughout this project with varying amounts of 

graphite powder.  

0.05 g Rhoplex
®
/0.01 g carbon 

0.05g Rhoplex
®
/0.02 g carbon 

0.05 g Rhoplex
®
/0.03 g carbon 

0.01g Rhoplex
®
/0.05g carbon  

0.005g Rhoplex
®
/0.0125g carbon 

The graphite powder was weighed and mixed with Rhoplex
®
 using a needle on a non-

absorbent acetate sheet. 

3.4 Electrode Preparation 

3.4.1 Carbon Paste Electrodes 

All carbon paste electrodes (CPE) were prepared by trimming approximately 4.5 cm 

lengths of 200 µm Teflon
®
-
 
insulated silver wire (200 µm bare diameter, 270 µm coated 

diameter (8T), Advent Research Materials, Suffolk, UK).  The wire was carefully cut at 

both ends using a sharp scalpel to create an even disk surface.  3 mm of the wire was 

exposed by removing the Teflon
®
 from one end of the wire and the Teflon

®
 was carefully 

pushed up the wire to create a 2 mm cavity.  The cavity was then packed with carbon paste 

(Section 3.3.5) by dipping the tip of the electrode into a small amount of the paste which 
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was packed in using a bare silver wire as a plunger.  This process was repeated until the 

cavity was completely packed. A flat active surface at the tip of the electrode was obtained 

by gently tapping the electrode off a hard, flat surface.  The 3 mm of exposed wire was 

soldered into a gold clip for electrical conductivity and rigidity.  

 

 

Figure 3.1:  Schematic representation of a carbon paste electrode. 

3.4.2 Silver based carbon composite electrodes 

Carbon composite electrodes were prepared by trimming approximately 4.5 cm lengths of 

200 µm Teflon
®
-
 
insulated silver wire (200 µm bare diameter, 270 µm coated diameter 

(8T), Advent Research Materials, Suffolk, UK).  The wire was carefully cut at both ends 

using a sharp scalpel to create an even disk surface.  3 mm of the wire was exposed by 

removing the Teflon
®

 from one end of the wire and the Teflon
®
 was carefully pushed up 

the wire to create a 2 mm cavity.  The cavity was then packed with a carbon composite 

(section 3.3.5) by dipping the tip of the electrode into the paste.  This process was repeated 

until the cavity was completely packed.  A flat active surface at the tip of the electrode was 

obtained by gently tapping the electrode off a hard, flat surface.  The 3 mm of exposed wire 

was soldered into a gold clip for electrical conductivity and rigidity.  

 

 

Figure 3.2:  Schematic representation of a silver based carbon composite electrode. 
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3.4.3 Carbon Rhoplex
®
 composite electrodes fMRI design (CRCEs) 

A 4.5 cm length of 200 µm Teflon
®
-insulated silver wire (200 µm bare diameter, 270 µm 

coated diameter (8T), Advent Research Materials, Suffolk, UK) was cut at both ends using 

a sharp scalpel to create an even disk surface.  The Teflon
®
 was carefully removed from the 

wire and a bundle of carbon fibres was inserted into the Teflon
®
.  The carbon fibres were 

trimmed at one end and pulled gently back through the Teflon
®
 creating a cavity of ~ 1 

mm.  The opposite end was glued with a small amount of superglue and left to dry.   

5 mm from both ends of a 20 cm length of coated copper was removed and a gold clip was 

soldered at one end for electrical contact and connection to the system.  An 11 cm length of 

polyamide coated carbon fibre was cut and 5 mm of coating removed from either end of the 

wire.  Using conductive silver epoxy the wire was adhered at one end to the Teflon
® 

containing the carbon fibres and to the copper wire at the other.  Both connections were 

carefully sealed avoiding the Teflon
®
 with clear heat shrink and a small amount of 

superglue.   

3.9 cm of polyamide coated carbon fibre was cut and the carbon fibre bundle was removed 

from the coating.  The Teflon
®

 containing the carbon fibres was then inserted into the 

polyamide coating and glued.  This was then sealed with heat shrink and glued. 

When dry a 1 cm length of silica (320 µm i.d./430 µm o.d.) was cut and both sides were 

polished with fine sandpaper.  A silver wire was pushed through the silica tubing to remove 

any residue on the inside of the tube.  The Teflon
®
 coating the carbon fibres was then 

inserted into the silica, with a small amount of the fibres visible at the cavity end of the 

Teflon
®
 and the silica was glued to the polyamide coating. 

The carbon Rhoplex
®
 composite was fabricated by mixing 0.03 g of carbon with 0.05 g of 

Rhoplex
®
.  This was mixed thoroughly and carefully packed by gently dipping the Teflon

®
 

cavity into the mixture.  The electrode was checked frequently through this process to 

ensure sufficient packing of the cavity.  When completed the tip of the electrode was tapped 

off a clean dry surface to ensure the active surface was a uniformly flat, smooth disk shape.  
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The electrodes were left to dry for 24 hours with the active surface flat against a hard 

surface to prevent the glue from displacing.  After 24 hours the packing was checked and 

any excess composite on the outer Teflon
®
 was removed carefully using a needle.  

 

Figure 3.3:  Schematic representation of a CRCE full fMRI design. 

 

3.4.4 Carbon Rhoplex
®
 composite electrodes in vivo freely-moving design (CRCEs) 

A 3 cm length of 200 µm Teflon
®

-insulated silver wire wire (200 µm bare diameter, 270 

µm coated diameter (8T), Advent Research Materials, Suffolk, UK) was cut at both ends 

using a sharp scalpel to create an even disk surface.  The Teflon
®
 was carefully removed 

from the wire and a bundle of carbon fibres was inserted into the Teflon
®
.  The carbon 

fibres were trimmed at one end and pulled gently back through the Teflon
®
 creating a 

cavity of ~ 1 mm.  The opposite end was glued with a small amount of superglue and left to 

dry. 

1 mm from both ends of a 3 cm length of coated copper was removed and a gold clip was 

soldered at one end for electrical contact and connection to the system.  

Using conductive silver epoxy the copper wire was adhered to the carbon fibres.  This 

connection was carefully sealed avoiding the Teflon
®

 with clear heat shrink and a small 

amount of superglue.   3 cm of polyamide coated carbon fibre was cut and the carbon fibre 

bundle was removed from the coating.  The Teflon
®
 containing the carbon fibres was then 

inserted into the polyamide coating and glued to the heat shrink.  This was then sealed with 

heat shrink and glued. 
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When dry a 1 cm length of silica (320 µm i.d./430 µm o.d.) was cut and both sides were 

polished with fine sandpaper.  A silver wire was pushed through the silica tubing to remove 

any residue on the inside of the tube.  The Teflon
®
 coating the carbon fibres was then 

inserted into the silica, with a small amount of the fibres visible at the cavity end of the 

Teflon
®
 and the silica was glued to the polyamide coating. 

The carbon Rhoplex
®
 composite was fabricated by mixing 0.03 g of carbon with 0.05 g of 

Rhoplex
®
.  This was mixed thoroughly and carefully packed by gently dipping the Teflon

®
 

cavity into the mixture.  The electrode was checked frequently through this process to 

ensure sufficient packing of the cavity.  When completed the tip of the electrode was tapped 

off a clean dry surface to ensure the active surface was a uniformly flat, smooth disk shape.  

The electrodes were left to dry for 24 hours with the active surface flat against a hard 

surface to prevent the glue from displacing.  After 24 hours the packing was checked and 

any excess composite on the outer Teflon
®
 was removed carefully using a needle.  

 

Figure 3.4:  Schematic representation of a CRCE freely-moving design. 

 

3.4.5 Disk platinum electrodes 

Platinum based disk working electrodes were prepared by trimming approximately 4.5 cm 

lengths of 200 µm Teflon
®
-
 
insulated Pt/Ir (90%/10%) wire (125 µm bare diameter, 175 µm 

coated diameter (5T), Advent Research Materials, Suffolk, UK).  The wire was carefully 

cut at both ends using a sharp scalpel to create an even disk surface.  3 mm of the wire was 
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exposed by removing the Teflon
®
 from one end of the wire and this was soldered into a 

gold clip for electrical conductivity and rigidity. 

 

Figure 3.5:  Schematic representation of a Pt-disk electrode. 

3.5 Electrode Modifications 

3.5.1 Electropolymerisations 

To prevent interference from endogenous electroactive species such as ascorbic acid some 

electrodes were modified by generating a size exclusion polymer over the active surface of 

the electrodes.   

The electrodes were electropolymerised using a standard three-electrode cell consisting of 

four working electrodes, a bare platinum wire as an auxiliary electrode and a SCE reference 

electrode.  A nitrogen (N2) atmosphere was maintained throughout the polymerisation as 

the solution is liable to oxidation in air.  The cell was set up and N2 saturated prior to the 

preparation of the monomer.  The monomer solution was transferred to the cell and the lid 

replaced immediately.  When the polymerisation was complete the working electrodes were 

instantly removed from the monomer solution, dipped in H2O and allowed to dry for a 

minimum 1 hour before further use.   

3.5.1.1 Poly-o-phenylenediamine Modified Electrodes (PPD) 

A 300 mM solution of o-Phenylenediamine (o-PD) was prepared as described previously 

(section 3.3.4.1).  The solution was placed in a previously set up N2 saturated cell and a 

potential of +700 mV vs. SCE was applied to the working electrodes for 30 minutes.   The 
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electrodes were removed from the monomer solution, rinsed in H2O and allowed to dry for 

1 hour before further use.  The electrodes were stored in the refrigerator at 4 ˚C when not in 

use. 

3.5.2 Metal based modified O2 electrodes 

3.5.2.1 MMA modified O2 electrodes 

A Pt disk electrode was placed in pure MMA monomer solution for a period of 5 s, 

removed and allowed to dry at room temperature for a minimum of 1 h before use.  The 

electrode was stored in the refrigerator at 4 ˚C when not in use. 

3.5.3 Enzyme based Electrodes 

3.5.3.1 Poly-o-phenylenediamine/Glucose Oxidase Modified Electrodes 

For the detection of the substrate glucose the enzyme glucose oxidase (GOx) was 

incorporated in to the PPD polymer by means of entrapment.  A 300 mM solution of o-PD 

was prepared as described (Section 3.3.4.1).  5mg/ml of GOx was added to the o-PD 

solution which was agitated using a vortex to amalgamate the monomer and the enzyme.  

Pt disk electrodes were usually polymerised using 5 ml of monomer with 25 mg of GOx to 

minimise the amount of enzyme for cost effective purposes.  

3.5.4 Electrode treatments and stability 

To determine the electrode’s viability in the in vivo environment the effects of proteins and 

lipids were investigated.  The proteins and lipids naturally occurring in endogenous tissue 

can have an effect on the sensitivity of the electrodes (Ormonde & O'Neill, 1989, 1990) .  

To determine if the electrodes are liable to a reduction in sensitivity they were exposed to 

bovine serum albumin (BSA), L-α-phosphatidylethanolamine (PEA) and ex-vivo brain 

tissue samples.   
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Stability was examined to investigate the shelf-life of the electrodes with respect to time.  

Electrodes were calibrated, stored in the refrigerator at 4 ˚C and repeatedly recalibrated for 

specified amounts of time (see individual electrodes) to determine if there was a reduction 

in the sensitivity. 

3.5.4.1 BSA treated electrodes 

Previously calibrated electrodes were immersed in a BSA 10% (w/v) solution (Section 

3.3.4.1).  The electrodes remained in the solution for 12 or 24 hours and were recalibrated 

an hour following removal from the BSA solution.  The electrodes were then re-immersed 

in the solution and calibrated after specified amounts of days. 

3.5.4.2 PEA treated electrodes 

Previously calibrated electrodes were immersed in a PEA 10% (w/v) solution (Section 

3.3.4.1).  The electrodes remained in the solution for 12 or 24 hours and were recalibrated 

an hour following removal from the PEA solution.  The electrodes were then re-immersed 

in the solution and calibrated after specified amounts of days 

3.5.4.3 Brain Tissue Treated Electrodes 

Previously calibrated electrodes were placed in a sample of ex-vivo brain tissue.  Small 

amounts of PBS, depending on the amount of sample present, were added to the tissue to 

prevent dehydration.  The active surface of the electrodes remained in contact with the 

brain tissue for 12 or 24 hours and were recalibrated an hour following removal from the 

tissue.  The electrodes were then re-immersed in the brain tissue sample and calibrated after 

a specified amount of days. 
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3.6 Electrochemical Experiments 

 

Figure 3.6:  In vitro electrochemical equipment set-up. 

3.6.1 In Vitro Experiments 

3.6.1.1 Three- Electrode Electrochemical Cell 

All of the in vitro experiments were performed using an in-house manufactured cell.  The 

cell itself was made of glass and a custom lid was used which was constructed using 

Teflon
®
.  The cap consisted of an opening for the reference, auxiliary and working 

electrodes.  The cap also had openings which served as gas and injection inlets.  A 
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magnetic stirring bead was also used when required and all experiments were performed at 

room temperature (21˚C) except when stated. 

 

Figure 3.7:  Schematic of a three-electrode cell set-up used in electrochemical experiments.  

3.6.1.2 Cyclic Voltammetry (CV)  

To determine the oxidation or reduction peak of a species CV is used.  A potential sweep is 

applied to the working electrode from an initial potential to a maximum potential. The 

sweep is inverted and then scanned back to the initial potential.  The parameters used for 

these experiments were between -1000 to +1000 mV vs. SCE at a scan rate of between 20 

to 100 mV/s, however the range used varied between types of electrodes.  All CV 

experiments were performed in a standard three-electrode electrochemical cell.  The 

reference electrode used was a saturated calomel electrode (SCE) and the auxiliary was a 

bare Pt wire.  CV experiments were performed in quiescent solution. 
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3.6.1.3 Constant Potential Amperometry (CPA) 

To calibrate the various types of working electrodes, CPA was used.   A fixed potential was 

applied throughout the experiment which varied according to each specific type of 

electrode and analyte. The applied potential was determined by CV. 

All CPA experiments were performed in a standard three-electrode electrochemical cell. 

The reference electrode used was a saturated calomel electrode and the auxiliary was a bare 

Pt wire.  The potential was applied to the working electrodes which were allowed to settle 

until a stable baseline was reached.  The amount of time for a stable baseline to occur 

varied depending on the working electrodes used. 

3.6.1.4 High concentration Oxygen (O2) Calibrations  

The potential applied to the O2 electrodes was -650 mV vs. SCE (unless otherwise stated). 

The electrodes were allowed to settle before being calibrated. Various concentrations of O2 

were used.  A 0 µM concentration of O2 was firstly obtained by deoxygenating the cell with 

N2 gas.  A 240 µM concentration of O2 was obtained by bubbling air through the buffer 

solution (Bourdillon et al., 1982; Foster et al., 1993).  A 1200 µM concentration of O2 was 

obtained by bubbling pure O2 through the buffer solution until it was saturated (Bourdillon 

et al., 1982). Each was bubbling and quiescent period was for approximately 40 minutes.  

The experiment was continuously recorded and in the absence of agitation steady states 

were chosen for analysis (unless otherwise stated). 

3.6.1.5 Low concentration O2 saturated PBS Calibrations 

To determine the O2 sensitivity of electrodes at low O2 concentrations (0-125 µM) 100 % 

O2 saturated PBS (1.2 mM) was used.  A potential of -650 mV vs. SCE (unless otherwise 

stated) was applied to the electrodes and the PBS was deoxygenated by vigorously 

bubbling N2 into the cell.  When the electrodes had reached a steady state, standard aliquots 

(+416, +425, +434, +443 and +452 ml) of a saturated O2 solution, each containing 25 mM 

O2, were injected into the cell.  The concentration range for the O2 calibrations were:  
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0, 25, 50, 75, 100, 125 µM 

3.6.1.6 Glucose Calibrations 

A potential of +700 mV vs. SCE was applied to the glucose electrodes. The electrodes were 

allowed to reach a steady baseline.  Aliquots of a 1 M glucose stock solution (section 

3.3.4.1) were injected into the PBS solution in the cell.  The PBS was briefly stirred using a 

magnetic stirring bead to uniformly mix the solution.  The concentration range for the 

glucose calibrations were: 

0, 1, 5, 10, 15, 20, 30, 50, 80, 100 mM 

3.6.1.7 Ascorbic Acid (AA) Calibrations 

Standard AA calibrations were performed at a potential of +700 mV vs. SCE.  Aliquots of a 

0.1 M AA stock solution was injected into the PBS solution in the cell.  The PBS was 

briefly stirred using a magnetic stirring bead to uniformly mix the solution.  The 

concentration range for the AA calibrations were: 

0, 200, 400, 600, 800, 1000 µM 

Calibrations involving a pre-injection of AA were performed at -650 mV vs. SCE.  A 500 

µM aliquot of 0.1 M AA stock solution was injected into the PBA solution in the cell once 

the electrodes had reached a steady-state.  The PBS solution was briefly stirred using a 

magnetic stirring bead to uniformly mix the solution.  The high concentration O2 

calibration was then performed in the presence of 500 µM AA. 

3.6.1.8 Post- implantation Calibrations  

Following removal of the headpiece the O2 electrodes were calibrated in 20 ml PBS as 

described previously (Section 3.6.1.4).  The headpiece was connected to the potentiostat via 

customised cables.  Glucose electrodes could not be calibrated as the polymer does not 
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withstand the removal process. However pre-calibration data can be used with these 

electorodes (Lowry et al., 2002).  The post-calibration process allowed for in vivo currents 

to be converted into concentrations for analysis purposes. 

3.7 In Vivo Experiments 

3.7.1 Animals 

Two strains of male rats were used during the course of this work.  The Wistar strain was 

used for characterisation of various electrodes and the Sprague Dawley strain was used for 

hippocampal characterisation and behavioural experiments.  Animals were obtained from 

Harlan (UK) and Charles River (UK) weighing between 200-300g.  Animals were housed 

in a temperature (17-23˚C), humidity and light (on 08:00, off 20:00) controlled 

environment with food available ad libitum (unless otherwise stated).   

3.7.2 Surgery Protocol 

To implant electrodes into the brain for continuous monitoring a sterile surgery was 

performed.  Firstly the rat was placed in an induction chamber connected to a vaporiser 

(Univentor) unit and anesthetised with the volatile anaesthetic Isoflurane.  Once the animal 

was anesthetised its weight was recorded and the top of the animal’s head was shaven.  The 

animal was immediately placed in a sterotaxic frame ensuring that the head is completely 

levelled between bregma and lambda.   

An Iodine solution was used as a pre-operative antiseptic and a midline incision of 

approximately 2 cm was made from the anterior to the posterior of the animal’s skull.  The 

skull was exposed by clamping the Periosteum at the top and bottom of each side of the 

incision.  Minor epidural haemorrhages occasionally occur upon removal of the skin but 

these are quickly minimised by cauterising the affected area. 

The steriotaxic coordinates used are from The Rat Brain in Steriotaxic Coordinates 

(Paxinos & Watson, 1998).  Bregma is the anatomical point on the skull at which the 
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coronal suture is intersected perpendicularly by the sagittal suture, and used as the zero 

reference point.  Bregma is used to obtain the anterior-posterior (A-P) and medial-lateral 

(M-L) coordinates where + A-P is anterior to bregma and + M-L is the right hemisphere.  

The dorsal-ventral (D-V) coordinates are obtained in respect to dura where - D-V is depth 

into the brain.  The coordinates in mm used for various regions are listed in Table 3.1. 

Brain Region A-P M-L D-V 

Striatum +1.0 ± 2.5 -5/-6 

Dorsal Hippocampus  -5.6 ± 4.6 -3.6 

 

Table 3.1: Steriotaxic coordinated for electrode for various brain regions in mm. 

 

 

Figure 3.8: Schematic representation of the bilateral placement of two working electrodes in the 

striatum as well as the location of clamps, support screws, reference and auxiliary electrodes. 

  

The location of bregma was confirmed and the working electrode’s coordinates were 

marked.  The skull was drilled to allow for the placement of four support screws, one of 

which was used for attachment of the auxiliary electrode (Figure 3.9(bottom)).  These 

support screws were used to aid the adhesion of cement to the skull.  The holes for the 

working electrodes were drilled next and the dura was pierced for a few seconds using a 

25G hypodermic needle.  Electrodes were implanted using D-V co-ordinates (Table 3.1), 

via the steriotaxic arm.  A thin layer of cement was placed around the working electrodes to 
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ensure that the electrodes remained firmly in place.  The reference electrode (Figure 

3.9(top)) was then implanted into the cortex in the same way and secured in place with 

cement.  The electrodes were carefully manoeuvred and bent against the cement layer and 

the gold clips were placed into a pedestal (Figure 3.10).  The level of anaesthetic was 

adjusted according to the procedure i.e. increased during the drilling procedure and 

decreased whilst cementing.   

 
Figure 3.9:  Schematic of a reference electrode (Top) and an auxiliary electrode (Bottom) for in vivo 

implantation. 

       

The gold clips were carefully cemented into the pedestal and when fully dry the wires were 

bent carefully to compact them as much as possible.  The electrodes were then completely 

covered using cement, this ensured that they were protected and gave support for the 

pedestal.  Care was taken not to place cement too far up the pedestal so that the cables 

could be attached securely to it.   When the cement was completely dry, the animal was 

removed from the sterotaxic frame and placed in an incubation unit for at least an hour to 

recover. Animals were post-surgically administered the analgesic Temgesic 

(Buprenorphine) via subcutaneous (s.c.) injection (0.1 mg/kg), and 1 ml normal saline to 

prevent dehydration. 

Animals were assessed post-surgery and daily thereafter for good health and were allowed 

to recover for at least 24 hours before being connected to the equipment.  
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Figure 3.10:  Schematic of a Teflon® pedestal used for in vivo experiments.  The electrodes were placed 

in the corresponding holes to allow for connection to the recording equipment. 

3.7.3 Freely-moving continuous monitoring 

Animals were connected to a potentiostat at least 24 hours following surgery.  The 

equipment was set up for constant potential amperometry and the animal was attached to an 

insulated cable via the pedestal.  The cable was then connected to the potentiostat and the 

required potential was applied to each electrode individually.   The electrodes were allowed 

to settle for the required amount of time which was dependent on the electrode type.   

3.7.4 Gaseous administrations 

O2 and N2 gases were administered to the animal to produce mild hyperoxic and hypoxic 

conditions.  This was achieved via plastic tubing which was connected to the relative 

cylinder and held closely to the animal’s snout for the required duration (3 or 5 min). 
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3.7.5 Neuronal Activation 

3.7.5.1 Tail pinch 

A tail pinch was performed using a paper clip or crocodile clip.  The clip was attached to 

the animal’s tail approximately 2 cm from the tip of the tail for 5 minutes.  The animal was 

given a piece of wood to encourage gnawing.   The gnawing action promoted by the 

stimulating tail pinch has been shown to increase motor activity (Antelman et al., 1975).  

After 5 minutes the clip was carefully removed. 

3.7.5.2 Restraint test 

A restraint test was performed by holding down the animal in its home bowl to restrict 

movement.  The animal was restrained this way for 5 minutes which induces a mild stress 

reaction.  

3.7.6 Drug administration via injection 

Drugs or drug vehicles were administered to the animal via two methods.  A subcutaneous 

(s.c.) injection under the skin, and intraperitoneal (i.p.) injection into the abdominal cavity 

(Wolfensohn & Lloyd, 2008). 

3.7.7 +-maze experiments 

Animals were housed in a plastic home bowl and connected to a Quadstat as previously 

described (Section 3.7.3).  Animals were administered via i.p. either saline or glucose 

solutions and after 30 mins animals were placed into the +-maze.  Animals were allowed to 

explore the +-maze for a duration of 20 mins.  All arm entries (the animal moved past the 

entry gate of any arm from the central region of the +-maze so that all four feet were in the 

arm) were recorded in the order in which they occurred and all +-maze experiments were 

recorded on a webcam to verify arm entry order.  
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Figure 3.11: Schematic representation of a +-maze representing the four arms and the centre area. 

3.7.8 End of in vivo experiments 

In vivo experiments were terminated by euthanising the animal with a 1 ml i.p. injection of 

Euthatal.  The brain was removed and stored in a solution of formaldehyde.  
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4.1 Introduction 

Carbon paste electrodes (CPEs) have been previously used successfully in vitro and in vivo 

for the detection and measurement of brain tissue oxygen in freely-moving animals (Lowry 

et al., 1996; Lowry et al., 1997; Bolger & Lowry, 2005; Bolger et al., 2011a).  CPEs are a 

popular choice due to their stability,  are less prone to surface poisoning than metal-based 

electrodes and therefore do not require protective membranes, although CPEs generally 

have a longer construction time than metal-based electrodes.  Pt-based electrodes have 

several advantages over CPEs including smaller probe size and ease of construction.  Pt-

based electrodes been shown to have the potential to provide a reliable alternative to CPEs 

to monitor brain tissue O2 in vivo (Bolger et al., 2011a).  This chapter details comparisons 

between CPEs and a Pt-based electrode modified with methyl methacrylate (MMA).  The 

polymer MMA was chosen as it is a widely used, commercially available polymer with 

FDA approval making it ideal for potential use in humans.  The electrodes can also be 

easily sterilised, which is of necessity in a clinical environment.  The polymer is used as a 

protective membrane due to the susceptibility of metal-based electrodes to surface 

poisoning.  This enables the sensor to function and ensures biocompatibility,  a necessity 

for safety reasons  which  have  previously been examined for several biomaterials (Wilkins 

& Radford, 1990). 

The in vitro characterisation of an electrode allows for the determination of the sensitivity, 

selectivity and stability of the sensor.  The sensor’s sensitivity was tested after exposure to 

proteins, lipids and brain tissue.  The effects of various temperatures, pH, ions, convection 

and interferents were also examined along with the stability of the sensors in relation to 

time.   

The brain’s tissue immunological mechanisms (Wisniewski et al., 2000) as well as its  

range of endogenous species can have an effect on the performance of the sensor (Lyne & 

O'Neill, 1990; Garguilo & Michael, 1994; Gifford et al., 2006).  Once the sensor is 

implanted the surface can change dramatically as observed with CPEs (Ormonde & O'Neill, 

1989, 1990).  The placement of sensors in tissue can also effect the sensor’s surface 

morphology (O'Neill, 1993) and in terms of mass transport, there is a restriction due to the 
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tissue matrix (Cheng et al., 1979; Dayton et al., 1983; Nicholson & Syková, 1998) which 

can have an effect in terms of sensitivity, stability and selectivity of the sensors.  The in 

vitro characterisation allows for an indication of the consequences of implantation of the 

sensor into tissue and how the response of the sensor may differ. 

4.2 Experimental In Vitro 

The instrumentation and software used are detailed in Section 3.2 and all chemicals and 

solutions are detailed in Section 3.3. 

Pt disk electrodes (125 µm bare diameter) were constructed as described in Section 3.4.5 

and modified using MMA as detailed in Section 3.5.2.1.  CPEs (200 µm bare diameter) 

were constructed as described in Section 3.4.1. 

Electrochemical experiments are detailed in Section 3.6 and electrode treatments in Section 

3.5.4. 

Data is represented as the mean ± SEM where n = number of electrodes used, unless 

otherwise stated.  The slope, nA/µM was obtained from calibration plots using linear 

regression analysis and is used to represent the sensitivity.  Goodness of fit is denoted by 

the R
2
 value.  Sensitivities were compared using unpaired t-tests and ANOVA.  To compare 

the different electrodes due to varying physical dimensions current values were converted 

to current densities (Section 2.8.3). 

4.3 Results and Discussion In Vitro 

4.3.1 Characterisation of CPEs 

The optimal reduction potential of O2 at the surface of CPEs has previously been 

determined using cyclic voltammetry (Lowry et al., 1996).  The chosen reduction potential 

was -650 mV and subsequent constant potential amperometry (CPA) experiments were 

carried out at this potential.  
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4.3.1.1 Oxygen calibrations  

O2 calibrations were performed on CPEs as described in Section 3.6.1.4.  A typical O2 

calibration trace can be seen in Figure 4.1 
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Figure 4.1:  An example of typical raw data for an O2 calibration in PBS using a CPE.  CPA performed 

at -650 mV vs. SCE in PBS (pH 7.4) at 21˚C.   

 

Average results obtained for high concentration O2 calibrations performed in PBS on CPEs 

(n=24) are presented below in Table 4.1 and plotted in Figure 4.2.  The mean background 

current of -3.00 ± 1.82 nA was subtracted. 

[O2], µM Mean I, nA SEM 

0 0 0 

240 -285.9 10.0 

1200 -1255.1 44.5 

Table 4.1:  Table of results for O2 calibrations (0-1200 µM) for CPEs (n=24).  CPA performed at -650 

mV vs. SCE in PBS (pH 7.4) at 21˚C.  Mean background subtracted.  
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Figure 4.2:  O2 calibration data (0-1200 µM) for CPEs (n=24).  CPA performed at -650 mV vs. SCE in 

PBS (pH 7.4) at 21˚C.   

Linear regression analysis shows that the electrodes have a sensitivity (slope value) of -

1.036 ± 0.030 nA/µM (n = 24).  The response was linear over the range with an R
2
 value of 

0.9992 (n = 24).  The average current value at the physiological O2 level of 50 µM was -

51.80 ± 1.50 nA (n = 24). 

To allow for an accurate comparison between the CPEs and Pt-MMA electrodes (Section 

4.3.2) due to the different dimensions of the electrodes the mean current values were 

converted to current densities presented in Table 4.2 and plotted in Figure 4.3. 

 Current Current Density 

[O2], µM Mean I, nA SEM J, µAmm
-2

 SEM 

0 0 0 0 0 

240 -285.9 10.0 -9.1 0.3 

1200 -1255.1 44.5 -40.0 1.4 

Table 4.2:  Table of results for O2 calibrations (0-1200 µM) for CPEs (n=24) converted to current 

density. CPA performed at -650 mV vs. SCE in PBS (pH 7.4) at 21˚C.  Mean background subtracted.  
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Figure 4.3:  O2 calibration data (0-1200 µM) in terms of current density for CPEs (n=24).  CPA 

performed at -650 mV vs. SCE in PBS (pH 7.4) at 21˚C.   

The average sensitivity for CPEs in terms of current density for high concentration O2 

calibrations was -0.033 ± 0.001 µAmm
-2

µM
-1

 (n=24).  The average current density value at 

the physiological O2 level of 50 µM was -1.65 ± 0.05 µAmm
-2

 (n = 24).  

4.3.1.2 Effect of temperature 

Membrane covered O2 sensors tend to have significant temperature dependence primarily 

due to the effects of temperature on the diffusion coefficient and the solubility of the gas in 

the membrane with temperature.  The signal typically increasing by 1-6% for a rise of 1˚C 

(Hitchman, 1978; Jeroschewski & Zur Linden, 1997).  In vitro experiments are routinely 

performed at a room temperature of ca. 21˚C.  The effect of an increase in the temperature 

of the PBS on the CPEs O2 sensitivity at the physiological temperate of 37˚C was 

investigated. O2 calibrations performed in PBS at 21°C and 37°C on CPEs are presented 

below in Table 4.3 and plotted in Figure 4.4.  The concentration of dissolved O2 was 

calculated to be 214 µM for air saturated PBS and 1020 µM for O2 saturated PBS at 37°C 

detailed in Section 2.8.4. 
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PBS 37˚C 

[O2], µM Mean I, nA SEM 

0 0 0 

214 -467.54 37.80 

1020 -1525.45 121.72 

 

 
PBS 21˚C 

[O2], µM Mean I, nA SEM 

0 0 0 

240 -285.87 9.99 

1200 -1255.08 44.47 

Table 4.3:  Tables of results for O2 calibrations for CPEs.  CPA performed at -650 mV vs. SCE in PBS 

(pH 7.4) at 37˚C (0-1020 µM) (n=8) and 21˚C (0-1200 µM) (n=24).  Mean background subtracted. 
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Figure 4.4:  O2 calibration data for CPEs.  CPA performed at -650 mV vs. SCE in PBS (pH 7.4) at 37˚C 

(0-1020 µM) & 21˚C (0-1200 µM).  

Linear regression analysis was performed on electrodes to compare sensitivities of CPEs 

calibrated in PBS solutions at the physiological temperature of 37˚C and room temperature, 

21˚C, presented in Table 4.4 and plotted in Figure 4.5. 
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Sensitivity (nA/µM) R

2
 n 

PBS 37˚C -1.445 ± 0.1501 0.9893 8 

PBS 21˚C -1.036 ± 0.02995 0.9992 24 

Table 4.4: Comparison of calculated sensitivity values of O2 calibrations for CPEs calibrated in PBS 

solutions of 37˚and 21˚C. 
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Figure 4.5:  Comparison graph of calculated sensitivity values for O2 calibrations for CPEs calibrated 

in PBS at 37˚C (n=8) & 21˚C (n=24). 

 

Unpaired t-test statistical analysis was performed and it can be seen there is a significant 

difference in the sensitivities of CPEs calibrated at 37˚C and 21˚C with a P value of 0.0319.  

From the results obtained for CPEs it can be seen that the sensitivity increases by 39.48 ± 

22.14 % corresponding to a 2.47 ± 1.22 % for every 1˚C increase determining that CPEs 

exhibit significant temperature dependence at the physiological temperature. 

