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Abstract

The Guesswork problem was originally motivated by a desire to quantify computational security for single user systems.
Leveraging recent results from its analysis, we extend the remit and utility of the framework to the quantification of the
computational security of multi-user systems. In particular, assume that V users independently select strings stochastically from a
finite, but potentially large, list. An inquisitor who does not know which strings have been selected wishes to identify U of them.
The inquisitor knows the selection probabilities of each user and is equipped with a method that enables the testing of each (user,
string) pair, one at a time, for whether that string had been selected by that user.

Here we establish that, unless U = V , there is no general strategy that minimizes the distribution of the number of guesses,
but in the asymptote as the strings become long we prove the following: by construction, there is an asymptotically optimal class
of strategies; the number of guesses required in an asymptotically optimal strategy satisfies a Large Deviation Principle with a rate
function, which is not necessarily convex, that can be determined from the rate functions of optimally guessing individual users’
strings; if all users’ selection statistics are identical, the exponential growth rate of the average guesswork as the string-length
increases is determined by the specific Rényi entropy of the string-source with parameter (V −U +1)/(V −U +2), generalizing
the known V = U = 1 case; and that the Shannon entropy of the source is a lower bound on the average guesswork growth rate
for all U and V , thus providing a bound on computational security for multi-user systems. Examples are presented to illustrate
these results and their ramifications for systems design.

I. INTRODUCTION

The security of systems is often predicated on a user or application selecting an object, a password or key, from a large
list. If an inquisitor who wishes to identify the object in order to gain access to a system can only query each possibility,
one at a time, then the number of guesses they must make in order to identify the selected object is likely to be large. If the
object is selected uniformly at random using, for example, a cryptographically secure pseudo-random number generator, then
the analysis of the distribution of the number of guesses that the inquisitor must make is trivial.

Since the earliest days of code-breaking, deviations from perfect uniformity have been exploited. For example, it has long
since been known that human-user selected passwords are highly non-uniformly selected, e.g. [1], and this forms the basis
of dictionary attacks. In information theoretic security, uniformity of the string source is typically assumed on the basis that
the source has been compressed. Recent work has cast some doubt on the appropriateness of that assumption by establishing
that fewer queries are required to identify strings chosen from a typical set than one would expect by a naı̈ve application
of the asymptotic equipartition property. This arises by exploitation of the mild non-uniformity of the distribution of strings
conditioned to be in the typical set [2].

If the string has not been selected perfectly uniformly, but with a distribution that is known to the inquisitor, then the
quantification of security is relatively involved. Assume that a string, W1, is selected stochastically from a finite list, A =
{0, . . . ,m− 1}. An inquisitor who knows the selection probabilities, P (W1 = w) for all w ∈ A, is equipped with a method to
test one string at a time and develops a strategy, G : A 7→ {1, . . . ,m}, that defines the order in which strings are guessed. As
the string is stochastically selected, the number of queries, G(W1), that must be made before it is identified correctly is also a
random variable, dubbed guesswork. Analysis of the distribution of guesswork serves as a natural a measure of computational
security in brute force determination.

In a brief paper in 1994, Massey [3] established that if the inquisitor orders his guesses from most likely to least likely, then the
Shannon entropy of the random variable W1 bears little relation to the expected guesswork E(G(W1)) =

∑
w∈AG(w)P (W1 =

w), the average number of guesses required to identify W1. Arikan [4] established that if a string, Wk, is chosen from Ak
with i.i.d. characters, again guessing strings from most likely to least likely, then the moments of the guesswork distribution
grow exponentially in k with a rate identified in terms of the Rényi entropy of the characters,

lim
k→∞

1

k
logE(G(Wk)α) = (1 + α) log

∑
w∈A

P (W1 = w)1/(1+α) = αR

(
1

1 + α

)
for α > 0,
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where R((1 +α)−1) is the Rényi entropy of W1 with parameter (1 +α)−1. In particular, the average guesswork grows as the
Rényi entropy with parameter 1/2, a value that is lower bounded by Shannon entropy.

Arikan’s result was subsequently extended significantly beyond i.i.d. sources [5], [6], [7], establishing its robustness. In the
generalized setting, specific Rényi entropy, the Rényi entropy per character, plays the rôle of Rényi entropy. In turn, these
results have been leveraged to prove that the guesswork process {k−1 logG(Wk)} satisfies a Large Deviation Principle (LDP),
e.g. [8], [9], in broad generality [10]. That is, there exists a lower semi-continuous function I : [0, log(m)] 7→ [0,∞] such that
for all Borel sets B contained in [0, log(m)]

− inf
x∈B◦

I(x) ≤ lim inf
n→∞

1

k
logP

(
1

k
logG(Wk) ∈ B

)
≤ lim sup

n→∞

1

k
logP

(
1

k
logG(Wk) ∈ B

)
≤ − inf

x∈B̄
I(x) (1)

where B◦ denotes the interior of B and B̄ denotes its closure. Roughly speaking, this implies dP (k−1 logG(Wk) = x) ≈
exp(−kI(x)) for large k. In [10] this LDP was in turn used to provide direct estimates on the guesswork probability mass
function, P (G(Wk) = n) for n ∈ {1, . . . ,mk}. These deductions, along with others described in Section IV, have developed
a quantitative framework for the process of brute force guessing a single string.

In the present work we address a natural extension in this investigation of brute force searching: the quantification for
multi-user systems. We are motivated by both classical systems, such as the brute force entry to a multi-user computer where
the inquisitor need only compromise a single account, as well as modern distributed storage services where coded data is kept
at distinct sites in a way where, owing to coding redundancy, several, but not all, servers need to be compromised to access
the content [11], [12].

