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Abstract

Establishing a Large Deviation Principle (LDP) proves to be a powerful result for a vast
number of stochastic models in many application areas of probability theory. The key object
of an LDP is the large deviations rate function, from which probabilistic estimates of rare
events can be determined. In order make these results empirically applicable, it would be
necessary to estimate the rate function from observations. This is the question we address
in this article for the best known and most widely used LDP: Cramér’s theorem for random
walks.

We establish that even when only a narrow LDP holds for Cramér’s Theorem, as occurs
for heavy-tailed increments, one gets a LDP for estimating the random walk’s rate function
in the space of convex lower-semicontinuous functions equipped with the Attouch-Wets
topology via empirical estimates of the moment generating function. This result may seem
surprising as it is saying that for Cramér’s theorem, one can quickly form non-parametric
estimates of the function that governs the likelihood of rare events.

1 Introduction

Large deviation theory [47, 8], the study of the exponential decay in probability of unlikely
events, has been used extensively in fields such statistical mechanics [17, 46], insurance math-
ematics [2], queueing systems [45, 19], importance sampling [16] and many others. In each of
these fields, it is typically the case that a Large Deviation Principle (LDP) is shown to hold
based on an assumed underlying stochastic model of the process of interest. To quantify the
rate of decay in the probability of events as a function of system size, the LDP rate function,
the negative of the statistical mechanical entropy, is identified in terms of the properties of the
underlying stochastic process, enabling direct estimates on the probability of rare events.

In many experimental systems, however, an a priori parameterization of the underlying stochas-
tic nature of the system is unknown and must be garnered from data. In these situations, to
transfer large deviation results from theory to empirical practice, it is necessary to estimate
the associated rate function from data as a random function. It is the question of whether, in
a non-parametric setting, this is possible and, if so, what is the speed of convergence of the
estimates that is the subject considered here.

In the most commonly used LDP, Cramér’s theorem for random walks, which underlies many
other LDP results, we establish that non-parametric estimation of the rate function is not
only possible, but that the probability of mis-estimation is, in appropriate sense, decaying
exponentially in the observed sample size.

∗Hamilton Institute, National University of Ireland Maynooth, Ireland. E-mail: ken.duffy@nuim.ie
†Department of Mathematics, Duke University, Durham, North Carolina, USA. E-mail:

brendan.williamson@duke.edu

1

ar
X

iv
:1

51
1.

02
29

5v
1 

 [
m

at
h.

PR
] 

 7
 N

ov
 2

01
5



2

To make matters more precise, let {Xi} be a sequence of real-valued i.i.d. random variables,
and define Sn = (X1 + · · ·+Xn)/n to be the sample mean. If the Moment Generating Function
(MGF) of X1, M(θ) = E(exp(θX1)) for θ ∈ R, is finite in a neighbourhood of the origin, then
by Cramér’s theorem {Sn} satisfies the LDP [47, 8] with a convex rate function I that has
compact level sets,

I(x) = sup
θ∈R

(θx− Λ(θ)), where Λ(θ) = logM(θ).

Speaking roughly, for large n this is suggestive of dP (Sn = x) � exp(−nI(x))dx. If, on the
other hand, the MGF of X1 is not finite in a neighbourhood of the origin, as happens with
heavy-tailed increments, then {Sn} satisfies a narrow LDP [8], where the rate function does not
need to have compact level sets.

If we do not know the distribution of X1, but observe a sequence X1, . . . , Xn, is it possible
to create non-parametric estimates of the rate function I that are well-behaved in that they
converge quickly as a function of the sample size? Given that I captures the probability of
unlikely events, the perhaps surprising answer will prove to be yes.

Drawing parallels with chemical engineers who estimate entropy directly rather than building
parametric models, Duffield et al. [9], based on private communication with A. Dembo, proposed
using the logarithm of the Maximum Likelihood Estimator (MLE) for the MGF as an estimate
of the cumulant generating function of tele-traffic streams. Even though the estimator proved
resistant to rigorous determination of its analytic properties, it seemed practically applicable
and so was put to use, e.g. [35]. Independently and a little later, a similar approach was
developed in statistical mechanics as a means of estimating equilibrium free energy differences,
where it is called Jarzynski’s estimator [27]. Significant examples of its use in an experimental
context can be found in [26, 36, 24, 44], with a recent theoretical study provided in [42].