4.3.1.3 Effect of pH 

Changes in pH may occur during physiological experiments in vivo (Zimmerman & 

Wightman, 1991) these changes in pH could also affect the cathodic reduction of O2 at the 

electrode surface involving proton transfer.  Previous reports for carbon-based electrodes 

found that for pH 12-14 the reduction of O2 seems to be independent of pH, but as pH 

decreases the reduction becomes pH dependent (Taylor & Humffray, 1975; Yang & 

McCreery, 2000).  The effect of varying pH on the sensitivities of CPEs was investigated.  
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O2 calibrations performed in PBS (pH 6.5, 7 and 8) on CPEs are presented below in Table 

4.5 and plotted in Figure 4.6. 

 PBS pH 6.5 PBS pH 7.4 PBS pH 8 

[O2], µM Mean I, nA SEM Mean I, nA SEM Mean I, nA SEM 

0 0 0 0 0 0 0 

240 -323.2 36.5 -344.6 23.4 -306.0 59.5 

1200 -1264.2 165.2 -1319.4 108.9 -965.8 153.7 

Table 4.5:  Table of results for O2 calibrations (0-1200 µM) for CPEs.  CPA performed at -650 mV vs. 

SCE in PBS pH 6.5 (n=4), pH 7.4 (n=8) and pH 8 (n=4) at 21˚C.  Mean background subtracted. 
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Figure 4.6:  O2 calibration data (0-1200 µM) for CPEs.  CPA performed at -650 mV vs. SCE in PBS 

(pH 6.5, 7.4 & 8) at 21˚C.   

Linear regression analysis was performed on electrodes to compare sensitivities of CPEs 

calibrated in PBS solutions with a pH of 6.5, 7.4 and 8, presented in Table 4.6 and plotted 

in Figure 4.7. 

 Sensitivity (nA/µM) R
2
 n 

PBS pH 6.5 ˗1.076 ± 0.069 0.9962 4 

PBS pH 7.4 ˗1.033 ± 0.060 0.9991 8 

PBS pH 8 ˗0.771 ± 0.097 0.9934 4 

Table 4.6: Comparison of calculated sensitivity values of O2 calibrations (0-1200 µM) CPEs calibrated 

in PBS 6.5, 7.4 & 8. 
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Figure 4.7:  Comparison graph of calculated sensitivity values for O2 calibrations (0-1200 µM) CPEs 

calibrated in PBS pH 6.5 (n=4), 7.4 (n=8) and 8 (n=4).  

 

Unpaired t-test statistical analysis was performed and it can be seen there is no significant 

difference in the sensitivities of CPEs calibrated in PBS pH 6.5 and 7.4 with a P value of 

0.6514.  There is a significant difference in the sensitivities between electrodes calibrated in 

PBS pH 8 and 7.4 with a P value of 0.0431. 

4.3.1.4 aCSF Cyclic Voltammetry 

The technique cyclic voltammetry (CV) was performed on the CPEs to confirm the 

diffusion limited reduction potential of O2 at the surface of these electrodes in aCSF.  This 

was performed as described in Section 3.6.1.2.  The results obtained are presented 

graphically in Figure 4.8 below. 
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Figure 4.8:  Cyclic voltammograms from -1 to 0 V vs. SCE at 100 mVs
-1

 performed in O2 saturated 

aCSF (21˚C) buffer solution, illustrating the reduction of O2 at a CPE. 

 

As with PBS - 650 mV vs. SCE is within the mass-transport limited region after the peak 

potential of O2 reduction at CPEs.  All experiments performed in aCSF were carried out at 

this potential.  This compares well with previous data shown by Lowry et al. (1996) who 

performed CV on Triton-X modified electrodes and found that the optimum reduction 

potential for O2 at the surface of these electrodes was -650 mV (Figure 4.9). 

 

Figure 4.9:  Typical cyclic staircase voltammograms recorded at 50 mVs
-l
 with a surfactant (0.2% 

Triton-X 100)-treated carbon paste electrode in N2-saturated (dashed line) and air-saturated (solid line) 

PBS (pH 7.4) (Lowry et al., 1996). 
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4.3.1.5 Effect of ion changes 

The media-dependence of redox reactions for several physiologically vital electroactive 

species (dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC), serotonin (5-HT) and 

5-hydroxyindoleacetic acid (5-HIAA)) have previously been investigated (Rice & 

Nicholson, 1995; Kume-Kick & Rice, 1998; Chen & Rice, 1999).  Fast cyclic voltammetry 

(FCV) sensitivities to DA and 5-HT at carbon fibre electrodes have been reported to be 2-3-

fold higher in non-physiological phosphate or HEPES-buffered saline compared to artificial 

cerebrospinal fluid (aCSF) which more accurately reflects the ionic composition of the 

brain and the reverse was observed for the acid metabolites DOPAC and 5-HIAA (Kume-

Kick & Rice, 1998; Chen & Rice, 1999).  Shifts in oxidation peaks and higher sensitivities 

using differential pulse voltammetry for aCSF that contained Ca
2+

 but not Mg
2+

, than in 

PBS that contained Mg
2+ 

but not Ca
2+

 have been reported (Crespi, 1996).  It has also been 

reported that Ca
2+

 concentrations can fall under conditions of electrical stimulation and 

intense tissue depolarisation (Rice & Nicholson, 1995).  Changes in ion concentrations are 

of interest as in vivo extracellular concentrations are in a continuous state of flux and can 

change significantly with disturbances to normal physiology also; electrode surface 

interactions differ for anions and cations, consistent with adsorption or repulsion effects at 

the modified electrode surfaces.  The effect of ion changes on the sensitivities of CPEs was 

investigated.  O2 calibrations performed in aCSF, aCSF no Ca
2+ 

and aCSF no Mg
2+ 

on 

CPEs are presented below in  

 
aCSF aCSF no Ca2+ aCSF no Mg2+ aCSF no Ca2+and Mg2+ 

[O2], µM Mean I, nA SEM Mean I, nA SEM Mean I, nA SEM Mean I, nA SEM 

0 0 0 0 0 0 0 0 0 

240 -389.45 25.41 -403.73 33.02 -359.96 26.92 -403.86 63.35 

1200 -1947.23 127.05 -2018.66 165.08 -1799.81 134.59 -2210.20 309.99 

Table 4.7 and plotted in Figure 4.10. 

 
aCSF aCSF no Ca2+ aCSF no Mg2+ aCSF no Ca2+and Mg2+ 

[O2], µM Mean I, nA SEM Mean I, nA SEM Mean I, nA SEM Mean I, nA SEM 

0 0 0 0 0 0 0 0 0 

240 -389.45 25.41 -403.73 33.02 -359.96 26.92 -403.86 63.35 

1200 -1947.23 127.05 -2018.66 165.08 -1799.81 134.59 -2210.20 309.99 
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Table 4.7:  Table of results for O2 calibrations (0-1200 µM) for CPEs.  CPA performed at -650 mV vs. 

SCE in aCSF (n=16), aCSF no Ca
2+

 (n=16), aCSF no Mg
2+

 (n=16) at 21˚C.  Mean background 

subtracted. 
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Figure 4.10:  O2 calibration data (0-1200 µM) for CPEs.  CPA performed at -650 mV vs. SCE in aCSF, 

aCSF no Ca
2+

, aCSF no Mg
2+

 at 21˚C. 

Linear regression analysis was performed on electrodes to compare sensitivities of CPEs 

calibrated in aCSF solutions in the presence and absence of ions, presented in Table 4.8 and 

plotted in Figure 4.11. 

CPE Sensitivity (nA/µM) R
2
 n 

aCSF -1.623 ± 0.106 0.9970 16 

aCSF no Ca
2+

 -1.682 ± 0.138 0.9989 16 

aCSF no Mg
2+

 -1.500 ± 0.112 0.9945 16 

Table 4.8: Comparison of calculated sensitivity values of O2 calibrations (0-1200 µM) CPEs calibrated 

in aCSF, aCSF no Ca
2+

, aCSF no Mg
2+

,at 21˚C. 
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Figure 4.11:  Comparison graph of calculated sensitivity values for O2 calibrations (0-1200 µM) CPEs 

calibrated in aCSF(n=16), aCSF no Ca
2+

 (n=16), aCSF no Mg
2
+ (n=16). 

 

Unpaired t-test statistical analysis was performed and it can be seen there is no significant 

difference in the sensitivities of CPEs calibrated in aCSF with P values of 0.7343, (aCSF 

no Ca
2+

) and 0.4324 (aCSF no Mg
2+

).  There is an increase in the sensitivity CPEs 

calibrated in aCSF (-1.623 ± 0.106 nA/µM) compared to PBS (-1.036 ± 0.030 nA/µM) with 

a significant difference P < 0.0001.    

4.3.1.6 Effect of stirring 

The dependence of the O2 electrode’s signal on flow is commonly investigated by 

evaluating the signal sensitivity to fluid convection (Gotoh et al., 1961; Schneiderman & 

Goldstick, 1978).  Convection results in a reduced diffusion layer thickness at the sensor 

surface (Bard & Faulkner, 1980; Amatore et al., 2000) which causes an increase in current.  

However, in vivo we expect to see small changes in current, as it has been reported that O2 

electrodes in brain tissue do not show a dependence upon flow.  This is thought to be due to 

the movement of blood through the tissue which causes the diffusion layer effect to be 

negligible in vivo (Cooper, 1963).  It was found that the O2 concentration varies in 

accordance with the acceleration and not the velocity of the blood. 
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The reduction of O2 at the CPEs surface was examined in quiescent and stirred solutions 

with convection produced using a magnetic stirrer (Sharan et al., 2008).  Results are 

presented below in Table 4.9 and plotted in Figure 4.12. 

 Control: PBS Bubbling PBS Quiescent Stirring @ c.a 1 Hz Stirring @ c.a 10 Hz 

[O2], µM Mean I, nA SEM Mean I, nA SEM Mean I, nA SEM Mean I, nA SEM 

240 -1101.0 86.2 -617.4 56.7 -643.0 61.9 -708.3 60.8 

1200 -3018.1 262.1 -3387.7 344.7 -2341.3 269.6 -2398.3 259.4 

Table 4.9:  Table of results for O2 calibrations (240-1200 µM) for CPEs (n=4).  CPA performed at -650 

mV vs. SCE in PBS (pH 7.4) at 21˚C.  Mean background subtracted 
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Figure 4.12:  O2 calibration data (240-1200 µM) for CPEs (n=4).  CPA performed at -650 mV vs. SCE 

in PBS (pH 7.4) quiescent and in the presence of forced convection at 21˚C. 

 

Unpaired t-test statistical analysis was performed and it can be seen there is no significant 

difference in the sensitivities between CPEs calibrated in quiescent PBS and agitated PBS 

stirred at approximately 1 Hz in the presence of 240 µM O2 with a P value of 0.7632.  

There was also no significant difference found between CPEs calibrated in quiescent PBS 

and agitated PBS stirred at approximately 10 Hz in the presence of 240 µM O2 with a P 

value of 0.2865. 

There is no significant difference in the sensitivities between CPEs calibrated in quiescent 

PBS and agitated PBS stirred at approximately 1 Hz in the presence of 1200 µM O2 with a 

P value of 0.0623.  There was also no significant difference found between CPEs calibrated 

in quiescent PBS and agitated PBS stirred at approximately 10 Hz in the presence of 1200 
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µM O2 with a P value of 0.0703.  From the results presented in Figure 4.12 it can be seen 

there is no significant increase on the current monitored using CPEs at 1 Hz in the presence 

240 µM O2 compared to quiescent conditions, concluding that there is no dependence on 

flow in vitro. 

4.3.1.7 Post- implantation calibrations 

The effect of the living brain on electrodes was investigated.  The effects of proteins and 

lipids on the electrooxidation of AA at CPEs was investigated (Kane & O’Neill, 1998) 

showing no evidence of fowling at CPEs unlike carbon fibre electrodes.  This resilience 

appears to be due to the silicone oil present in the paste mixture.  Post-implantation O2 

calibrations were performed when possible on CPEs upon removal from the brain 

(implanted for 6 ± 1 days), presented below in Table 4.10 and plotted in Figure 4.13.   

 CPE (pre-implantation) CPE (post-implantation) 

[O2], µM Mean I, nA SEM Mean I, nA SEM 

0 0 0 0 0 

240 -273.7 15.2 -377.9 86.1 

1200 -1237.9 53.4 -1206.9 106.2 

Table 4.10:  Table of results for O2 calibrations (0-1200 µM) for CPEs  pre-implantation and post-

implantation (n=13) for a standard O2 calibration.  CPA performed at -650 mV vs. SCE in PBS (pH 

7.4) at 21˚C.  Mean background subtracted.  
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Figure 4.13:   O2 calibration data (0-1200 µM) for CPEs pre-implantation and post-implantation (n=13) 

for a standard O2 calibration.  CPA performed at -650 mV vs. SCE in PBS (pH 7.4) at 21˚C. 
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Linear regression analysis was performed on electrodes to compare sensitivities of CPEs 

calibrated before and after implantation, presented in Table 4.1and plotted in Figure 4.15. 

 Sensitivity (nA/µM) R
2
 n 

Pre-implantation ˗1.024 ± 0.022 0.9995 13 

Post-implantation ˗0.965 ± 0.117 0.9855 13 

Figure 4.14:  Table of calculated sensitivity values of O2 calibrations (0-1200 µM) for CPEs pre-

implantation and post-implantation. 
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Figure 4.15:  Graph of calculated sensitivity values for O2 calibrations (0-1200 µM) for CPEs pre-

implantation and post-implantation (n=13). 

 

Unpaired t-test statistical analysis was performed and it can be seen there is no significant 

difference in the sensitivities between CPEs calibrated pre and post-implantation with a P 

value of 0.6308.  There is no significant difference in the sensitivities of the electrodes 

post-implantation compared to pre-implantation.  There is a trend towards a lower 

sensitivity post-implantation which can be attributed to endogenous proteins and lipids 

present in the brain interacting with the CPEs active surface, causing a leaching of silicone 

oil from the carbon paste and changing the morphology of the surface to a carbon powder 

(Ormonde & O'Neill, 1989, 1990).   

Results above are verified by results presented by Bolger et al. (2011b) confirm that CPEs 

are stable in vivo.  Analysis of baseline levels show although there was a gradual decrease 

in the first three weeks (Week 1, −167.0 ± 1.5 nA; Week 2, −151.9 ± 2.3 nA; Week 3, 

−141.7 ± 0.9 nA), no significant variation was observed over the 21-day period (P = 0.89, 
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one-way ANOVA; n = 17–26, 12 animals).  Pooled data from 12 animals over a 12 week 

period are shown in Figure 4.16. 

 

Figure 4.16:  Figure from (Bolger et al., 2011b) showing: Average (±SEM) baseline in vivo data (pooled 

from 12 animals-striatum, hippocampus, prefrontal cortex and nucleus accumbens) for CPEs (n = 17-

26) recorded using CPA at −650mV over 21 days. Inset: average weekly baseline data recorded over the 

3 week period and extended to 3 months using data from 3 animals (n = 12).  All data taken from a six-

hour period covering morning/afternoon (10am–4pm). 

4.3.2 Characterisation of Pt-MMA electrodes In Vitro 

4.3.2.1 Cyclic Voltammetry 

CV was initially performed on the Pt-MMA electrodes to determine the diffusion limited 

reduction potential of O2 at the surface of these electrodes.  This was performed as 

described in Section 3.6.1.2.  The results obtained are presented graphically in Figure 4.17 

below. 



Chapter 4: In Vitro Oxygen 

100 

-1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6
-4000

-3000

-2000

-1000

0

1000

E/V (SCE)

I,
 n

A

 

Figure 4.17:  Cyclic voltammogram from -1 to +0.5 V vs. SCE at 100 mVs
-1

 performed in O2 saturated 

PBS (pH 7.4, 21˚C) buffer solution, illustrating the reduction of O2 at a Pt-MMA electrode. 

 

For the Pt-MMA electrodes an O2 reduction peak was observed at ca. -600 mV with the 

foot of the wave occurring at ca. -200 mV.  The chosen reduction potential was -650 mV 

and subsequent constant potential amperometry (CPA) experiments were carried out at this 

potential.  
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4.3.2.2 Oxygen calibrations  

4.3.2.2.1 High concentration O2 calibrations (0-1200 µM) 

High concentration O2 calibrations were performed on Pt-MMA electrodes as described in 

Section 3.6.1.4.  A typical O2 calibration trace can be seen in Figure 4.18. 
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Figure 4.18:  An example of typical raw data for an O2 calibration in PBS using a Pt-MMA electrode.  

CPA performed at -650 mV vs. SCE in PBS (pH 7.4) at 21˚C.   

 

Average results obtained for high concentration O2 calibrations performed in PBS on Pt-

MMA electrodes (n=64) are presented below in Table 4.11 and plotted in Figure 4.19.  The 

mean background current -0.41 ± 1.19 nA was subtracted.  

[O2], µM Mean I, nA SEM 

0 0 0 

240 -322.5 16.3 

1200 -1388.9 66.7 

Table 4.11:  Table of results for O2 calibrations (0-1200 µM) for Pt-MMA electrodes (n=64).  CPA 

performed at -650 mV vs. SCE in PBS (pH 7.4) at 21˚C.  Mean background subtracted 
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Figure 4.19:  O2 calibration data (0-1200 µM) for Pt-MMA electrodes (n=64).  CPA performed at -650 

mV vs. SCE in PBS (pH 7.4) at 21˚C.   

Linear regression analysis shows that the electrodes have a sensitivity (slope value) of -1.14 

± 0.01 nA/µM (n = 64).  The response was linear over the range with an R
2
 value of 0.9989 

(n = 64).  The average current value at the physiological O2 level of 50 µM was -57.20 ± 

0.19 nA (n = 64). 

The sensitivity for Pt-MMA compares favourably to O2 calibration data (0-1200 µM) for 

bare Pt electrodes (Bolger et al., 2011a) which gave a sensitivity of -1.12 ± 0.08 nA/µM 

(n=18),  P = 0.8058 showing no significant difference between the bare metal and the 

MMA coated electrodes. 

To allow for an accurate comparison between the Pt-MMA electrodes and CPEs (Section 

4.3.1) due to the different dimensions of the electrodes the mean current values were 

converted to current densities, presented in Table 4.12 and plotted in Figure 4.20. 
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 Current Current Density 

[O2], µM Mean I, nA SEM J, µAmm
-2

 SEM 

0 0 0 0 0 

240 -322.5 16.3 -26.3 1.3 

1200 -1388.9 66.7 -113.2 5.5 

Table 4.12:  Table of results for O2 calibrations (0-1200 µM) for Pt-MMA electrodes (n=64) converted 

to current density. CPA performed at -650 mV vs. SCE in PBS (pH 7.4) at 21˚C.  Mean background 

subtracted. 
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Figure 4.20:  O2 calibration data (0-1200 µM) in terms of current density for Pt-MMA electrodes (n= 

64).  CPA performed at -650 mV vs. SCE in PBS (pH 7.4) at 21˚C.   

The average sensitivity for Pt-MMA electrodes in terms of current density for high 

concentration O2 calibrations was -0.093 ± 0.003 µAmm
-2

µM
-1

 (n=64).  The average 

current density value at the physiological O2 level of 50 µM was -4.66 ± 0.02 µAmm
-2

 (n = 

64). 

4.3.2.2.2 Low concentration O2 calibrations (0-125 µM) 

Low concentration O2 saturated PBS calibrations were performed on Pt-MMA electrodes as 

described in Section 3.6.1.5, to determine sensitivity at low concentrations of O2 similar to 

that of the in vivo environment. 
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Average results obtained for low concentration O2 calibrations performed in PBS on Pt-

MMA electrodes (n=15) are presented below in Table 4.13 and plotted in Figure 4.21.  The 

mean background current -10.86 ± 2.65 nA was subtracted.  

[O2], µM Mean I, nA SEM 

0 0 0 

25 -32.0 6.9 

50 -80.3 11.1 

75 -128.2 15.3 

100 -161.5 18.9 

125 -207.7 20.6 

Table 4.13:  Table of results for O2 calibrations (0-125 µM) for Pt-MMA electrodes (n=15).  CPA 

performed at -650 mV vs. SCE in PBS (pH 7.4) at 21˚C.  Mean background subtracted.  
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Figure 4.21:  Low concentration O2 calibration data (0-125 µM) for Pt-MMA electrodes (n=15).  CPA 

performed at -650 mV vs. SCE in PBS (pH 7.4) at 21˚C.   

Linear regression analysis shows that the electrodes have a sensitivity of -1.69 ± 0.005 

nA/µM (n = 15).  The response was linear over the range with an R
2
 value of 0.9969 (n = 

15).  The average current value at the physiological O2 level of 50 µM was -84.30 ± 2.36 

nA (n = 15). 

The mean current values for low concentration O2 calibrations were converted to current 

density values, presented in Table 4.14 and plotted in Figure 4.22. 
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 Current Current Density 

[O2], µM Mean I, nA SEM J, µAmm
-2

 SEM 

0 0 0 0 0 

25 -31.95 6.87 -2.60 0.56 

50 -80.30 11.05 -6.54 0.90 

75 -128.18 15.26 -10.45 1.24 

100 -161.47 18.87 -13.16 1.54 

125 -207.72 20.61 -16.93 1.68 

Table 4.14:  Table of results for O2 calibrations (0-125 µM) for Pt-MMA electrodes (n=15) converted to 

current density.  CPA performed at -650 mV vs. SCE in PBS (pH 7.4) at 21˚C.  Mean background 

subtracted.  
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Figure 4.22:  Low concentration O2 calibration data (0-125 µM) in terms of current density for Pt-

MMA electrodes (n=15).  CPA performed at -650 mV vs. SCE in PBS (pH 7.4) at 21˚C.   

The average sensitivity for Pt-MMA electrodes in terms of current density for low 

concentration O2 calibrations was -0.137 ± 0.004 µAmm
-2

µM
-1

 (n=15).  The average 

current density value at the physiological O2 level of 50 µM was -6.87 ± 0.194 µAmm
-2

 (n 

= 15).  From the calibration data on Pt-MMA electrodes it can be seen that these electrodes 

can reliably detect O2 in vitro over a range of 0-125 µM.   

Now that the electrodes sensitivity to O2 has been confirmed the selectivity, stability and 

biocompatibility of the Pt-MMA electrodes was investigated. 
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4.3.2.3 Biocompatibility  

As previously discussed metal-based electrodes are more susceptible to surface poisoning 

than CPEs.  The presence of the polymer MMA serves to act as protective membrane to 

minimise fouling at the Pt electrode surface.  In this section the effects of proteins, lipids 

and brain tissue on the sensitivity of Pt-MMA electrodes was investigated, based on 

previous work (Ormonde & O'Neill, 1989, 1990) to determine if there is a significant 

reduction in the electrodes ability to remain sensitive to O2 in vivo.  

4.3.2.3.1 Protein (BSA) treated Pt-MMA electrodes 

The effect of exposure to the protein BSA (Section 3.5.4.1) on Pt-MMA electrodes with 

respect to time was investigated.  Untreated Pt-MMA electrodes (0 days) were calibrated 

and subsequently exposed to BSA for 24 hours, 3 days, 7 days and 14 days.  The results 

obtained for O2 calibrations on these treated electrodes are presented below in Table 4.15 

and plotted in Figure 4.23. 

 BSA (0 days) n=20 BSA (24 hrs) n=6 BSA (3 days) n=8 BSA (7 days) n=8 BSA (14 days) n=8 

[O2], µM Mean I, nA SEM Mean I, nA SEM Mean I, nA SEM Mean I, nA SEM Mean I, nA SEM 

0 0 0 0 0 0 0 0 0 0 0 

240 -280.8 36.8 -345.2 31.8 -296.6 21.0 -308.4 20.8 -287.9 20.5 

1200 -1250.7 100.9 -1145.5 104.4 -929.6 57.4 -966.0 46.6 -892.2 51.1 

Table 4.15:  Table of results for O2 calibrations (0-1200 µM) for Pt-MMA electrodes exposed to BSA.  

CPA performed at -650 mV vs. SCE in PBS (pH 7.4) at 21˚C.  Mean background subtracted. 
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Figure 4.23:  O2 calibration data (0-1200 µM) for Pt-MMA electrodes untreated (0 days) and treated 

with BSA (12 hrs, 3 days, 7 days and 14 days).  CPA performed at -650 mV vs. SCE in PBS (pH 7.4) at 

21˚C.   

Linear regression analysis was performed on electrodes to compare sensitivities of Pt-

MMA electrodes before and after exposure to BSA, presented in Table 4.16 and plotted in 

Figure 4.24. 

BSA treatment Sensitivity (nA/µM) R
2
 n 

0 days ˗1.033 ± 0.026 0.9994 20 

24 hrs ˗0.920 ± 0.100 0.9884 6 

3 days ˗0.742 ± 0.095 0.9838 8 

7 days ˗0.771 ± 0.099 0.9838 8 

14 days ˗0.711 ± 0.094 0.9828 8 

Table 4.16: Table of calculated sensitivity values of O2 calibrations (0-1200 µM) for Pt-MMA electrodes 

exposed to BSA. 
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Figure 4.24:  Comparison graph of calculated sensitivity values for O2 calibrations (0-1200 µM) at Pt-

MMA electrodes exposed to BSA.   

 

Unpaired t-test statistical analysis was performed and it can be seen there is no significant 

difference in the sensitivities with a P value greater than 0.05 between untreated (0 days 

exposure) and electrodes exposed to BSA for 24 hrs (P = 0.3231).  There is a significant 

difference in the sensitivities between untreated (0 days exposure) and 3 days (P = 0.0184), 

7 days (P = 0.0335) and 14 days (P = 0.0109). 

One-way Analysis of Variance (ANOVA) was performed on Pt-MMA electrodes only 

exposed to BSA with a P value of 0.5118 showing no significant difference in the 

sensitivities between the electrodes once exposed to BSA over a period of 14 days.  From 

these results it can be seen that there is a significant initial reduction in the sensitivity of Pt-

MMA electrodes following exposure to BSA for a 24 hr period. However, it can be 

concluded following initial exposure that there is no further significant reduction in the 

sensitivity over a 14 day period.   
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4.3.2.3.2 Lipid (PEA) treated Pt-MMA electrodes 

The effect of exposure to the protein PEA (Section 3.5.4.2) on Pt-MMA electrodes with 

respect to time was investigated.  Untreated Pt-MMA electrodes (0 days) were calibrated 

and subsequently exposed to PEA for 24 hours, 3 days and 14 days.  The results obtained 

for O2 calibrations on these treated electrodes are presented below in Table 4.17 and plotted 

in Figure 4.25. 

 PEA (0 days) n=15 PEA (24 hrs) n=4 PEA (3 days) n=7 PEA (14 days) n=6 

[O2], µM Mean I, nA SEM Mean I, nA SEM Mean I, nA SEM Mean I, nA SEM 

0 0 0 0 0 0 0 0 0 

240 -360.2 15.4 -342.7 11.7 -315.9 14.9 -327.5 14.1 

1200 -1305.7 57.8 -1197.5 53.9 -1006.0 40.8 -1197.6 70.2 

Table 4.17:  Table of results for O2 calibrations (0-1200 µM) for Pt-MMA electrodes exposed to PEA.  

CPA performed at -650 mV vs. SCE in PBS (pH 7.4) at 21˚C.  Mean background subtracted. 
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Figure 4.25:  O2 calibration data (0-1200 µM) for Pt-MMA electrodes untreated (0 days) and treated 

with PEA (24 hrs, 3 days and 14 days).  CPA performed at -650 mV vs. SCE in PBS (pH 7.4) at 21˚C.   

Linear regression analysis was performed on electrodes to compare sensitivities of Pt-

MMA electrodes before and after exposure to PEA, presented in Table 4.18 and plotted in 

Figure 4.26. 
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PEA treatment Sensitivity (nA/µM) R
2
 n 

0 days ˗1.059 ± 0.085 0.9936 15 

24 hrs ˗0.967 ± 0.089 0.9917 4 

3 days ˗0.804 ± 0.099 0.9852 7 

14 days ˗0.972 ± 0.076 0.9940 6 

Table 4.18:  Table of calculated sensitivity values of O2 calibrations (0-1200 µM) for Pt-MMA 

electrodes exposed to PEA. 
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Figure 4.26:  Comparison graph of calculated sensitivity values for O2 calibrations (0-1200 µM) Pt-

MMA electrodes exposed to PEA.  

  

Unpaired t-test statistical analysis was performed and it can be seen there is no significant 

different in the sensitivities with P values greater than 0.05 between untreated (0 days 

exposure) and PEA treated electrodes with P values of 0.4742 (24 hrs), 0.0707 (3 days) and 

0.4552 (14 days). 

One-way Analysis of Variance (ANOVA) was performed on Pt-MMA electrodes only 

exposed to PEA with a P value of 0.3370 showing no significant difference in the 

sensitivities between the electrodes once exposed to PEA over a period of 14 days.  From 

these results it can be seen that there is small but non-significant reduction in the sensitivity 

of Pt-MMA electrodes following exposure to PEA over a period of 14 days.  
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4.3.2.3.3 Brain tissue (BT) treated Pt-MMA electrodes 

The effect of exposure to a sample of ex-vivo BT (Section 3.5.4.3) on Pt-MMA electrodes 

with respect to time was investigated.  Untreated Pt-MMA electrodes (0 days) were 

calibrated and subsequently exposed to BT for 24 hours, 3 days and 14 days.  The results 

obtained for O2 calibrations on these treated electrodes are presented below in Table 4.19 

and plotted in Figure 4.27.  

 BT (0 days) n=17 BT (24 hrs) n=4 BT (3 days) n=4 BT (14 days) n=4 

[O2], µM Mean I, nA SEM Mean I, nA SEM Mean I, nA SEM Mean I, nA SEM 

0 0 0 0 0 0 0 0 0 

240 -335.2 19.5 -331.9 18.3 -339.1 28.9 -380.1 42.5 

1200 -1266.0 54.6 -1107.4 56.3 -1088.4 85.1 -1141.7 110.5 

Table 4.19:  Table of results for O2 calibrations (0-1200 µM) for Pt-MMA electrodes exposed to BT.  

CPA performed at -650 mV vs. SCE in PBS (pH 7.4) at 21˚C.  Mean background subtracted. 
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Figure 4.27: O2 calibration data (0-1200 µM) for Pt-MMA electrodes untreated (0 days) and treated 

with BT (24 hrs, 3 days and 14 days).  CPA performed at -650 mV vs. SCE in PBS (pH 7.4) at 21˚C.   

Linear regression analysis was performed on electrodes to compare sensitivities of Pt-

MMA electrodes before and after exposure to BT, presented in Table 4.20 and plotted in 

Figure 4.28.   
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BT treatment Sensitivity (nA/µM) R
2
 n 

0 days ˗1.031 ± 0.070 0.9953 17 

24 hrs ˗0.890 ± 0.095 0.9888 4 

3 days ˗0.871 ± 0.104 0.9859 4 

14 days ˗0.906 ± 0.130 0.9797 4 

Table 4.20:  Table of calculated sensitivity values of O2 calibrations (0-1200 µM) for Pt-MMA 

electrodes exposed to BT. 
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Figure 4.28:  Comparison graph of calculated sensitivity values for O2 calibrations (0-1200 µM) for Pt-

MMA electrodes exposed to BT.   

 

Unpaired t-test statistical analysis was performed and it can be seen there is no significant 

difference in the sensitivities with P values greater than 0.05 between untreated (0 days 

exposure) and BT treated electrodes with P values of 0.1163 (24 hrs), 0.0877 (3 days) and 

0.2201 (14 days). 

One-way Analysis of Variance (ANOVA) was performed on Pt-MMA electrodes only 

exposed to BT with a P value of 0.9044 showing no significant difference in the 

sensitivities between the electrodes once exposed to BT over a period of 14 days.  From 
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these results it can be seen that there is a small but non-significant reduction in the 

sensitivity of Pt-MMA electrodes following exposure to BT over a period of 14 days.  

4.3.2.4 Stability 

The stability of Pt-MMA electrodes with respect to time was investigated.  Pt-MMA 

electrodes (0 days) were calibrated, refrigerated and re-calibrated after 7 days, 21 days, 28 

days, 35 days, 48 days and 56 days.  The results obtained for O2 calibrations on these 

electrodes are presented below in Table 4.21 and Figure 4.29. 