II. SUMMARY OF CONTRIBUTION

Assume that V users select strings independently from Ak. An inquisitor knows the probabilities with which each user
selects their string, is able to query the correctness of each (user, string) pair, and wishes to identify any subset of size U of the
V strings. The first question that must be addressed is what is the optimal strategy, the ordering in which (user, string) pairs
are guessed, for the inquisitor. For the single user system, since the earliest investigations [3], [4], [13], [14] it has been clear
that the strategy of ordering guesses from the most to least likely string, breaking ties arbitrarily, is optimal in any reasonable
sense. Here we shall give optimality a specific meaning: that the distribution of the number of guesses required to identify
the unknown object is stochastically dominated by all other strategies. Amongst other results, for the multi-user guesswork
problem we establish the following:
• If U < V , the existence of optimal guessing strategies, those that are stochastically dominated by all other strategies, is

no longer assured.
• By construction, there exist asymptotically optimal strategies as the strings become long.
• For asymptotically optimal strategies, we prove a large deviation principle for their guesswork. The resulting large

deviations rate function is, in general, not convex and so this result could not have been established by determining
how the moment generating function of the guesswork distributions scale.

• The non-convexity of the rate function shows that, if users’ string statistics are distinct, there may be no fixed ordering
of weakness amongst users. That is, depending on how many guesses are made before the U users’ strings are identified,
the collection of users whose strings have been identified are likely to be distinct.

• If all V strings are chosen with the same statistics, then the rate function is convex and the exponential growth rate of
the average guesswork as string-length increases is the specific Rényi entropy of the string source with parameter

V − U + 1
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• For homogeneous users, from an inquisitor’s point of view, there is a law of diminishing returns for the expected guesswork
growth rate in excess number of users (V − U ).

• For homogeneous users, from a designer’s point of view, coming full circle to Massey’s original observation that Shannon
entropy has little quantitative relationship to how hard it is to guess a single string, the specific Shannon entropy of the
source is a lower bound on the average guesswork growth rate for all V and U .

These results generalize both the original guesswork studies, where U = V = 1, as well as some of the results in [13], [15]
where, as a wiretap model, the case U = 1 and V = 2 with one of the strings selected uniformly, is considered and scaling
properties of the guesswork moments are established. Interestingly, we shall show that that setting is one where the LDP rate
function is typically non-convex, so while results regarding the asymptotic behavior of the guesswork moments can be deduced
from the LDP, the reverse is not true. To circumvent the lack of convexity, we prove the main result using the contraction
principle, Theorem 4.2.1 [9], and the LDP established in [10], which itself relies on earlier results of work referenced above.



0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

V U

Ex
pe

ct
ed

 G
ue

ss
w

or
k 

G
ro

w
th

 R
at

e

 

 

p=0.01
p=0.05
p=0.125
p=0.25
p=0.5

0 1 2 3 4 5 6 7 8 9 10
1045

1046

1047

1048

1049

1050

1051

Ap
pr

ox
. E

xp
ec

te
d 

G
ue

ss
w

or
k

V U

128 bit string, Bernoulli (0.25) source

Fig. 1. Strings created from i.i.d. letters are selected from a binary alphabet with probability p for one character. Given an inquisitor wishes to identify U
of V strings, the left panel shows the average exponential guesswork growth rate as a function of V − U , the excess number of guessable strings; the right
panel shows the theoretically predicted approximate average guesswork for 168 bit strings, as used in triple DES, as a function of V −U , the excess number
of guessable strings.

III. THE IMPACT OF THE NUMBER OF USERS ON EXPECTED GUESSWORK GROWTH RATE, AN EXAMPLE

As an exemplar that illustrates the reduction in security that comes from having multiple users, the left panel in Figure 1 the
average guesswork growth rate for an asymptotically optimal strategy is plotted for the simplest case, a binary alphabet with V
i.i.d. Bernoulli string sources. In order to be satisfied, the inquisitor wishes to identify U ≤ V of the strings. The x-axis shows
the excess number of guessable strings, V − U , and the y-axis is the log2 growth rate of the expected guesswork in string
length. If the source is perfectly uniform (i.e. characters are chosen with a Bernoulli 1/2 process), then the average guesswork
growth rate is maximal and unchanging in V − U . If the source is not perfectly uniform, then the growth rate decreases as
the number of excess guessable strings V − U increases, with a lower bound of the source’s Shannon entropy.

For a string of length 168 bits, as used in the triple DES cipher, and a Bernoulli (0.25) source, the right panel in Figure
1 displays the impact that the change in this exponent has, approximately, on the average number of guesses required to
determine U strings. More refined results for a broader class of processes can be found in later sections, including an estimate
on the guesswork distribution.

The rest of this paper is organized as follows. In Section IV, we begin with a brief overview of results on guesswork that we
have not touched on so far. Questions of optimal strategy are considered in Section V. Asymptotically optimal strategies are
established to exist in Section VI and results for these strategies appear in Section VII. In Section VIII we present examples
where strings sources have distinct statistics. In Section IX we return to the setting where string sources have identical statistics.
Concluding remarks appear in Section X.

IV. A BRIEF OVERVIEW OF GUESSWORK

Since Arikan’s introduction of the long string length asymptotic, several generalizations of its fundamental assumptions have
been explored. Arikan and Boztas [16] investigate the setting where the truthfulness in response to a query is not certain.
Arikan and Merhav [17] loosen the assumption that inquisitor needs to determine the string exactly, assuming instead that
they only need to identify it within a given distance. That the inquisitor knows the distribution of words exactly is relaxed by
Sundaresan [18], [19] and by the authors of [20].

Motivated by a wiretap application, the problem of multiple users was first investigated by Merhav and Arikan [13] in the
V = 2 and U = 1 setting, assuming one of the users selects their string uniformly on a reduced alphabet. In [21] Hayashi and
Yamamoto extend the results in [13] to the case if there is an additional i.i.d. source correlated to the first, used for coding
purposes, while Harountunian and Ghazaryan [22] extend the results in [13] to the setting of [17]. Harountunian and Margaryan
[23] expand on [13] by adding noise to the original string, altering the distribution of letters. Hanawal and Sundaresan [15]
extend the bounds in [13] to a pre-limit and to more general sources, showing that they are tight for Markovian and unifilar
sources.