Given observations X1, . . . , Xn, the estimator considered in [9] is the maximum likelihood esti-
mator of the MGF as a random convex function:

Mn(θ) =
1

n

n∑
i=1

eθXi for θ ∈ R. (1)

From this, their proposed estimate of the Cumulant Generating Function (CGF) given n obser-
vations is

Λn(θ) = logMn(θ) for θ ∈ R,

which is also a convex function. Jarzynski’s estimator, which could be considered as an empirical
estimate of the Effective Bandwidth in teletraffic engineering [28], is given by

Jn(θ) =
1

θ
Λn(θ) for θ ∈ R. (2)

Following [12], we use the Legendre-Fenchel transform of the CGF estimator to give the following
random function as an estimate of the rate function:

In(x) = sup
θ∈R

(θx− Λn(θ)) for x ∈ R. (3)

It is the large deviation behavior of the random functions {Mn}, {Λn}, {Jn}, and {In} that is
of interest to us.

Point-estimate properties for a single fixed θ have been established for {Λn}. For example, as-
suming X1 is bounded, [25] provides concentration inequalities establishing speed of convergence
of the estimate, [20] provides a means for correcting implicit bias in the estimation of effective
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bandwidths, while [18, 21] provide for a Bayesian approach. Motivated by Jarzynski’s estimator,
the recent study [42] considers unbounded random variables, focusing on the argument θ where
the estimates become unreliable. As both our estimate of I, and many estimates of interest,
depend upon Λn(θ) for all θ, however, for many applications it is necessary to consider Λn as a
random function rather than a random, extended real-valued estimate.

As examples of functions of interest, in the random walk case, it is known, e.g. [23, 10, 32, 2],
that if E(X1) < 0, then the tail of the supremum of the random walk satisfies

lim
q→∞

1

q
logP

(
sup
k≥0

Sk > q

)
= − inf

x>0
xI

(
1

x

)
= − sup(θ : Λ(θ) ≤ 0) =: −δ. (4)

This tail asymptote, dubbed Loynes’ exponent in [14], has practical significance through its
interpretation in terms of the ruin probabilities of an insurance company [2] and in terms of
the tail asymptote for the waiting time of a single server queue [1]. A natural estimate [9] of
Loynes’ exponent is

δn = sup{θ : Λn(θ) ≤ 0}. (5)

As an application, results concerning the behavior of the estimates {δn} will be established here.

As a second example of why it is valuable to have results on the stochastic properties of the
estimators as random functions rather than single point values, it has recently been proved [15]
that the most likely paths to a large integrated random walk with negative drift [37, 13, 30, 7]
mimic scaled versions of the function −Λ(θ) for θ ∈ [0, δ], where δ is defined in equation (4). In
order to empirically estimate these nature of these paths, one must estimate the entire random
function Λ directly from observations.

In prior work [12] it was shown that if X1 is bounded then {In}, considered as a sequence of
random lower-semicontinuous functions, satisfies the LDP in a suitable topological space. The
methods methods there do not generalize to the unbounded random variable setting, which is
often of interest in practice. Motivated by the estimation of Loynes’ exponent in equation (4),
in [14] it is conjectured that such a generalization is true. Using a significantly distinct approach
from that in [12], here we establish that this is the case for any distribution of X1 on R.

2 A topological setup suitable for the LDP

Recall that a sequence of random elements {Yn} taking values in a topological space (Y, τ)
satisfies the LDP [47, 8] if there exists a lower-semicontinuous function I : Y 7→ [0,∞] that has
compact level sets such that for all G open and all F closed

− inf
y∈G

I(y) ≤ lim inf
n→∞

1

n
logP (Yn ∈ G) and lim sup

n→∞

1

n
logP (Yn ∈ F ) ≤ − inf

y∈F
I(y). (6)

Considering the sequences of estimators {Mn}, {Λn} and {In} as random lower semi-continuous
convex functions, we prove that they satisfy the LDP in suitable spaces equipped with appro-
priate topologies. In particular, we consider the Mn first as elements of