 0 days n=4 7 days n=4 21 days n=4 28 days n=4 35 days n=4 48 days n=4 56 days n=4 

[O2], 

µM 

Mean I, 

nA 

SE

M 

Mean I, 

nA 

SE

M 

Mean I, 

nA 

SE

M 

Mean I, 

nA 

SE

M 

Mean I, 

nA 

SE

M 

Mean I, 

nA 

SE

M 

Mean I, 

nA 

SE

M 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

240 -290.6 25.7 -284.3 19.3 -310.0 6.0 -338.2 14.4 -270.3 14.8 -256.9 14.1 -272.8 13.7 

1200 -1130.2 75.4 -1219.2 65.7 -1147.4 45.2 -1283.8 38.7 -1004.7 56.5 -963.9 50.9 -992.7 37.5 

Table 4.21:  Table of results for O2 calibrations (0-1200 µM) for Pt-MMA electrodes stored in the 

refrigerator at 4˚C and re-calibrated on given days.  CPA performed at -650 mV vs. SCE in PBS (pH 

7.4) at 21˚C.  Mean background subtracted. 
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Figure 4.29:  O2 calibration data (0-1200 µM) for Pt-MMA electrodes (0 days) stored in the refrigerator 

(4˚C) and re-calibrated after (7 days, 21 days, 28 days, 35 days, 48 days and 56 days).  CPA performed 

at -650 mV vs. SCE in PBS (pH 7.4) at 21˚C.   
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Linear regression analysis was performed on electrodes to compare sensitivities of Pt-

MMA electrodes stored at 4˚C and re-calibrated over 56 days, presented in Table 4.22 and 

plotted in Figure 4.30. 

 Sensitivity (nA/µM) R
2
 n 

0 days ˗0.923 ± 0.055 0.9964 4 

7 days ˗1.004 ± 0.035 0.9988 4 

21 days ˗0.932 ± 0.069 0.9945 4 

28 days ˗1.046 ± 0.070 0.9955 4 

35 days ˗0.817 ± 0.060 0.9947 4 

48 days ˗0.784 ± 0.055 0.9951 4 

56 days ˗0.805 ± 0.064 0.9938 4 

Table 4.22:  Table of calculated sensitivity values of O2 calibrations (0-1200 µM) Pt-MMA electrodes 

calibrated over 56 days. 
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Figure 4.30:  Comparison graph of calculated sensitivity values for O2 calibrations (0-1200 µM) Pt-

MMA (0 days), stored at 4˚C and re-calibrated after (7 days, 21 days, 28 days, 35 days, 48 days and 56 

days). 

 

Unpaired t-test statistical analysis was performed and it can be seen there is no significant 

difference in the sensitivities with P values of 0.2686 (7 days), 0.9180 (21 days), 0.2254 

(28 days), 0.2497 (35 days), 0.1367 (48 days) and 0.2233 (56 days), all less than 0.05 

between electrodes calibrated on day 0 and electrodes re-calibrated 6 times over a period of 
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56 days.  From these results it can be concluded that Pt-MMA electrodes are stable with 

respect to time displaying a shelf-life of at least  of 56 days (current study) when stored at 

4˚C.  

4.3.2.5 Effect of temperature 

The effect of temperature on membrane covered O2 sensors has been previously discussed 

in Section 4.3.1.2.  The effect of an increase in the temperature of the PBS on the Pt-MMA 

electrodes O2 sensitivity at the physiological temperate of 37˚C was investigated. O2 

calibrations performed in PBS at 21°C and 37°C on Pt-MMA electrodes are presented 

below in Table 4.23 and plotted in Figure 4.31. The concentration of dissolved O2 was 

calculated to be 214 µM for air saturated PBS and 1020 µM for O2 saturated PBS at 37°C 

detailed in Section 2.8.4. 

 
PBS 37˚C 

[O2], µM Mean I, nA SEM 

0 0 0 

214 -467.55 28.61 

1020 -1706.64 83.28 

 

 
PBS 21˚C 

[O2], µM Mean I, nA SEM 

0 0 0 

240 -311.06 14.94 

1200 -1365.89 51.54 

Table 4.23:  Tables of results for O2 calibrations (0-1200 µM) for Pt-MMA electrodes.  CPA performed 

at -650 mV vs. SCE in PBS (pH 7.4) at 37˚C (0-1020 µM) (n=5) and 21˚C (0-1200 µM) (n=10).  Mean 

background subtracted.  
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Figure 4.31:  O2 calibration data for Pt-MMA electrodes.  CPA performed at -650 mV vs. SCE in PBS 

(7.4) at 37˚C (0-1020 µM) & 21˚C (0-1200 µM). 

Linear regression analysis was performed on electrodes to compare sensitivities of Pt-

MMA electrodes calibrated in PBS solutions at the physiological temperature of 37˚C and 

room temperature, 21˚C, presented in Table 4.24 and plotted in Table 4.32. 

 
Sensitivity (nA/µM) R

2
 n 

PBS 37˚C -1.636 ± 0.1114 0.9954 5 

PBS 21˚C -1.127 ± 0.03255 0.9992 10 

Table 4.24: Comparison of calculated sensitivity values of O2 calibrations for Pt-MMA electrodes 

calibrated in PBS solutions of 37˚and 21˚C. 
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Figure 4.32:  Comparison graph of calculated sensitivity values for O2 calibrations for Pt-MMA 

electrodes calibrated in PBS at 37˚C (n=5) & 21˚C (n=10). 
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Unpaired t-test statistical analysis was performed and it can be seen there is no significant 

difference in the sensitivities of Pt-MMA electrodes calibrated at 37˚C and 21˚C with a P 

value of 0.0118. 

For O2 calibrations on bare Pt electrodes there was found to be a significant difference in 

the sensitivity of the electrodes calibrated at 22˚C and 37˚C with sensitivities of  -1.12 ± 

0.08 nA/µM, R
2
 = 0.995 (n = 18) and -1.57 ± 0.06 nA/µM, R

2
 = 0.9963 (n = 12), P = 

0.0002) (Bolger et al., 2011a).  From the results obtained for Pt-MMA it can be concluded 

that in the presence of the polymer MMA, the sensitivity increases by 45.16 ± 9.88 % 

corresponding to a 2.82 ± 0.44 % for every 1˚C increase.   

4.3.2.6 Effect of pH 

Changes in pH may occur during physiological experiments in vivo as discussed in Section 

4.3.1.3.  The effect of varying pH on the sensitivities of Pt-MMA electrodes was 

investigated.  O2 calibrations performed in PBS (pH 6.5, 7 and 8) on Pt-MMA electrodes 

are presented below in Table 4.25 and plotted in Figure 4.33. 

 PBS pH 6.5 PBS pH 7.4 PBS pH 8 

[O2], µM Mean I, nA SEM Mean I, nA SEM Mean I, nA SEM 

0 0 0 0 0 0 0 

240 -289.8 12.2 -299.1 15.1 -328.2 10.8 

1200 -1119.4 22.6 -1307.9 43.2 -1185.8 41.8 

Table 4.25:  Table of results for O2 calibrations (0-1200 µM) for Pt-MMA electrodes.  CPA performed 

at -650 mV vs. SCE in PBS: pH 6.5 (n=4), 7.4 (n=8) & 8 (n=4) at 21˚C.  Mean background subtracted.  
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Figure 4.33:  O2 calibration data (0-1200 µM) for Pt-MMA electrodes.  CPA performed at -650 mV vs. 

SCE in PBS (pH 6.5, 7.4 & 8) at 21˚C.   

Linear regression analysis was performed on electrodes to compare sensitivities of Pt-

MMA electrodes calibrated in PBS solutions with a pH of 6.5, 7.4 and 8, presented in Table 

4.26 and plotted in Figure 4.34. 

 Sensitivity (nA/µM) R
2
 n 

PBS pH 6.5 ˗0.913 ± 0.057 0.9962 4 

PBS pH 7.4 ˗1.079 ± 0.032 0.9991 8 

PBS pH 8 ˗0.961 ± 0.078 0.9934 4 

Table 4.26:  Comparison of calculated sensitivity values of O2 calibrations (0-1200 µM) for Pt-MMA 

electrodes calibrated in PBS 6.5, 7.4 & 8. 
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Figure 4.34: Comparison graph of calculated sensitivity values for O2 calibrations (0-1200 µM) for Pt-

MMA electrodes calibrated in PBS pH 6.5 (n=4), 7.4 (n=8) and 8 (n=4). 

 

Unpaired t-test statistical analysis was performed and it can be seen there is no significant 

difference in the sensitivities of Pt-MMA electrodes calibrated in PBS pH 6.5 and 7.4 with 

a P value of 0.0516 and there is no significant difference in the sensitivities between 

electrodes calibrated in PBS pH 8 and 7.4 with a P value of 0.2355.   

These results are similar to data observed with O2 calibrations on bare Pt electrodes 

calibrated in PBS pH 7.4 (-1.12 ± 0.08 nA/µM, R
2
 = 0.995, n = 18), pH 6.5 (-1.06 ± 0.04 

nA/µM, R
2
 = 0.9987, n = 8) and pH 8 (-1.07 ± 0.04 nA/µM, R

2
 = 0.9951, n = 8), where a 

small decrease in the sensitivity was observed with pH 6.5 and 8 compared to 7.4. (Bolger 

et al., 2011a). 

4.3.2.7 aCSF CV 

CV was performed on the Pt-MMA electrodes to confirm the diffusion limited reduction 

potential of O2 at the surface of these electrodes in aCSF.  This was performed as described 

in Section 3.6.1.2.  The results obtained are presented graphically in Figure 4.35 below. 
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Figure 4.35:  Cyclic voltammograms from -1 to 0 V vs. SCE at 100 mVs
-1

 performed in O2 saturated 

aCSF (21˚C) buffer solution, illustrating the reduction of O2 at a Pt-MMA electrode. 

 

As with PBS - 650 mV vs. SCE (see Figure 4.17) is in the mass-transport limited region 

after the peak potential of O2 reduction at Pt-MMA electrodes.  All experiments performed 

in aCSF were carried out at this potential. 

4.3.2.8 Effect of ion changes 

Changes in ion concentrations are of interest in vivo as previously discussed in Section 0.  

The effect of ion changes on the sensitivities of Pt-MMA electrodes was investigated.  O2 

calibrations performed in aCSF, aCSF no Ca
2+ 

and aCSF no Mg
2+ 

on Pt-MMA electrodes 

are presented below in Table 4.27 and plotted in Figure 4.36 . 

 aCSF (n=7) aCSF no Ca
2+

 (n=4) aCSF no Mg
2+

(n=4) 

[O2], µM Mean I, nA SEM Mean I, nA SEM Mean I, nA SEM 

0 0 0 0 0 0 0 

240 -626.7 106.8 -352.5 22.6 -158.8 3.1 

1200 -1866.3 173.7 -1102.9 84.2 -890.9 24.9 

Table 4.27:  Table of results for O2 calibrations (0-1200 µM) for Pt-MMA electrodes.  CPA performed 

at -650 mV vs. SCE in aCSF (n=7), aCSF no Ca
2+

 (n=4), aCSF no Mg
2+

 (n=4) at 21˚C.  Mean 

background subtracted. 
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Figure 4.36:  O2 calibration data (0-1200 µM) for Pt-MMA electrodes.  CPA performed at -650 mV vs. 

SCE in aCSF, aCSF no Ca
2+

 and aCSF no Mg
2 
at 21˚C. 

Linear regression analysis was performed on electrodes to compare sensitivities of Pt-

MMA electrodes calibrated in aCSF solutions in the presence and absence of ions, 

presented in Table 4.28 and plotted in Figure 4.37. 

 Sensitivity (nA/µM) R
2
 n 

aCSF ˗1.480 ± 0.218 0.9788 7 

aCSF no Ca
2+

 ˗0.880 ± 0.113 0.9837 4 

aCSF no Mg
2+

 ˗0.748 ± 0.017 0.9995 4 

Table 4.28:  Comparison of calculated sensitivity values of O2 calibrations (0-1200 µM) for Pt-MMA 

electrodes calibrated in aCSF, aCSF no Ca
2+

, aCSF no Mg
2+

 at 21˚C. 
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Figure 4.37:  Comparison graph of calculated sensitivity values for O2 calibrations (0-1200 µM) for Pt-

MMA electrodes calibrated in aCSF (n=7), aCSF no Ca
2+

 (n=4), aCSF no Mg
2
+ (n=4). 

 

Unpaired t-test statistical analysis was performed and it can be seen there is a significant 

difference in the sensitivities of Pt-MMA electrodes calibrated in aCSF and aCSF with no 

Ca
2+

or Mg
2+ 

with P values of 0.0402 (aCSF no Ca
2+

) and 0.0154 (aCSF no Mg
2+

).  

There is an increase in the sensitivity for Pt-MMA electrodes calibrated in aCSF (˗1.480 ± 

0.218 nA/µM) compared to PBS (-1.140 ± 0.004 nA/µM) although the difference is not 

significant P = 0.1699.   The significant differences observed in the sensitivities of Pt-

MMA electrodes plotted in Figure 4.37, with and without the presence of ions are 

unexpected as there were no significant differences seen with bare Pt electrodes (Bolger et 

al., 2011a).  

4.3.2.9 Effect of stirring 

The reduction of O2 at the Pt-MMA electrode was examined in quiescent and stirred 

solutions as discussed previously in Section 4.3.1.6.  Results are presented below in Table 

4.29 and plotted in Figure 4.38. 
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 Control: PBS Bubbling PBS Quiescent Stirring @ c.a 1 Hz Stirring @ c.a 10 Hz 

[O2], µM Mean I, nA SEM Mean I, nA SEM Mean I, nA SEM Mean I, nA SEM 

240 -651.9 93.6 -447.6 97.4 -561.6 153.7 -680.7 193.6 

1200 -2452.2 99.4 -1517.6 43.2 -1688.0 55.8 -1774.1 62.3 

Table 4.29:  Table of results for O2 calibrations (240-1200 µM) for Pt-MMA electrodes (n=4).  CPA 

performed at -650 mV vs. SCE in PBS (pH 7.4) at 21˚C.  Mean background subtracted.  
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Figure 4.38:  O2 calibration data (240-1200 µM) for Pt-MMA electrodes (n=4).  CPA performed at -650 

mV vs. SCE in PBS (pH 7.4) quiescent and in the presence of forced convection at 21˚C.  
 

Unpaired t-test statistical analysis was performed and it can be seen there is no significant 

difference in the sensitivities between Pt-MMA electrodes calibrated in quiescent PBS and 

agitated PBS stirred at approximately 1 Hz in the presence of 240 µM O2 with a P value of 

0.5585.  There was also no significant difference found between Pt-MMA electrodes 

calibrated in quiescent PBS and agitated PBS stirred at approximately 10 Hz in the 

presence of 240 µM O2 with a P value of 0.3426. 

There is no significant difference in the sensitivities between Pt-MMA electrodes calibrated 

in quiescent PBS and agitated PBS stirred at approximately 1 Hz in the presence of 1200 

µM O2 with a P value of 0.0605.  There was a significant difference found between Pt-

MMA electrodes calibrated in quiescent PBS and agitated PBS stirred at approximately 10 

Hz in the presence of 1200 µM O2 with a P value of 0.0196.   From the results presented in 

Figure 4.38 it can be seen that there is no significant increase in the current monitored using 
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Pt-MMA electrodes at 1 Hz in the presence 240 µM O2 compared to quiescent conditions, 

concluding that there is no dependence on flow in vitro. 

4.3.2.10 Selectivity 

4.3.2.10.1 Ascorbic Acid (AA) calibrations 

The effect of the most abundant interferent in the brain ascorbic acid (AA) was investigated 

(Miele & Fillenz, 1996).  Calibrations were performed as described in Section 3.6.1.7.  The 

addition of a 500 µM aliquot of AA prior to a high concentration (0-1200 µM) O2 

calibration allows for the determination of the effect of AA on the O2 signal.   O2 

calibrations performed in PBS with and without 500 µM AA present on Pt-MMA 

electrodes are presented below in Table 4.30 and plotted in Figure 4.39. 

 Pt-MMA (n=4) Pt-MMA: 500 µM AA (n=4) 

[O2], µM Mean I, nA SEM Mean I, nA SEM 

0 0 0 0 0 

240 -342.9 39.7 -224.1 12.2 

1200 -1425.8 150.0 -959.2 67.1 

Table 4.30:  Table of results for O2 calibrations (0-1200 µM) for Pt-MMA electrodes (n=4) for a 

standard O2 calibration and re-calibration in the presence of 500 µM AA.  CPA performed at -650 mV 

vs. SCE in PBS (pH 7.4) at 21˚C.  Mean background subtracted.  
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Figure 4.39:  O2 calibration data (0-1200 µM) for Pt-MMA electrodes (n=4) for a standard O2 

calibration and re-calibration in the presence of 500 µM AA.  CPA performed at -650 mV vs. SCE in 

PBS (pH 7.4) at 21˚C.   

Linear regression analysis was performed on electrodes to compare sensitivities of Pt-

MMA electrodes calibrated with and without 500 µM of AA present, presented in Table 

4.13 and plotted in Figure 4.40. 

 Sensitivity (nA/µM) R
2
 n 

Pt-MMA ˗1.171 ± 0.050 0.9982 4 

Pt-MMA: 500 µM AA ˗0.790 ± 0.028 0.9988 4 

Table 4.31:  Table of calculated sensitivity values of O2 calibrations (0-1200 µM) for Pt-MMA 

electrodes with and without 500 µM of AA present. 
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Figure 4.40: Comparison graph of calculated sensitivity values for O2 calibrations (0-1200 µM) Pt-

MMA electrodes with and without 500 µM of AA present (n=4). 
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Unpaired t-test statistical analysis was performed and it can be seen there is a significant 

difference in the sensitivities of Pt-MMA electrodes calibrated with and without the 

presence of 500 µM AA with a P value of 0.0026.   

The significant difference in the sensitivities between Pt-MMA electrodes and Pt-MMA 

electrodes calibrated in the presence of 500 µM AA is thought to be due to the AA 

accumulating at the electrode surface and decreasing the surface area resulting in a 

reduction in sensitivity to O2. Results for a 500 µM AA injection looked at the current 

response (Bolger et al., 2011a).  This experiment showed that the signal recorded in a N2 

atmosphere did not deviate from the typical baseline current. 

4.3.2.11 Post- implantation calibrations 

The effects of proteins, lipids and brain tissue on the sensitivity of Pt-MMA electrodes in 

vitro was investigated (Section 4.3.2.3).  Although this gives an indication as to the effect 

that proteins, lipids and ex-vivo brain tissue has on the sensitivity of the electrodes the 

effect of the living brain with endogenous species present was investigated by performing 

post implantation calibrations where possible on the Pt-MMA electrodes (implanted for 19 

± 3 days) once removed from the brain, presented in Table 4.32 and plotted in Figure 4.41. 

These calibrations are described in Section 3.6.1.8. 

 Pt-MMA (pre-implantation) Pt-MMA (post-implantation) 

[O2], µM Mean I, nA SEM Mean I, nA SEM 

0 0 0 0 0 

240 -312.0 13.9 -247.6 72.2 

1200 -1403.4 74.0 -1038.2 121.3 

Table 4.32: Table of results for O2 calibrations (0-1200 µM) for Pt-MMA electrodes pre-implantation 

and post-implantation (n=4) for a standard O2 calibration.  CPA performed at -650 mV vs. SCE in PBS 

(pH 7.4) at 21˚C.  Mean background subtracted.  
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Figure 4.41:  O2 calibration data (0-1200 µM) for Pt-MMA electrodes pre-implantation and post-

implantation (n=4) for a standard O2 calibration).  CPA performed at -650 mV vs. SCE in PBS (pH 7.4) 

at 21˚C. 

 

Linear regression analysis was performed on electrodes to compare sensitivities of Pt-

MMA electrodes calibrated before and after implantation, presented in Table 4.33 and 

plotted in Figure 4.42. 

 Sensitivity (nA/µM) R
2
 n 

Pre-implantation ˗1.160 ± 0.027 0.9995 4 

Post-implantation ˗0.853 ± 0.034 0.9984 4 

Table 4.33:  Table of calculated sensitivity values of O2 calibrations (0-1200 µM) for Pt-MMA 

electrodes pre-implantation and post-implantation. 
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Figure 4.42:  Graph of calculated sensitivity values for O2 calibrations (0-1200 µM) for Pt-MMA 

electrodes pre-implantation and post-implantation (n=4). 
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Unpaired t-test statistical analysis was performed and it can be seen there is a significant 

difference in the sensitivities between Pt-MMA electrodes calibrated pre and post-

implantation with a P value of 0.0009.  From the results presented in Error! Reference 

source not found. it can be seen that the brain has a detrimental effect on the sensitivity of 

the Pt-MMA electrodes to O2.  This represents a decrease in sensitivity of 26.44 ± 2.96 % 

for the electrodes post-implantation compared to pre-implantation.  This decrease is 

thought to be due to fouling and even an accumulation of tissue at the electrode surface 

preventing O2 from reaching the active surface of the electrode. 

4.3.3 CPE and Pt-MMA Electrode Comparisons 

To allow for an accurate comparison between the CPEs and Pt-MMA electrodes due to the 

different dimensions of the electrodes the mean sensitivity values were converted to current 

densities. 

4.3.3.1 Oxygen calibrations 

The average sensitivity for CPEs in terms of current density for high concentration O2 

calibrations was -0.033 ± 0.001 µAmm
-2

µM
-1

 (n=24).  The average current density value at 

the physiological O2 level of 50 µM was -1.65 ± 0.05 µAmm
-2

 (n = 24).   

The average sensitivity for Pt-MMA electrodes in terms of current density for high 

concentration O2 calibrations was -0.093 ± 0.003 µAmm
-2

µM
-1

 (n=64).  The average 

current density value at the physiological O2 level of 50 µM was -4.66 ± 0.02 µAmm
-2

 (n = 

64).   Current density comparisons were made between CPEs and Pt-MMA electrodes for 

O2 calibrations, plotted in Figure 4.43. 
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Figure 4.43: Comparison graph of calculated current density sensitivity values for O2 calibrations (0-

1200 µM) CPEs and Pt-MMA electrodes calibrated in PBS (pH 7.4) at 21˚C. 

  

From these results it can be seen that the Pt-MMA electrodes exhibit a higher sensitivity to 

O2 at the physiological concentration of 50 µM O2 than CPEs. 

4.3.3.2 Temperature dependence comparisons 

The average sensitivity for CPEs in terms of current density for high concentration O2 

calibrations at 37°C was -0.046 ± 0.005 µAmm
-2

µM
-1 

(n=8)  and at 21°C  was -0.033 ± 

0.001 µAmm
-2

µM
-1 

(n=24).   

The average sensitivity for Pt-MMA electrodes in terms of current density for high 

concentration O2 calibrations at 37°C was -0.133 ± 0.009 µAmm
-2

µM
-1  

(n=5) and at 21°C  

was -0.092 ± 0.003 µAmm
-2

µM
-1 

(n=10).  Current density comparisons were made between 

CPEs and Pt-MMA electrodes for O2 calibrations in PBS at 21°C and 37°C, plotted in 

Figure 4.44. 
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Figure 4.44:  Comparison graph of calculated current density sensitivity values for O2 calibrations (0-

1200 µM) CPEs and Pt-MMA electrodes calibrated in PBS (pH 7.4) at 21˚C and 37 ˚C.  

 

The Pt-MMA electrodes give a higher sensitivity in terms of current density at the 

physiological temperature of 37°C at 50 µM (-6.665 ± 0.454 µAmm
-2

) than CPEs (-2.300 ± 

0.239 µAmm
-2

).  However there is an increase of 2.47 ± 1.22 % for every 1˚C increase for 

CPEs and a 2.82 ± 0.44 % for every 1˚C increase for Pt-MMA electrodes showing that the 

electrodes behave similarly in terms of temperature dependence.   

4.3.3.3  Convection comparisons 

The average sensitivity for CPEs in terms of current density for O2 calibrations at stirred  

(ca.) 1 Hz was -0.060  ±  0.005 µAmm
-2

µM
-1 

(n=12 (240 µM) n=4 (1200 µM)) and at ca. 

10 Hz was -0.061 ± 0.006 µAmm
-2

µM
-1 

(n=12 (240 µM) n=4 (1200 µM)).  There is a 33.15 

± 5.28 % decrease in the sensitivity of CPEs stirred at ca. 1 Hz compared to no stirring (-

0.090 ± 0.002 µAmm
-2

µM
-1 

(n=12 (240 µM) n=4 (1200 µM)) and a decrease of 32.10 ± 

6.91 % for CPEs stirred at ca. 10 Hz. 

The average sensitivity for Pt-MMA electrodes in terms of current density for O2 

calibrations at stirred at ca. 1 Hz was -0.109  ±  0.016 µAmm
-2

µM
-1 

(n=4) and at ca. 10 Hz 

was -0.113 ± 0.023 µAmm
-2

µM
-1 

(n=4).  There is a 9.68 ± 15.75 % increase in the 

sensitivity of Pt-MMA electrodes stirred at ca. 1 Hz compared to no stirring (-0.100 ± 

0.010 µAmm
-2

µM
-1 

(n=4)) and an increase of 13.10 ± 22.92 % for Pt-MMA electrodes 
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stirred at ca. 10 Hz.  Current density comparisons were made between CPEs and Pt-MMA 

electrodes for O2 calibrations in quiescent and agitated solutions of PBS, plotted in Figure 

4.45. 
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Figure 4.45:  Comparison graph of calculated current density sensitivity values for O2 calibrations on 

CPEs and Pt-MMA electrodes calibrated in PBS (pH 7.4) quiescent and in the presence of forced 

convection at 21˚C.  

From the results it can be seen that convection has less of an effect on the sensitivity of Pt-

MMA electrodes than CPEs.  These results have little bearing on in vivo experiments but 

would be more relevant to brain slice or tissue culture experiments as discussed previously 

in Section 4.3.1.6.   

4.3.3.4 Post implantation comparisons 

The average sensitivity for CPEs in terms of current density for O2 calibrations (0-1200 

µM) post-implantation was -0.031 ± 0.004 µAmm
-2

µM
-1

 (n=13) corresponding to a 5.75 ± 

11.46 % decrease when compared to pre-implantation calibrations (-0.033 ± 0.001 µAmm
-

2
µM

-1
 (n=13)).   
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The average sensitivity for Pt-MMA electrodes in terms of current density for O2 

calibrations (0-1200 µM) post-implantation was -0.070 ± 0.003 µAmm
-2

µM
-1

 (n=4) 

corresponding to a 26.44 ± 2.96 % decrease when compared to pre-implantation 

calibrations (-0.095 ± 0.002 µAmm
-2

µM
-1

 (n=4)).  Current density comparisons were made 

between CPEs and Pt-MMA electrodes pre and post-implantation, plotted in Figure 4.46. 
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Figure 4.46:  Comparison graph of calculated current density sensitivity values for O2 calibrations on 

CPEs and Pt-MMA electrodes calibrated before and after implantation in PBS (pH 7.4) at 21°C.  

 

From the results it can be seen that implantation has less of an effect on the sensitivity of 

CPEs than Pt-MMA electrodes when compared to pre-implantation calibrations.  This is 

thought to be due to fowling of the Pt-MMA electrodes, characteristic of noble metal 

electrodes. However the CPEs were only implanted for a period of 6 ± 1 days compared to 

Pt-MMA electrodes which were implanted for a period of 19 ± 3 days.  There is an 

approximate 2 week difference in the length of implantation which could account for the 

vast difference in sensitivities.  The stability of CPEs have been investigated in vivo 

indicating a stable baseline signal over 12 weeks (Bolger et al., 2011b), showing that CPEs 

are suitable for long-term recording of brain tissue O2 compared to Pt-MMA electrodes 

which exhibit a significant drop in sensitivity of 26.44 ± 2.96 % after 19 ± 3 days.   
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4.4 Conclusions 

The in vitro characterisation of an electrode allows for the determination of the sensitivity, 

selectivity and stability of the sensor. This chapter examines the effect of changes in 

temperature, pH, ions, convection and implantation on the sensitivity of CPEs to O2 

(Section 4.3.1).  Pt-MMA electrodes were fully characterised in vitro by determining the 

sensitivity of the sensor to O2 and the effects on the sensitivity following exposure to 

proteins, lipids and brain tissue. The effects of temperatures, pH, ions, convection, 

interferents and implantation were also examined along with the stability of the sensors in 

relation to time (Section 4.3.2.4). 

From the results observed in this chapter it can be concluded that Pt-MMA electrodes have 

a higher sensitivity to O2 than CPEs (Section 4.3.3.1).  The physiological temperature 

(37°C) affects the sensitivity of CPEs and Pt-MMA electrodes similarly (Section 4.3.3.2) 

and although convection experiments show that Pt-MMA electrodes are less affected by 

stirring than CPEs (Section 4.3.3.3) these results only prove to be relevant for in vitro 

experiments.  The effect of implantation of the sensors into the living brain showed that 

implantation has less of an effect on CPEs than Pt-MMA electrodes although there was a 

difference of the period implanted of approximately 2 weeks (Section 4.3.3.4). Our 

previously published data shows that CPEs have a stable baseline over 12 (Bolger et al., 

2011b). These results indicate that Pt-MMA electrodes are an ideal choice for detection of 

brain tissue O2 in vivo over short periods of time but CPEs would be the sensor of choice 

for long-term monitoring of brain tissue O2. 
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5.1      Introduction 

Brain tissue oxygen (O2) is one of the most important energy substrates for brain energy 

metabolism.  Molecular O2 was one of the first substances to be detected voltammetrically 

in vivo in the brain (Clark et al., 1958; Clark Jr & Lyons, 1965) and in peripheral tissue 

(Clark Jr & Clark, 1964). O2 is delivered by the blood and the tissue concentration is 

determined by the balance of supply and utilisation.  In different brain regions the O2 

turnover rate varies and it has been established that the cerebral cortex has a higher 

turnover rate than others (Nair et al., 1987).  The concentration of O2 in the brain varies as 

supply is altered in different layers of the brain tissue (Baumgärtl et al., 1989) and depends 

on the tissue heterogeneity (Murr et al., 1994; Lubbers & Baumgärtl, 1997).  O2 tissue 

concentrations have been reported to range from 40 µM (Murr et al., 1994),  50 µM 

(Zimmerman & Wightman, 1991), 60 µM (Zauner et al., 1995) to 80 µM (McCreery et al., 

1990). 

Carbon-based electrodes such as glassy carbon (Clark Jr & Clark, 1964), carbon fiber 

electrodes (Zimmerman & Wightman, 1991; Zimmerman et al., 1992; Venton et al., 2003), 

carbon epoxy (Bazzu et al., 2009) and carbon paste electrodes (Lowry et al., 1996; Lowry 

et al., 1997; Bolger & Lowry, 2005; Bolger et al., 2011b) are commonly used  for detecting 

changes in tissue O2.  Carbon electrodes have their advantages and disadvantages over 

noble metal electrodes.  The main advantage of carbon fibre electrodes (CFEs) and carbon 

paste electrodes (CPEs) for use in vivo are that they are less susceptible to surface 

poisoning than noble metal electrodes, which usually require the addition of a protective 

membrane (Wisniewski et al., 2000; Zhao et al., 2001; Gifford et al., 2006).  CFEs 

(Zimmerman & Wightman, 1991) are advantageous due to their small diameter (5-50 µm), 

however if placed closely to blood vessels or  metabolically active sites the O2 

concentration can vary (Lowry et al., 1997).  CPEs are advantageous as in vivo they are 

stable over long periods (O'Neill, 1993; O'Neill & Lowry, 1995; O’Neill, 2005; Bolger et 

al., 2011b).  CPEs have a diameter of 200 µm greater than the scale of the capillary zone 

(<100 µm) (Silver, 1965) which allows detection of average tissue O2 levels.  However due 

to their size they do cause greater tissue damage than noble metal electrodes.   
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Platinum(Pt)-based electrodes have been shown to be a potential alternative to CPEs to 

monitor brain tissue O2 (Bolger et al., 2011a).  Pt electrodes are easier to manufacture than 

CPEs and have a smaller diameter (125 µm) resulting in less tissue damage.    

This chapter investigates and characterises the use of Pt-coated in methyl methacrylate 

(MMA) for the detection of brain tissue O2 in the striatum following on from the previous 

chapter (Chapter 4) where the Pt-MMA electrodes were fully characterised in vitro.  As 

previously discussed in Section 4.1 the in vitro characterisation allows for an indication of 

the potential consequences of implantation of the sensor into tissue but does not allow us to 

know the full extent of the effect of the brain on the sensitivity, selectivity and stability of 

the sensor.   

5.2 Experimental In Vivo 

The instrumentation and software used are detailed in Section 3.2 and all chemicals and 

solutions are detailed in Section 3.3. 

Pt disk electrodes (125 µm bare diameter) were constructed as described in Section 3.4.5 

and modified using MMA as detailed in Section 3.5.2.1.  A potential of -650 mV vs. SCE 

was applied to the working electrodes and all experiments were performed on freely-

moving Wistar rats. 

In vivo procedures are detailed in Section 3.7.  Pt-MMA electrodes were implanted in the 

striatum.  

Data is represented via the mean ± SEM where n = number of administrations, unless 

otherwise stated.  Significant differences were calculated using two-tailed unpaired t-tests 

unless otherwise stated. 
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5.3 Results and Discussion In Vivo 

5.3.1 Characterisation of Pt-MMA electrodes In Vivo 

5.3.2 Gaseous Administrations 

5.3.2.1 Hyperoxia 

Mild hyperoxia was achieved by administration of O2 gas to the snout of the animal.  The 

flow was maintained at a slow steady rate similar to the method used previously (Lowry et 

al., 1998) and as described in Section 3.7.4.   The inhalation of the O2 gas for 3 minutes 

resulted in a change from baseline levels for the O2 signals, monitored using Pt-MMA 

electrodes as can be seen in Figure 5.1 below. 
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Figure 5.1 : A typical example of a 3-min period of mild hyperoxia (administration of O2 gas) monitored in vivo 

using a Pt-MMA electrode implanted in the striatum of a freely-moving rat.  The bar indicates the period of 

gaseous administration. 