Sundaresan [24] uses length functions to identify the link between guesswork and compression. This result is extended by
Hanawal and Sundaresan [25] to relate guesswork to the compression of a source over a countably infinite alphabet. In [2]
the authors prove that, if the string is conditioned on being an element of a typical set the expected guesswork, is growing



more slowly than a simple uniform approximation would suggest. In [26] the authors consider the impact of guessing over a
noisy erasure channel showing that the mean noise on the channel is not the significant moment in determining the expected
guesswork, but instead one determined by its Rényi entropy with parameter 1/2. Finally, we mention that recent work by
Bunte and Lapidoth [27] identifies a distinct operational meaning for Rényi entropy in defining a rate region for a scheduling
problem.

V. OPTIMAL STRATEGIES

In order to introduce the key concepts used to determine the optimal multi-user guesswork strategy, we first reconsider the
optimal guesswork strategy in the single user case, i.e. U = V = 1. Recall that A = {0, . . . ,m− 1} is a finite set.

Definition 1: A single user strategy, S : Ak 7→ {1, . . . ,mk}, is a one-to-one map that determines the order in which guesses
are made. That is, for a given strategy S and a given string w ∈ Ak, S(w) is the number of guesses made until w is queried.

Let Wk be a random variable taking values in Ak. Assume that its probability mass function, P (Wk = w) for all w ∈ Ak, is
known. Since the first results on the topic it has been clear that the best strategy, which we denote G, is to guess from most likely
to least likely, breaking ties arbitrarily. In particular, G is defined by G(w) < G(w′) if and only if P (Wk = w) > P (Wk = w′).
We begin by assigning optimality a precise meaning in terms of stochastic dominance [28], [29].

Definition 2: A strategy S is optimal for Wk if the random variable S(Wk) is stochastically dominated by S′(Wk), for all
strategies S′. That is, if P (S(Wk) ≤ n) ≥ P (S′(Wk) ≤ n) for all strategies S′ and all n ∈ {1, . . . ,mk}.

This definition captures the stochastic aspect of guessing by stating than an optimal strategy is one where the identification
stopping time is probabilistically smallest. One consequence of this definition that explains its appropriateness is that for any
monotone function φ : {1, . . . ,mk} → R, it is the case that E(φ(S(Wk))) ≤ E(φ(S′(Wk))) for an optimal S and any other
S′ (e.g. Proposition 3.3.17, [29]). Thus S(Wk) has the least moments over all guessing strategies. That guessing from most-
to least-likely in the single user case is optimal is readily established.

Lemma 1: If V = U = 1, the optimal strategies are those that guess from most likely to least likely, breaking ties arbitrarily.
Proof: Consider the strategy G defined above and any other strategy S. By construction, for any n ∈ {1, . . . ,mk}

P (G(Wk) ≤ n) =

n∑
i=1

P (G(Wk) = i) = max
w1,...,wn

(
n∑
i=1

P (Wk = wi)

)
≥

n∑
i=1

P (S(Wk) = i) = P (S(Wk) ≤ n).

In the multi-user case, where (user, string) pairs are queried, a strategy is defined by the following.
Definition 3: A multi-user strategy is a one-to-one map S : {1, . . . , V } × Ak 7→ {1, . . . , V mk} that orders the guesses of

(user, string) pairs.
The expression for the number of guesses required to identify U strings is a little involved as we must take into account

that we stop making queries about a user once their string has been identified. For a given strategy S, let NS : {1, . . . , V } ×
{1, . . . , V mk} 7→ {1, . . . ,mk} be defined by

NS(v, n) = |{w ∈ Ak : S(v, w) ≤ n}|,

which computes the number of queries in the strategy up to n that correspond to user v.
The number of queries that need to be made if U strings are to be identified is

T (U, V, ~w) = U-min
(
S(1, w(1)), . . . , S(V,w(V ))

)
,

where U-min : RV → R and U-min(~x) gives the U th smallest component of ~x. The number of guesses required to identify U
components of ~w = (w(1), . . . , w(V )) is then

GS(U, V, ~w) =

V∑
v=1

NS

(
v,min

(
S(v, w(v)), T (U, V, ~w)

))
. (2)

This apparently unwieldy object counts the number of queries made to each user, curtailed either when their string is identified
or when U strings of other users are identified.

If U = V , equation (2) simplifies significantly, as S(v, w(v)) ≤ T (U, V, ~w) for all v ∈ {1, . . . , V }, becoming

GS(V, V, ~w) =

V∑
v=1

NS

(
v, S(v, w(v))

)
, (3)

the sum of the number of queries required to identify each individual word. In this case, we have the analogous result to
Lemma 1, which is again readily established.



Lemma 2: If V = U , the optimal strategies are those that employ individual optimal strategies, but with users selected in
any order.

Proof: For any multi-user strategy S, equation (3) holds. Consider an element in the sum on the right hand side,
NS
(
v, S(v, w(v))

)
. It can be recognised to be the number of queries made to user v until their string is identified. By

Lemma 1, for each user v, for any S this stochastically dominates the equivalent single user optimal strategy. Thus the multi-
user optimal strategies in this case are the sum of individual user optimal strategies, with users queried in any arbitrary order.

The formula (2) will be largely side-stepped when we consider asymptotically optimal strategies, but is needed to establish
that there is, in general, no stochastically dominant strategy if V > U . With ~Wk = (W

(1)
k , . . . ,W

(V )
k ) being a random vector

taking values in AkV with independent, not necessarily identically distributed, components, we are not guaranteed the existence
of an S such that P (GS(U, V, ~Wk) ≤ n) ≥ (GS′(U, V, ~Wk) ≤ n) for all alternate strategies S′.

Lemma 3: If V > U , a stochastically dominant strategy does not necessarily exist.
Proof: A counter-example suffices and so let k = 1, V = 2, U = 1 and A = {0, 1, 2}. Let the distributions of W (1)

1 and
W

(2)
1 be

User 1 User 2
P (W

(1)
1 = 0) = 0.6 P (W

(2)
1 = 0) = 0.5

P (W
(1)
1 = 1) = 0.25 P (W

(2)
1 = 1) = 0.4

P (W
(1)
1 = 2) = 0.15 P (W

(2)
1 = 2) = 0.1

If a stochastically dominant strategy exists, its first guess must be user 1, string 0, i.e. S(1, 0) = 1, so that P (GS(1, ~W1) =
1) = 0.6. Given this first guess, to maximize P (GS(1, ~W1) ≤ 2), the second guess must be user 1, string 1, S(1, 1) = 2, so
that P (GS(1, ~W1) ≤ 2) = 0.85.