X ′M = {f : R 7→ [0,∞] : f is a lower-semicontinuous convex function with f(0) finite},

and later as elements of

XM = {f : R 7→ (0,∞] : f ∈ X ′M , and there exists a probability measure ν on R such

that f(θ) <∞ implies f(θ) = Eν(exp(θx))}.
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The Λn will be elements of

XΛ = {f : R 7→ (−∞,∞] : f(θ) = log g(θ) for all θ ∈ R and for some g ∈ XM}

and the In be elements of

XI =

{
f : R 7→ [0,∞] : f(x) = sup

θ∈R
(θx− g(θ)) for all x ∈ R and for some g ∈ XΛ

}
.

The space for Jarzysnky estimators, {Jn}, defined in (2), is a little more complex and we be
elements of

XJ =

{
f : R 7→ [−∞,∞] : f(θ) =

g(θ)

θ
for all θ 6= 0 and for some g ∈ XΛ, f(0) = lim inf

θ→0
f(θ)

}
.

All of these spaces are equipped with the Attouch-Wets topology [3, 4, 5], denoted τAW, which is
also known as the bounded-Hausdorff topology, and its Borel σ−algebra. This topology was first
developed to capture a good notion of convergence of optimization problems defined through a
sequence of lower-semicontinuous functions. At a fundamental level, its appropriateness for our
needs is demonstrated by the functional continuity of the Legendre-Fenchel transform, as used
in equation (3), [5][Theorem 7.2.11].

For proper extended real-valued functions defined over the reals, the topology is constructed
in the following fashion. Each lower-semicontinuous function f : R → [−∞,∞] is uniquely
identified with a closed set in R2, its epigraph epi(f) = {(θ, b) : b ≥ f(θ)}. One then defines
convergence of the functions based on a notion of convergence of closed sets. In particular, it
is based on a projective limits topology using a bounded-Hausdorff idea: a sequence {fn} of
lower-semicontinuous functions converges to f in τAW, if given any bounded set B ∈ R×R and
any ε > 0, there exists Nε such that

sup
x∈B
|d(x, epi(fn))− d(x, epi(f))| < ε for all n > Nε, where d(x, epi(f)) = inf

y∈epi(f)
d(x, y) (7)

and we employ the box metric in R2, d(x, y) = max(|x1 − y1|, |x2 − y2|).

Note that not every element of XJ is lower semi-continuous. Every f ∈ XJ is continuous on
the interior of the interval on which it is finite, and lower semi-continuous on (0,∞), as in both
cases every CGF is. Therefore the only point at which f can fail to be lower semi-continuous
is a = inf{θ : f(θ) > −∞} if a > −∞, a < 0 and f(a) > −∞. For such functions f we will
associate f with the closure of its epigraph in R2, or equivalently, with the epigraph of its lower
semi-continuous regularisation, f(θ) = lim infγ→θ f(γ). The symmetric difference of epi(f) and
its closure is at most one half-line in R2, and moreover the mapping from functions in XJ to the
closure of their epigraphs is injective, justifying this approach. For this reason, and for ease of
notation, for every f ∈ XJ we will use the notation epi(f) to denote the closure of the epigraph
of f without clarification.

As well as the continuity of the Legendre-Fenchel transform, this topology has many properties
that are appropriate for our estimation problem and that more commonly used function space
topologies do not possess. For example, the following sequence of functions, intended to be
indicative of possible estimates of the cumulant generating function when X1 has an exponential
distribution with rate 1,

fn(θ) =

{
eθ if θ ≤ 1,

e+ n(θ − 1) if θ > 1,
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would not be convergent in the topology of uniform convergence on compacts or the Skorohod
topology, but in τAW converge to

f(θ) =

{
eθ if θ ≤ 1,

+∞ if θ > 1,

which is self-evidently desirable. In particular, the topology captures closeness of functions
when their effective domains do not coincide.

The LDP for each of these collection of estimators is established in the coming sections. We
first prove that the sequence of maximum likelihood estimators for the MGFs, {Mn} defined
in equation (1), satisfy the LDP. From this the LDP for estimates of the CGF and the rate
function shall be obtained by the contraction principle [8].