 

A 3-min period of mild hyperoxia shows an average immediate increase in current from the 

baseline level of -93.70 ± 3.57 nA (n=51, 4 animals) to -133.51 ± 6.14 nA (n=51, 4 

animals).  This increase was found to be significant (P < 0.0001).  The percentage increase 
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was found to be 43.25 ± 4.01 % (n=51, 4 animals).  Changes were immediate and on 

cessation of inhalation the signals quickly returned to baseline levels of -94.86 ± 3.55 nA 

after 4.51 ± 0.63 min (n=41, 4 animals) (P=0.8183), indicating a rapid return to normoxic 

conditions. A summary of these results can be seen in Table 5.1. 

Hyperoxia 

Baseline (nA) -93.70 ± 3.57 

Max Increase (nA) -133.51 ± 6.14 

% Increase 43.25 ± 4.01 

Post-baseline (nA) -94.86 ± 3.55 

t to post-baseline (min) 4.51 ± 0.63 

Table 5.1 : Summary of results for a 3-min period of mild hyperoxia monitored in vivo using Pt-MMA 

electrodes (n = 41, 4 animals), implanted in the striatum of freely-moving rats. 

 

From these results it can be seen that there is a significant increase in striatal tissue O2 upon 

administration of O2 gas to the animal’s snout and this change can be reliably monitored 

using Pt-MMA electrodes. 

5.3.2.2 Hypoxia  

Mild hypoxia was achieved by administration of N2 gas to the snout of the animal.  The 

flow was maintained at a slow steady rate similar to the method used previously (Lowry et 

al., 1998) and as described in Section 3.7.4.   The inhalation of the N2 gas for 3 minutes 

resulted in a change from baseline levels for the O2 signals, monitored using Pt-MMA 

electrodes as can be seen in Figure 5.2 below. 
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Figure 5.2 : A typical example of a 3-min period of mild hypoxia (administration of N2 gas) monitored 

in vivo using a Pt-MMA electrode implanted in the striatum of a freely-moving rat.  The bar indicates 

the period of gaseous administration. 

 

A 3-min period of mild hypoxia shows an average immediate decrease in current from the 

baseline level of -89.62 ± 3.89 nA (n=42, 4 animals) to -63.87 ± 3.91 nA (n=42, 4 animals).  

This decrease was found to be significant (P < 0.0001).  The percentage decrease was 

found to be 28.13 ± 2.05 % (n=42, 4 animals). Changes were immediate and on cessation of 

inhalation the signals quickly returned to baseline levels of -90.16 ± 6.37 nA after 2.95 ± 

0.11 min (n=34, 4 animals) (P= 0.9426), indicating a rapid return to normoxic conditions. 

A summary of these results can be seen in Table 5.2. 

Hypoxia 

Baseline (nA) -89.62 ± 3.89 

Max Decrease (nA) -63.87 ± 3.91 

% Decrease 28.13 ± 2.05 

Post-baseline (nA) -90.16 ± 6.37 

t to post-baseline (min) 2.95 ± 0.11 

Table 5.2:  Summary of results for a 3-min period of mild hypoxia monitored in vivo using Pt-MMA 

electrodes (n = 42, 4 animals), implanted in the striatum of freely-moving rats. 
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From these results it can be seen that there is a significant decrease in striatal tissue O2 

upon administration of N2 gas to the animal’s snout and this change can be reliably 

monitored using Pt-MMA electrodes. 

5.3.3 Neuronal Activation 

5.3.3.1 Tail Pinch 

Neuronal activation was stimulated physiologically by means of a tail pinch.  A tail pinch 

induces a well characterised behaviour pattern consisting of gnawing, licking, eating and a 

general increase in the level of motor activity (Antelman et al., 1975).  The tail pinch was 

performed for a duration of 5 minutes similar to methods used previously (Bolger & 

Lowry, 2005) and as described in Section 3.7.5.1.  Induced neuronal activation for 5 

minutes resulted in a change from baseline levels for the O2 signals, monitored using Pt-

MMA electrodes as can be seen in Figure 5.3. 
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Figure 5.3:  A typical example of a 5-min tail pinch (neuronal activation) monitored in vivo using a Pt-

MMA electrode implanted in the striatum of a freely-moving rat. .  The bar indicates the duration of 

the tail pinch.  

 

A 5-min period of neuronal activation shows an average increase in current from baseline 

level of -106.22 ± 5.36 nA (n=14, 3 animals) to -121.26 ± 6.66 nA (n=14, 3 animals) after 
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2.04 ± 0.41 min, representing a significant increase of  15.33 ± 1.96 % (n=14, 3 animals) 

compared to baseline levels (P< 0.0001 (paired t-test)). Upon cessation of the tail pinch, the 

current increased to -117.71 ± 5.86 nA (n=14, 3 animals) corresponding to a mean 

percentage increase of 11.16 ± 1.77 % (n=14, 3 animals) from baseline levels. The post-tail 

pinch current returned to baseline levels of -103.03 ± 8.47 nA (n=14, 3 animals) 

(P=0.7534) after 10.91 ± 4.16 min. A summary of these results can be seen in Table 5.3. 

Tail pinch 

Baseline (nA) -106.22 ± 5.36 

Max Increase (nA) -121.26 ± 6.66 

% Increase 15.33 ± 1.96 

Post-baseline (nA) -103.03 ± 8.47 

t to post-baseline (min) 10.91 ± 4.16 

Table 5.3:  Summary of results for a 5-min tail pinch monitored in vivo using Pt-MMA electrodes (n = 

14, 3 animals), implanted in the striatum of freely-moving rats. 
 

From these results it can be seen that there is an increase in striatal tissue O2 upon neuronal 

activation and this change can be reliably monitored using Pt-MMA electrodes.  The 

percentage increase however is low which is thought to be due to variations in the stress 

score between experiments and habituation of the animal to the tail pinch.   

5.3.4 Control Administrations 

5.3.4.1 Saline 

The effect of i.p. injections of saline (0.9% NaCl) on the O2 signal was investigated.  Saline 

serves as a vehicle for drug administration so the effects of saline and the i.p. injection on 

the O2 signal, monitored using Pt-MMA electrodes can be seen in Figure 5.4 below. 
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Figure 5.4:  A typical example of an i.p. administration of saline (0.9% NaCl) monitored in vivo using a 

Pt-MMA electrode implanted in the striatum of a freely-moving rat.  The arrow indicates the point of 

injection. 

 

An i.p. injection of saline shows an average immediate increase in the O2 signal from 

baseline levels of -93.51 ± 5.89 nA (n=14, 3 animals) to -105.63 ± 7.05 nA after 25.80 ± 

3.34 seconds (n=14, 3 animals) this sharp increase in current of 13.35 ± 2.42 % can be 

attributed to injection stress.  A maximum increase of -109.58 ± 7.68 nA (n=14, 3 animals) 

was observed after 3.57 ± 0.77 min representing a non-significant increase of 19.84 ± 

3.30% (n=14, 3 animals) compared to baseline levels (P= 0.1118).  The current returned to 

post-injection baseline levels of -95.43 ± 5.92 nA (n=14, 3 animals) (P= 0.8214) after 5.21 

± 1.09 min.  A summary of these results can be seen in Table 5.4. 

Saline i.p. 

Baseline (nA) -93.51 ± 5.89 

Max Increase (nA) -109.58 ± 7.68 

t to max increase (min) 3.57 ± 0.77 

% Increase 19.84 ± 3.30 

Post-baseline (nA) -95.43 ± 5.92 

t to post-baseline (min) 5.21 ± 1.09 

Table 5.4:  Summary of results for i.p. administrations of saline (0.9% NaCl) monitored in vivo using 

Pt-MMA electrodes (n = 14, 3 animals), implanted in the striatum of freely-moving rats. 
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From these results it can be seen that there is no significant effect on striatal tissue O2 levels 

upon administration of a saline (0.9%) i.p. injection monitored using Pt-MMA electrodes. 

The increase observed can be attributed to injection stress. It can therefore be concluded 

that any increase seen using saline as a vehicle for drug administrations is a drug effect. 

5.3.4.2 Dimethyl sulfoxide (DMSO) 

The effect of i.p. injections of DMSO (2%) on the O2 signal was investigated.  DMSO 

serves as a vehicle for drug administration so the effects of DMSO and the i.p. injection on 

the O2 signal, monitored using Pt-MMA electrodes can be seen in Figure 5.5 below. 
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Figure 5.5:  A typical example of an i.p. administration of DMSO (2%) monitored in vivo using a Pt-

MMA electrode implanted in the striatum of a freely-moving rat.  The arrow indicates the point of 

injection. 

 

An i.p. injection of DMSO shows an average immediate increase in the O2 signal from 

baseline levels of -85.30 ± 10.03 nA (n=6, 3 animals) to -97.31 ± 11.78 nA after 32.63 ± 

6.42 seconds (n=6, 3 animals) this sharp increase in current of 13.28 ± 2.80 % can be 

attributed to injection stress.  A maximum increase of -92.94 ± 8.92 nA (n=6, 3 animals) 

was observed after 13.64 ± 4.79 min representing a non-significant increase of 6.98 ± 1.83 

% (n= 6, 3 animals) compared to baseline levels (P= 0.5832).  The current returned to post-
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injection baseline levels of -87.10 ± 10.24 nA (n=6, 3 animals) (P= 0.9028) after 11.44 ± 

4.24 min.  A summary of these results can be seen in Table 5.5. 

DMSO i.p. 

Baseline (nA) -85.30 ± 10.03 

Max Increase (nA) -92.94 ± 8.92 

t to max increase (min) 13.64 ± 4.79 

% Increase 6.98 ± 1.83 

Post-baseline (nA) -87.10 ± 10.24 

t to post-baseline (min) 11.44 ± 4.24 

Table 5.5: Summary of results for i.p. administrations of DMSO (2%) monitored in vivo using  Pt-

MMA electrodes (n = 6, 3 animals), implanted in the striatum of freely-moving rats. 

 

From these results it can be seen that there is no significant effect on striatal tissue O2 levels 

upon administration of a DMSO (2 %) i.p. injection monitored using Pt-MMA electrodes. 

It can therefore be concluded that any increase seen using DMSO as a vehicle for drug 

administrations is a drug effect.  

5.3.5 Drug Administration 

5.3.5.1 The Effect of Acetazolamide  

Acetazolamide (Diamox) is a carbonic anhydrase inhibitor and when administered 

systematically has been shown to increase brain tissue oxygen concentrations (Clark Jr & 

Lyons, 1965; Dixon et al., 2002; Bolger & Lowry, 2005).  Acetazolamide acts by inhibiting 

the carbonic anhydrase enzymes whose function is to catalyse the conversion of CO2 and 

H2O2 to bicarbonate (HCO3
-
).  This increase in CO2 and a subsequent decrease in pH 

results in vasodilatation and an increase in tissue O2.  The effect of acetazolamide on the O2 

signal, monitored with Pt-MMA electrodes can be seen in Figure 5.6 below. 
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Figure 5.6:  A typical example of an i.p. administration of Diamox (50 mg/kg) monitored in vivo using a 

Pt-MMA electrode implanted in the striatum of a freely-moving rat.  The arrow indicates the point of 

injection. 
 

An i.p. injection of Diamox shows an immediate sharp increase in the O2 signal from 

average baseline levels of -85.93 ± 9.11 nA (n=8, 3 animals) to -109.18 ± 11.34 nA (n=8, 3 

animals) after 1.06 ± 0.12 min this sharp increase in current of 29.32 ± 6.19 % can be 

attributed to injection stress.  The subsequent rapid decrease was followed by a sustained 

maximum increase in the O2 signal to -120.03 ± 11.65 nA (n=8, 3 animals) after 47.85 ± 

5.15 min, representing a significant increase of 37.57 ± 5.40 % (n=8, 3 animals) compared 

to baseline levels (P= 0.0382).  The current returned to post-injection baseline levels of -

94.10 ± 10.01 nA (n=8, 3 animals) (P= 0.5565) after 2.62 ± 0.40 hrs.  A summary of these 

results can be seen in Table 5.6. 

Diamox i.p. 

Baseline (nA) -85.93 ± 9.11 

Max Increase (nA) -120.03 ± 11.65 

t to max increase (min) 47.85 ± 5.15 

% Increase 37.57 ± 5.40 

Post-baseline (nA) -94.10 ± 10.01 

t to post-baseline (hrs) 2.62 ± 0.40 

Table 5.6:  Summary of results for i.p. administrations of Diamox (50mg/kg)) monitored in vivo using 

Pt-MMA electrodes (n = 8, 3 animals), implanted in the striatum of freely-moving rats. 
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From these results it can be seen that there is a significant increase in striatal tissue O2 upon 

administration of Diamox (50 mg/kg) and this change can be reliably monitored using Pt-

MMA electrodes. 

5.3.6 Effect of Anesthesia 

5.3.6.1 Chloral Hydrate 

Chloral hydrate was amongst one of the first CNS depressants used in veterinary medicine. 

Chloral hydrate is metabolised by alcohol dehydrogenase to trichloroethanol and 

trichloroacetic acid (Butler, 1948).  Although the precise mechanism is unknown (Sourkes, 

1992), trichloroethanol is the active metabolite (Tao & Auerbach, 1994; Gauillard et al., 

2002) and it’s thought its binding site is at the exogenous γ-aminobutyric acid (GABA) 

receptor resulting in an influx of chloride ions causing it to potentiate the function of 

GABA in a way similar to that of barbitutes (Lovinger et al., 1993). 

Chloral hydrate has been previously used to increase brain tissue O2 (Lowry & Fillenz, 

2001; Bolger & Lowry, 2005).  This increase in O2 is thought to be due to an increase in 

rCBF.  The effect of chloral hydrate on the O2 signal, monitored with Pt-MMA electrodes 

can be seen in Figure 5.7 below. 
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Figure 5.7:  A typical example of an i.p. administration of chloral hydrate (350 mg/kg), monitored in 

vivo using a Pt-MMA electrode implanted in the striatum of a freely-moving rat.  The arrow indicates 

the point of injection. 

 

An i.p. injection of chloral hydrate shows an immediate sharp increase in the O2 signal from 

average baseline levels of -97.80 ± 7.83 nA (n=12, 4 animals) to -107.94 ± 6.42 nA (n=12, 

4 animals) after 47.25 ± 12.60 seconds this sharp increase in current of 38.90 ± 4.78 % can 

be attributed to injection stress.  This initial increase rapidly decreases and there is a 

sustained maximum increase in the O2 signal to -137.19 ± 12.91 nA (n=12, 4 animals) after 

24.60 ± 5.11 min, representing a significant increase of 38.90 ± 4.78 % (n=12, 4 animals) 

compared to baseline levels (P=0.0178).  The current returned to post- injection baseline 

levels of -100.30 ± 7.94 nA (n=12, 4 animals) (P= 0.8248) after 3.43 ± 0.35 hrs. A 

summary of these results can be seen in Table 5.7. 

Chloral Hydrate i.p. 

Baseline (nA) -97.80 ± 7.83 

Max Increase (nA) -137.19 ± 12.91 

t to max increase (min) 24.60 ± 5.11 

% Increase 38.90 ± 4.78 

Post-baseline (nA) -100.30 ± 7.94 

t to post-baseline (hrs) 3.43 ± 0.35 

Table 5.7:  Summary of results for i.p. administrations of chloral hydrate (350mg/kg) monitored in vivo 

using Pt-MMA electrodes (n = 12, 4 animals), implanted in the striatum of freely-moving rats. 
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From these results it can be seen that there is a significant increase in striatal tissue O2 upon 

administration of chloral hydrate (350 mg/kg) and this change can be reliably monitored 

using Pt-MMA electrodes. 

5.3.7 Comparisons 

To allow for an accurate comparison between Pt-MMA electrodes and the CPEs due to the 

different dimensions of the electrodes, ∆I, nA values were converted to current densities 

(∆J, µA mm
-2

) for both types of electrodes. 

Carbon paste electrodes have been previously characterised in vivo by our group (Bolger & 

Lowry, 2005).  The results from this publication were used to make comparisons. 

5.3.7.1 Gaseous administrations 

The ∆J, µA mm
-2 

for 3-min periods of hyperoxia and hypoxia are 3.43 ± 0.35 ∆J, µA mm
-2 

(n=51, 4 animals) and 2.32 ± 0.13 ∆J, µA mm
-2 

(n=42, 4 animals) respectively for Pt-MMA 

electrodes. The ∆J, µA mm
-2 

for a 3 min period of hyperoxia and hypoxia are 0.87 ± 0.13 

∆J, µA mm
-2 

(n=4) and 0.88 ± 0.09 ∆J, µA mm
-2 

(n=4) respectively for CPEs (Bolger & 

Lowry, 2005). The current change (∆I) in terms of current densities (∆J, µA mm
-2

) for Pt-

MMA electrodes and CPEs for mild hyperoxia and hypoxia are plotted in Figure 5.8. 
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Figure 5.8:  Comparison graph of calculated current density ∆J, µA mm
-2 

values for hyperoxia and 

hypoxia administrations, monitored using Pt-MMA and CPEs implanted in the striatum of freely-

moving rats. 

 

From these results it can be seen that the Pt-MMA electrodes exhibit a greater change in O2 

current in terms of current density compared to CPEs when monitoring 3-min periods of 

hyperoxia and hypoxia in the striatum of freely-moving rats. 

5.3.7.2 Neuronal Activation 

The ∆J, µA mm
-2 

for a 5-min tail pinch are 1.53 ± 0.33 ∆J, µA mm
-2 

(n=14, 3 animals) for 

Pt-MMA electrodes and 0.34 ± 0.06 ∆J, µA mm
-2 

(n=8, 2 animals) for CPEs (Bolger & 

Lowry, 2005).  The current changes (∆I) in terms of current densities (∆J, µA mm
-2

) for Pt-

MMA electrodes and CPEs for neuronal activation in the form of a tail pinch are plotted in 

Figure 5.9. 
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Figure 5.9:  Comparison graph of calculated current density ∆J, µA mm
-2 

values for a 5-min tail pinch, 

monitored using Pt-MMA and CPEs implanted in the striatum of freely-moving rats. 

 

From these results it can be seen that the Pt-MMA electrodes exhibit a greater change in O2 

current in terms of current density compared to CPEs when monitoring a 5-min tail pinch in 

the striatum of freely-moving rats. This difference is thought to be due to variations in the 

stress score of the animals and habituation to the tail pinch. 

5.3.7.3 Saline administrations 

The ∆J, µA mm
-2 

for saline (0.9%) i.p. administrations are 1.53 ± 0.33 ∆J, µA mm
-2 

(n=14, 

3 animals) for Pt-MMA electrodes and 0.43 ± 0.12 ∆J, µA mm
-2 

(n=4) for CPEs (Bolger & 

Lowry, 2005). The current changes (∆I) in terms of current densities (∆J, µA mm
-2

) for Pt-

MMA electrodes and CPEs for an i.p saline (0.9%) injection are plotted in Figure 5.10. 
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Figure 5.10:  Comparison graph of calculated current density ∆J, µA mm
-2 

values for an i.p. 

administration of saline (0.9% NaCl), monitored using Pt-MMA and CPEs implanted in the striatum of 

freely-moving rats. 

 

From these results it can be seen that the Pt-MMA electrodes exhibit a greater change in O2 

current in terms of current density compared to CPEs when monitoring an i.p. 

administration of saline (0.9% NaCl) in the striatum of freely-moving rats.  In terms of the 

time course of these increases Pt-MMA electrodes and CPEs are similar. For Pt-MMA 

electrodes the max increase was observed after 3.57 ± 0.77 min (n=14, 3 animals) with a 

return to baseline after 5.21 ± 1.09 min (n=14, 3 animals) and for CPEs the max increase 

was observed after 2.5 ± 0.4 min (n=4) with a return to baseline after 4.1 ± 3.7 min (n=4). 

5.3.7.4 Acetazolamide (Diamox) 

The ∆J, µA mm
-2 

for Diamox (50 mg/kg) i.p. administrations are 2.78 ± 0.37 ∆J, µA mm
-2 

(n= 8, 3 animals) for Pt-MMA electrodes and 1.37 ± 0.32 ∆J, µA mm
-2 

(n=5) for CPEs 

(Bolger & Lowry, 2005). The current changes (∆I) in terms of current densities (∆J, µA 

mm
-2

) for Pt-MMA electrodes and CPEs for an i.p Diamox (50 mg/kg) injection are plotted 

in Figure 5.11. 
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Figure 5.11:  Comparison graph of calculated current density ∆J, µA mm
-2 

values for an i.p. 

administration of Diamox (50 mg/kg), monitored using Pt-MMA and CPEs implanted in the striatum 

of freely-moving rats. 

 

From these results it can be seen that the Pt-MMA electrodes exhibit a greater change in O2 

current in terms of current density compared to CPEs when monitoring an i.p. 

administration of Diamox (50 mg/kg) in the striatum of freely-moving rats. 

5.3.7.5 Chloral Hydrate 

The ∆J, µA mm
-2 

for chloral hydrate (350 mg/kg) i.p. administrations are 3.21 ± 0.50 ∆J, 

µA mm
-2 

(n= 12, 4 animals) for Pt-MMA electrodes and 0.60 ± 0.10 ∆J, µA mm
-2 

(n=10) 

for CPEs (Bolger & Lowry, 2005). The current changes (∆I) in terms of current densities 

(∆J, µA mm
-2

) for Pt-MMA electrodes and CPEs for an i.p. chloral hydrate (350 mg/kg) 

injection are plotted in Figure 5.12. 



Chapter 5: In Vivo Oxygen 

157 

Chloral Hydrate (350 mg/kg) i.p.
0

1

2

3

4 Pt-MMA

CPE


J
, 

µ
A

 m
m

-2


M
-1

 

Figure 5.12: Comparison graph of calculated current density ∆J, µA mm
-2 

values for an i.p. 

administration of chloral hydrate (350 mg/kg), monitored using Pt-MMA and CPEs implanted in the 

striatum of freely-moving rats. 

 

From these results it can be seen that the Pt-MMA electrodes exhibit a greater change in O2 

current in terms of current density compared to CPEs when monitoring an i.p. 

administration of chloral hydrate (350 mg/kg) in the striatum of freely-moving rats. 

5.4 Conclusions 

Pt-based electrodes have been shown by characterisation in vitro to be a potential 

alternative to CPEs to monitor brain tissue O2 (Bolger et al., 2011a).  Carbon paste 

electrodes have been previously characterised in vivo by our group (Bolger & Lowry, 

2005).  In this chapter the in vivo characterisation of Pt-MMA electrodes was investigated 

using similar protocols to that of the CPE characterisation (Bolger & Lowry, 2005). 

Results presented in this chapter demonstrate that Pt-MMA electrodes have the ability to 

monitor changes in striatal O2, evidenced by response of the sensors to the administration of 

O2 and N2 gases to the snout of the animals.  The changes in tissue O2 following neuronal 

activation in the form of a tail pinch and the administrations of saline, DMSO, 

acetazolamide and chloral hydrate have also been demonstrated.  The Pt-MMA electrodes 

were directly compared to CPEs (Section 5.3.7) using previously published data (Bolger & 
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Lowry, 2005) and from these results it can be said that Pt-MMA electrodes exhibit a greater 

change in O2 current in terms of current density compared to CPEs when implanted in the 

striatum of freely-moving rats. It can therefore be concluded that Pt-MMA electrodes 

provide a viable alternative to CPEs to monitor tissue O2 in the brain.  This is advantageous 

due to the smaller probe size of Pt-MMA electrodes (125 µm) less than 160 µm the 

maximum recommended diameter for brain tissue damage,  resulting in uric acid 

production (Duff & O'Neill, 1994).  However Pt-MMA electrodes are only suitable for 

short-term monitoring, established in Chapter 4 (Section 4.3.3.4) as there is a large 

reduction in sensitivity after 19 ± 3 days.  The degradation of the signal over a period of 

time is apparent upon examination of the raw data trace.   Even though CPEs are above the 

threshold for tissue damage they are stable over a 12 week period (Bolger et al., 2011b) 

making them the sensor of choice for long-term chronic monitoring of brain tissue O2. 
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6.1 Introduction 

The hemodynamic response refers to changes in cerebral blood flow, blood volume and 

blood oxygenation, a result of increases in neuronal activity.  The imaging technique blood 

oxygenation dependent (BOLD) functional magnetic imaging (fMRI) is founded on this 

hemodynamic response (Ogawa et al., 1990; Bandettini et al., 1992; Ogawa et al., 1992).  

The MRI signal intensity is sensitive to the amount of oxygen (O2) carried by hemoglobin 

in the blood as this changes the degree to which hemoglobin disturbs the magnetic field.  

An increase in the O2 hemoglobin oxygenation results in an increase in the BOLD signal 

and vice versa.  BOLD fMRI is a valuable, non-invasive way of mapping the regional 

activity of the brain during sensory, motor and cognitive tasks. fMRI imaging has been 

employed to map rodent brains (Houston et al., 2001; Preece et al., 2001).  Both these and 

the majority of such studies use anesthetics to prevent motion of the animals which is 

common practice in most experiments; however the use of these anesthetics can alter brain 

metabolism. 

Metal-free electrodes based on a carbon transducer have been utilised in conjunction with 

fMRI imaging studies, simultaneously obtaining BOLD fMRI and amperometric tissue O2 

data from a rat cerebral cortex (Lowry et al., 2010).  This study verifies that real-time 

metabolic information can be acquired during fMRI investigations and that the changes in 

the magnitude of the BOLD response can be directly correlated to changes in tissue O2 

concentrations.  This technique provides an alternative to fMRI experiments as these O2 

sensors can be used in freely-moving animals eliminating the disadvantages of anaesthesia. 

The sensors used in this study were carbon fibre bundle electrodes.  Carbon fibre was 

selected as it has very weak paramagnetic properties compared to metal electrodes which 

can produce artifacts.  Previously carbon fibre electrodes (CFEs) were manufactured as a 

method for direct cortical stimulation in the rat (Austin et al., 2003).  In this study the 

electrodes were used to stimulate neuronal firing, therefore the CFEs were not standardised 

in terms of manufacture.  There were variations in both the amount of carbon fibre strands 

that were used in each electrode and also the length of the carbon fibres.  Due to the 
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varying dimensions of the carbon fibre bundle, reproducibility was difficult to obtain 

therefore hindering the characterisation of these sensors.   

The aim of this chapter was to fabricate a stable and reproducible sensor that can be 

characterised in vitro and in vivo. 

The first part of this chapter (Section 6.3.1) explores the standardisation of the CFEs whilst 

the latter sections explore the use of a carbon (graphite) based composite electrode. 

6.2 Experimental 

The instrumentation and software used are detailed in Section 3.2 and all chemicals and 

solutions are detailed in Section 3.3. 

Silver based carbon composite electrodes were constructed as described in Section 3.4.2, 

Carbon Rhoplex
®
 composite electrodes - fMRI design (CRCEs) are described in Section 

3.4.3, Carbon Rhoplex
®
 composite electrodes - in vivo freely-moving design (CRCEs) are 

described in Section 3.4.4.  

Electrochemical experiments are detailed in Section 3.6 and electrode treatments in Section 

3.5.4. 

Data is represented as the mean ± SEM where n = number of electrodes used, unless 

otherwise stated.  The slope, nA/µM was obtained from calibration plots using linear 

regression analysis and is used to represent the sensitivity.  Goodness of fit is denoted by 

the R
2
 value.  Sensitivities were compared using unpaired t-tests and ANOVA.  To compare 

the different electrodes due to varying physical dimensions current values were converted 

to current densities (Section 2.8.3). 
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6.3 Results and discussion 

6.3.1 Carbon fibre electrodes 

CFEs to monitor O2 for use in an MRI scanner have been recently described by (Lowry et 

al., 2010).  This electrode, based on the design by Austin (2003) and co-workers, can 

reliably measure tissue O2 but the reproducibility of the sensor is an issue due to variations 

in both the amount of carbon fibre strands that were used in each electrode and also the 

length of the carbon fibres.  Therefore the standardisation of the CFEs in terms of 

manufacture was investigated. 

6.3.1.1 Preliminary investigations: Carbon fibre wire (30 µm) 

The optimal reduction potential of O2 at the surface of CFEs has previously been 

determined using cyclic voltammetry (Lowry et al., 2010).  The chosen reduction potential 

was -900 mV and subsequent constant potential amperometry (CPA) experiments were 

carried out at this potential.  

CF wire with a diameter of 30 µm was used for the preliminary experiments in this section.  

Varying CF lengths were used to give an estimation of the currents expected with the 

different lengths with the view to standardising the electrodes. 

O2 calibrations were performed on CFEs as described in Section 3.6.1.4. 

Results obtained for O2 calibrations performed in PBS on CFEs (30 µm x 4) are presented 

below in Table 6.1 and plotted in Figure 6.1.  The mean background current of -1937.6 ± 

315.6 nA (n=3) was subtracted.  Current in nA was converted to current densities (J, µA 

mm
-2)

 to allow for the comparison of the electrodes due to their varying geometries.  
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 CF 30µm x 4 (n=3) 

[O2], µM Mean J, µA mm
-2

 SEM 

0 0 0 

240 -760.8 88.3 

1200 -2950.9 441.1 

Table 6.1:  Table of results for O2 calibrations (0-1200 µM) for CFEs.  CPA performed at -900 mV vs. 

SCE in PBS (pH 7.4) at 21˚C.  Mean background subtracted.  
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Figure 6.1: O2 calibration data (0-1200 µM) for CFEs (n=3).  CPA performed at -900 mV vs. SCE in 

PBS (pH 7.4) at 21˚C.   

 

Results obtained for O2 calibrations performed in PBS on CFEs (30µm x 4, 2mm cylinders) 

and (30µm x 4, 3mm cylinders) are presented below in Table 6.2 and plotted in Figure 6.2. 

 CF 30µm x 4, 2mm cylinders (n=1) CF 30µm x 4 3mm cylinders (n=1) 

[O2], µM J, µA mm
-2

 J, µA mm
-2

 

0 0 0 

240 -1.4 -3.8 

1200 -5.3 -10.6 

Table 6.2:  Table of results for O2 calibrations (0-1200 µM) for CFEs.  CPA performed at -900 mV vs. 

SCE in PBS (pH 7.4) at 21˚C.  Mean background subtracted.  
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Figure 6.2:  O2 calibration data (0-1200 µM) for CF 30µm x 4, 2mm cylinders (n=1) and CF 30µm x 4 

3mm cylinders (n=1).  CPA performed at -900 mV vs. SCE in PBS (pH 7.4) at 21˚C.   

 

Linear regression analysis was performed on electrodes to compare sensitivities in terms of 

current density of CFEs calibrated in PBS solutions, presented in Table 6.3 and plotted in 

Figure 6.3.  All further data will be presented in a similar format: O2 calibrations data 

presented via a table and graph, followed by linear regression analysis comparing electrode 

sensitivities presented via a table and graph.  

 Sensitivity (µAmm
-2

µM
-1

) R
2
 n 

CF 30 µm x 4 -2.4080 ± 0.1465 0.9963 3 

CF 30 µm x 4, 2mm cylinders -0.0044 ± 0.0002 0.9969 1 

CF 30 µm x 4, 3mm cylinders -0.0083 ± 0.0014 0.9718 1 

Table 6.3:  Calculated sensitivity values of O2 calibrations (0-1200 µM) for CFEs. 
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Figure 6.3: Comparison graph of calculated sensitivity values for O2 calibrations (0-1200 µM) for CF 

30µm x 4 (n=3), CF 30µm x 4, 2mm cylinders (n=1) and CF 30µm x 4 3mm cylinders (n=1). 

 

From the results presented it can be seen from the preliminary investigations that the 

sensitivity values are variable.  The CF 30 µm x 4 CFE has a much higher sensitivity 

although it was a disk shape.  This is thought to be due to the electrode design.  The space 

between the carbon fibres and the silica tubing are easily sealed with epoxy with the 

cylindrical geometries however this was not possible for the disk electrodes.  It is thought 

that the active surface was not just the disk shape and that the electrolyte (PBS) was able to 

migrate past the silica tubing causing a much larger surface area to be present.  The 

standardisation of the electrodes was the main focus of this section.  Four cylindrical 

electrodes combined as one electrode could not be standardised easily therefore it was 

decided to move away from single carbon fibres and to investigate a carbon fibre coated 

bundle with a known diameter. 

6.3.1.2 Polyamide coated CF (1mm) 

6.3.1.2.1 Cyclic Voltammetry 

CV was initially performed on the polyamide coated CF (1mm) to determine the diffusion 

limited reduction potential of O2 at the surface of these electrodes.  This was performed as 
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described in Section 3.6.1.2.  The results obtained are presented graphically below in 

Figure 6.4. 
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Figure 6.4: Cyclic voltammogram from -1 to 0 V vs. SCE at 100 mVs
-1

 performed in O2 saturated PBS 

(pH 7.4, 21˚C) buffer solution, illustrating the reduction of O2 at a polyamide coated CFE. 