An alternate strategy with S(2, 0) = 1 and S(2, 1) = 2, however, gives P (GS′(1, ~W1) = 1) = 0.5 and P (GS′(1, ~W1) ≤
2) = 0.9. While P (GS(1, ~W1) = 1) > P (GS′(1, ~W1) = 1), P (GS(1, ~W1) ≤ 2) < P (GS′(1, ~W1) ≤ 2) and so there is no
strategy stochastically dominated by all others in this case.

Despite this lack of universal optimal strategy, we shall show that there is a sequence of random variables that are
stochastically dominated by the guesswork of all strategies and, moreover, there exists a strategy with identical performance
in Arikan’s long string length asymptotic.

Definition 4: A strategy S is asymptotically optimal if {k−1 logGS(U, V, ~Wk)} satisfies a LDP with the same rate function
as a sequence {k−1 log Υ(U, V, ~Wk)} where Υ(U, V, ~Wk) is stochastically dominated by GS′(U, V, ~Wk) for all strategies S′.

Note that Υ(U, V, ·) need not correspond to the guesswork of a strategy.

VI. AN ASYMPTOTICALLY OPTIMAL STRATEGY

Let { ~Wk} be a sequence of random strings, with ~Wk taking values in AkV , with independent components, W (v)
k ,

corresponding to strings selected by users 1 through V , although each user’s string may not be constructed from i.i.d. letters.
For each individual user, v ∈ {1, . . . , V }, let G(v) denote its single-user optimal guessing strategy; that is, guessing from most
likely to least likely.

We shall show that the following random variable, constructed using the G(v), is stochastically dominated by the guesswork
distribution of all strategies:

Gopt(U, V, ~Wk) = U-min
(
G(1)(W

(1)
k ), . . . , G(V )(W

(V )
k )

)
. (4)

This can be thought of as allowing the inquisitor to query, for each n in turn, the nth most likely string for all users while
only accounting for a single guess and so it does not correspond to an allowable strategy.

Lemma 4: For any strategy S and any U ∈ {1, . . . , V }, Gopt(U, V, ~Wk) is stochastically dominated by GS(U, V, ~Wk). That
is, for any any U ∈ {1, . . . , V } and any n ∈ {1, . . . ,mk}

P (Gopt(U, V, ~Wk) ≤ n) ≥ P (GS(U, V, ~Wk) ≤ n).

Proof: Using equation (2) and the positivity of its summands, for any strategy S

GS(U, V, ~w) ≥ U-min(NS(1, S(1, w(1))), . . . , NS(V, S(V,w(V )))).

As for each v ∈ {1, . . . , V }, G(v)(W
(v)
k ) is stochastically dominated by all other strategies,

P (G(v)(W
(v)
k ) ≤ n) ≥ P (NS(v, S(1,W

(v)
k )) ≤ n).



Using equation (4), this implies that

P (Gopt( ~Wk) ≤ n) ≥ P (U-min(NS(1, S(1,W
(1)
k )), . . . , NS(V, S(V,W

(V )
k ))) ≤ n) ≥ P (GS(U, V, ~Wk) ≤ n),

as required.
The strategy that we construct that will asymptotically meet the performance of the lower bound is to round-robin the single

user optimal strategies. That is, to query the most likely string of one user followed by the most likely string of a second user
and so forth, for each user in a round-robin fashion, before moving to the second most likely string of each user. An upper
bound on this strategy’s performance is to consider only stopping at the end of a round of such queries, even if they reveal
more than U strings, which gives

V Gopt(U, V, ~Wk), (5)

where Gopt(U, V, ~Wk) is defined in (4).
In large deviations parlance the stochastic processes {k−1 logGopt(U, V, ~Wk)} and {k−1 log(V Gopt(U, V, ~Wk))} arising

from equations (4) and (5) are exponentially equivalent, e.g. Section 4.2.2 [9], as limk→∞ k−1 log V = 0. As a result, if one
process satisfies the LDP with a rate function that has compact level sets, then the other does [9][Theorem 4.2.3]. Thus if
{k−1 logGopt(U, V, ~Wk)} can be shown to satisfy a LDP, then the round-robin strategy is proved to be asymptotically optimal.

VII. ASYMPTOTIC PERFORMANCE OF OPTIMAL STRATEGIES

We first recall what is known for the single-user setting. For each individual user v ∈ {1, . . . , V }, the specific Rényi entropy
of the sequence {W (v)

k }, should it exist, is defined by

R(v)(β) := lim
k→∞

1

k

1

1− β
log

∑
wk∈Ak

P (W
(v)
k = wk)β

for β ∈ (0, 1) ∪ (1,∞), and for β = 1,

R(v)(1) := lim
β↑1

R(v)(β) = − lim
k→∞

1

k

∑
wk∈Ak

P (W
(v)
k = wk) logP (W

(v)
k = wk),

the specific Shannon entropy. Should R(v)(β) exist for β ∈ (0,∞), then the specific min-entropy is defined

R(v)(∞) = lim
β→∞

R(v)(β) = − lim
k→∞

1

k
max
wk∈Ak

logP (W
(v)
k = wk).

where the limit necessarily exists. The existence of R(v)(β) for all β > 0 and its relationship to the scaled Cumulant Generating
Function (sCGF)

Λ
(v)
G (α) = lim

k→∞

1

k
logE(exp(α logG(v)(W

(v)
k ))) =

αR(v)

(
1

1 + α

)
if α > −1

−R(v)(∞) if α ≤ −1
(6)

has been established for the single user case for a broad class of character sources that encompasses i.i.d., Markovian and
general sofic shifts that admit an entropy condition [4], [5], [6], [7], [10]. If, in addition, R(v)(β) is differentiable with respect
to β and has a continuous derivative, it is established in [10] that the process {k−1 logG(v)(W

(v)
k )} satisfies a LDP, i.e.

equation (1), with a convex rate function

Λ
(v)
G

∗
(x) = sup

α∈R

(
xα− Λ

(v)
G (α)

)
. (7)

In [10], this LDP is used to deduce an approximation to the guesswork distribution,

P (G(v)(W
(v)
k ) = n) ≈ 1

n
exp

(
−kΛ

(v)
G

∗
(

1

k
log n

))
(8)

for large k and n ∈ {1, . . . ,mk}.
The following theorem establishes the fundamental analogues of these results for an asymptotically optimal strategy, where

user strings may have distinct statistical properties.