3 Statement of Main Results

In order to establish the results, a substantial volume of work is necessary, including the charac-
terization of Attouch-Wets limits of MGFs. The statement of the main results are also a little
involved as it happens that IM (f) < ∞ for some functions f ∈ X ′M that are not MGFs; such
functions are what motivates the definition of XM . All proofs are deferred to Section 8.

Let the measure on R corresponding to X1 be denoted µ and let ν be any other measure. We
define the relative entropy, e.g. [8], as

H(ν|µ) =


∫
R

dν

dµ
log

(
dν

dµ

)
dµ if ν << µ

+∞ otherwise,

where ν << µ indicates that ν is absolutely continuous with respect to µ and dν/dµ is the
Radon-Nikodym derivative.

Definition 3.1. For any measure ν we define the MGF associated to ν, fν ∈ X ′M , by

fν(θ) = ν(exp(θ·)) =

∫
R
eθxdν. (8)

Definition 3.2. For any function f ∈ X ′M , let Df = {θ : f(θ) < ∞} denote its effective
domain and Df the closure of Df . For any α, β satisfying −∞ ≤ α ≤ 0 ≤ β ≤ ∞ define
D⊂[α,β] = {f ∈ X ′M : Df ⊂ [α, β]}, the set of all functions f ∈ X ′M whose closure of effective

domain is a subset of [α, β]. Define D[α,β] = {f ∈ X ′M : Df = [α, β]}, the set of all functions f
whose closure of effective domain is [α, β].

When considering [α, β] ⊂ R we identify [α with (α when α = −∞, and β] with β) when β =∞.

Definition 3.3. For any function f ∈ X ′M that is not a MGF, i.e. for which there exists no
probability measure ν such that f(θ) = fν(θ) for all θ ∈ R, but instead satisfies f(θ) = fν(θ) for
some ν and all θ ∈ Df , then we say that f mimics fν .

Note that 0 ∈ Df for all f ∈ X ′M , so if f mimics fν then f(0) = 1. Also, f ∈ X ′M satisfies
f ∈ XM if and only if f is a MGF or mimics one. Armed with one more set of definitions, we
can state our main results.
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Definition 3.4. Define the logarithmic operator L : XM → XΛ by

L(f)(θ) = log(f(θ)) for all θ ∈ R (9)

where by convention log(∞) =∞. Define the Jarzynky operator J : XΛ → XJ by

J (f)(θ) =

{
f(θ)/θ θ 6= 0

lim inf
θ→0

f(θ) θ = 0.
(10)

Finally, define the Legendre-Fenchel transform LF : XΛ → XI : by

LF(f)(x) = sup
θ∈R

(θx− f(θ)), (11)

for x ∈ R.

Notice that these functions are bijective, so that their inverse exists. In fact, LF is an involution
[41][Theorem 26.5], justifying the presentation of the following statements.

Theorem 3.1 (LDP for large deviation estimates). If {Xn} are i.i.d. real valued random
variables, then the following hold.

1. The sequence of empirical MGF estimators, {Mn} defined in (1), satisfies the LDP in
XM equipped with τAW and with the convex rate function IM that possesses the following
properties.

(a) For any fν finite on a non-empty open interval,

IM (fν) = H(ν|µ).

(b) For f such that f(0) = 1 and f(θ) =∞ otherwise,

IM (f) = inf
{ν:fν=f}

H(ν|µ).

(c) For any f ∈ D[α,β] that is not a MGF, but mimics a MGF fν ,

IM (f) =

{
IM (fν) if IM (g) <∞ for some g ∈ D[α,β], g a MGF

+∞ otherwise.

2. The sequence of empirical CGF estimators, {Λn}, satisfies the LDP in XΛ equipped with
τAW and rate function

IΛ(f) = IM (L−1(f)) = {IM (g) : g(θ) = exp(f(θ)) for all θ ∈ R}.

3. The sequence of empirical Jarzynski estimators, {Jn}, satisfies the LDP in XJ equipped
with τAW and rate function

IJ(f) = IM (L−1(J −1(f))) = {IM (g) : g(θ) = exp (θf(θ)) for all θ 6= 0, g(0) = 1} .