 

For the polyamide coated CFEs an O2 reduction peak was observed at ca. -500 mV with the 

foot of the wave occurring at ca. -350 mV.  The chosen reduction potential was -650 mV 

which allows for comparisons with CPEs and subsequent constant potential amperometry 

(CPA) experiments were carried out at this potential.  

6.3.2 Silver based carbon composite electrodes 

Carbon composite electrodes have been previously utilised to detect brain tissue O2 (Bazzu 

et al., 2009).  The use of Carbon Polyvinyl Acetate (PVA) and Rhoplex
®
 combined with 

varying amounts of carbon (graphite) powder was preliminarily investigated as a means of 

standardising the surface area of the sensors.  The PVA or Rhoplex
®
 and carbon were 

uniformly mixed and then packed into the cavity of a silver wire (200 µm) as described in 

Section 3.4.2, in a similar way to the construction of carbon paste electrodes (CPE).  This 

method was employed as a simpler way of determining the viability of the mixture for use 

in conjunction with the carbon fibres. 
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6.3.2.1 PVA silver composite electrodes 

The results obtained for O2 calibrations (0-1200 µM) on PVA silver composite electrodes 

containing: 

 PVA (0.05g)/ Carbon (0.01g) 

 PVA (0.05g)/ Carbon (0.02g) 

 PVA (0.05g)/ Carbon (0.03g) 

 are presented below in Table 6.4 and plotted in Figure 6.5. 

  

 PVA (0.05g)/ Carbon (0.01g) 

(n=4) 

 PVA (0.05g)/ Carbon (0.02g) 

(n=5) 

 PVA (0.05g)/ Carbon (0.03g) 

(n=4) 

[O2], µM Mean I, nA SEM Mean I, nA SEM Mean I, nA SEM 

0 0 0 0 0 0 0 

240 -1010.1 125.7 -1055.1 107.2 -571.1 175.2 

1200 -2965.2 283.8 -3195.1 318.1 -1837.2 479.2 

Table 6.4:  Table of results for O2 calibrations (0-1200 µM) for PVA silver composite electrodes.  CPA 

performed at -650 mV vs. SCE in PBS (pH 7.4) at 21°C.  Mean background subtracted.  
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Figure 6.5:  O2 calibration data (0-1200 µM) for PVA silver composite electrodes.  CPA performed at -

650 mV vs. SCE in PBS (7.4) at 21˚C. 
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 Sensitivity (nA/µM) R
2
 n 

PVA (0.05g)/ Carbon (0.01g) -2.347 ± 0.358 0.9772 4 

PVA (0.05g)/ Carbon (0.02g) -2.539 ± 0.358 0.9806 5 

PVA (0.05g)/ Carbon (0.03g) -1.470 ± 0.175 0.9860 4 

Table 6.5: Table of calculated sensitivity values of O2 calibrations (0-1200 µM) for PVA silver 

composite electrodes.  
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Figure 6.6:  Comparison graph of calculated sensitivity values for O2 calibrations (0-1200 µM) PVA 

silver composite electrodes.  PVA (0.05g)/ Carbon (0.01g) (n=4), PVA (0.05g)/ Carbon (0.02g) (n=5) and 

PVA (0.05g)/ Carbon (0.03g) (n=4).   

 

Although there was no statistically significant difference between PVA (0.05g)/Carbon 

(0.01g) and PVA (0.05g)/Carbon (0.02g) composites (P= 0.7176) the PVA (0.05g)/Carbon 

(0.02g) had the highest sensitivity of -2.539 ± 0.358 nA/µM.  

6.3.2.2 Rhoplex
®
 silver composite electrodes 

The results obtained for O2 calibrations (0-1200 µM) on Rhoplex
®
 silver composite 

electrodes containing: 

 Rhoplex
®
 (0.05g)/ Carbon (0.01g) 

 Rhoplex
®
 (0.05g)/ Carbon (0.02g) 

 Rhoplex
®
 (0.05g)/ Carbon (0.03g) 
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are presented below in Table 6.6 and plotted in Figure 6.7. 

  

Rhoplex
®

 (0.05g)/ Carbon 

(0.01g) (n=3) 

Rhoplex
®

 (0.05g)/ Carbon 

(0.02g) (n=4) 

Rhoplex
®

 (0.05g)/ Carbon 

(0.03g) (n=4) 

[O2], µM Mean I, nA SEM Mean I, nA SEM Mean I, nA SEM 

0 0 0 0 0 0 0 

240 -150.4 61.3 -733.7 85.8 -529.2 111.0 

1200 -676.0 115.4 -2015.6 328.0 -1454.2 245.3 

Table 6.6:  Table of results for O2 calibrations (0-1200 µM) for Rhoplex
®
 silver composite electrodes.  

CPA performed at -650 mV vs. SCE in PBS (pH 7.4) at 21°C.  Mean background subtracted.  
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Figure 6.7:  O2 calibration data (0-1200 µM) for Rhoplex

®
 silver composite electrodes.  CPA performed 

at -650 mV vs. SCE in PBS (7.4) at 21˚C. 

 

 Sensitivity (nA/µM) R
2
 n 

Rhoplex
®
 (0.05g)/ Carbon (0.01g) -0.559 ± 0.013 0.9995 3 

Rhoplex
®
 (0.05g)/ Carbon (0.02g) -1.581 ± 0.284 0.9687 4 

Rhoplex
®
 (0.05g)/ Carbon (0.03g) -1.141 ± 0.205 0.9688 4 

Table 6.7:  Table of calculated sensitivity values of O2 calibrations (0-1200 µM) for Rhoplex
®
 silver 

composite electrodes.  
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Figure 6.8:  Comparison graph of calculated sensitivity values for O2 calibrations (0-1200 µM) for 

Rhoplex
®
 silver composite electrodes.  Rhoplex

®
 (0.05g)/ Carbon (0.01g) (n=3), Rhoplex

®
 (0.05g)/ 

Carbon (0.02g) (n=4) and Rhoplex
®
 (0.05g)/ Carbon (0.03g) (n=4).   

 

From these results it can be seen that the Rhoplex
®
 (0.05g)/Carbon (0.02g) composite has 

the highest sensitivity of -1.581 ± 0.284 nA/µM. 

6.3.3 Carbon Fibre based composite electrodes 

From the results presented in Section 6.3.2 both silver PVA and Rhoplex
®
 composite 

electrodes can detect O2 in vitro.  The sensitivity of the sensor, although important, is not 

the only determining factor as ease of construction plays an important role in sensor design 

and development.  The ease at which the electrodes are packed is a crucial factor in the 

construction.  The higher the carbon content of the composite the easier the sensor is to 

construct so the following composites were used to construct the carbon fibre based O2 

fMRI compatible sensor: 

 PVA (0.05g)/Carbon (0.03g) 

 Rhoplex
®
 (0.05g)/Carbon (0.02g) 

 Rhoplex
®
 (0.05g)/Carbon (0.03g) 
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Although the PVA (0.05g)/Carbon (0.02g) silver composite electrodes had the highest 

sensitivity (Table 6.5), construction of the carbon fibre based sensors were attempted but 

due to the difficulty in packing the tip of the electrode the sensors were not suitable for 

calibration.  The difficulty in the construction of these sensors arises from the inability to 

plunge the composite with bare silver wire like the CPEs.  This method ensures good 

packing at the tip of the electrode producing good reproducibility. 

6.3.3.1 CF PVA composite electrodes 

6.3.3.1.1 CV 

CV was initially performed on the CF PVA (0.05g)/Carbon (0.03g) composite electrodes to 

determine the diffusion limited reduction potential of O2 at the surface of these electrodes.  

This was performed as described in Section 3.6.1.2.  The results obtained are presented 

graphically below in Figure 6.9.  
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Figure 6.9:  Cyclic voltammogram from -1 to 0 V vs. SCE at 100 mVs
-1

 performed in O2 saturated PBS 

(pH 7.4, 21˚C) buffer solution, illustrating the reduction of O2 at a CF PVA (0.05g)/Carbon (0.03g) 

composite electrodes. 

 

For the CF PVA (0.05g)/Carbon (0.03g) composite electrodes there was no observable O2 

reduction peak. The chosen reduction potential was -650 mV for comparative purposes 
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with other O2 electrodes and subsequent constant potential amperometry (CPA) 

experiments were carried out at this potential.  

6.3.3.1.2 Oxygen calibrations 

O2 calibrations were performed on CF PVA (0.05g)/Carbon (0.03g) composite electrodes 

as described in Section 3.6.1.4.   

 
CF PVA (0.05g)/Carbon (0.03g) (n=11) 

[O2], µM Mean I, nA SEM 

0 0 0 

240 -231.5 102.9 

1200 -1544.2 244.0 

Table 6.8:  Table of results for O2 calibrations (0-1200 µM) for CF PVA (0.05g)/Carbon (0.03g) 

composite electrodes (n=11).  CPA performed at -650 mV vs. SCE in PBS (pH 7.4) at 21˚C.  Mean 

background subtracted. 
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Figure 6.10:  O2 calibration data (0-1200 µM) for CF PVA (0.05g)/Carbon (0.03g) composite electrodes 

(n=11).  CPA performed at -650 mV vs. SCE in PBS (pH 7.4) at 21˚C.   
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Sensitivity (nA/µM) R

2
 n 

CF PVA (0.05g)/Carbon (0.03g) -1.310 ± 0.066 0.9974 11 

Ag PVA (0.05g)/Carbon (0.03g) -1.470 ± 0.175 0.9860 4 

Table 6.9:  Table of calculated sensitivity values of O2 calibrations (0-1200 µM) for CF PVA 

(0.05g)/Carbon (0.03g) and Silver PVA (0.05g)/Carbon (0.03g) composite electrodes. 
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Figure 6.11:  Comparison graph of calculated sensitivity values for O2 calibrations (0-1200 µM) for CF 

PVA (0.05g)/Carbon (0.03g) composite electrodes (n=11) and Silver PVA (0.05g)/Carbon (0.03g) 

composite electrodes (n=4). 

 

From the results presented in Table 6.9 it can be seen that the CF PVA (0.05g)/Carbon 

(0.03g) composite electrodes have a similar high sensitivities.  However the packing of 

theses electrodes using the CF transducer proved to be taxing as the composite dried too 

quickly to pack more than one electrode at a time and a new composite had to be made for 

each electrode which was overly time consuming. 

6.3.4 CF Rhoplex
®
 composite electrodes 

6.3.4.1 CV 

CV was initially performed on the CF Rhoplex
®
 (0.05g)/Carbon (0.03g) composite 

electrodes to determine the diffusion limited reduction potential of O2 at the surface of these 

electrodes.  This was performed as described in Section 3.6.1.2.  The results obtained are 

presented graphically below in Figure 6.12. 
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Figure 6.12:  Cyclic voltammogram from -1 to 0 V vs. SCE at 100 mVs
-1

 performed in O2 saturated PBS 

(pH 7.4, 21˚C) buffer solution, illustrating the reduction of O2 at a CF Rhoplex
®
 (0.05g)/Carbon (0.03g) 

composite electrodes. 

 

For the CF Rhoplex
®
 (0.05g)/Carbon (0.03g) electrodes an O2 reduction peak was observed 

at ca. -450 mV. The chosen reduction potential was -650 mV and subsequent constant 

potential amperometry (CPA) experiments were carried out at this potential.  

6.3.4.2 Oxygen calibrations 

 

Figure 6.13:  An example of typical raw data for an O2 calibration in PBS using a CRCE (Rhoplex
®
 

(0.05g)/Carbon (0.03g).  CPA performed at -650 mV vs. SCE in PBS (pH 7.4) at 21˚C.   
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O2 calibrations were performed on CF Rhoplex
®
 (0.05g)/Carbon (0.03g) and CF Rhoplex

®
 

(0.05g)/Carbon (0.02g) composite electrodes as described in Section 3.6.1.4. 

 
CF Rhoplex

®
 (0.05g)/ Carbon (0.02g) (n=8) Rhoplex

®
 (0.05g)/ Carbon (0.03g) (n=4) 

[O2], µM Mean I, nA SEM Mean I, nA SEM 

0 0 0 0 0 

240 -205.1 29.6 -323.1 30.1 

1200 -849.9 102.0 -1175.3 94.3 

Table 6.10:  Table of results for O2 calibrations (0-1200 µM) for CF Rhoplex
®
 (0.05g)/Carbon (0.02g) 

and CF Rhoplex
®
 (0.05g)/Carbon (0.03g) composite electrodes.  CPA performed at -650 mV vs. SCE in 

PBS (pH 7.4) at 21˚C.  Mean background subtracted. 
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Figure 6.14:  O2 calibration data (0-1200 µM) for CF Rhoplex
®
 (0.05g)/Carbon (0.02g) (n=8) and CF 

Rhoplex
®
 (0.05g)/Carbon (0.03g) (n=4) composite electrodes (n=11).  CPA performed at -650 mV vs. 

SCE in PBS (pH 7.4) at 21˚C.   

 

 
Sensitivity (nA/µM) R

2
 n 

CF Rhoplex
®
 (0.05g)/ Carbon (0.02g) -0.698 ± 0.030 0.9981 8 

Ag Rhoplex
®
 (0.05g)/ Carbon (0.02g) -1.581 ± 0.284 0.9687 4 

CF Rhoplex
®
 (0.05g)/ Carbon (0.03g) -0.953 ± 0.076 0.9937 4 

Ag Rhoplex
®
 (0.05g)/ Carbon (0.03g) -1.141 ± 0.205 0.9688 4 

Table 6.11: Table of calculated sensitivity values of O2 calibrations (0-1200 µM) for CF Rhoplex
®
 

(0.05g)/Carbon (0.02g), silver Rhoplex
®
 (0.05g)/Carbon (0.02g), CF Rhoplex (0.05g)/Carbon (0.03g) and 

silver Rhoplex
®
 (0.05g)/Carbon (0.03g)  composite electrodes. 
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Figure 6.15:  Comparison graph of calculated sensitivity values for O2 calibrations (0-1200 µM) for CF 

Rhoplex
®
 (0.05g)/Carbon (0.02g) (n=8), silver Rhoplex

®
 (0.05g)/Carbon (0.02g) (n=4), CF Rhoplex

®
 

(0.05g)/Carbon (0.03g) (n=4) and silver Rhoplex
®
 (0.05g)/Carbon (0.03g) (n=4) composite electrodes. 

 

From these results presented in Table 6.11, it can be seen that the CF Rhoplex
®
 (0.05g)/ 

Carbon (0.03g) composite electrode had the highest sensitivity of the two CF composite 

electrodes.   

Unpaired t-test statistical analysis was performed and it can be seen there is no significant 

difference in the sensitivities of CF Rhoplex
®
 (0.05g)/Carbon (0.03g) and silver Rhoplex

®
 

(0.05g)/Carbon (0.03g) composite electrodes with P= 0.4531. 

The CF Rhoplex
®
 (0.05g)/Carbon (0.03g) composite electrode (CRCE) was chosen as the 

final design due to it having the highest sensitivity for O2 in vitro and was the easiest sensor 

to construct with good reproducibility. 

6.3.4.3 CRCE Heat treatment 

To attempt to reduce the construction time ca. 2 days and increase the sensitivity of the 

CRCEs the electrodes were dried in an oven at 50˚C for 1 hour.  The active surface of the 

electrodes were very dry shortly after packing the tip of the electrodes but whether the 

composite was fully dry within the cavity was unclear. 
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CRCE full MRI design, heated at 50°C for 1 hr (n=7) CRCE full MRI design (n=4) 

[O2], µM Mean I, nA SEM Mean I, nA SEM 

0 0 0 0 0 

240 -226.5 34.0 -323.1 30.1 

1200 -1009.9 99.1 -1175.3 94.3 

Table 6.12:  Table of results for O2 calibrations (0-1200 µM) for CRCE full MRI design, heated at 50°C 

for 1 hr and CRCE full MRI design.  CPA performed at -650 mV vs. SCE in PBS (pH 7.4) at 21˚C.  

Mean background subtracted. 
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Figure 6.16:  O2 calibration data (0-1200 µM) for CRCE full MRI design, heated at 50°C for 1 hr (n=7) 

and CRCE full MRI design (n=4).  CPA performed at -650 mV vs. SCE in PBS (pH 7.4) at 21˚C.   

 

 
Sensitivity (nA/µM) R

2
 n 

CRCE full MRI design heated at 50°C for 1 hr -0.834 ± 0.021 0.9994 7 

CRCE full MRI design -0.953 ± 0.076 0.9937 4 

Table 6.13: Table of calculated sensitivity values of O2 calibrations (0-1200 µM) for CRCE full MRI 

design, heated at 50°C for 1 hr and CRCE full MRI design. 
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Figure 6.17:  Comparison graph of calculated sensitivity values for O2 calibrations (0-1200 µM) for 

CRCE full MRI design, heated at 50°C for 1 hr (n=7) and CRCE full MRI design (n=4).   

 

Unpaired t-test statistical analysis was performed and it can be seen there is no significant 

difference in the sensitivities of air dried CRCEs and CRCEs dried at 50°C for 1 hr with a 

P value of 0.2284.  As heat treating the electrodes gave no increase on the sensitivity of the 

CRCEs the original non-heat treated design was retained for further experiments. 

6.3.4.4 CRCE In Vivo freely-moving design 

As the construction of the CRCEs is very time consuming and for freely-moving in vivo 

experiments the length of the electrode (ca. 38 cm) is not feasible for implantation, the 

removal of the PVA coated carbon fibre bundle and shortening of the electrode length (ca. 

7 cm) was investigated.  The Teflon
®

 coated carbon fibre was directly connected to the 

copper wire and the electrodes were calibrated to determine if there is a significant 

difference between the two designs. 

 
CRCE in vivo design (n=19) 

[O2], µM Mean I, nA SEM 

0 0 0 

240 -326.3 47.9 

1200 -1278.4 148.5 

Table 6.14:  Table of results for O2 calibrations (0-1200 µM) for CRCE in vivo design (n=19).  CPA 

performed at -650 mV vs. SCE in PBS (pH 7.4) at 21˚C.  Mean background subtracted. 
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Figure 6.18:  O2 calibration data (0-1200 µM) for CRCE in vivo design (n=19).  CPA performed at -650 

mV vs. SCE in PBS (pH 7.4) at 21˚C.   

 

 
Sensitivity (nA/µM) R

2
 n 

CRCE in vivo design -1.044 ± 0.061 0.9966 19 

CRCE full MRI design -0.953 ± 0.076 0.9937 4 

Table 6.15:  Table of calculated sensitivity values of O2 calibrations (0-1200 µM) for CRCE in vivo 

design and CRCE full MRI design. 
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Figure 6.19:  Comparison graph of calculated sensitivity values for O2 calibrations (0-1200 µM) for 

CRCE in vivo design (n=19) and CRCE full MRI design (n=4).   
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Unpaired t-test statistical analysis was performed and it can be seen there is no significant 

difference in the sensitivities of CRCEs in vivo and full MRI designs with a P value of 

0.3803. 

6.3.4.5 Disk shaped active surface 

It was observed that when the carbon Rhoplex
®
 composite was left to dry that many of the 

electrodes had an active surface that was no longer disk shaped.  The composite appeared to 

have expanded when drying causing the composite to push out so a cylindrical shape is 

observed at the active surface of the electrode.  In order to eliminate the cylindrical shape 

the electrodes were left to dry overnight against a hard, flat surface.   

 
CRCE, dried on flat surface (n=4) 

[O2], µM Mean I, nA SEM 

0 0 0 

240 -293.7 17.4 

1200 -1200.6 82.5 

Table 6.16:  Table of results for O2 calibrations (0-1200 µM) for CRCE dried on a flat surface (n=4).  

CPA performed at -650 mV vs. SCE in PBS (pH 7.4) at 21˚C.  Mean background subtracted. 
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Figure 6.20:  O2 calibration data (0-1200 µM) for CRCE dried on a flat surface (n=4).  CPA performed 

at -650 mV vs. SCE in PBS (pH 7.4) at 21˚C.   
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Linear regression analysis shows that the electrodes have a sensitivity of -0.985 ± 0.046 

nA/µM (n=4).  The response was linear over the range with an R
2
 value of 0.9978 (n=4). 

 

Figure 6.21:  Images of the active surface of CRCEs (A,B,D) and (C) CRCE without silica tubing 

demonstrating packing at the active surface of the electrode. 

6.3.4.6 Biocompatibility 

In this section the effects of proteins, lipids and brain tissue on the sensitivity of CRCEs 

was investigated, based on previous work (Ormonde & O'Neill, 1989, 1990) to determine if 

there is a significant reduction in the electrodes ability to remain sensitive to O2 in vivo.  

6.3.4.6.1 Protein (BSA) treated CRCEs 

The effect of exposure to the protein BSA (Section 3.5.4.1) on CRCEs with respect to time 

was investigated.  Untreated CRCEs (0 days) were calibrated and subsequently exposed to 

BSA for 24 hours, 3 days, 7 days and 14 days.  
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BSA (0 days) n=6 BSA (12 hrs) n=6 BSA (3 days) n=6 BSA (7 days) n=5 BSA (14 days) n=6 

[O2], µM Mean I, nA SEM Mean I, nA SEM Mean I, nA SEM Mean I, nA SEM Mean I, nA SEM 

0 0 0 0 0 0 0 0 0 0 0 

240 -176.6 100.0 -229.5 58.8 -183.1 55.6 -173.5 30.2 -150.5 44.5 

1200 -712.7 143.5 -742.9 110.5 -782.5 78.1 -724.1 104.5 -663.2 145.0 

Table 6.17:  Table of results for O2 calibrations (0-1200 µM) for CRCEs exposed to BSA.  CPA 

performed at -650 mV vs. SCE in PBS (pH 7.4) at 21˚C.  Mean background subtracted. 
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Figure 6.22:  O2 calibration data (0-1200 µM) for CRCEs untreated (0 days) and treated with BSA (12 

hrs, 3 days, 7 days and 14 days).  CPA performed at -650 mV vs. SCE in PBS (pH 7.4) at 21˚C.   

 

BT treatment Sensitivity (nA/µM) R
2
 n 

0 days -0.760 ± 0.165 0.9629 4 

24 hrs -0.683 ± 0.005 1.0000 3 

3 days ˗0.814 ± 0.094 0.9868 3 

7 days ˗0.733 ± 0.105 0.9799 3 

14 days ˗0.948 ± 0.060 0.9961 3 

Table 6.18:  Table of calculated sensitivity values of O2 calibrations (0-1200 µM) for CRCEs exposed to 

BSA. 



Chapter 6: In Vitro fMRI Oxygen 

187 

B
SA

 0
 d

ay
s

B
SA

 1
2h

rs

B
SA

 3
 d

ay
s

B
SA

 7
 d

ay
s

B
SA

 1
4 

day
s

-0.8

-0.6

-0.4

-0.2

-0.0

S
e
n

s
it

iv
it

y
, 

n
A

/ 
M

 

Figure 6.23:  Comparison graph of calculated sensitivity values for O2 calibrations (0-1200 µM) for 

CRCEs exposed to BSA.   

 

Unpaired t-test statistical analysis was performed and it can be seen there is no significant 

different in the sensitivities with P values greater than 0.05 between untreated (0 days 

exposure) and BSA treated electrodes with P values of 0.8868 (12 hrs), 0.1382 (3 days), 

0.7790 (7days) and 0.3056 (14 days). 

One-way Analysis of Variance (ANOVA) was performed on CRCEs only exposed to BSA 

with a P value of 0.4179, showing no significant difference in the sensitivities between the 

electrodes once exposed to BSA over a period of 14 days.  From these results it can be seen 

that there is a small but non-significant reduction in the sensitivity of CRCEs following 

exposure to BSA over a period of 14 days.  

6.3.4.6.2 Lipid (PEA) treated CRCEs 

The effect of exposure to the protein PEA (Section 3.5.4.2) on CRCEs with respect to time 

was investigated.  Untreated CRCEs (0 days) were calibrated and subsequently exposed to 

PEA for 24 hours, 3 days and 14 days.   
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PEA (0 days) n=8 PEA (12 hrs) n=8 PEA (3 days) n=7 PEA (7 days) n=6 PEA (14 days) n=7 

[O2], µM Mean I, nA SEM Mean I, nA SEM Mean I, nA SEM Mean I, nA SEM Mean I, nA SEM 

0 0 0 0 0 0 0 0 0 0 0 

240 -282.8 56.6 -191.1 89.1 -281.7 122.7 -325.3 68.9 -307.7 82.0 

1200 -948.5 134.0 -900.2 189.6 -942.7 204.8 -876.0 123.6 -904.1 197.9 

Table 6.19:  Table of results for O2 calibrations (0-1200 µM) for CRCEs exposed to PEA.  CPA 

performed at -650 mV vs. SCE in PBS (pH 7.4) at 21˚C.  Mean background subtracted. 
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Figure 6.24: O2 calibration data (0-1200 µM) for CRCEs untreated (0 days) and treated with PEA (12 

hrs, 3 days, 7 days and 14 days).  CPA performed at -650 mV vs. SCE in PBS (pH 7.4) at 21˚C.   

 

PEA treatment Sensitivity (nA/µM) R
2
 n 

0 days -0.763 ± 0.080 0.9891 8 

24 hrs -0.747 ± 0.009 0.9998 8 

3 days ˗0.758 ± 0.080 0.9890 7 

7 days ˗0.685 ± 0.129 0.9658 6 

14 days ˗0.716 ± 0.109 0.9773 7 

Table 6.20: Table of calculated sensitivity values of O2 calibrations (0-1200 µM) for CRCEs exposed to 

PEA. 
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Figure 6.25:  Comparison graph of calculated sensitivity values for O2 calibrations (0-1200 µM) for 

CRCEs exposed to PEA.   

 

Unpaired t-test statistical analysis was performed and it can be seen there is no significant 

different in the sensitivities with P values greater than 0.05 between untreated (0 days 

exposure) and PEA treated electrodes with P values of 0.8500 (12 hrs), 0.9669 (3 days), 

0.6239 (7days) and 0.7347 (14 days). 

One-way Analysis of Variance (ANOVA) was performed on CRCEs only exposed to PEA 

with a P value of 0.9396, showing no significant difference in the sensitivities between the 

electrodes once exposed to PEA over a period of 14 days.  From these results it can be seen 

that there is small but non-significant reduction in the sensitivity of CRCEs following 

exposure to PEA over a period of 14 days.  

6.3.4.6.3 Brain tissue (BT) treated CRCEs 

The effect of exposure to a sample of ex-vivo BT (Section 3.5.4.3) on CRCEs with respect 

to time was investigated.  Untreated CRCEs (0 days) were calibrated and subsequently 

exposed to BT for 24 hours, 3 days and 14 days. 
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BT (0 days) n=4 BT (12 hrs) n=3 BT (3 days) n=3 BT (7 days) n=3 BT (14 days) n=3 

[O2], µM Mean I, nA SEM Mean I, nA SEM Mean I, nA SEM Mean I, nA SEM Mean I, nA SEM 

0 0 0 0 0 0 0 0 0 0 0 

240 -395.3 68.0 -161.2 24.4 -312.8 94.3 -306.7 69.9 -301.8 54.7 

1200 -1045.1 209.2 -815.3 93.6 -1016.4 191.0 -922.7 116.1 -1162.0 143.5 

Table 6.21:  Table of results for O2 calibrations (0-1200 µM) for CRCEs exposed to BT.  CPA 

performed at -650 mV vs. SCE in PBS (pH 7.4) at 21˚C.  Mean background subtracted. 
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Figure 6.26:  O2 calibration data (0-1200 µM) for CRCEs untreated (0 days) and treated with BT (24 

hrs, 3 days, 7 days and 14 days).  CPA performed at -650 mV vs. SCE in PBS (pH 7.4) at 21˚C.   

 

BT treatment Sensitivity (nA/µM) R
2
 n 

0 days -0.760 ± 0.165 0.9629 4 

24 hrs -0.683 ± 0.005 1.0000 3 

3 days ˗0.814 ± 0.094 0.9868 3 

7 days ˗0.733 ± 0.105 0.9799 3 

14 days ˗0.948 ± 0.060 0.9961 3 

Table 6.22:  Table of calculated sensitivity values of O2 calibrations (0-1200 µM) for CRCEs exposed to 

BT. 
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Figure 6.27:  Comparison graph of calculated sensitivity values for O2 calibrations (0-1200 µM) for 

CRCEs exposed to BT.   

 

Unpaired t-test statistical analysis was performed and it can be seen there is no significant 

different in the sensitivities with P values greater than 0.05 between untreated (0 days 

exposure) and BT treated electrodes with P values of 0.6717 (12 hrs), 0.7895 (3 days) 

0.8947 (7 days) and 0.3640 (14 days). 

One-way Analysis of Variance (ANOVA) was performed on Pt-MMA electrodes only 

exposed to BT with a P value of 0.1555 showing no significant difference in the 

sensitivities between the electrodes once exposed to BT over a period of 14 days.  From 

these results it can be seen that there is small but non-significant reduction in the sensitivity 

of CRCEs following exposure to BT over a period of 14 days.  

6.3.4.7 CRCE heat damage 

Construction of the CRCEs involves the use of a considerable amount of heat-shrink and 

therefore exposure to large amounts of heat.  As can be seen in Section 6.3.4.5 it was 

observed for non-treated electrodes that there was a substantial reduction in the sensitivity 

((BSA 0 days: -0.584 ± 0.029 nA/µM, n=6), (PEA 0 days: -0.763 ± 0.080 nA/µM, n=8), 
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(BT 0 days: -0.760 ± 0.165 nA/µM, n=4)) and also for CRCEs, full MRI design with a 

sensitivity of -0.672 ± 0.086 nA/µM, n=11. 

This issue of reduced sensitivity was investigated.  The following steps were taken to 

minimise that heat damage to the CRCEs:  

• Heat-shrink use was minimised to use over the silver epoxy connections and the Teflon
® 

containing the carbon fibres was protected with the PVA coating to ensure that the Teflon
® 

did not come into contact with heat.   

• The copper wire was soldered into a gold clip before sensor construction. 

• The electrodes were packed at the final point instead of at the beginning of the sensor 

construction, as it was observed by eye that when the heat shrink was being heated the 

composite at the tip of the electrode would push out away from the Teflon
®
 altering the 

active surface of the electrodes. 

These precautions were taken for construction of the CRCEs full MRI and in vivo designs.   

  CRCE full MRI design (n=11) CRCE full MRI design, no heat  (n=2) CRCE in vivo design, no heat (n=4) 

[O2], µM Mean I, nA SEM Mean I, nA SEM Mean I, nA SEM 

0 0 0 0 0 0 0 

240 -268.5 21.4 -428.2 19.4 -316.9 60.7 

1200 -842.6 87.0 -1410.7 65.7 -1309.4 81.7 

Table 6.23: Table of results for O2 calibrations (0-1200 µM) for CRCE full MRI design, CRCE full 

MRI design, no heat and CRCE in vivo design, no heat.  CPA performed at -650 mV vs. SCE in PBS 

(pH 7.4) at 21˚C.  Mean background subtracted. 
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Figure 6.28:  O2 calibration data (0-1200 µM) for CRCE full MRI design (n=11), CRCE full MRI 

design, no heat (n=2) and CRCE in vivo design, no heat (n=4). CPA performed at -650 mV vs. SCE in 

PBS (pH 7.4) at 21˚C.   

 

 
Sensitivity (nA/µM) R

2
 n 

CRCE full MRI design -0.672 ± 0.086 0.9839 11 

CRCE full MRI design, no heat -1.132 ± 0.126 0.9879 2 

CRCE in vivo design, no heat -1.075 ± 0.047 0.9981 4 

Table 6.24: Table of calculated sensitivity values of O2 calibrations (0-1200 µM) for CRCE full MRI 

design, CRCE full MRI design, no heat and CRCE in vivo design, no heat.   
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Figure 6.29:  Comparison graph of calculated sensitivity values for O2 calibrations (0-1200 µM) for 

CRCE full MRI design (n=11), CRCE full MRI design, no heat (n=2) and CRCE in vivo design, no heat 

(n=4). 

 

It can be seen in Figure 6.29 that these modifications to the construction of the sensors were 

effective.  The heat has an effect on the sensitivity so the no heat method was used 

following on from this.  Experiments from this point onwards were performed using the 

CRCE in vivo no heat design unless otherwise stated. 

6.3.4.8  Effect of temperature 

Membrane covered O2 sensors tend to have significant temperature dependence primarily 

due to the effects of temperature on the diffusion coefficient and the solubility of the gas in 

the membrane with temperature.  The signal typically increasing by 1-6% for a rise of 1˚C 

(Hitchman, 1978; Jeroschewski & Zur Linden, 1997).  In vitro experiments are routinely 

performed at a room temperature of ca. 21˚C.  The effect of an increase in the temperature 

of the PBS on the CRCEs O2 sensitivity at the physiological temperate of 37˚C was 

investigated. The concentration of dissolved O2 was calculated to be 214 µM for air 

saturated PBS and 1020 µM for O2 saturated PBS at 37°C detailed in Section 2.8.4. 
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  PBS 37°C 

[O2], µM Mean I, nA SEM 

0 0 0 

240 -798.4 138.3 

1200 -2640.7 187.9 

 

 
PBS 21°C 

[O2], µM Mean I, nA SEM 

0 0 0 

240 -316.9 60.7 

1200 -1309.4 81.7 

Table 6.25:  Tables of results for O2 calibrations (0-1200 µM) for CRCEs.  CPA performed at -650 mV 

vs. SCE in PBS (pH 7.4) at 37˚C (0-1020 µM) (n=4) and 21˚C (0-1200 µM) (n=4).  Mean background 

subtracted.  
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Figure 6.30:  O2 calibration data (0-1200 µM) for CRCEs.  CPA performed at -650 mV vs. SCE in PBS 

(7.4) at 37˚C (0-1020 µM) & 21˚C (0-1200 µM). 