Theorem 5: Assume that the components of { ~Wk} are independent and that for each v ∈ {1, . . . , V } R(v)(β) exists for all
β > 0, is differentiable and has a continuous derivative, and that equation (6) holds. Then the process {k−1 logGopt(U, V, ~Wk)},
and thus any asymptotically optimal strategy, satisfies a Large Deviation Principle. Defining

δ(v)(x) =

{
Λ

(v)
G

∗
(x) if x ≤ R(v)(1)

0 otherwise
and γ(v)(x) =

{
Λ

(v)
G

∗
(x) if x ≥ R(v)(1)

0 otherwise
,

the rate function is

IGopt(U, V, x) = max
v1,...,vV

(
Λ

(v1)
G

∗
(x) +

U∑
i=2

δ(vi)(x) +

V∑
i=U+1

γ(vi)(x)

)
, (9)

which is lower semi-continuous and has compact level sets, but may not be convex. The sCGF capturing how the moments
scale is

ΛGopt(U, V, α) = lim
k→∞

1

k
logE(exp(α logGopt(U, V, ~Wk))) = sup

x∈[0,V m]

(
αx− IGopt(U, V, x)

)
. (10)

Proof: Under the assumptions of the theorem, for each v ∈ {1, . . . , V }, {k−1 logG(v)(W
(v)
k )} satisfies the LDP with the

rate function given in equation (7). As users’ strings are selected independently, the sequence of vectors{(
1

k
logG(1)(W

(1)
k ), . . . ,

1

k
logG(V )(W

(V )
k )

)}
satisfies the LDP in RV with rate function I(y(1), . . . , y(V )) =

∑V
v=1 Λ

(v)
G

∗
(y(v)), the sum of the rate functions given in

equation (7).
Within our setting, the contraction principle, e.g. Theorem 4.2.1 [9], states that if a sequence of random variables {Xn}

taking values in a compact subset of RV satisfies a LDP with rate function I : RV 7→ [0,∞] and f : RV 7→ R is a continuous
function, then the sequence {f(Xn)} satisfies the LDP with rate function inf~y{I(~y) : f(~y) = x}.

Assume, without loss of generality, that ~x ∈ RV is such that x(1) < x(2) < · · · < x(V ), so that U-min(~x) = x(U), and let
~xn = (x

(1)
n , . . . , x

(V )
n ) → ~x. Let ε < inf{x(v) − x(v−1) : v ∈ {2, . . . , V }}. There exists Nε such that maxv=1,...,V |x(v)

n −
x(v)| < ε for all n > Nε. Thus for all v ∈ {2, . . . , V } and all n > Nε x

(v)
n − x

(v−1)
n > x(v) − x(v−1) − ε > 0 and so

|U-min(~xn)−U-min(~x)| = |x(U)
n −x(U)| < ε. Hence U-min : RV → R is a continuous function and that a LDP holds follows

from an application of the contraction principle, giving the rate function

IGopt(U, V, x) = inf

{
V∑
v=1

Λ
(v)
G

∗
(yv) : U-min(y1, . . . , yV ) = x

}
.

This expression simplifies to that in equation (9) by elementary arguments. The sCGF result follows from an application of
Varahadan’s Lemma, e.g [9, Theorem 4.3.1].

The expression for the rate function in equation (9) lends itself to a useful interpretation. In the long string-length asymptotic,
the likelihood that an inquisitor has identified U of the V users’ strings after approximately exp(kx) queries is contributed
to by three distinct groups of identifiable users. For given x, the argument in the first term (v1) identifies the last of the U
users whose string is identified. The second summed term is contributed to by the collection of users, (v2) to (vU ), whose
strings have already been identified prior to exp(kx) queries, while the final summed term corresponds to those users, (vU+1)
to (vV ), whose strings have not been identified.

The reason for using the notation IGopt(U, V, ·) in lieu of Λ∗Gopt
(U, V, ·) for the rate function in Theorem 5 is that IGopt(U, V, ·)

is not convex in general, which we shall demonstrate by example, and so is not always the Legendre-Fenchel transform of the
sCGF ΛGopt(U, V, ·). Instead

Λ∗Gopt
(U, V, x) = sup

α

(
αx− ΛGopt(U, V, α)

)
forms the convex hull of IGopt(U, V, ·). In particular, this means that we could not have proved Theorem 5 by establishing
properties of ΛGopt(U, V, ·) alone, which was the successful route taken for the U = V = 1 setting, and instead needed to rely
on the LDP proved in [10]. Indeed, in the setting considered in [13], [15] with U = 1, V = 2, with one of the strings chosen
uniformly, while the authors directly identify ΛGopt(1, 2, α) for α > 0, one cannot establish a full LDP from this approach as
the resulting rate function is not convex.

Convexity of the rate function defined in equation (9) is ensured, however, if all users select strings using the same stochastic
properties, whereupon the results in Theorem 5 simplify greatly.



Corollary 1: If, in addition to the assumptions of Theorem 5, Λ
(v)
G (·) = ΛG(·) for all v ∈ {1, . . . , V } with corresponding

Rényi entropy R(·), then the rate function in equation (7) simplifies to the convex function

Λ∗Gopt
(U, V, x) =

{
UΛG

∗(x) if x ≤ R(1)

(V − U + 1)ΛG
∗(x) if x ≥ R(1)

(11)

where R(1) is the specific Shannon entropy, and the sCGF in equation (10) simplifies to

ΛGopt(U, V, α) =


UΛG

( α
U

)
if α ≤ 0

(V − U + 1)ΛG

(
α

V − U + 1

)
if α ≥ 0.