4. The sequence of empirical rate function estimators, {In}, satisfies the LDP in XI equipped
with τAW and rate function

II(f) = IM (L−1(LF−1(f))) =

{
IM (g) : g(θ) = exp

(
sup
x∈R

(xθ − f(x))

)
for all θ ∈ R

}
.
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The LDPs for the sequences {Λn}, {Jn} and {In} follow from that for {Mn} by the contraction
principle on noting that the functionals mapping Mn to Λn, Λn to Jn and Λn to In are contin-
uous. Thus the primary effort in establishing Theorem 3.1 is to prove the LDP for the MGF
estimators, {Mn}, which can be found in Section 4, followed by the characterization of the rate
function, which is described in Section 5.

From Theorem 3.1, we prove that the estimators {Mn}, {Λn}, {Jn} and {In} converge in
probability to fµ, Λµ, Jµ and Iµ, the MGF, CGF, effective bandwitch and rate function of
the underlying distribution. This is harder to establish than one might reasonably expect. It
is a well-known result of Large Deviation Theory, e.g. [33], that the sequences of probability
measures satisfying a LDP with rate function I are eventually concentrated on the level set
{x : I(x) = 0}, which is compact. Proving eventual concentration on smaller sets has also been
explored [34]. As IM does not have a unique zero in general, convergence of {Mn} to fµ in
probability is not immediate. However we do not apply the results of [34] and instead take an
alternate approach to prove the following result.

Corollary 3.1 (Weak laws). {Mn} converges in probability to fµ, while {Λn}, {Jn} and {In}
converge in probability to Λµ, Jµ and Iµ, respectively.

In Section 7, as an example application of these results, the following LDP is established for
estimates of Loyne’s exponent along with a discussion of some of the properties of its associated
rate function, Iδ.

Theorem 3.2 (LDP for Loynes’ exponent estimates). The sequence of Loynes’ estimators, {δn}
defined in (5), satisfies a LDP in [0,∞] with rate function Iδ : [0,∞]→ [0,∞],

Iδ(x) = inf
f∈Cx

IM (f),

where

Cx = {f : f(x) = 1, or f(x) < 1 and f(y) =∞ for all y > x} for x ∈ (0,∞),

C0 = {f : f(x) ≥ 1 for all x > 0},
and C∞ = {f : f(x) ≤ 1 for all x ≥ 0}.

In the proofs of some of the results in Section 7 other characterisations of Iδ are considered.
The form in Theorem 3.2 arises most naturally in our proof of the LDP and, as discussed in
Section 7, is illustrative of the discontinuity of the Loynes’ exponent mapping.

4 MGF Estimation

For the MGF estimates, we will first establish a LDP in X ′M , and then reduce it to a LDP in
XM . Our method of proof will be first to exclude functions that could not possibly be close to
estimates and then use the super-additivity methodology pioneered by Ruelle [43] and Lanford
[31], and elucidated in [33, 8], to establish the LDP. Namely, for any open G ∈ τAW, define

m(G) = lim inf
n→∞

1

n
logP (Mn ∈ G). and m(G) = lim sup

n→∞

1

n
logP (Mn ∈ G)

and their inf-derivatives

inf
G3f

m(G) ∈ [−∞, 0], and inf
G3f

m(G) ∈ [−∞, 0]
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where the infimum is taken over all open sets G containing f or, indeed, G in any local base
of the topology around f . The inf-derivatives are referred to as the lower and upper deviation
functions, respectively, [33]. When they coincide for all f ∈ X ′M , they provide the candidate
rate function

IM (f) := − inf
G3f

m(G) = − inf
G3f

m(G) ∈ [0,∞], (12)

and the sequence {Mn} satisfies the weak [8], or vague [33], large deviation principle with rate
function IM . That is, with the LDP upper bound, equation (6), only holding for all compact
sets rather than all closed sets. The full LDP, including goodness of the rate function, is then
proved by establishing that exponential tightness holds; i.e. that there is a sequence of compact
sets whose complementary probabilities are decaying at an arbitrarily high rate.

This super-additivity approach does not provide the characterisation of IM described in Theo-
rem 3.1 and instead that is developed in Section 5.