 

  Sensitivity (nA/µM) R
2
 n 

PBS 37°C -2.506 ± 0.249 0.9902 4 

PBS 21°C -1.075 ± 0.047 0.9981 4 

Table 6.26:  Comparison of calculated sensitivity values of O2 calibrations for CRCEs calibrated in PBS 

solutions of 37˚and 21˚C. 
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Figure 6.31:  Comparison graph of calculated sensitivity values for O2 calibrations for CRCEs 

calibrated in PBS at 37˚C (n=4) & 21˚C (n=4). 

 

Unpaired t-test statistical analysis was performed and it can be seen there is a significant 

difference in the sensitivities of CRCEs calibrated at 37˚C and 21˚C with a P value of 

0.0216.  From the results obtained for CRCEs it can be seen that the sensitivity increases by 

133.12 ± 23.14 % corresponding to a 3.60 ± 0.63 % for every 1˚C increase indicating that 

CRCEs do exhibit significant temperature dependence at the physiological temperature. 

6.3.4.9 Effect of pH 

Changes in pH may occur during physiological experiments in vivo (Zimmerman & 

Wightman, 1991) these changes in pH could also affect the cathodic reduction of O2 at the 

electrode surface involving proton transfer.  Previous reports for carbon-based electrodes 

found that for pH 12-14 the reduction of O2 seems to be independent of pH, but as pH 

decreases the reduction becomes pH dependent (Taylor & Humffray, 1975; Yang & 

McCreery, 2000).  The effect of changes in pH on CRCEs was investigated. 
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PBS pH 6.5 PBS pH 7.4 PBS pH 8 

[O2], µM Mean I, nA SEM Mean I, nA SEM Mean I, nA SEM 

0 0 0 0 0 0 0 

240 -352.2 49.1 -316.9 60.7 -302.1 39.1 

1200 -1616.7 145.6 -1309.4 81.7 -1636.9 78.6 

Table 6.27:  Table of results for O2 calibrations (0-1200 µM) for CRCEs.  CPA performed at -650 mV 

vs. SCE in PBS: pH 6.5 (n=4), 7.4 (n=4) & 8 (n=4) at 21˚C.  Mean background subtracted.  
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Figure 6.32:  O2 calibration data (0-1200 µM) for CRCEs.  CPA performed at -650 mV vs. SCE in PBS 

(pH 6.5, 7.4 & 8) at 21˚C.   

 

 
Sensitivity (nA/µM) R

2
 n 

PBS pH 6.5 -1.339 ± 0.025 0.9997 4 

PBS pH 7.4 -1.075 ± 0.047 0.9981 4 

PBS pH 8 -1.372 ± 0.022 0.9997 4 

Table 6.28:  Comparison of calculated sensitivity values of O2 calibrations (0-1200 µM) for CRCEs 

calibrated in PBS 6.5, 7.4 & 8. 
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Figure 6.33:  Comparison graph of calculated sensitivity values for O2 calibrations (0-1200 µM) for 

CRCEs electrodes calibrated in PBS pH 6.5 (n=4), 7.4 (n=4) and 8 (n=4). 

 

Unpaired t-test statistical analysis was performed and it can be seen there is a significant 

difference in the sensitivities of CRCEs calibrated in PBS pH 6.5 and 7.4 with a P value of 

0.0078.  There is a significant difference in the sensitivities between electrodes calibrated in 

PBS pH 8 and 7.4 with a P value of 0.0047. 

6.3.4.10 Effect of ion changes 

Changes in ion concentrations are of interest in vivo as previously discussed in Section 0.  

The effect of ion changes on the sensitivities of CRCEs was investigated.  

 
aCSF (n=7) aCSF no Ca2+ (n=4) aCSF no Mg2+ (n=8) aCSF no Ca2+or Mg2+(n=8) 

[O2], µM Mean I, nA SEM Mean I, nA SEM Mean I, nA SEM Mean I, nA SEM 

0 0 0 0 0 0 0 0 0 

240 -211.7 59.4 -358.9 77.2 -483.7 60.5 -536.8 57.3 

1200 -1224.1 103.0 -1428.9 28.1 -1460.6 101.6 -1677.3 133.8 

Table 6.29:  Table of results for O2 calibrations (0-1200 µM) for CRCEs.  CPA performed at -650 mV 

vs. SCE in aCSF (n=7), aCSF no Ca
2+

 (n=4), aCSF no Mg
2
+ (n=8) and aCSF no

 
Ca

2+ 
or Mg

2+ 
(n=8) at 

21˚C.  Mean background subtracted. 
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Figure 6.34:  O2 calibration data (0-1200 µM) for CRCEs.  CPA performed at -650 mV vs. SCE in 

aCSF, aCSF no Ca
2+

, aCSF no Mg
2 
and aCSF no

 
Ca

2+ 
or Mg

2+ 
at 21˚C. 

 

 
Sensitivity (nA/µM) R

2
 n 

aCSF -1.030 ± 0.028 0.9992 7 

aCSF no Ca
2+

 -1.169 ± 0.063 0.9971 4 

aCSF no Mg
2+

 ˗1.160 ± 0.165 0.9803 8 

aCSF no Ca
2+

or Mg
2+

 ˗1.338 ± 0.173 0.9835 8 

Table 6.30:  Comparison of calculated sensitivity values of O2 calibrations (0-1200 µM) for CRCEs 

calibrated in aCSF, aCSF no Ca
2+

, aCSF no Mg
2+

, aCSF no Ca
2+

or Mg
2+

 at 21˚C. 
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Figure 6.35:  Comparison graph of calculated sensitivity values for O2 calibrations (0-1200 µM) for Pt-

MMA electrodes calibrated in aCSF (n=7), aCSF no Ca
2+

 (n=4), aCSF no Mg
2
+ (n=8) and aCSF no 

Ca
2+

or Mg
2+

 (n=8). 

 

Unpaired t-test statistical analysis was performed and it can be seen there is no significant  

difference in the sensitivities of CRCEs calibrated in aCSF and aCSF with no with Ca
2+

, 

Mg
2+

 and Ca
2+

or Mg
2+

 with P values of 0.1141 (aCSF no Ca
2+

), 0.4619 (aCSF no Mg
2+

) 

and  0.1224 (aCSF no Ca
2+

or Mg
2+

).  There is a decrease in the sensitivity for CRCEs 

calibrated in aCSF (-1.030 ± 0.028 nA/µM) compared to PBS (-1.075 ± 0.047 nA/µM) 

although the difference is not significant P = 0.4482. 

6.3.4.11 Post-implantation calibrations 

The effect of proteins, lipids and brain tissue on the sensitivity of CRCEs in vitro was 

investigated (Section 6.3.4.5).  Although this gives an indication as to the effect that 

proteins, lipids and ex-vivo brain tissue has on the sensitivity of the electrodes the effect of 

the living brain with endogenous species present was investigated by performing post 

implantation calibrations where possible on the CRCEs (implanted for 9 ± 2 days (n=3)) 

once removed from the brain. These calibrations are described in Section 3.6.1.8. 
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CRCE (pre-implantation) CRCE (post-implantation) 

[O2], µM Mean I, nA SEM Mean I, nA SEM 

0 0 0 0 0 

240 -432.0 58.5 -93.1 125.7 

1200 -1727.4 137.4 -596.7 122.6 

Table 6.31:  Table of results for O2 calibrations (0-1200 µM) for CRCEs pre-implantation and post-

implantation (n=8) for a standard O2 calibration.  CPA performed at -650 mV vs. SCE in PBS (pH 7.4) 

at 21˚C.  Mean background subtracted.  
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Figure 6.36: O2 calibration data (0-1200 µM) for CRCEs pre-implantation and post-implantation (n=8).  

CPA performed at -650 mV vs. SCE in PBS (pH 7.4) at 21˚C. 

 

 
Sensitivity (nA/µM) R

2
 n 

Pre-implantation ˗1.414 ± 0.074 0.9972 8 

Post-implantation ˗0.505 ± 0.023 0.9989 8 

Table 6.32:  Table of calculated sensitivity values of O2 calibrations (0-1200 µM) for CRCEs pre-

implantation and post-implantation. 
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Figure 6.37:  Graph of calculated sensitivity values for O2 calibrations (0-1200 µM) for CRCEs pre-

implantation and post-implantation (n=8). 

 

Unpaired t-test statistical analysis was performed and it can be seen there is an extremely 

significant difference in the sensitivities between CRCEs calibrated pre and post-

implantation with a P value < 0.0001.   

From the results presented in it can be seen that the brain has detrimental effect on the 

sensitivity of the CRCEs to O2.  This decrease in sensitivity of 64.29 ± 1.60 % of the 

electrodes post-implantation compared to pre-implantation.  This decrease is thought to be 

due to fouling at the electrode surface preventing O2 from reaching the active surface of the 

electrode and example of which can be seen in Figure 6.38 . 
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Figure 6.38:  Image of a CRCE post-implantation demonstrating accumulation of tissue at active 

surface of the electrode.  

6.3.4.12 Preliminary fMRI calibrations 

Preliminary, acute in vivo experiments using the full fMRI CRCE were performed (see 

Section 7.3.6).  During these experiments it was found that there was an issue with the 

background settling time.  The permitted duration of these experiments were 2-3 hours and 

it was found that the background current was not sufficiently settled to accurately monitor 

changes in brain tissue O2 (see Section 7.3.6).  The settling time was not an issue for 

chronic in vivo experiments as the animals were allowed to recover overnight once 

connected to the recording equipment enabling the baseline to reach a steady-state.  To 

allow for these acute in vivo experiments, alterations in the electrode’s composition were 

investigated. 

6.3.5 fMRI compatible acute design 

To reduce the background current and minimise the settling time of the CRCEs, variations 

in the composite quantities were investigated.  It was decided to increase the amount of 

carbon present and decrease the amount of Rhoplex
®
 in the hope that a lesser amount of 

polymer present would increase the settling time and reduce any insulating effect that the 

polymer might have. 
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6.3.5.1 Silver based CRCEs acute designs 

6.3.5.1.1 1:5 ratio of Rhoplex
®
:Carbon 

Silver based CRCEs incorporating a 1:5 ratio of Rhoplex
®
:Carbon using 0.01g 

Rhoplex
®
/0.05g Carbon or 0.005g Rhoplex

®
/0.0125g Carbon were constructed as described 

in Section 3.4.2. The quantities were halved to ensure more accurate mixing of the 

composite.  This method using silver wire was employed as discussed previously as a 

simpler way of determining the viability of the mixture for use in conjunction with the 

carbon fibre transducer. As there is a high carbon content and a small amount of binder, the 

use of a membrane in the form of nitrocellulose was investigated as a means of securing the 

composite in place.  Nitrocellulose has been previously utilised with O2 sensors (Dittmar et 

al., 1997) as it is hydrophobic and allows for small charged ions and O2 to permeate the 

membrane, acting as a barrier for larger organic molecules such as proteins.  This barrier 

reduces the poisoning of the active surface of the electrode.  O2 calibrations on silver 

CRCEs were investigated.  The mean background currents presented in Table 6.33 were 

subtracted. 

 
Mean Background I, nA (0 µM O2) SEM n 

Silver Rhoplex® (0.01g)/Carbon (0.05g) -70.6 5.7 4 

Silver Rhoplex® (0.005g)/Carbon (0.0125g) -20.0 8.5 6 

Silver Rhoplex® (0.005g)/Carbon (0.0125g), Nitrocellulose -27.5 6.5 4 

Silver Rhoplex® (0.005g)/Carbon (0.0125g), 10% Nitrocellulose -19.7 4.1 4 

Table 6.33:  Table of results for mean background currents at 0 µM O2 for Rhoplex
®
/Carbon silver 

composite electrodes with and without nitrocellulose.  CPA performed at -650 mV vs. SCE in PBS (pH 

7.4) at 21°C.   
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Silver Rhoplex
®

 

(0.01g)/Carbon 

(0.05g) (n=4) 

Silver Rhoplex
®

 

(0.005g)/Carbon 

(0.0125g) (n=6) 

Silver Rhoplex
®

 

(0.005g)/Carbon (0.0125g), 

Nitrocellulose (n=4) 

Silver Rhoplex
®

 

(0.005g)/Carbon (0.0125g), 

10% Nitrocellulose (n=4) 

[O2], µM 
Mean I, 

nA 
SEM 

Mean I, 

nA 
SEM Mean I, nA SEM Mean I, nA SEM 

0 0 0 0 0 0 0 0 0 

240 -910.7 38.0 -868.4 65.5 -582.0 48.3 -849.0 62.3 

1200 -2962.0 119.6 -3193.0 180.1 -1885.8 150.8 -2955.6 179.5 

Table 6.34: Table of results for O2 calibrations (0-1200 µM) for Rhoplex
®
/Carbon silver composite 

electrodes with and without nitrocellulose.  CPA performed at -650 mV vs. SCE in PBS (pH 7.4) at 

21°C.  Mean background subtracted.  
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Figure 6.39:  O2 calibration data (0-1200 µM) for Silver Rhoplex
®
 (0.01g)/Carbon (0.05g) (n=4), Silver 

Rhoplex
®
 (0.005g)/Carbon (0.0125g) (n=6), Silver Rhoplex

®
 (0.005g)/Carbon (0.0125g), Nitrocellulose 

(n=4), Silver Rhoplex
®
 (0.005g)/Carbon (0.0125g), 10% Nitrocellulose (n=4). CPA performed at -650 

mV vs. SCE in PBS (pH 7.4) at 21˚C. 

 

 
Sensitivity (nA/µM) R

2
 n 

Silver Rhoplex® (0.01g)/Carbon (0.05g) -2.374 ± 0.273 0.9869 4 

Silver Rhoplex® (0.005g)/Carbon (0.0125g) -2.592 ± 0.198 0.9942 6 

Silver Rhoplex® (0.005g)/Carbon (0.0125g), Nitrocellulose ˗1.511 ± 0.176 0.9866 4 

Silver Rhoplex® (0.005g)/Carbon (0.0125g), 10% Nitrocellulose ˗2.386 ± 0.222 0.9915 4 

Table 6.35:  Table of calculated sensitivity values of O2 calibrations (0-1200 µM) for Rhoplex
®
/Carbon 

silver composite electrodes with and without nitrocellulose. 
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Figure 6.40:  Graph of calculated sensitivity values for O2 calibrations (0-1200 µM) for Silver Rhoplex
®
 

(0.01g)/Carbon (0.05g) (n=4), Silver Rhoplex
®
 (0.005g)/Carbon (0.0125g) (n=6), Silver Rhoplex

®
 

(0.005g)/Carbon (0.0125g), Nitrocellulose (n=4), Silver Rhoplex
®
 (0.005g)/Carbon (0.0125g), 10% 

Nitrocellulose (n=4). 

 

It can be seen that there is improvement in sensitivity of the electrodes, presumably due to 

the higher carbon ratio of the composite.  There is also a lower background current but this 

could be due to the silver wire as a transducer instead of carbon fibres.  When the 

composites were constructed in combination with the fMRI design (CF transducer) the 

assembly of these electrodes was not achievable as the packing of the electrodes was not 

possible.  The silver Rhoplex® (0.005g)/Carbon (0.0125g), nitrocellulose dipped electrodes 

had a lower sensitivity compared to the other designs (Table 6.35) this was due to the 

electrode being immersed in nitrocellulose which created a thick visible membrane on the 

electrode surface which had a negative effect  on the sensitivity of the electrodes. 

6.3.5.1.2 Rhoplex
®
 (0.05g)/Carbon (0.03g) and Carbon paste composite electrodes 

(CRC/CPEs) 

As the packing of the active surface of the electrode was an issue with a higher proportion 

of carbon, reported in Section 6.3.5.1.1, the original CRCE mixture (Rhoplex
®
 

(0.05g)/Carbon (0.03g)) was reassessed. The CF based electrode needs a glue-like mixture 

to ensure a good contact with the active surface as it cannot be packed with a silver wire 

traditionally used in CPEs. The composite was packed into the majority of the cavity of the 
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electrode and the end of the cavity (active surface) was packed using carbon paste.  O2 

calibrations on silver CRC/CPEs were investigated.  The mean background of -161.21 ± 

98.12 nA (n=5) was subtracted. 

 
Silver CRC/CPEs  (n=5) 

[O2], µM Mean I, nA SEM 

0 0 0 

240 -343.8 38.8 

1200 -1460.1 154.6 

Table 6.36:  Table of results for O2 calibrations (0-1200 µM) for CRC/CP silver composite electrodes.  

CPA performed at -650 mV vs. SCE in PBS (pH 7.4) at 21°C.  Mean background subtracted.  
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Figure 6.41:  O2 calibration data (0-1200 µM) for Silver CRC/CPEs (n=5). CPA performed at -650 mV 

vs. SCE in PBS (pH 7.4) at 21˚C. 

 

Linear regression analysis shows that the electrodes have a sensitivity of -1.201 ± 0.045 

nA/µM (n=5).  The response was linear over the range with an R
2
 value of 0.9986 (n=5).   

As with the electrodes in Section 6.3.5.1.1 when the design was translated to the CF 

transducer the construction was not viable due to issues with the packing of the cavity of 

the electrode. 
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6.3.5.2 Liquid CPEs 

As the attempts at constructing a reproducible fMRI compatible sensor with a rapid settling 

time were not successful using the composite mixtures previously employed in Section 

6.3.4, a conductive, liquid carbon paste (SPI Supplies
®
) based electrode was investigated.  

The liquid carbon paste was utilised in conjunction with the full fMRI design to compare 

the sensitivities and background currents to the full fMRI CRCEs. 

6.3.5.2.1 O2 calibrations liquid CP full fMRI design 

 
Liquid carbon paste composite electrode (n=12) 

[O2], µM Mean I, nA SEM 

0 0 0 

240 -402.5 29.8 

1200 -1990.3 203.8 

Table 6.37:  Table of results for O2 calibrations (0-1200 µM) for liquid CPEs full fMRI design.  CPA 

performed at -650 mV vs. SCE in PBS (pH 7.4) at 21°C.  Mean background subtracted.  
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Figure 6.42:  O2 calibration data (0-1200 µM) for liquid CPEs full fMRI design (n=12). CPA performed 

at -650 mV vs. SCE in PBS (pH 7.4) at 21˚C. 

 

Linear regression analysis shows that the electrodes have a sensitivity of -1.657 ± 0.004 

nA/µM (n=12).  The response was linear over the range with an R
2
 value of 1.000 (n=12).    

From these results it can be concluded that the liquid CPEs can detect O2 in vitro and that 
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the sensitivity was improved in comparison to the CRCEs full fMRI design (-0.953 ± 0.07 

nA/µM (n=4)). The settling time for the background current was subsequently investigated. 

6.3.5.2.2 CRCEs and liquid CPEs background settling time comparison 

The background currents for CRCEs and liquid CPEs (full fMRI designs) were compared.  

The current (nA) was averaged for each electrode type settling in N2 every 10 min for a 

duration of 50 min.   

 
CRCE full fMRI design (n=16) Liquid carbon paste full fMRI (n=12) 

Time (mins) Mean I, nA SEM Mean I, nA SEM 

0 -230.6 46.4 -327.1 59.2 

10 -205.2 31.2 -285.6 43.7 

20 -185.9 22.5 -933.4 80.1 

30 -188.9 30.7 -688.1 55.8 

40 -189.6 24.0 -2317.9 224.3 

50 -199.5 23.7 -2426.2 203.5 

Table 6.38:  Table of results for mean background currents at 0 µM O2 at 10 min intervals for 50 min 

for CRCEs full fMRI design and liquid CPEs full fMRI design.  CPA performed at -650 mV vs. SCE in 

PBS (pH 7.4) at 21°C.   
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Figure 6.43:  Mean background current data at 0 µM O2 at 10 min intervals for a period of 50 min for 

CRCEs full fMRI design (n=16) and liquid CPEs full fMRI design (n=12). 
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It can be seen that the liquid CPEs background current increases instead of stabilising over 

50 min.  The CRCEs current decreases by -31.1 ± 22.7 nA over 50 min.  From these results 

it was determined that the liquid CP was unsuitable for use in acute fMRI studies due to the 

background current being unstable.  

6.4 Conclusions 

This chapter examines the standardisation and use of metal free O2 sensors based on a 

previous designs (Austin et al., 2003; Lowry et al., 2010) for use in conjunction with fMRI 

studies.  The final design incorporating a carbon composite containing Rhoplex
®
 (Section 

6.3.4) was characterised in vitro to determine the sensitivity of the CRCEs to O2 and the 

effects on the sensitivity following exposure to proteins, lipids and brain tissue (Section 

6.3.4.5)  The effects of temperature, pH, ions, and implantation were also examined.  Due 

to issues with the background current settling times in preliminary acute experiments an 

alternative design for acute studies was investigated (Section 6.3.5). 

From the results presented in this chapter it can be concluded that single carbon fibre 

bundles are not suitable for designing a reproducible sensor.  With CRCEs it was found that 

the active surface requires drying against a flat surface and sensor construction with 

minimal heat exposure improved the sensitivity of the electrodes.  It was found that the 

length of the electrode could be reduced approximately 5 times its original length and there 

was no significant reduction in the sensitivity.  The CRCEs were found to be biocompatible 

with no significant reduction in the sensitivity following exposure to proteins, lipids and 

brain tissue.  The physiological temperature (37°C) affects the CRCEs (Section 6.3.4.8) 

causing a large increase in sensitivity.  Changes in pH did have an effect on the sensitivity, 

however changes in ions showed no significant effect.  The effect of implantation of the 

sensors into the living brain indicated that implantation has a detrimental effect on the 

sensitivity of the CRCEs which is thought to be due to fouling of the active surface of the 

electrodes (Section 6.3.4.11).  During preliminary acute in vivo experiments using the 

CRCE full fMRI design it was found that the electrodes background current did not reach a 

steady state quickly enough for experiments to take place.  An fMRI compatible acute 
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design was explored with an attempt at minimising the settling time which was 

unsuccessful.  The original CRCE design was found to be the superior design.  It has 

previously been reported that the number of carbon fibre in a bundle has an effect on the 

resistance (Coeuret et al., 2002) of the electrode.  Future work for the acute fMRI sensor 

will involve elimination of the majority of the CF wire and pre-conditioning the sensors 

before the acute in vivo experiments by applying a potential to the electrodes overnight 

prior to the acute implantation.  CRCEs can therefore be deemed suitable for use in chronic 

in vivo fMRI experiments for the detection of brain tissue O2. 
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7.1 Introduction 

Carbon based composite electrodes have previously been used to detect brain tissue O2 in 

freely-moving animals (Bazzu et al., 2009).  A metal free composite electrode containing 

Rhoplex
®
 and graphite powder (CRCR) with a carbon fibre transducer, suitable for use in 

fMRI imaging studies was fabricated and characterised in vitro and presented in Chapter 6.  

It has been shown that BOLD fMRI and amperometric tissue O2 data from  rat cerebral 

cortex can be measured simultaneously using carbon fibre electrodes (Lowry et al., 2010) 

verifying that real-time metabolic information can be acquired during fMRI investigations 

and that the changes in the magnitude of the BOLD response can be directly correlated to 

changes in tissue O2 concentrations. This technique offers an alternative to fMRI 

experiments as the O2 sensors can be used in freely-moving animals. 

This chapter investigates and characterises the use of CRCEs for the detection of brain 

tissue O2 in the striatum following on from the in vitro characterisation (Chapter 6) with the 

intention for use in conjunction with in vivo fMRI studies. 

7.2 Experimental In Vivo 

The instrumentation and software used are detailed in Section 3.2 and all chemicals and 

solutions are detailed in Section 3.3. 

CRCEs (200 µm bare diameter) were constructed as described in Section 3.4.4.  A potential 

of -650 mV vs. SCE was applied to the working electrodes and all experiments were 

performed on freely-moving Wistar rats.  Full fMRI CRCEs were constructed as described 

in Section 3.4.3 and used for preliminary acute (non recoverable) experiments.  A potential 

of -650 mV vs. SCE was applied to the working electrode implanted in the cortex and 

experiments were performed on an anesthetised Sprague Dawly rat.  

In vivo procedures are detailed in Section 3.7.  CRCEs were implanted in the striatum.  The 

initial surgery contained bilateral CRCEs and a unilateral CPE in the left striatum for 

confirmation of the O2 signal (results not presented). 



Chapter 7: In Vivo fMRI Oxygen 

216 

Data is represented via the mean ± SEM where n = number of administrations, unless 

otherwise stated.  Significant differences were calculated using two-tailed unpaired t-tests 

unless otherwise stated. 

7.3 Results and Discussion  

7.3.1 Characterisation of CRCEs In Vivo 

7.3.2 Gaseous Administrations 

7.3.2.1 Hyperoxia 

Mild hyperoxia was achieved by administration of O2 gas to the snout of the animal.  The 

flow was maintained at a slow steady rate similar to the method used previously (Lowry et 

al., 1998) and as described in Section 3.7.4.   The inhalation of the O2 gas for 3 minutes 

resulted in a change from baseline levels for the O2 signals, monitored using CRCEs as can 

be seen in Figure 7.1 below. 
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Figure 7.1:  A typical example of a 3-min period of mild hyperoxia (administration of O2 gas) monitored in vivo 

using a CRCE implanted in the striatum of a freely-moving rat.  The bar indicates the period of gaseous 

administration. 

 

A 3-min period of mild hyperoxia shows an average immediate increase in current from the 

baseline level of -72.20 ± 5.48 nA (n=23, 2 animals) to -107.96 ± 13.38 nA (n=23, 2 
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animals).  This increase was found to be significant (P= 0.0195).  The percentage increase 

was found to be 46.57 ± 11.88 % (n=23, 2 animals). Changes were immediate and on 

cessation of inhalation the signals quickly returned to baseline levels of -74.64 ± 5.83 nA 

after 8.13 ± 1.81 min (n =23, 2 animals) (P= 0.7619), indicating a rapid return to normoxic 

conditions. A summary of these results can be seen in Table 7.1. 

Hyperoxia 

Baseline (nA) -72.20 ± 5.48 

Max Increase (nA) -107.96 ± 13.38 

% Increase 46.57 ± 11.88 

Post-baseline (nA) -74.64 ± 5.83 

t to post-baseline (min) 8.13 ± 1.81 

 

Table 7.1:  Summary of results for a 3-min period of mild hyperoxia monitored in vivo using CRCEs (n 

= 23, 2 animals), implanted in the striatum of freely-moving rats. 

 

From these results it can be seen that there is a significant increase in striatal tissue O2 upon 

administration of O2 gas to the animal’s snout and this change can be reliably monitored 

using CRCEs. 

7.3.2.2 Hypoxia 

Mild hypoxia was achieved by administration of N2 gas to the snout of the animal.  The 

flow was maintained at a slow steady rate similar to the method used previously (Lowry et 

al., 1998) and as described in Section 3.7.4.   The inhalation of the N2 gas for 3 minutes 

resulted in a change from baseline levels for the O2 signals, monitored using CRCEs as can 

be seen in Figure 7.2 below. 
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Figure 7.2:  A typical example of a 3-min period of mild hypoxia (administration of N2 gas) monitored 

in vivo using a CRCE implanted in the striatum of a freely-moving rat.  The bar indicates the period of 

gaseous administration. 

 

A 3-min period of mild hypoxia shows an average immediate decrease in current from the 

baseline level of -75.37 ± 6.22 nA (n=11, 2 animals) to -54.79 ± 4.98 nA (n=11, 2 animals).  

This decrease was found to be significant (P =0.0182).  The percentage decrease was found 

to be 27.24 ± 3.19 % (n=11, 2 animals). Changes were immediate and on cessation of 

inhalation the signals quickly returned to baseline levels of -73.30 ± 5.88 nA after 4.86 ± 

0.70 min (n=11, 2 animals) (P= 0.8115), indicating a rapid return to normoxic conditions. 

A summary of these results can be seen in Table 7.2. 

Hypoxia 

Baseline (nA) -75.37 ± 6.22 

Max Decrease (nA) -54.79 ± 4.98 

% Decrease 27.24 ± 3.19 

Post-baseline (nA) -73.30 ± 5.88 

t to post-baseline (min) 4.86 ± 0.70 

Table 7.2:  Summary of results for a 3-min period of mild hypoxia monitored in vivo using CRCEs (n = 

14, 2 animals), implanted in the striatum of freely-moving rats. 
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From these results it can be seen that there is a significant decrease in striatal tissue O2 

upon administration of N2 gas to the animal’s snout and this change can be reliably 

monitored using CRCEs. 

7.3.3 Neuronal Activation 

7.3.3.1 Tail pinch 

Neuronal activation was stimulated physiologically by means of a tail pinch.  A tail pinch 

induces a well characterised behaviour pattern consisting of gnawing, licking, eating and a 

general increase in the level of motor activity (Antelman et al., 1975).  The tail pinch was 

performed for a duration of 5 minutes similar to methods used previously (Bolger & 

Lowry, 2005) and as described in Section 3.7.5.1.  Induced neuronal activation for 5 

minutes resulted in a change from baseline levels for the O2 signals, monitored using 

CRCEs as can be seen in Figure 7.3. 
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Figure 7.3:  A typical example of a 5-min tail pinch (neuronal activation) monitored in vivo using a 

CRCE implanted in the striatum of a freely-moving rat. .  The bar indicates the duration of the tail 

pinch. 

 

A 5-min period of neuronal activation shows an average increase in current from a baseline 

level of -67.32 ± 10.80 nA (n=4, 2 animals) to -80.25 ± 10.38 nA (n=4, 2 animals) after 
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1.87 ± 0.93 min (P=0.4275).  The percentage increase was found to be 21.79 ± 9.65 % 

(n=4, 2 animals). Upon cessation of the tail pinch, the current increased to -81.63 ± 10.01 

nA (n=4, 2 animals) corresponding to a mean percentage increase of 24.62 ± 11.79 % 

(n=4, 2 animals) from baseline levels (P=0.3758). The post-tail pinch current returned to 

baseline levels of -77.87 ± 9.83 nA (n=4, 2 animals) after 15.59 ± 5.50 min. A summary of 

these results can be seen in Table 7.3. 

Tail pinch 

Baseline (nA) -67.32 ± 10.80 

Max Increase (nA) -80.25 ± 10.38 

% Increase 21.79 ± 9.65 

Post-baseline (nA) -77.87 ± 9.83 

t to post-baseline (min) 15.59 ± 5.50 

Table 7.3:  Summary of results for a 5-min tail pinch monitored in vivo using CRCEs (n = 4, 2 animals), 

implanted in the striatum of freely-moving rats. 

 

From these results it can be seen that there is a non significant increase in striatal tissue O2 

with the tail pinch experiment.  This is thought to be due to variations in the stress score 

between experiments and habituation of the animal to the tail pinch.  Due to the lack of 

response from the tail pinch a restraint test was performed. 

7.3.3.2 Restraint test 

Neuronal activation was stimulated physiologically by means of a restraint test (Cloutier et 

al., 2009).  The animal was physically immobilised and the stress associated with freeing 

itself are associated with an increase in neuronal activation with an associated increase in 

blood flow. The restraint test was performed for a duration of 5 minutes as described in 

Section 3.7.5.2.  Induced neuronal activation for 5 minutes resulted in a change from 

baseline levels for the O2 signals, monitored using CRCEs as can be seen in Figure 7.4. 
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Figure 7.4:  A typical example of a 5-min restraint test (neuronal activation) monitored in vivo using a 

CRCE implanted in the striatum of a freely-moving rat.  The bar indicates the duration of the tail 

pinch. 
 

A 5-min period of restraint shows an average increase in current from baseline level of -

67.59 ± 7.48 nA (n=12, 2 animals) to -75.69 ± 8.35 nA (n=12, 2 animals) after 2.58 ± 0.49 

min, representing a significant increase of 13.05 ± 4.63 % (n=12, 2 animals) compared to 

baseline levels (P=0.0015(paired t-test)). The current returned to baseline levels of -67.87 ± 

7.44 nA (n=12, 2 animals) (P=0.9791) after 14.69 ± 3.60 min.   The period following the 

cessation of the restraint shows a delay in returning to baseline levels.  This sustained 

increase can be attributed to the animal grooming and to post-restraint stress/activation. A 

summary of these results can be seen in Table 7.4. 

Restraint test 

Baseline (nA) -67.59 ± 7.48 

Max Increase (nA) -75.69 ± 8.35 

% Increase 13.05 ± 4.63 

Post-baseline (nA) -67.87 ± 7.44 

t to post-baseline (min) 14.69 ± 3.60 

Table 7.4: :  Summary of results for a 5-min restraint test monitored in vivo using CRCEs (n = 12, 2 

animals), implanted in the striatum of freely-moving rats. 
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From these results it can be seen that there is a non significant increase in striatal tissue O2 

with the tail pinch experiment.  This may be due to variations in the stress score between 

experiments (animals chewed for 2 mins on average) and habituation of the animal to the 

tail pinch.  Due to the lack of response from the tail pinch a restraint test was performed.  