(12)

In particular, with α = 1 we have

lim
k→∞

1

k
logE

(
Gopt(U, V, ~Wk)

)
= ΛGopt(1) = (V − U + 1)ΛG

(
1

V − U + 1

)
= R

(
V − U + 1

V − U + 2

)
, (13)

where R((n+ 1)/(n+ 2))−R((n+ 2)/(n+ 3)) is a decreasing function of n ∈ N.
Proof: The simplification in equation (11) follows readily from equation (9). To establish that R((n + 1)/(n + 2)) −

R((n+ 2)/(n+ 3)) is a decreasing function of n ∈ N, it suffices to establish that R((x+ 1)/(x+ 2)) is a convex, decreasing
function for x ∈ R+.

That R(x) ↓ R(1) as x ↑ 1 is a general property of specific Rényi entropy. For convexity, using equation (13) it suffices to
show that xΛG(1/x) is convex for x > 0. This can be seen by noting that for any a ∈ (0, 1) and x1, x2 > 0,

(ax1 + (1− a)x2)ΛG

(
1

ax1 + (1− a)x2

)
= (ax1 + (1− a)x2)ΛG

(
η

1

x1
+ (1− η)

1

x2

)
≤ ax1ΛG

(
1

x1

)
+ (1− a)x2ΛG

(
1

x2

)
,

where η = ax1/(ax1 + (1− a)x2) ∈ (0, 1) and we have used the convexity of ΛG.
As the growth rate, R((n + 1)/(n + 2)) − R((n + 2)/(n + 3)), is decreasing there is a law of diminishing returns for

the inquisitor where the greatest decrease in the average guesswork growth rate is through the provision of one additional
user. From the system designer’s point of view, the specific Shannon entropy of the source is a universal lower bound on the
exponential growth rate of the expected guesswork that, while we cannot take the limit to infinity, is tight for large V − U .

Regardless of whether the rate function IGopt(U, V, ·) is convex, Theorem 6, which follows, justifies the approximation

P (Gopt(U, V, ~Wk) = n) ≈ 1

n
exp

(
−kIGopt

(
U, V,

1

k
log n

))
for large k and n ∈ {1, . . . ,mk}. It is analogous to that in equation (8), first developed in [10], but there are additional
difficulties that must be overcome to establish it. In particular, if U = V = 1, the likelihood that the string is identified at each
query is a decreasing function of guess number, but this is not true in the more general case.

As a simple example, consider U = V = 2, A = {0, 1}, strings of length 1 and strings chosen uniformly. Here the
probability of guessing both strings in one guess is 1/4, but at the second guess it is 3/4. Despite this lack of monotonicity,
the approximation still holds in the following sense.

Theorem 6: Under the assumptions of Theorem 5, for any x ∈ [0, logm) we have

lim
ε↓0

lim inf
k→∞

1

k
log inf

n∈Kk(x,ε)
P (Gopt(U, V, ~Wk) = n) = lim

ε↓0
lim sup
k→∞

1

k
log sup

n∈Kk(x,ε)

P (Gopt(U, V, ~Wk) = n)

= −IGopt(U, V, x)− x,

where

Kk(x, ε) = {n : n ∈ (exp(k(x− ε)), exp((k(x+ ε)))}

is the collection of guesses made in a log-neighborhood of x.
Proof: The proof follows the ideas in [10] Corollary 4, but with the added difficulties resolved by isolating the last word

that is likely to be guessed and leveraging the monotonicity it its individual likelihood of being identified.



Noting the definition of Kk(x, ε) in the statement of the theorem, consider for x ∈ (0, log(m))

sup
n∈Kk(x,ε)

P (Gopt(U, V, ~Wk) = n)

= sup
n∈Kk(x,ε)

∑
(v1,...,vV )

P (G(v1)(W
(v1)
k ) = n)

U∏
i=2

P (G(vi)(W
(vi)
k ) ≤ n)

V∏
i=U+1

P (G(vi)(W
(vi)
k ) ≥ n)

≤ sup
n∈Kk(x,ε)

max
(v1,...,vV )

(V !)P (G(v1)(W
(v1)
k ) = n)

U∏
i=2

P (G(vi)(W
(vi)
k ) ≤ n)

V∏
i=U+1

P (G(vi)(W
(vi)
k ) ≥ n)

≤ sup
n∈Kk(x,ε)

max
(v1,...,vV )

(V !)P (G(v1)(W
(v1)
k ) = n)

U∏
i=2

P

(
1

k
logG(vi)(W

(vi)
k ) ≤ x− ε

) V∏
i=U+1

P

(
1

k
logG(vi)(W

(vi)
k ) ≥ x+ ε

)
≤ inf
n∈Kk(x−2ε,ε)

max
(v1,...,vV )

(V !)P

(
1

k
logG(v1)(W

(v1)
k ) = n

)
U∏
i=2

P

(
1

k
logG(vi)(W

(vi)
k ) ≤ x+ ε

) V∏
i=U+1

P

(
1

k
logG(vi)(W

(vi)
k ) ≥ x− ε

)
.

The first equality holds by definition of Gopt(U, V, ·). The first inequality follows from the union bound over all possible
permutations of {1, . . . , V }. The second inequality utilizes k−1 log n ∈ (x − ε, x + ε) if n ∈ Kk(x, ε), while the third
inequality uses the monotonic decreasing probabilities in guessing a single user’s string.

Taking limε↓0 lim supk→∞ k−1 log on both sides of the inequality, interchanging the order of the max and the supremum,
using the continuity of Λ

(v)
G (·) for each v ∈ {1, · · · , V }, and the representation of the rate function IGopt(U, V, ·) in equation

(9), gives the upper bound

lim
ε↓0

lim sup
k→∞

1

k
log sup

n∈Kk(x,ε)

P (Gopt( ~Wk) = n) ≤ −IGopt(U, V, x)− x.

Considering the least likely guesswork in the ball leads to a matching lower bound. The other case, x = 0, follows similar
logic, leading to the result.