4.1 Reduction of the space

We wish to show that equation (12) holds for all f ∈ X ′M . We begin this process by eliminating
cases where necessarily infG3f m(G) = −∞. To determine which functions we must consider,
we need to characterise the closure of the support of P (Mn ∈ ·), as any functions, f , outside
this set will have an open neighbourhood G such that P (Mn ∈ G) = 0 for all n, so that
infG3f m(G) = infG3f m(G) = −∞ and (12) holds.

Defining

XB = {fν : ν is compactly supported in R} ⊆ X ′M , (13)

we have that P (Mn ∈ XB) = 1 for all n. To see which functions lie in its closure XB, whose
complement forms part of the set of impossible estimates, we establish the following result.

Proposition 4.1 (Characterization of possible limits of MGFs in X ′M ). If {fn} ⊂ XB is a
convergent sequence in X ′M with limit f ∈ X ′M in τAW, then f satisfies one of the following:

1. f is a MGF;

2. f(0) < 1;

3. f mimics a MGF.

Proof of Proposition 4.1. See Section 8.

For the remainder of this section we refer to these classes of functions as Type 1, 2 and 3
respectively. Establishing the possible existence of these limits can be done by example.

That Type 1 functions exist is self-evident. For Type 2 functions, consider Xn equal to n or 0,
each with probability 1/2. Then the MGF of Xn is fn(θ) = 1

2 +eθn/2. This converges in τAW to
f(θ) = 1/2 for θ ≤ 0 and f(θ) =∞ otherwise. For Type 3 functions, the function f(θ) = 1 for
θ ≤ 0 and f(θ) =∞ otherwise is seen to be the limit of the functions fn = (n− 1)/n+ eθn/n,
which are the MGFs of the random variables Xn that are equal to n with probability 1/n and
0 otherwise. The function f mimics the MGF of the weak limit of {Xn}, however f itself is not
a MGF. Showing that all limits of {fn} are in one of these classes is a bigger task for which
we adopt a common tactic when considering the limits of MGFs: an application of the Helly
Selection Principle, e.g. [39], to the corresponding sequence of distribution functions.
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It is worth noting that every MGF is in the closure of XB, defined in equation (13). If we take any
distribution ν, and let νn(dx) = ν(dx)/ν([−n, n]) be ν conditioned on [−n, n], then fνn ∈ XB
for all n and fνn → fν in τAW. Choosing to let XB only contain MGFs whose distributions
have compact support is done only to ensure every element of XB is finite everywhere, which
simplifies the proof of Proposition 4.1.

4.2 A local convex base

Let Br = {x : d(0, x) < r} ∈ R2 be the open ball of radius r in R2 and Br = {x : d(0, x) ≤ r} ∈
R2 be its closure. To use the super-additivity approach to establish (12) we need to construct
a local convex base for the topology τAW, but this is not possible in general. The following
collection of sets

Vk(f) =

{
g : sup

x∈Bk
|d(x, epi(g))− d(x, epi(f))| < 1

k

}
, for k ∈ N, (14)

is known to form a local base for the Attouch-Wets topology [5]. The sets Vk(f) defined in
equation (14) are not, however, typically convex in the sense that if g, h ∈ Vk(f) then we cannot
deduce that lα, defined by lα(θ) = αg(θ) + (1− α)h(θ) for all θ ∈ R and for every α ∈ (0, 1), is
in Vk(f). As a counter example, graphically illustrated in Figure 1, consider V2(g) where, for
any β > 2,

g(θ) =

{
0 if θ = 0,

∞ if θ 6= 0,
h(θ) =

{
1− βθ if θ ∈ [0, 1/β],

∞ if θ /∈ [0, 1/β],
and thus l1/2(θ) =

{
1/2 if θ = 0,

∞ if θ 6= 0,

so that

sup
x∈B2

|d(x, epi(g))− d(x, epi(h))| = 1/β, but sup
x∈B2

|d(x, epi(g))− d(x, epi(l1/2))| = 1/2,

so that g, h ∈ V2(g), but l1/2 /∈ V2(g).

Although the base {Vk(f)} is not convex, it will suffice for our initial elimination of impossible
MGF estimates. For the core result, we introduce a new base that is convex where it matters;
that is, at functions that could appear as limits of MGF estimates.