7.3.4 Drug Administration 

7.3.4.1 Effect of Acetazolamide 

Acetazolamide (Diamox) is a carbonic anhydrase inhibitor and when administered 

systematically has been shown to increase brain tissue oxygen concentrations (Clark Jr & 

Lyons, 1965; Dixon et al., 2002; Bolger & Lowry, 2005).  Acetazolamide acts by inhibiting 

the carbonic anhydrase enzymes whose function is to catalyse the conversion of CO2 and 

H2O2 to bicarbonate (HCO3
-
).  This increase in CO2 and a subsequent decrease in pH 

results in vasodilatation and an increase in tissue O2.  The vehicle used to administer 

Diamox intraperitoneally was DMSO which has been previously shown to have no long 

lasting effect on brain tissue O2 (Section 5.3.4.2).  The effect of acetazolamide on the O2 

signal, monitored with CRCEs can be seen in Figure 7.5 below. 
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Figure 7.5:  A typical example of an i.p. administration of Diamox (50 mg/kg) monitored in vivo using a 

CRCE implanted in the striatum of a freely-moving rat.  The arrow indicates the point of injection. 
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An i.p. injection of Diamox shows an immediate sharp increase in the O2 signal from 

average baseline levels of -75.36 ± 9.35 nA (n=6, 2 animals) to -90.04 ± 10.44 nA (n=5, 2 

animals) after 48.60 ± 16.10 seconds, this sharp increase in current of 4.50 ± 1.35 % can be 

attributed to injection stress.  The subsequent rapid decrease was followed by a sustained 

maximum increase in the O2 signal to -120.87 ± 12.10 nA (n=5, 2 animals) after 28.98 ± 

14.26 min, representing a significant increase of 41.62 ± 5.89 % (n=5, 2 animals) compared 

to baseline levels (P= 0.0206).  The current returned to post-injection baseline levels of -

78.20 ± 10.27 nA (n=5, 2 animals) (P= 0.8425) after 3.72 ± 0.87 hrs.  A summary of these 

results can be seen in Table 7.5. 

Diamox i.p. 

Baseline (nA) -75.36 ± 9.35 

Max Increase (nA) -120.87 ± 12.10 

t to max increase (min) 28.98 ± 14.26 

% Increase 41.62 ± 5.89 

Post-baseline (nA) -78.20 ± 10.27 

t to post-baseline (hrs) 3.72 ± 0.87 

Table 7.5:  Summary of results for i.p. administrations of Diamox (50mg/kg)) monitored in vivo using 

CRCEs (n = 5, 2 animals), implanted in the striatum of freely-moving rats. 
 

From these results it can be seen that there is a significant increase in striatal tissue O2 upon 

administration of Diamox (50 mg/kg) and this change can be reliably monitored using 

CRCEs. 

7.3.5 Effect of Anesthesia 

7.3.5.1 Chloral Hydrate 

Chloral hydrate was amongst one of the first CNS depressants used in veterinary medicine. 

Chloral hydrate is metabolised by alcohol dehydrogenase to trichloroethanol and 

trichloroacetic acid (Butler, 1948).  Although the precise mechanism is unknown (Sourkes, 

1992), trichloroethanol is the active metabolite (Tao & Auerbach, 1994; Gauillard et al., 

2002) and it’s thought its binding site is at the exogenous γ-aminobutyric acid (GABA) 



Chapter 7: In Vivo fMRI Oxygen 

224 

receptor resulting in an influx of chloride ions causing it to potentiate the function of 

GABA in a way similar to that of barbitutes (Lovinger et al., 1993). 

Chloral hydrate has been previously used to increase brain tissue O2 (Lowry & Fillenz, 

2001; Bolger & Lowry, 2005).  This increase in O2 is thought to be due to an increase in 

rCBF.  The vehicle used to administer chloral hydrate intraperitoneally was normal saline 

which has been previously shown to have no long lasting effect on brain tissue O2 (Bolger 

& Lowry, 2005) and Section 5.3.4.1.  The effect of chloral hydrate on the O2 signal, 

monitored with CRCEs can be seen in Figure 7.6 below. 
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Figure 7.6:  A typical example of an i.p. administration of chloral hydrate (350 mg/kg), monitored in 

vivo using a CRCE implanted in the striatum of a freely-moving rat.  The arrow indicates the point of 

injection. 

 

An i.p. injection of chloral hydrate shows an immediate increase in the O2 signal from 

average baseline levels of -77.63 ± 11.27 nA (n=6, 2 animals) to -87.13 ± 8.70 nA (n=4, 2 

animals) after 47.25 ± 12.60 seconds this increase in current of 6.34 ± 1.08 % can be 

attributed to injection stress.  This initial increase rapidly decreases and there is a sustained 

maximum increase in the O2 signal to -121.34 ± 10.68 nA (n=7, 2 animals) after 10.48 ± 

1.01 min, representing a significant increase of 67.30 ± 15.16 % (n=7, 2 animals) compared 

to baseline levels (P=0.0183).  The current returned to post- injection baseline levels of -

77.13 ± 11.22 nA (n=6, 2 animals) (P= 0.9755) after 2.63 ± 0.32 hrs which corresponded to 
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when the animal was almost fully recovered from the anaesthetic. A summary of these 

results can be seen in Table 7.6. 

Chloral Hydrate i.p. 

Baseline (nA) -77.63 ± 11.27 

Max Increase (nA) -121.34 ± 10.68 

t to max increase (min) 10.48 ± 1.01 

% Increase 67.30 ± 15.16 

Post-baseline (nA) -77.13 ± 11.22 

t to post-baseline (hrs) 2.63 ± 0.32 

Table 7.6:  Summary of results for i.p. administrations of chloral hydrate (350mg/kg) monitored in vivo 

using CRCEs, implanted in the striatum of freely-moving rats. 

 

From these results it can be seen that there is a significant increase in striatal tissue O2 upon 

administration of chloral hydrate (350 mg/kg) and this change can be reliably monitored 

using CRCEs.  

7.3.6 Preliminary acute in vivo experiment 

A preliminary, acute (non recovery) in vivo experiment using the full fMRI CRCE was 

performed in an anesthetised rat.  It was found that there was an issue with the background 

settling time, presented in Table 7.7 and plotted in Figure 7.7.  
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Time (min) I, nA 

Baseline 2.09 -579.7 

Gains: potential reapplied 

20% O2/ 80% N2 6.16 -806.3 

100% O2 18.59 -1566.9 

20% O2/ 80% N2 32.37 -1697.2 

30% O2/ 70% N2 36.56 -1838.0 

50% O2/ 50% N2 40.02 -1990.9 

70% O2/ 30% N2 43.05 -2048.0 

100% O2 46.18 -2048.0 

70% O2/ 30% N2 49.25 -2048.0 

50% O2/ 50% N2 52.53 -2204.3 

Gains: potential reapplied 

30% O2/ 70% N2 5.19 -2183.2 

100% N2 5.57 -2183.2 

30% O2/ 70% N2 10.41 -2183.2 

100% N2 11.23 -2219.1 

30% O2/ 70% N2 15.37 -2256.2 

100% N2 16.14 -2266.3 

30% O2/ 70% N2 20.47 -2281.8 

100% O2 21.50 -2310.5 

30% O2/ 70% N2 25.52 -2274.7 

100% O2 26.29 -2254.6 

30% O2/ 70% N2 30.53 -2261.2 

100% O2 31.28 -2211.8 

30% O2/ 70% N2 37.00 -2082.2 

100% O2 45.42 -2080.8 

20% O2/ 80% N2 46.44 -2044.5 

Table 7.7:  Table of results for acute experiments for administration of varying O2/N2 %, monitored 

using CRCEs showing duration of experiment and I, nA. 

 

The permitted duration of these experiments were 2 hours and it was found that the 

background current fluctuated during the experiment as the electrode was not sufficiently 

settled to accurately monitor changes in brain tissue O2. 
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Figure 7.7: Data for an acute experiment performed with a CRCE implanted in the cortex of an 

anesthetised rat.   

 

Future work for the acute application of the fMRI sensor will involve elimination of the 

majority of the CF wire and pre-conditioning the sensors before the acute in vivo 

experiments. By applying a potential to the electrodes overnight prior to the acute 

implantation it is hoped that the electrodes will settle far quicker.  The experimental set-up 

for the acute experiments may also be an issue as the electrodes are not insulated from the 

experimental environment which may have a detrimental effect on the settling time. 
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7.4 Conclusions 

A carbon-based composite electrode (CRCE) suitable for use in conjunction with fMRI 

studies has been characterised in vitro in the previous chapter (Chapter 6).  A design 

intended for use in freely-moving animals (Section 6.3.4.4) was characterised in vivo using 

protocols employed previously by our group (Bolger & Lowry, 2005) and in this thesis 

(Chapter 5).  A preliminary acute experiment using the CRCE full fMRI design was 

performed in an anesthetised animal. 

Results presented in this chapter demonstrate that CRCEs (freely-moving design) have the 

ability to monitor changes in striatal O2, evidenced by response of the sensors to the 

administration of O2 and N2 gases to the snout of the animals.  The changes in tissue O2 

following neuronal activation in the form of a restraint test as well as the administrations of 

acetazolamide and chloral hydrate have also been demonstrated. These results compare 

well to CPE data (Bolger & Lowry, 2005). It can therefore be concluded that CRCEs 

provide a viable alternative to metal electrodes to monitor brain tissue O2 but do not offer 

any advantage in comparison to CPEs in terms of stability or biocompatibility.  CRCEs are 

only suitable for short-term monitoring, established in Chapter 6 (Section 6.3.4.11) as there 

is a large reduction in sensitivity after 9 ± 2 days.  The preliminary acute experiment using 

the CRCE full fMRI design performed in an anesthetised animal was not successful due to 

the background current not stabilising in time.  An alternative design was investigated in 

Chapter 6, however the original CRCE proved to be the best design in terms of settling time 

(Section 6.3.5.2.2) therefore an elimination of the CF wire, pre-conditioning the electrodes 

and alterations to the acute experimental set-up are thought to be the remedy to this 

problem. 
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8.1 Introduction 

The hippocampus has been found to play essential roles in declarative memory (Scoville & 

Milner, 1957; Cohen et al., 1999; Eacott & Easton, 2010), spatial navigation (O'Keefe & 

Nadel, 1978; Morris et al., 1982; D’Hooge & De Deyn, 2001) and has been linked to 

various neurodegenerative/psychiatric disorders (Heckers & Konradi, 2010; Marlatt & 

Lucassen, 2010; Bast, 2011; Dhikav & Anand, 2011; Bonilha et al., 2012). 

Electrochemical sensors and biosensors have been previously utilised to detect brain tissue 

O2 (Lowry et al., 1996; Lowry et al., 1997; Lowry & Fillenz, 2001; Bolger & Lowry, 2005; 

Bolger et al., 2011) and glucose (Lowry et al., 1994; Hu & Wilson, 1997; Fillenz & Lowry, 

1998; Lowry et al., 1998a; Lowry et al., 1998b; Dixon et al., 2002).  Microelectrodes have 

been used to investigate O2 and glucose in the hippocampus (Freund et al., 1989; Hu & 

Wilson, 1997) whilst CPEs have been used to measure hippocampal O2 during various 

behavioural tasks (McHugh et al., 2011) but there have been few studies utilising sensors to 

measure hippocampal glucose as most research groups tend to employ microdialysis.  

There is a need for real-time sensor data to supplement the large amount of microdialysis 

data (McNay et al., 2001; Gold, 2003; De Bundel et al., 2009; López-Pérez et al., 2012), 

electrophysiological data (Bliss & Lømo, 1973; Martin et al., 2000; Morris et al., 2003; 

Colgin & Moser, 2010) and molecular data from tissue samples (Gooney et al., 2002; 

Minichiello, 2009; Barry & Commins, 2011) obtained from work in the hippocampus.  

There has been little work performed using sensors to measure basal levels of O2 and 

glucose in the hippocampus or to determine how basic behavioural and pharmacological 

interventions can alter levels of these particular analytes.  Therefore this chapter 

investigates and characterises the simultaneous measurements of tissue hippocampal O2 

and glucose in freely-moving rats using CPEs and Pt/PPD/GOx electrodes and how a maze 

task can alter the levels of this analytes.   
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8.2 Experimental 

The instrumentation and software used are detailed in Section 3.2 and all chemicals and 

solutions are detailed in Section 3.3. 

8.2.1 In Vitro 

Pt/PPD/GOx disk electrodes (125 µm bare diameter) were constructed as described in 

Section 3.5.3.1.  CPEs (200 µm bare diameter) were constructed as described in Section 

3.4.1. 

In vitro electrochemical experiments are detailed in Section 3.6. 

Data is represented as the mean ± SEM where n = number of electrodes used, unless 

otherwise stated.  The slope, nA/µM was obtained from O2 calibration plots using linear 

regression analysis and is used to represent the sensitivity.  Goodness of fit is denoted by 

the R
2
 value.  For enzymatic experiments calibration plots obeyed Michaelis-Menten Hill-

type kinetics (Section 2.6.1).  The kinetic parameter Vmax was as an indication of sensitivity 

and the Hill coefficient (α) represents deviation from ideal Michaelis-Menten kinetics 

(α=1). 

8.2.2 In Vivo 

In vivo procedures are detailed in Section 3.7.  Electrodes were implanted unilaterally in the 

dorsal hippocampus of Sprague Dawly rats.  This strain of rat was also used for future 

behavioural experiments and to enable comparisons of basal concentrations to be directly 

compared to previous hippocampal data (McNay et al., 2000). 

Experimental data obtained was analysed in a different format to previous in vivo 

characterisation chapters with the focus here on time bins/points.  This was to allow for 

comparisons with future microdialysis maze experiments. Data was either normalised to 

baseline levels for ease of comparison, or area under curve (AUC) analysis was performed 

to quantify any observed changes in the sensor signals for statistical analysis. For multiple 
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comparisons, repeated-measures and mixed-factorial analysis of variance tests (ANOVA) 

with Bonferroni post-hoc analysis were used as appropriate. Paired t-tests were also used 

when comparing results from two different time points. P < 0.05 was considered to be 

significant and all data is presented as the mean ± standard error of the mean (SEM). 

8.3 Results 

8.3.1 In Vitro Pt/PPD/GOx 

A Pt-based glucose biosensor has been previously well characterised in vitro and in vivo 

(Lowry et al., 1994; Fillenz & Lowry, 1998).  The optimum enzyme batch and units of 

enzyme was investigated as over time, due to supplier availability, the batches of enzyme 

and units vary (Section 3.3.3).  Below in Table 8.1 and plotted in Figure 8.1 is an example 

of a glucose calibration (0-100 µM) on Pt/PPD/GOx electrodes constructed using glucose 

oxidase obtained from Genzyme Chemical Co. 

[Gluc], mM Mean I, nA SEM 

0 0 0 

1 0.25 0.02 

5 1.12 0.07 

10 1.98 0.12 

15 2.59 0.16 

20 3.18 0.21 

30 4.27 0.33 

50 5.32 0.49 

80 5.95 0.60 

100 5.93 0.60 

Table 8.1:  Table of results for glucose calibrations (0-100 mM) for Pt/PPD/GOx electrodes (n=4). CPA 

performed at +700 mV vs. SCE in PBS (pH 7.4) at 21˚C.  Mean background (0.102 ± 0.002 nA (n=4)) 

subtracted.  
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Figure 8.1:  Glucose calibration data (0-100 mM) for Pt/PPD/GOx electrodes (n=4).  CPA performed at 

+700 mV vs. SCE in PBS (pH 7.4) at 21˚C.   

 

 Mean SEM 

Vmax, nA 7.08 0.80 

KM, mM 22.13 5.35 

α 1.21 0.24 

Table 8.2:  Michaelis Menten Hill-Type kinetic parameters for Pt/PPD/GOx electrodes. 

 

It can be seen from the results presented above that the enzyme activity is very low as can 

be seen in the Vmax.  Similar results were observed for Glucose oxidase (Aspergillus 

Niger)-Sigma-Aldrich Co. and Glucose oxidase (G2133 50KU)-Sigma-Aldrich Co.  

However, Glucose oxidase (49180)-Sigma-Aldrich Co. proved to be successful in terms of 

exhibiting normal/expected sensitivity as can be seen from the results presented in Table 

8.3. 
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[Gluc], mM Mean I, nA SEM 

0 0 0 

1 2.07 0.12 

5 9.74 0.57 

10 17.77 0.88 

15 24.80 1.28 

20 31.05 1.66 

30 40.15 2.20 

50 52.00 3.17 

80 57.49 3.37 

100 58.64 3.30 

Table 8.3:  Table of results for glucose calibrations (0-100 mM) for Pt/PPD/GOx electrodes (n=36). 

CPA performed at +700 mV vs. SCE in PBS (pH 7.4) at 21˚C.  Mean background (0.232 ± 0.033 nA 

(n=36)) subtracted.  

0 20 40 60 80 100 120
0

20

40

60

80

[Gluc], mM

I,
 n

A

 
Figure 8.2:  Glucose calibration data (0-100 mM) for Pt/PPD/GOx electrodes (n=36).  CPA performed 

at +700 mV vs. SCE in PBS (pH 7.4) at 21˚C.   

 

 
Mean SEM 

Vmax, nA 68.80 5.05 

KM, mM 22.76 3.46 

α 1.27 0.16 

 

Table 8.4:  Michaelis Menten Hill-Type kinetic parameters for Pt/PPD/GOx electrodes. 
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It can be seen from the results presented above that the enzyme activity is high 

corresponding well with previously obtained results (Lowry et al., 1994).  The electrodes 

were also calibrated to verify that the PPD layer blocked out in interference caused by 

ascorbic acid (AA) (discussed in Section 2.7.4).  Results for AA calibrations on 

Pt/PPD/GOx electrodes are presented below in Table 8.5 and plotted in Figure 8.3. 

[AA], µM Mean I, nA SEM 

0 0 0 

200 0.32 0.02 

400 0.46 0.03 

600 0.54 0.03 

800 0.50 0.05 

1000 0.51 0.05 

 

Table 8.5:  Table of results for AA calibrations (0-1000 µM) for Pt/PPD/GOx electrodes (n=36). CPA 

performed at +700 mV vs. SCE in PBS (pH 7.4) at 21˚C.  Mean background (0.329 ± 0.031 nA (n=36)) 

subtracted.  
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Figure 8.3:  AA calibration data (0-1000 µM) for Pt/PPD/GOx electrodes (n=36).  CPA performed at 

+700 mV vs. SCE in PBS (pH 7.4) at 21˚C.   

 

From these results it can be determined that the PPD polymer layer on the electrode causes 

sufficient interference rejection of AA and that the enzyme is sensitive enough for the 
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detection of glucose in vivo.  Therefore the Glucose oxidase (49180)-Sigma-Aldrich Co. 

batch of enzyme was used to construct the Pt/PPD/GOx electrodes used in this study. 

8.3.2 In Vitro CPE 

8.3.2.1 Pre-implantation calibrations 

Average results obtained for O2 calibrations (0-1200 µM) performed in PBS on CPEs 

(n=36) prior to implantation are presented below in Table 8.6 and plotted in Figure 8.4.  

The mean background current was subtracted. 

[O2], µM Mean I, nA SEM 

0 0 0 

240 -287.1 8.1 

1200 -1277.5 40.1 

Table 8.6:  Table of results for pre-implantation O2 calibrations (0-1200 µM) for CPEs (n=35).  CPA 

performed at -650 mV vs. SCE in PBS (pH 7.4) at 21˚C.  Mean background (-7.65 ± 1.86 nA (n=35)) 

subtracted. 
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Figure 8.4:  O2 calibration data (0-1200 µM) for CPEs (n=35) pre-implantation.  CPA performed at -

650 mV vs. SCE in PBS (pH 7.4) at 21˚C.   

 

Linear regression analysis shows that the electrodes have a sensitivity of -1.055 ± 0.027 

nA/µM (n=35).  The response was linear over the range with an R
2
 value of 0.9993 (n =35). 
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8.3.2.2 Post-implantation calibrations 

Average results obtained for O2 calibrations (0-1200 µM) performed in PBS on CPEs 

(n=17) post-implantation are presented below in Table 8.7 and plotted in Figure 8.5.  The 

mean background current was subtracted. 

[O2], µM Mean I, nA SEM 

0 0 0 

240 -311.4 13.5 

1200 -1304.8 63.8 

Table 8.7:  Table of results for post-implantation O2 calibrations (0-1200 µM) for CPEs (n=17).  CPA 

performed at -650 mV vs. SCE in PBS (pH 7.4) at 21˚C.  Mean background (-36.03 ± 13.85 (n=17)) 

subtracted. 

250 500 750 1000 1250

-1500

-1250

-1000

-750

-500

-250

0

[O2], M

I,
 n

A

 

Figure 8.5:  O2 calibration data (0-1200 µM) for CPEs (n=17) post-implantation.  CPA performed at -

650 mV vs. SCE in PBS (pH 7.4) at 21˚C.   

 

Linear regression analysis shows that the electrodes have a sensitivity of -1.072 ± 0.043 

nA/µM (n=35).  The response was linear over the range with an R
2
 value of 0.9984 (n=17). 
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8.3.3 In Vivo 

8.3.3.1 Gaseous Administrations 

Mild hyperoxia and hypoxia were achieved by administration of O2 and N2 gas respectively 

to the snout of the animal.  The flow was maintained at a slow steady rate similar to the 

method used previously (Lowry et al., 1998a) (Bolger & Lowry, 2005) and as described in 

Section 3.7.4.  The baseline period was taken as the 3 minutes prior to the beginning of the 

gas administration.  The gaseous administration (O2/N2) was for a duration of 3 minutes 

and the post-baseline period was the 3 minutes following cessation of the gaseous 

administration.  The data was split into 30 s time bins and all data were expressed as a 

percentage of baseline levels. AUC analysis was performed to determine the mean change 

from the baseline signal during each of the gaseous administrations, expressed as nA/min. 

8.3.3.1.1 Hyperoxia 

Administration of O2 gas to the animals’ snouts resulted in mild hyperoxia associated with 

an increase in hippocampal oxygen levels (n = 26, 9 animals) plotted below in Figure 8.6. 
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Figure 8.6: Effect of O2 administration on hippocampal oxygen and glucose showing the mean changes 

in hippocampal oxygen (closed circles) and glucose (open squares) during a 3 min period of mild 

hyperoxia (blue box) with all data normalised to baseline levels. 
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Paired t-tests on the data analysed via AUC showed that hippocampal oxygen significantly 

increased by 67.37 nA.min (t = 4.353; df = 25; P < 0.001; Figure 8.7(A) and that 

hippocampal glucose also significantly increased at a rate of 0.0233 nA.min (t = 2.637; df = 

25; P < 0.05; Figure 8.7(B) during the administration of O2 gas compared to baseline 

levels.  
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Figure 8.7:  Effect of 3 min O2 admin on hippocampal oxygen and glucose, showing the changes in area 

under the curve (AUC; nA.min) for (A) hippocampal oxygen (CPE) and (B) glucose (Pt/PPD/GOx). 
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Both analytes followed a similar time course after the end of the O2 gas administration with 

hippocampal oxygen and glucose returning to baseline levels after 11.10 ± 1.35 min and 

7.01 ± 1.25 min respectively. 

8.3.3.1.2 Hypoxia 

Administration of N2 gas to the animals’ snouts resulted in mild hypoxia associated with a 

decrease in hippocampal oxygen levels (n=23, 9 animals)) plotted below in Figure 8.8. 
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Figure 8.8:  Effect of N2 administration on hippocampal oxygen and glucose showing the mean changes 

in hippocampal oxygen (closed circles) and glucose (open squares) during a 3 min period of mild 

hypoxia (blue box) with all data normalised to baseline levels. 

 

Paired t-tests on the data analysed via AUC showed that hippocampal oxygen significantly 

decreased by 77.20 nA.min (t = 9.628; df = 22; P < 0.001; Figure 8.9(A) but that there was 

no significant change in hippocampal glucose during the N2 gas administration (t = 2.035; 

df = 22; P > 0.05; Figure 8.9(B) compared to baseline levels.  
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Figure 8.9:  Effect of 3 min N2 admin on hippocampal oxygen and glucose, showing the changes in area 

under the curve (AUC; nA.min) for (A) hippocampal oxygen (CPE) and (B) glucose (Pt/PPD/GOx). 

 

Following the end of the N2 gas administration, hippocampal oxygen levels returned to 

baseline levels after 8.09 ± 1.18 min.  These results verify that CPEs respond rapidly to 

changes in hippocampal oxygen in response to different concentrations of inhaled oxygen. 

8.3.3.2 Neuronal Activation 

Neuronal activation was stimulated physiologically by means of a tail pinch (Section 

3.7.5.1).  A tail pinch induces a well characterised behaviour pattern consisting of gnawing, 

licking, eating and a general increase in the level of motor activity (Antelman et al., 1975).  
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The tail pinch was performed for a duration of 5 minutes similar to methods used 

previously (Bolger & Lowry, 2005).  As discussed in Section 7.3.3, the stress-score of the 

tail pinch and habituation to the experiment can have an effect on the response of the 

animal therefore neuronal activation was also stimulated physiologically by means of a 

restraint test (Section 3.7.5.2) (Cloutier et al., 2009).  The animal was physically 

immobilised and the stress associated with freeing itself are associated with an increase in 

neuronal activation with an associated increase in blood flow. The restraint test was 

performed for a duration of 5 minutes.  Both paradigms were split into three time periods. 

The baseline period was taken as the 5 minutes prior to the beginning of the experiment, the 

neuronal activation period covered the 5 minutes of the actual experiment and post-baseline 

period covered the 5 minutes following the end of the experiment.  The data was split into 

30 s time bins and all data were expressed as a percentage of baseline levels for 

comparison. AUC analysis was performed on the raw data to determine the mean change 

from the baseline signal during each of the neuronal activation paradigms expressed as 

nA.min.  

8.3.3.2.1 Tail pinch 

Neuronal activation with an associated increase in rCBF from a tail pinch, resulted in an 

increase in hippocampal oxygen and glucose (n=14, 5 animals) plotted below in Figure 

8.10. 
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Figure 8.10:  Effect of neuronal activation in the form of a tail pinch on hippocampal oxygen and 

glucose, showing the average changes in hippocampal oxygen (closed circles) and glucose (open 

squares) during a 5 min tail pinch (blue box) with all data normalised to baseline levels. 

 

Paired t-tests on the data analysed via AUC showed that hippocampal oxygen significantly 

increased by 28.83 nA.min (t = 2.827; df = 13; P < 0.05;Figure 8.11(A)) and that 

hippocampal glucose also significantly increased at a rate of 0.1145 nA.min (t = 3.023; df = 

13; P < 0.01; Figure 8.11(B)) during the tail pinch compared to baseline levels.  
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Figure 8.11:  Effect of 5 min tail pinch on hippocampal oxygen and glucose, showing the changes in 

area under the curve (AUC; nA.min) for (A) hippocampal oxygen (CPE) and (B) glucose 

(Pt/PPD/GOx). 

 

Both analytes followed a similar time course following the tail pinch with hippocampal 

oxygen and glucose returning to baseline levels after 17.20 ± 2.59 min and 17.98 ± 2.56 

min respectively. 
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8.3.3.2.2 Restraint test 

Neuronal activation with an associated increase in rCBF from a restraint test, resulted in an 

increase in hippocampal oxygen and glucose (n=13, 5 animals) plotted below in Figure 

8.12. 
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Figure 8.12:  Effect of neuronal activation in the form of a restraint test on hippocampal oxygen and 

glucose, showing the average changes in hippocampal oxygen (closed circles) and glucose (open 

squares) during a 5 min restraint test (blue box) with all data normalised to baseline levels. 
 

Paired t-tests on the data analysed via AUC showed that while hippocampal oxygen 

significantly increased at a rate of 32.13 nA.min (t = 2558; df = 12; P < 0.05; Figure 

8.13(A)), the observed change in hippocampal glucose did not reach significance (t = 

1.274; df = 12; P> 0.05; Figure 8.13(B)) during the restraint period compared to baseline 

levels. 
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Figure 8.13:  Effect of 5 min restraint test on hippocampal oxygen and glucose, showing the changes in 

area under the curve (AUC; nA.min) for (A) hippocampal oxygen (CPE) and (B) glucose 

(Pt/PPD/GOx). 

 

Both analytes followed a similar time course after the period of restraint with hippocampal 

oxygen and glucose returning to baseline levels after 13.42 ± 1.97 min and 14.33 ± 2.43 

min respectively. 
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8.3.3.3 Control Administrations 

For control administrations (saline and DMSO) the baseline period was taken as the hour 

prior to the injection and data was collected for 10 hours following the injection. The data 

was split into 10 min time bins and all data were expressed as a percentage of baseline 

levels for visualisation and comparison. 

8.3.3.3.1 Saline 

Saline serves as a vehicle for drug administration so the effects of saline (0.9% NaCl) and 

the i.p. injection on hippocampal oxygen and glucose (n=6, 6 animals) are plotted below in 

Figure 8.14. 
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Figure 8.14:  Effect of i.p. saline (0.9%) administrations on hippocampal oxygen (closed circles) and 

glucose (open squares). Injection is indicated by an arrow at time = 0 hours. All data expressed as a 

percentage of pre-injection baseline levels. 

 

A repeated-measures ANOVA on the normalised data did not reveal any significant effect 

for saline treatment on hippocampal oxygen when compared to baseline (F = 1.153; df = 

10; 50; P > 0.05). Similarly, there was no significant effect for saline treatment on 
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hippocampal glucose (F = 1.371; df = 10; 50; P > 0.05). However, there was a transient 

increase in hippocampal metabolism due to the injection stress.  A paired t-test on the 

AUC-analysed data revealed a significant increase of 20.64 nA,min in hippocampal oxygen 

following the injection compared to baseline levels (t = 3.220; df = 5; P < 0.05) in the first 

5 min post-injection. However, there was no such effect for injection stress on hippocampal 

glucose (t = 1.856; df = 5; P > 0.05). Saline treatment showed no significant long-term 

changes in hippocampal metabolism. It can therefore be concluded that any increase seen 

using saline as a vehicle for drug administrations is a drug effect. 

8.3.3.3.2  DMSO 

Acetazolamide (Diamox) does not dissolve easily in saline therefore a 33% solution of 

DMSO was used as a vehicle. Animals were treated with DMSO (33%) in order to act as a 

control for acetazolamide treatment. The effect of DMSO and the i.p. injection on 

hippocampal oxygen and glucose (n=6, 6 animals) are plotted below in Figure 8.15. 
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Figure 8.15:  Effect of i.p. DMSO (33%) administrations on hippocampal oxygen (closed circles) and 

glucose (open squares). Injection is indicated by an arrow at time = 0 hours. All data expressed as a 

percentage of pre-injection baseline levels. 
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A repeated-measures ANOVA on the normalised data revealed that DMSO treatment had a 

significant effect on hippocampal oxygen (F = 2.124; df = 10; 50; P < 0.05) and on 

hippocampal glucose (F = 5.330; df = 10; 50; P < 0.001) when compared to baseline.  

Analysis on the normalised data suggests that DMSO treatment resulted in a significant 

increase in hippocampal metabolism. The increase in glucose levels began approximately 3 

hours after the injection, the effects of this increase will be discussed in Section 8.3.3.4. 

8.3.3.4 Drug Administration 

8.3.3.4.1 Effect of Acetazolamide 

Acetazolamide (Diamox) is a carbonic anhydrase inhibitor and when administered 

systematically has been shown to increase brain tissue oxygen concentrations (Clark Jr & 

Lyons, 1965; Dixon et al., 2002; Bolger & Lowry, 2005).  Acetazolamide acts by inhibiting 

the carbonic anhydrase enzymes whose function is to catalyse the conversion of CO2 and 

H2O2 to bicarbonate (HCO3
-
).  This increase in CO2 and a subsequent decrease in pH 

results in vasodilatation and an increase in tissue O2.  It has been reported that 

acetazolamide has no effect on striatal glucose (Dixon et al., 2002). The effect of 

acetazolamide on the hippocampal oxygen and glucose (n=6, 6 animals) are plotted below 

in Figure 8.16. 
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Figure 8.16:  Effect of i.p. Diamox (50mg/kg) administrations on hippocampal oxygen (closed circles) 

and glucose (open squares). Injection is indicated by an arrow at time = 0 hours. All data expressed as a 

percentage of pre-injection baseline levels. 

 

A repeated-measures ANOVA on the normalised data revealed that acetazolamide 

treatment had a significant effect on hippocampal oxygen (F = 7.626; df = 10; 50; P < 

0.001) and on hippocampal glucose (F = 4.698; df = 10; 50; P < 0.001) when compared to 

baseline.  We can thus conclude that acetazolamide administration had a significant effect 

on hippocampal metabolism.   
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Figure 8.17:  Effect of drug administrations on hippocampal oxygen (CPE), showing the changes in 

area under the curve (AUC; nA.hour) for hippocampal oxygen following DMSO and acetazolamide 

injections. 