We next provide some illustrative examples of what these results imply, returning to using log2 in figures.

VIII. MISMATCHED STATISTICS EXAMPLE

The potential lack of convexity in the rate function of Theorem 5, equation (9), only arises if users’ string statistics are
asymptotically distinct. The significance of this lack of convexity on the phenomenology of guesswork can be understood in
terms of the asymptotically optimal round-robin strategy: if the rate function is not convex, there is no single set of users
whose strings are most vulnerable. That is, if U strings are recovered after a small number of guesses, they will be from one
set of users, but after a number of guesses corresponding to a transition from the initial convexity they will be from another
set of users. This is made explicit in the following corollary to Theorem 5.

Corollary 2: If IGopt(U, V, x) is not convex in x, then there is there is no single set of users whose strings will be identified
in the long string length asymptotic.

Proof: We prove the result by establishing the converse: if a single set of users is always most vulnerable, then IGopt(U, V, x)
is convex. Recall the expression for IGopt(U, V, x) given in equation (9)

IGopt(U, V, x) = max
v1,...,vV

(
Λ

(v1)
G

∗
(x) +

U∑
i=2

δ(vi)(x) +

V∑
i=U+1

γ(vi)(x)

)
,

As explained after Theorem 5, for given x the set of users {(v1), . . . , (vU )} corresponds to those users whose strings, on the
scale of large deviations, will be identified by the inquisitor after approximately exp(kx) queries. If this set is unchanging in
x, i.e. the same set of users is identified irrespective of x, then both of the functions(

Λ
(v1)
G

∗
(x) +

U∑
i=2

δ(vi)(x)

)
and

V∑
i=U+1

γ(vi)(x)

are sums of functions that are convex in x, and so are convex themselves. Thus the sum of them, IGopt(U, V, x), is convex.
This is most readily illustrated by an example that falls within the two-user setting of [13], where one string is constructed

from uniformly from i.i.d. bits and the other string from non-uniformly selected i.i.d. bytes.
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Fig. 2. User 1 picks a uniform bit string. User 2 picks a non-uniform i.i.d. byte string. The straight line starting at (0, 1) displays ΛG
(1)∗(x), the large

deviations rate function for guessing the uniform bit string. The convex function starting below it is ΛG
(2)∗(x), the rate function for guessing the non-uniform

byte string. The highlighted line, which is the minimum of the two rate functions until x = 1 and then +∞ afterwards, displays IGopt (1, 2, x), as determined
by (9), the rate function for an inquisitor to guess one of the two strings. Its non-convexity demonstrates that initially it is the bytes that are most likely to
be revealed by brute force searching, but eventually it is the uniform bits that are more likely to be identified. The Legendre-Fenchel transform of the scaled
cumulant generating function of the guesswork distributions would form the convex hull of the highlighted line and so this could not be deduced by analysis
of the asymptotic moments.

Let A = {0, . . . , 7}, U = 1 and V = 2. Let one character source correspond to the output of a cryptographically secure
pseudo-random number generator. That is, despite having a byte alphabet, the source produces perfectly uniform i.i.d. bits,

P (W
(1)
1 = i) =

{
1/2 if i ∈ {0, 1}
0 otherwise.

The other source can be thought of as i.i.d. bytes generated by a non-uniform source,

P (W
(2)
1 = i) =


0.55 if i = 0

0.1 if i ∈ {1, 2}
0.05 if i ∈ {3, . . . , 7}.

This models the situation of a piece of data, a string from the second source, being encrypted with a shorter, perfectly uniform
key. The inquisitor can reveal the hidden string by guessing either the key or the string. One might suspect that either the key
or the string is necessarily more susceptible to being guessed, but the result is more subtle.

Figure 2 plots the rate functions for guessing each of the user’s strings individually as well as the rate function for guessing
one out of two, determined by equation (9), which in this case is the minimum of the two rate function where they are finite.
The y-axis is the exponential decay-rate in string length k of the likelihood of identification given approximately exp(kx)
guesses, where x is on the x-axis, have been made. The rate function reveals that if the inquisitor identifies one of the strings
quickly, it will be the non-uniform byte string, but after a certain number of guesses it is the key, the uniform bit string, that
is identified.

Attempting to obtain this result by taking the Legendre Fenchel transform of the sCGF identified in [13] results in the convex
hull of this non-convex function, which has no real meaning. This explains the necessity for the distinct proof approach taken
here if one wishes to develop estimates on the guesswork distribution rather than its moments.

IX. IDENTICAL STATISTICS EXAMPLES

When the string statistics of users are asymptotically the same, the resulting multi-user guesswork rate functions are convex
by Corollary 1, and the rôle of specific Shannon entropy in analyzing expected multi-user guesswork appears. This is the
setting that leads to the results in Section III where it is assumed that character statistics are i.i.d., but not necessarily uniform.

An alternate means of departure from string-selection uniformity is that the appearance of characters within the string may
be correlated. The simplest model of this is where string symbols are governed by a Markov chain with arbitrary starting
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Fig. 3. Markovian string source over a binary alphabet A = {0, 1} with a being the probability of a 1 after a 0 and b being the probability of a 0 after a
1. The plots shows the difference in average guesswork exponent for a single user system and a system with an arbitrarily large number of users, a measure
of computational security reduction.

distribution and transition matrix (
1− a a
b 1− b

)
,

where a, b ∈ (0, 1). The specific Rényi entropy of this character source can be evaluated, e.g. [5], for β 6= 1 to be

R(β) =
1

1− β
log

(
(1− a)β + (1− b)β +

√
((1− a)β − (1− b)β)2 + 4(ab)β

)
− 1

1− β
and R(1) is the Shannon entropy

R(1) =
b

a+ b
H(a) +

a

a+ b
H(b), where H(a) = −a log(a)− (1− a) log(1− a).

Figure 3 shows R(1/2)−R(1) the difference between the average guesswork growth rate for a single user system versus one
for an arbitrarily large number of users as a and b are varied. Heavily correlated sources or those with unlikely characters give
the greatest discrepancy in security.