As convergence in τAW does not imply point-wise convergence [5], even though Mn(0) = 1 for
all n it is possible that Mn(0) converges to a value less than 1 in τAW. As a direct example,
consider the following sequence:

fn(θ) =

{
nθ + 1 if |θ| ≤ 1/n,

+∞ if |θ| > 1/n.

Point-wise we have that fn(0) converges to 1, but epi(fn) converges in τAW to the epigraph of
the function that is 0 at 0 and +∞ elsewhere. This is illustrated in Figure 2 and occurs as the
topology of point-wise convergence is neither stronger nor weaker than τAW [5].

As a result, we must include in our considerations functions for which f(0) < 1, but it is not
always the case that a local convex base exists for these functions. To see this consider f
satisfying f(0) < 1 and f(θ) =∞ for θ 6= 0. Assume Ck(f) forms a local convex base for f , and
consider k so that Ck(f) does not contain the function g satisfying g(0) = 1 and g(θ) =∞ for
θ 6= 0. Then take two functions in Ck(f), one infinite on the right half-plane, and one infinite
on the left half-plane; any non-trivial convex combination of them will equal g.

Similarly, when constructing the convex base we must rely on functions that satisfy f(0) > 1,
which is why we included them in X ′M . Despite these issues, the following result shows directly
that the rate function evaluated at these functions is +∞.
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Figure 1: The usual local base for τAW is not convex. For β = 3 and with the functions defined
in the text, this is illustrated here for V2(g), where g (green) and h (red) are in V2(g), but their
linear combination l1/2 (blue) is not.

Proposition 4.2 (Functions with infinite rate). For any f ∈ X ′M such that f(0) 6= 1,

inf
G3f

m(G) = −∞.

Proof. See Section 8.

For the function satisfying f(0) = 1 and f(x) =∞ for x 6= 0, we rely on the idea tha Vk(f)∩XB
is convex to prove subadditivity. For the general class of functions satisfying f(0) = 1 and finite
on a non-empty open interval, we can construct a local convex base {Ak(f)} such that

m(Ak(f)) = m(Ak(f)). (15)

This will enable us to deduce the weak [8] (or vague [33]) LDP from which the LDP follows by
Proposition 4.5.

The idea for the base Ak(f) is to consider a small vertical shift of f , decrease its effective domain
slightly and then intersect an element of the non-convex base defined in equation (14) around
this new function with all the functions whose epigraph strictly contains the resulting curtailed
function’s epigraph. We begin this process by defining the shifted and curtailed functions {f ]k}
from which the base will be built.

Definition 4.1. For each f ∈ X ′M such that f(0) = 1 and Df 6= {0}, and for each k ∈ N, let

ηf,l,k = inf{θ : (θ, f(θ)) ∈ B2k+2} and ηf,r,k = sup{θ : (θ, f(θ)) ∈ B2k+2}. (16)

Let 0 < ε < min{ηf,r,k,−ηf,l,k} be such that

d((α, f(α)), (β, f(β))) <
1

2k
for all α, β ∈ [ηf,l,k, ηf,l,k + ε] (17)

and d((α, f(α)), (β, f(β))) <
1

2k
for all α, β ∈ [ηf,r,k − ε, ηf,r,k]. (18)
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Figure 2: f1 in red, f5 in blue, and f in green.

Then we define f ]k by

f ]k(θ) =

f(θ) +
1

2k
if θ ∈ [ηf,l,k + ε, ηf,r,k − ε]

+∞ otherwise.

This curtailing process is illustrated in Figure 3.

Figure 3: Illustration of the curtailing of f(x) = x2 +1 (red) to f ]7 (blue), whose shrunk domain

is ηf,r,7 =
√

15 = −ηf,l,7. Both the ε curtailment and the 1/2k vertical shift of f ]7 are exaggerated
for illustrative purposes.

Using these shifted functions, we construct a collection of sets that we shall prove form a local,
convex base at f . In order to do so, we require the following piece of notation.

Definition 4.2. For each f ∈ X ′M such that f(0) = 1 and Df 6= {0}, define

θf,l = inf Df and θf,r = supDf .