 

Comparing the effects of saline, DMSO and acetazolamide treatment on hippocampal 

oxygen, a 3 x 11 mixed factorial ANOVA with treatment (saline; DMSO; acetazolamide) 

as a between subject variable and time (baseline and hours 1-10 post-injection) as a within 

subject variable on the normalised data showed that there was a significant effect for 

treatment (F = 11.82; df = 2, 15; P < 0.001), time (F = 7.90; df = 10, 150; p < 0.001) as well 

as an interaction effect (F = 3.69; df = 20, 150; P < 0.001).  

Compared to saline injections at the same time points (i.e. 0-3 hours post-injection), a one-

way ANOVA on the AUC-analysed data showed that there was a significant effect for drug 

treatment on hippocampal oxygen (F = 36.46; df = 2, 16; P < 0.001;Figure 8.17). 

Bonferroni post-hoc analysis revealed that while there was no significant difference 

between saline- and DMSO-treated animals (P > 0.05), acetazolamide did have a 

significant effect on hippocampal oxygen. Acetazolamide treatment significantly increased 

hippocampal oxygen by 61.80 nA.hour compared to saline-treated animals (P < 0.001) and 

by 54.71 nA.hour compared to DMSO-treated animals (P < 0.001).  It was found that 

administration of acetazolamide causes a rapid increase in hippocampal oxygen lasting for 

several hours.  
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Figure 8.18:  Effect of drug administrations on hippocampal glucose (Pt/PPD/GOx), showing the 

changes in area under the curve (AUC; nA.hour) for hippocampal glucose following DMSO and 

acetazolamide injections. 
 

Comparing the effects of saline, DMSO and acetazolamide treatment on hippocampal 

glucose, a 3 x 11 mixed factorial ANOVA on the normalised data showed that there was a 

significant effect for treatment (F = 3.75; df = 2, 15; P < 0.05), time (F = 6.05; df = 10, 150; 

P < 0.001) as well as an interaction effect (F = 3.00; df = 20, 150; P < 0.001).  

Compared to saline injections, a one-way ANOVA on the AUC-analysed data showed that 

there was a significant effect for drug treatment on hippocampal glucose (F = 6.679; df = 2; 

14; P < 0.01;Figure 8.18). Bonferroni post-hoc analysis revealed that while there was no 

significant difference between saline- and DMSO-treated animals (P >0.05), acetazolamide 

did have a significant effect on hippocampal glucose. Acetazolamide treatment 

significantly increases hippocampal glucose by 0.84 nA.hour compared to saline-treated 

animals (P < 0.001) but there was no significant difference between acetazolamide- and 

DMSO-treated animals (P > 0.05). 

Analysis on the normalised data suggests that DMSO treatment resulted in a significant 

increase in hippocampal glucose levels beginning approximately 3 hours after the injection 

and this result was also found following acetazolamide treatment. As acetazolamide 

treatment in the absence of DMSO is not associated with any changes in striatal glucose 
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(Dixon et al., 2002), this suggests that acetazolamide treatment itself has no effect on 

hippocampal glucose but the DMSO used as the vehicle does. There may be an interaction 

between the DMSO and acetazolamide as the AUC analysis showed that acetazolamide 

treatment significantly increased hippocampal glucose levels.  

8.3.3.5 Effect of Anesthesia 

Chloral hydrate has been previously used to increase brain tissue O2 (Lowry & Fillenz, 

2001; Bolger & Lowry, 2005).  This increase in O2 is thought to be due to an increase in 

rCBF.  The effect of chloral hydrate on the hippocampal oxygen and glucose (n=6, 6 

animals) is plotted below in Figure 8.19. 
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Figure 8.19:  Effect of i.p. Chloral Hydrate (350mg/kg) administrations on hippocampal oxygen (closed 

circles) and glucose (open squares). Injection is indicated by an arrow at time = 0 hours. All data 

expressed as a percentage of pre-injection baseline levels. 
 

A repeated-measures ANOVA on the normalised data revealed that chloral hydrate 

treatment had a significant effect on hippocampal oxygen when compared to baseline (F = 

12.98; df = 10; 70; P < 0.001) and on hippocampal glucose when compared to baseline (F = 

4.696; df = 10; 70; P < 0.001). 
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Figure 8.20:  Effect of control and anaesthetic administrations on hippocampal oxygen (CPE), showing 

the changes in area under the curve (AUC; nA.hour) for hippocampal oxygen following saline and 

chloral hydrate injections. 

 

Comparing the effects of saline and chloral hydrate treatment on hippocampal oxygen, a 2 

x 11 mixed factorial ANOVA with treatment (saline; chloral hydrate) as a between subject 

variable, and time (baseline and hours 1-10 post-injection) as a within subject variable on 

the normalised data showed that there was no overall significant effect for treatment when 

compared to the saline-treated group (F = 3.539; df = 1, 120; P > 0.05). However, there was 

a significant effect for time (F = 9.661; df = 10, 120; p < 0.001) and a significant interaction 

effect (F = 7.121; df = 10, 120; P < 0.001).  

Compared to saline injections at the same time points (0-3 hours post-injection), an 

unpaired t-test on the AUC-analysed data revealed that there was a significant increase in 

hippocampal oxygen of 65.36 ± 18.33 nA.min compared to baseline (t = 3.565; df = 13; P < 

0.01; Figure 8.20).  
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Figure 8.21:  Effect of control and anaesthetic administrations on hippocampal glucose (Pt/PPD/GOx), 

showing the changes in area under the curve (AUC; nA.hour) for hippocampal glucose following saline 

and chloral hydrate injections. 

 

Comparing the effects of saline and chloral hydrate treatment on hippocampal glucose, a 2 

x 11 mixed factorial ANOVA with treatment  (saline; chloral hydrate) as a between subject 

variable, and time (baseline and hours 1-10 post-injection) as a within subject variable on 

the normalised data showed that there was a significant effect for treatment (F = 4.894; df = 

1, 120; P< 0.05), a significant effect for time (F = 2.964; df = 10, 120; P < 0.01) and a 

significant interaction effect (F = 3.512; df = 10, 120; P < 0.001).  An unpaired t-test on the 

AUC-analysed data revealed that there was a non-significant increase of 1.12 ± 0.68 

nA/min in hippocampal glucose (0-10 hours post-injection) compared to baseline (t = 

1.801; df = 11; P > 0.05; Figure 8.21). 

8.3.3.6 Basal concentrations of oxygen and glucose in the hippocampus 

Caution needs to be applied when using in vitro electrode calibration data to estimate in 

vivo concentrations. This is primarily because of the differences between a free solution and 

a tissue matrix; factors such as capacitance current, diffusion, sensitivity, etc. need to be 

considered. However, it can be useful to estimate concentration data and with this in mind 

two time points were selected from each rat (n=10) on the second day of recording (one in 

the day, one in the night) in order to determine extracellular concentrations for comparisons 
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with previously reported work. The second day was chosen to allow time for sensors to 

settle and to allow for the expected post-implantation drop in sensitivity for biosensors (Hu 

et al., 1994) and so that baseline levels were determined prior to any experimental 

interventions. The baseline current values were matched to the post-implantation 

calibration data for the CPE (average sensitivity to oxygen = -1.072 nA/µM) and the pre-

implantation calibration data for Pt/PPD/GOx (average sensitivity to glucose = 1.560 

nA/mM) as post-implantation calibration data is not available for Pt/PPD/GOx as the GOx 

component is lost during the explant procedure (Lowry et al., 2002). It was determined that 

the basal oxygen concentration in the hippocampus is 100.26 ± 5.76 µM during the day and 

99.37 ± 5.51 µM during the night. It was determined that the basal glucose concentration in 

the hippocampus is 0.60 ± 0.06 mM during the day and 0.57 ± 0.07 mM during the night. 

Paired t-tests revealed no significant differences between day and night for hippocampal 

oxygen (t = 0.3361; df = 9; P > 0.05) or for glucose (t = 1.700; df = 9; P > 0.05). However, 

it must be noted that hippocampal oxygen levels fluctuate based on activity (McHugh et al., 

2011) so it is difficult to determine a true basal concentration.  

8.3.4 +-Maze experiments 

Glucose has been measured in the hippocampus utilising the microdialysis technique by 

research groups such as McNay as discussed in Section 8.1, however, data using biosensors 

during the +-maze task has not been obtained.  Hippocampal oxygen data has been 

presented during maze tasks (McHugh et al., 2011) yet the simultaneous measurement of 

glucose and oxygen using sensors and biosensors has not been explored.  This section 

examines the effect of glucose on performance in the +-maze task as well as the changes in 

glucose and oxygen levels for saline-treated and glucose-treated animals before, during and 

after the +-maze task (Section 3.7.7).  

8.3.4.1 Effect of glucose treatment on performance in the +-maze task 

It has been found that an i.p. injection of glucose has a cognitive enhancing effect (McNay 

et al., 2000).  A significant difference was found between the saline-treated control group 

and the glucose-treated group.  Glucose-treated animals were shown to perform superiorly 

during the +-maze task compared to the control group.  The cognitive enhancing effect for 
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glucose treatment was investigated.  30 min prior to being placed in the +-maze the control 

group was treated with saline (0.9 %; 1.0 ml/kg i.p.; n=5) and the other was treated with 

glucose (250 mg/kg; 1.0 ml/kg i.p.; n=6). 
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Figure 8.22:  Spontaneous alternation scores (% total possible alternations ± SEM) for animals in the 

+-maze following treatment with either saline (0.9 % i.p.; n = 5) or glucose (250 mg/kg i.p.; n = 6). 

 

From the results presented in Figure 8.22 it can be seen there was no significant difference 

between the percentage of spontaneous alternations performed by either group with a P 

value of 0.4620.  It can be concluded that there is no cognitive enhancing effect for 

glucose-treated animals. 

8.3.4.2 Effect of glucose treatment on hippocampal glucose, monitored using 

Pt/PPD/GOx electrodes 

McNay and colleagues (2000) demonstrated that in addition to a cognitive enhancing effect 

for glucose treatment, such animals showed no performance-related reduction in 

hippocampal glucose levels. The saline-treated group showed a decrease in hippocampal 

glucose during the 20 min +-maze exploration trial.  The administration of saline and 

glucose on hippocampal oxygen and glucose was measured using CPEs and Pt/PPD/GOx 

electrodes respectively.  A typical raw data trace for each of these treatments is presented 

below in Figure 8.23. 
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Figure 8.23:  Typical raw data traces for oxygen and glucose from (A) an animal treated with saline 

(0.9 % i.p.) and (B) an animal treated with glucose (250 mg/kg i.p.) performing a +-maze task, 

monitored in the hippocampus using CPEs and Pt/PPD/GOx electrodes. 
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Data was averaged over 5 min periods to allow for direct comparisons to microdialysis 

data. Data was also averaged over 1 min periods to show the information that is lost over 5 

min averaging, demonstrating the limitations of microdialysis. Data was normalised to the 

post-injection time period (the 20 min prior to the maze). 
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Figure 8.24:  Hippocampal glucose monitored using Pt/PPD/GOx electrodes showing the average 

changes in glucose before, during and after a +-maze task with saline (n=5) and glucose (n=6) treated 

animals.   Data averaged in 5 min time bins with all data normalised to baseline levels. 

 

For data averaged over 5 min periods (Figure 8.24), a 2 x 12 repeated measures ANOVA 

showed that there was a significant effect for time on hippocampal glucose (F = 2.47; df = 

11, 110; P < 0.01). There was no significant effect for drug treatment (F = 0.362; df = 1, 

110; P > 0.05) and there was no interaction effect (F = 0.898; df = 11, 110; P > 0.05). A 

one way repeated ANOVA failed to show any significant differences between time points 

in either the saline-treated (F = 1.19; df = 11, 55; P > 0.05) or glucose-treated groups (F = 

1.78; df = 11, 55; P > 0.05). 
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Figure 8.25:  Hippocampal glucose monitored using Pt/PPD/GOx electrodes showing the average 

changes in glucose before, during and after a +-maze task with saline (n=5) and glucose (n=6) treated 

animals.   Data averaged in 1 min time bins with all data normalised to baseline levels. 

 

Data averaged over 1 min periods (Figure 8.25) also showed a significant effect for time on 

hippocampal glucose following a 2 x 60 repeated measures ANOVA (F = 2.07; df = 59, 

590; P < 0.001). There was no significant effect for drug treatment (F = 0.338; df = 1, 590; 

P > 0.05) and there was no interaction effect (F = 0.796; df = 59, 590; P > 0.05). Unlike the 

data averaged over 5 min, a one way repeated ANOVA  revealed that there was a 

significant difference between time points in the saline-treated group (F = 1.50; df = 59, 

295; P < 0.05).  From results presented in this section it can be seen that there is an increase 

in hippocampal glucose during exploration of the +-maze followed by a further increase 

when animals were returned to their home bowl therefore it can be determined that there is 

no performance related reduction in hippocampal glucose during the +-maze task.  
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8.3.4.3 Effect of glucose treatment on hippocampal O2 

The administration of saline and glucose on hippocampal oxygen was measured using 

CPEs during a +-maze task. Data was averaged over 5 min periods and over 1 min periods 

to allow comparisons to hippocampal glucose data presented in Section 8.3.4.2.  Data was 

normalised to the post-injection time period (the 20 min prior to the maze). 
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Figure 8.26:  Hippocampal oxygen monitored using CPEs showing the average changes in oxygen 

before, during and after a +-maze task with saline (n=5) and glucose (n=6) treated animals.   Data 

averaged in 5 min time bins with all data normalised to baseline levels. 

 

For data averaged over 5 min periods (Figure 8.26), a 2 x 12 repeated measures ANOVA 

showed that there was a significant effect for time on hippocampal O2 (F = 4.30; df = 11, 

110; P < 0.001). There was no significant effect for drug treatment (F = 3.66; df = 1, 110; P 

> 0.05) and there was no interaction effect (F = 1.18; df = 11, 110; P > 0.05). One way 

repeated ANOVA showed significant differences between time points in the saline-treated 

group (F = 3.62; df = 11, 55; P < 0.001).  
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Figure 8.27:  Hippocampal oxygen monitored using CPEs showing the average changes in oxygen 

before, during and after a +-maze task with saline (n=5) and glucose (n=6) treated animals.   Data 

averaged in 1 min time bins with all data normalised to baseline levels. 

 

Data averaged over 1 min periods (Figure 8.27) showed a significant effect for time on 

hippocampal O2 following a 2 x 60 repeated measures ANOVA (F = 4.53; df = 59, 590; P 

< 0.001). There was no significant effect for drug treatment (F = 3.62; df = 1, 590; P > 

0.05) and there was no interaction effect (F = 1.20; df = 59, 590; P > 0.05). A one way 

repeated ANOVA revealed that there was a significant difference between time points in 

the saline-treated group (F = 3.88; df = 59, 295; P < 0.001).  

From results presented in this section it can be seen that there is a significant increase in 

hippocampal oxygen in the first minutes in the maze and the first minutes following the 

animal being returned to the home bowl following the +-maze task.  As with the 

hippocampal glucose data (Section 8.3.4.3), there is some loss of accuracy by averaging 

over 5 min and the greater accuracy gained from using a smaller time resolution allows for 

a more complete picture of the changes occurring in the brain at any given time. 
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8.4 Conclusions 

CPEs have been previously used to measure hippocampal oxygen during various 

behavioural tasks (McHugh et al., 2011). Results presented in this chapter demonstrate the 

characterisation of hippocampal metabolism using CPEs and Pt/PPD/GOx electrodes and 

demonstrate that the temporal relationships between hippocampal oxygen and glucose 

levels vary during a number of different conditions. 

As discussed previously there have been few studies in which sensors are used to measure 

hippocampal glucose as the popular choice is the microdialysis technique.  Reported values 

for the glucose concentration in freely-moving rats in the hippocampus are between 1-1.5 

mM: 1.00 ± 0.06 mM (McNay & Gold, 1999), 1.20 ± 0.03 mM  (McNay et al., 2000), 1.05 

± 0.02 mM (McNay & Sherwin, 2004), 1.49 ± 0.05 mM (Rex et al., 2009) and 1.36 ± 0.04 

mM (De Bundel et al., 2009) higher than our findings of 0.60 ± 0.06 mM.  These studies 

utilise a zero net flux (ZNF) model of measuring glucose and there has been criticism of the 

use of this method to determine basal concentrations of analytes in the brain due to the 

trauma caused by the implantation of the microdialysis probe (Chen, 2003, 2005b, a, 2006). 

These criticisms are reinforced by the discrepancies observed between sensor recordings 

and microdialysis analysis due to the trauma caused by the much larger microdialysis probe 

(Khan & Michael, 2003).  Our concentration may also be artificially lower than actual 

concentrations as it has been shown that enzyme-based sensors have a tendency to lose 20-

50 % sensitivity when implanted into the brain (Hu et al., 1994). From these results and 

previous findings it is thought that the basal glucose concentration in the hippocampus is 

somewhere between our estimate and those of the microdialysis studies referenced above. 

Reported values for oxygen levels in the hippocampus are 33.6 mm Hg (~52.8 µM) in the 

anaesthetised gerbil (Nair et al., 1987) and 20.3 mm Hg (~31.9 µM) in the anaesthetised rat 

(Cater et al., 1961) much lower than our basal findings of 100.26 ± 5.78 µM.  These 

findings are only an estimate since baseline levels are difficult to establish as it is hard to 

objectively determine what constitutes a baseline level of activity when considering the 

normal functions of a specific brain region, and overall changes in rCBF could impact on 

the oxygen levels. 



Chapter 8: Hippocampal Glucose & Oxygen  

266 

Results presented in Section 8.3.3.2.1 show that neuronal activation in the form of a tail 

pinch cause an increase in hippocampal oxygen, similar to findings in the striatum (Bolger 

& Lowry, 2005).  There was also an increase in hippocampal glucose, not consistent with 

findings in the striatum (Lowry et al., 1998a) where a decrease in striatal glucose was 

reported during a tail pinch and post-tail pinch a increase in glucose higher than baseline 

levels. This effect of the tail pinch on striatal glucose has also been found using 

microdialysis (Fray et al., 1996).  Findings in this thesis show an overshoot in hippocampal 

oxygen following removal of the clip and glucose rapidly returning to baseline levels.  It 

appears there is an increase in supply of hippocampal oxygen with a simultaneous increase 

in utlisation during the tail pinch.  Evidence for this is derived from the increase in oxygen 

when the clip is removed, the utlisation of hippocampal oxygen decreases as neuronal 

activation decreases.  However the supply remains elevated for several minutes upon 

removal of the clip thought to reflect an increase in the rCBF due to the stress induced 

increase in activity of the animal.  This increase may be due to an increase in locomotor 

activity which has been shown to be closely associated to increases in the hippocampal 

oxygen signal (McHugh et al., 2011).  For hippocampal glucose an increase in its supply 

but not in utilisation is observed, as tissue levels increased during the tail pinch.  This 

would suggest an alternative use for glucose during the tail pinch compared to the striatum.  

Differences in the brain regions are not unexpected as neuronal activation in the form of a 

tail pinch has been shown to increase striatal dopamine and ascorbic acid compared with 

and increase in 5-hydroxytryptamine and 5-hydroxyindole acetic acid in the hippocampus 

(Boutelle et al., 1990), possibly indicating different mechanisms and roles for the two 

regions. 

An increase in hippocampal oxygen was observed following the administration of 

acetazolamide which is similar to findings in the striatum where the increase in striatal 

oxygen was correlated to rCBF (Bolger & Lowry, 2005).  In order to administer 

acetazolamide the solvent DMSO was used as a vehicle for drug administration.  From the 

data presented in Sections 8.3.3.3.2 and 8.3.3.4.1 it can be seen that DMSO treatment 

resulted in a significant increase in hippocampal glucose seen approximately 3 hours post-

injection and this was also observed following acetazolamide treatment.  Acetazolamide 

administration in the absence of DMSO is not associated with any changes in striatal 
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glucose (Dixon et al., 2002), suggesting that acetazolamide has no effect on hippocampal 

glucose but the vehicle (DMSO) does.  DMSO’s effect on brain metabolism has been 

previously suggested.  The application of DMSO to brain slices, increases glucose 

consumption and in vitro administration of DMSO has been shown to cause more varied 

dose-dependent in effects on glucose metabolism (Nasrallah et al., 2008)  Comparing our 

results to those of these other groups where with low concentrations of DMSO 

administered directly to brain tissue causes rapid changes in glucose metabolism in contrast 

to our findings where high concentrations of DMSO administered intraperitoneally caused 

a delayed but long-lasting increase in glucose concentration, perhaps reflecting a decrease 

in glucose consumption over longer time periods. 

Results for the administration of the anaesthetic chloral hydrate (Section 8.3.3.5) show an 

increase in hippocampal oxygen during anaesthesia and an increase following return to 

consciousness.  These results are similar to results found in the striatum (Bolger & Lowry, 

2005).  This increase in oxygen is associated with a decrease in neuronal activation and an 

increase in rCBF (Lowry et al., 1998a; Lowry & Fillenz, 2001).  The suppression of neural 

activity by anaesthesia and its effects on glucose in the brain has been previously 

demonstrated using a number of different anaesthetic agents, including chloral hydrate 

(Fellows et al., 1992; Fillenz & Lowry, 1998; Lowry et al., 1998a; Lowry & Fillenz, 2001; 

Uematsu et al., 2009; Horn & Klein, 2010).  The increase in hippocampal glucose during 

anaesthesia has been observed with hippocampal microdialysis data (Horn & Klein, 2010), 

the striatum (Fellows et al., 1992) and also from glucose biosensor data in the cortex 

(Netchiporouk et al., 2001).  Conflicting results have also been reported using 

electrochemical detection in the striatum where the administration of chloral hydrate has 

been associated with a decrease in tissue glucose (Fillenz & Lowry, 1998; Lowry & 

Fillenz, 2001).  It would be expected that a decrease in neuronal activity would result in an 

increase in tissue glucose due to decreased utilisation.  This is supported by evidence to 

suggest that the brain switches between glucose and lactate as energy substrates during 

different levels of activity (Dienel & Hertz, 2001). The utilisation of glucose by the brain 

has been suggested to be dependent on neuronal activity (Serres et al., 2005) and revealed 

that there is an increased utilisation of lactate during chloral hydrate anaesthesia, suggesting 
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that the brain switches to lactate as the energy source during this anaesthesia (Yamada et 

al., 2009) and other anaesthetic conditions (Serres et al., 2004; Horn & Klein, 2010). 

Results presented in Section 8.3.4 show the simultaneous measurement of glucose and 

oxygen using Pt/PPD/GOx electrodes and CPEs respectively during a +-maze task.  It has 

been shown that sensors and biosensors can be applied to maze experiments to allow for 

behavioural and electrochemical data to be simultaneously obtained in real-time.  The 

cognitive enhancing effect for glucose treatment reported by McNay et al. (2000) and the 

performance related reduction in hippocampal glucose levels was investigated using 

glucose and oxygen electrodes.  Our results show no cognitive enhancement for glucose-

treated animals and no performance related reduction in hippocampal glucose during the +-

maze task. 

Results presented in this chapter demonstrate that neuronal activation (increased during tail 

pinch, restraint test and decreased during anaesthesia) can alter levels of hippocampal 

oxygen and glucose, and changes in hippocampal oxygen following administration of 

acetazolamide can be monitored.  It has also been determined that hippocampal oxygen and 

glucose can be measured in freely-moving animals for behavioural experiments providing a 

valuable tool to enable real-time neurochemical data and behavioural data to be obtained 

simultaneously. 
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9.1 Introduction 

The field of neurochemical analysis using electrochemical techniques has advanced 

significantly over the last fifty years since the first design of an electrode for detection in 

brain tissue by Clarke et al. (Clark et al., 1958; Clark Jr & Lyons, 1965).  It was not until 

Adams and co-workers published their seminal paper in 1973, that voltammetric techniques 

were more widely incorporated as an analytical tool for monitoring electroactive species in 

the brain (Kissinger et al., 1973).  This work is the foundation for the research presented in 

this thesis which attempts to further understand brain energy metabolism via the 

development oxygen sensors for potential use in clinical environments, as well as in 

conjunction with pre-clinical fMRI imaging studies.  The monitoring of glucose and 

oxygen in the hippocampus to determine how basic behavioural and pharmacological 

Chapter 4 details the in vitro characterisation of carbon paste electrodes (CPEs) and a Pt-

based electrode modified with methyl-methacrylate (MMA) which is potentially suitable 

for use in the clinical environment as it is widely used in a wide variety of life science 

technologies i.e. hard contact lenses and dental fillings and can be easily sterilised.  The 

effect of changes in temperature, pH, ions, convection, and implantation on the sensitivity 

of CPEs to O2 was investigated.  Pt-MMA electrodes were fully characterised in vitro by 

determining the sensitivity of the sensor to O2 and the effects on the sensitivity following 

exposure to proteins, lipids and brain tissue.  The effects of temperatures, pH, ions, 

convection, interferents and implantation were also examined along with the stability of the 

sensors in relation to time.  It was concluded that Pt-MMA electrodes (-0.093 ± 0.003 

µAmm
-2

µM
-1

 (n=64)) have a higher sensitivity to O2 than CPEs (-0.033 ± 0.001 µAmm
-

2
µM

-1
 (n=24)).  The physiological temperature (37°C) affects the sensitivity of CPEs and 

Pt-MMA electrodes similarly and although convection experiments show that Pt-MMA 

electrodes are less affected by stirring than CPEs, these results only prove to be relevant for 

in vitro experiments.  The effect of implantation of the sensors into the living brain showed 

that implantation has less of an effect on CPEs than Pt-MMA electrodes, although there 

was a difference in the implantation period of approximately 2 weeks. Our published data 

shows that CPEs have a stable baseline over 12 weeks (Bolger et al., 2011b). These results 

indicate that Pt-MMA electrodes are an ideal choice for detection of brain tissue O2 in vivo 
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over short periods of time due to their high sensitivity and small probe size (125 µm), but 

CPEs, given their excellent long-term stability, would be the sensor of choice for long-term 

monitoring of brain tissue O2. 

Following on from the previous chapter, Chapter 5 investigates and characterises the use of 

Pt-MMA electrodes for the detection of brain tissue O2 in the striatum.  Pt-based electrodes 

have been shown to be a potential alternative to CPEs to monitor brain tissue O2 (Bolger et 

al., 2011a).  Comparisons between the Pt-MMA electrodes were made with striatal CPE 

data (Bolger & Lowry, 2005).  It has been demonstrate that Pt-MMA electrodes have the 

ability to monitor changes in striatal O2, evidenced by the response of the sensors to the 

administration of O2 and N2 gases to the animal’s snout.  The changes in tissue O2 

following neuronal activation in the form of a tail pinch, and the administrations of saline, 

DMSO, acetazolamide and chloral hydrate have also been demonstrated.  Pt-MMA 

electrodes exhibit a greater change in O2 current in terms of current density compared to 

CPEs when implanted in the striatum of freely-moving rats demonstrating that Pt-MMA 

electrodes provide a viable alternative to CPEs to monitor tissue O2 in the brain.  However, 

Pt-MMA electrodes are only suitable for short-term monitoring (established in Chapter 4) 

as there is a large reduction in sensitivity after 19 ± 3 days.  

 

The aim of Chapter 6 was to fabricate a stable and reproducible metal-free electrode for use 

in conjunction with fMRI studies that can be characterised in vitro and in vivo.  This 

follows on from work by (Lowry et al.) where BOLD fMRI and amperometric tissue O2 

data from  rat cerebral cortex was obtained verifying that real-time  metabolic information 

can be acquired during fMRI investigations and that the changes in the magnitude of the 

BOLD response can be directly correlated to changes in tissue O2 concentrations.  This 

technique provides an alternative to fMRI experiments as these O2 sensors can be used in 

freely-moving animals eliminating the disadvantages of anaesthesia. Carbon fibre 

electrodes (CFEs) were utilised in this study but were not standardised in terms of 

manufacture.  There were variations in both the amounts of carbon fibre strands that were 

used in each electrode and also the length of the carbon fibres. Due to the varying 
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dimensions of the carbon fibre bundle, reproducibility was difficult to obtain therefore 

hindering the characterisation of these sensors.  The chapter initially explored the 

standardisation of the CFEs which proved not to be successful so the examination of 

carbon-based composite electrode incorporating a CF transducer was investigated.  A 

carbon Rhoplex
®
 composite electrode (CRCE) was developed and subsequently 

characterised in vitro.  CRCEs were found to be biocompatible with no significant 

reduction in the sensitivity following exposure to proteins, lipids and brain tissue.  

However, the physiological temperature (37°C) affects the CRCEs causing a large increase 

in sensitivity.  Changes in pH did have an effect on the sensitivity, though changes in ions 

showed no significant effect.  The effect of implantation of the sensors into the living brain 

indicated that implantation has a detrimental effect on the sensitivity of the CRCEs which 

is thought to be due to fouling of the active surface of the electrodes.  During preliminary 

acute in vivo experiments (Chapter 7) using the CRCE it was found that the electrodes 

background current did not reach a steady state quickly enough for experiments to take 

place.  An fMRI compatible acute design was explored with an attempt at minimising the 

settling time which was unsuccessful.  The original CRCE design was found to be the 

superior design.  CRCEs can therefore be deemed suitable for use in chronic in vivo fMRI 

experiments for the detection of brain tissue O2 with further modifications such as 

elimination of the majority of the CF wire and pre-conditioning the sensors before the acute 

in vivo experiments by applying a potential to the electrodes overnight prior to the acute 

implantation. 

Chapter 7 investigated and characterised the use of CRCEs for the detection of brain tissue 

O2 in the striatum of freely-moving animals, following on from the in vitro characterisation 

in the previous chapter. It has been demonstrated that CRCEs (freely-moving design) have 

the ability to monitor changes in striatal O2, evidenced by the response of the sensors to the 

administration of O2 and N2 gases to the animal’s snout.  The changes in tissue O2 

following neuronal activation in the form of a restraint test, as well as the administrations 

of acetazolamide and chloral hydrate have also been demonstrated. These results compare 

well to CPE data (Bolger & Lowry, 2005). It can therefore be concluded that CRCEs 

provide a viable alternative to metal electrodes to monitor brain tissue O2 but do not offer 
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any advantage in comparison to CPEs in terms of stability or biocompatibility.  CRCEs are 

only suitable for short-term monitoring as there is a large reduction in sensitivity after 9 ± 2 

days.  The preliminary acute experiment using the CRCE full fMRI design performed in an 

anesthetised animal was not successful due to the background current not stabilising in 

time.  An alternative design was investigated in Chapter 6, however, the original CRCE 

proved to be the best design in terms of settling time. Therefore an elimination of the CF 

wire, pre-conditioning the electrodes and alterations to the acute experimental set-up are 

thought to be the remedy to this problem. 

Chapter 7 investigated and characterised the use of CRCEs for the detection of brain tissue 

O2 in the striatum of freely-moving animals, following on from the in vitro characterisation 

in the previous chapter. It has been demonstrated that CRCEs (freely-moving design) have 

the ability to monitor changes in striatal O2, evidenced by the response of the sensors to the 

administration of O2 and N2 gases to the animal’s snout.  The changes in tissue O2 

following neuronal activation in the form of a restraint test, as well as the administrations 

of acetazolamide and chloral hydrate have also been demonstrated. These results compare 

well to CPE data (Bolger & Lowry, 2005). It can therefore be concluded that CRCEs 

provide a viable alternative to metal electrodes to monitor brain tissue O2 but do not offer 

any advantage in comparison to CPEs in terms of stability or biocompatibility.  CRCEs are 

only suitable for short-term monitoring as there is a large reduction in sensitivity after 9 ± 2 

days.  The preliminary acute experiment using the CRCE full fMRI design performed in an 

anesthetised animal was not successful due to the background current not stabilising in 

time.  An alternative design was investigated in Chapter 6, however, the original CRCE 

proved to be the best design in terms of settling time. Therefore an elimination of the CF 

wire, pre-conditioning the electrodes and alterations to the acute experimental set-up are 

thought to be the remedy to this problem. 

Continuation of this body of work would involve the application and characterisation of the 

CRCEs in fMRI studies.  This would allow for real-time metabolic information to be 

acquired during fMRI and allow for tissue O2 concentrations to be monitored, and the 

relationship between BOLD and tissue O2 when variations in metabolic demand are 
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induced by local stimulation.  Although Long-term In Vivo Electrochemistry (LIVE) cannot 

substitute for imaging techniques such as fMRI in terms of providing whole brain 

information it might however be possible by implanting several electrodes at one time to 

measure the synchrony of activity between brain regions with a high temporal resolution.  

As LIVE can be applied to various neurochemicals the combination of these techniques 

may provide numerous possibilities for investigating the direct relationship between fMRI 

signal changes and the underlying neurochemistry across a range of different stimulation 

paradigms.  In the case of monitoring tissue O2 and glucose simultaneously in the 

hippocampus work is on-going in our group to compare hippocampal activity to different 

behaviours in a +-maze task.  Making it a possibility that LIVE during behavioural tasks 

can be coupled with drug interventions such as induced disease states and the changes 

observed can be compared directly to more traditional methods such as electrophysiological 

recordings and microdialysis sampling. 
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