If a = b, then the stationary likelihood a symbol is a 0 or 1 is equal, but symbol occurrence is correlated. In that setting,
the string source’s specific Rényi entropy gives for β 6= 1

R(β) =
1

1− β
log
(
(1− a)β + aβ

)
,

which is the same as a Bernoulli source with probability a of one character. Thus the results in Section III can be re-read with
the Bernoulli string source with parameter p = a substituted for a Markovian string source whose stationary distribution gives
equal weight to both alphabet letters, but for which character appearance is correlated.

X. DISCUSSION

Since Massey [3] posed the original guesswork problem and Arikan [4] introduced its long string asymptotic, generalizations
have been used to quantify the computational security of several systems, including being related to questions of loss-less
compression. Here we have considered what appears to be one of the most natural extensions of that theory, that of multi-user
computational security. As a consequence of the inherent non-convex nature of the guesswork rate function unless string source
statistics are equal for all users, this development wasn’t possible prior to the Large Deviation Principle proved in [10]. The
results therein themselves relied on the earlier work that determined the scaled cumulant generating function for the guesswork
for a broad class of process [4], [5], [6], [7].

The fact that rate functions can be non-convex encapsulates that distinct subsets of users are likely to be identified depending
on how many unsuccessful guesses have been made. As a result, a simple ordering of string guessing difficulty is inappropriate
in multi-user systems and suggests that quantification of multi-user computational security is inevitably nuanced.



The original analysis of the asymptotic behavior of single user guesswork identified an operational meaning to specific Rényi
entropy. In particular, the average guesswork grows exponentially in string length with an exponent that is the specific Rényi
entropy of the character source with parameter 1/2. When users’ string statistics are the same, the generalization to multi-user
guesswork identifies a surprising operational rôle for specific Rényi entropy with parameter n/(n+ 1) for each n ∈ N when
n is the excess number of strings that can be guessed. Moreover, while the specific Shannon entropy of the string source was
found in the single user problem to have an unnatural meaning as the growth rate of the expected logarithm of the guesswork,
in the multi-user system it arises as the universal lower bound on the average guesswork growth rate.

For the asymptote at hand, the key message is that there is a law of diminishing returns for an inquisitor as the number
of users increases. For a multi-user system designer, in contrast to the single character, single user system introduced in [3],
Shannon entropy is the appropriate measure of expected guesswork for systems with many users.

Future work might consider the case where the V strings are not selected independently, as was assumed here, but are
instead linear functions of U independent strings. A potential application of such a case, suggested by Erdal Arikan (Bilkent
University) in a personal communication, envisages the use of multi-user guesswork to characterize the behavior of parallel
concatenated decoders operating on blocks of convolutionally encoded symbols passed though a preliminary algebraic block
Maximum Distance Separable (MDS) code, e.g. [30]. The connection between guessing and convolutional codes was first
established by Arikan [4].

Decoding over a channel may, in general, be viewed as guessing a codeword that has been chosen from a list of possible
channel input sequences, given the observation of an output sequence formed by corrupting the input sequence according to
some probability law used to characterize the channel, e.g [26]. Considering sequential decoding of convolutional codes, first
proposed by Wozencraft [31], that guessing may constitute an exploration along a decision tree of the possible input sequences
that could have led to the observed output sequence, as modeled by Fano [32]. If the transmitted rate, given by the logarithm
of the cardinality of possible codewords, falls below the cut-off rate, then results in [4] prove that the guesswork remains in
expectation less than exponential in the length of the code. Beyond the cut-off rate, it becomes exponentially large. One may
view such a result as justifying the frequent use of cut-off rate as as a practical, engineering characterization of the limitations
of block and convolutional codes.

Consider now the following construction of a type of concatenated code [30], which is a slight variant of that proposed by
Falconer [33]. The original data, a stream of i.i.d. symbols, is first encoded using an algebraic block MDS code. For a block
MDS code, such as a Reed-Solomon code [30], over a codeword constituted by a sequence of V symbols, correct reception
at the output of any U symbols from the V allows for correct decoding, where the feasibility of a pair of V and U depends
on the family of codes. For every U input symbols in the data stream, V symbols are generated by the algebraic block MDS
code. Note that these symbols may be selected over a set of large cardinality, for instance by taking each symbol to be a string
of bits. As successive input blocks of length U are processed by the block MDS code, these symbols form V separate streams
of symbols. Each of these V streams emanating from the algebraic block MDS code is coded using a separate but identical
convolutional encoder.

The V convolutional codewords thus obtained are dependent, even though any U of them are mutually independent. This
dependence is imputed by the fact that the V convolutional codewords are created by U original streams that form the input
of the block MDS encoder. The V convolutional codewords constitute then the inputs to V mutually independent, Discrete
Memoryless Channels (DMCs), all governed by the same probability law. In Falconer’s construct, such parallel DMCs are
embodied by time-sharing equally a single DMC. While Falconer envisages independent DMCs governed by a single probability
law, as is suitable in the setting of interleaving over a single DMC, we may readily extend the scheme to the case where the
parallel DMCs have different behaviors. Such a model is natural in wireless settings where several channels are used in parallel,
say over different frequencies. While the behavior of such channels is often well modelled as being mutually independent, and
the channels individually are well approximated as being DMCs, the characteristics of the channels, which may vary slowly
in time, generally differ considerably from each other at any time.

Decoding uses the outputs of the V DMCs as follows. For each DMC, the output is initially individually decoded
using sequential decoding so that, in the words of Falconer, ”controlled by the Fano algorithm, all [V ] sequential decoders
simultaneously and independently attempt to proceed along the correct path in their own trees”. The dependence among the
streams produced by the original application of the block MDS code entails that, when U sequential decoders each correctly
guesses a symbol, the correct guesses determine a block of U original data symbols. The latter are communicated to all
remaining V − U sequential decoders, eliminating the need for them to continue producing guesses regarding that block of
U original data symbols. The sequential decoders then proceed to continue attempting to decode the next block of U original
data symbols. This scheme allows the U most fortunate guesses out of V to dominate the performance of the overall decoder.
A sequential decoder that was a laggard for one block of the original U symbols may prove to be a leader for another block
of U symbols.
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