For two functions f and g, we write g ≪ f if θg,l < θf,l, θf,r < θg,r, and g(θ) < f(θ) for all
θ ∈ [θf,l, θf,r].
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Notice that equivalently we can say that g ≪ f if epi(f) ⊂ epi(g), θf,l and θf,r are finite and

inf
x∈∂epi(f),y∈∂epi(g)

d(x, y) > 0,

where ∂ denotes the boundary of a set, which is the property that motivates this definition.

Figure 4: f , g and h in red, purple and green respectively. h≪ f , but g ≪/ f , as θg,l = θf,l.

Definition 4.3. For each f such that f(0) = 1 and Df 6= {0} and each k ∈ N, define the set

Ak(f) = Vk(f
]
k) ∩W (f ]k),

where Vk is defined in equation (14) and W (f ]k) = {g : g ≪ f ]k}.

Proposition 4.3 (Local convex base). For each f such that f(0) = 1 and Df 6= {0}, {Ak(f)}
forms a local convex base at f .

Proof. See Section 8.

4.3 Coincidence of the deviation functions, exponential tightness and the
LDP

Using the new base, we can prove the following result, following the super-additivity method of
Ruelle and Lanford, to establish Cramér’s Theorem.

Proposition 4.4 (Super-additivity). If f is such that f(0) = 1 and Df 6= {0} then for each
k ∈ N,

m(Ak(f)) = m(Ak(f)).

That is, equation (15) holds. If f(0) = 1 and f(θ) = +∞ for θ 6= 0,

m(Vk(f)) = m(Vk(f)).

Proof. See Section 8.

In our setting, exponential tightness for {Mn} will prove to be near automatic due to the
following proposition.

Proposition 4.5 (Compactness). The set {f ∈ X ′M : f(0) ≤ 1} is compact.
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Proof. See Section 8.

As P (Mn(0) > 1) = 0, exponential tightness is immediate.

A combination of these results leads us to the LDP for {Mn}, albeit without a good character-
ization of the rate function.

Theorem 4.1 (LDP for MGF estimators). The sequence of empirical MGF estimates, {Mn},
satisfies the LDP in XM = XB ∩ {f : f(0) = 1} ⊆ X ′M equipped with τAW and rate function
IM : XM 7→ [0,∞],

IM (f) = − inf
k
m(Ak(f)) = − inf

k
m(Ak(f)).

Proof. See Section 8.

Although as yet we do not have a good characterisation of IM , from this result proving the
LDP for the MLEs of the MGF as random functions in the Attouch-Wets topology, we can
establish the LDP for the CGF estimates and the rate function estimates via somewhat involved
applications of the contraction principle. We use the contraction principle with the map L
defined in (9) to prove the LDP for the CGF estimators, {Λn}.

Lemma 4.1 (Continuity of L). The functional L, defined in (9) is continuous.

Proof. See Section 8.

Using this continuity, we are in a position to prove the result for the CGF estimates.

Theorem 4.2 (LDP for CGF estimators). The sequence of empirical cumulant generating
function estimators, {Λn}, satisfies the LDP in XΛ equipped with τAW and rate function

IΛ(f) = IM (L−1(f)) = {IM (g) : g(θ) = exp(f(θ)) for all θ ∈ R} .

Proof. See Section 8.

Similarly, we can prove the LDP for the Jarzynksy estimators, {Jn} by first establishing the
continuity of the map J defined in (10).

Lemma 4.2 (Continuity of J ). The functional J , defined in (10) is continuous.

Proof. See Section 8.

Theorem 4.3 (LDP for Jarzynski estimators). The sequence of empirical Jarzynski estimators,
{Jn}, satisfies the LDP in XJ equipped with τAW and rate function

IJ(f) = IM (L−1(J −1)(f)) = {IM (g) : g(θ) = exp(θf(θ)) for all θ 6= 0, g(0) = 1}.

Proof. See Section 8.

Having established the LDP for the CGF estimates in Theorem 4.2, the rate function estimator
result follows from another application of the contraction principle in conjunction with the
continuity of the Legendre-Fenchel transform defined in equation (11). Considering LF : XΛ 7→
XI , the map LF is a homeomorphism [4, 5] and, indeed, this is in part what leads us to
this topology in order to establish these results; it correctly captures smoothness in convex
conjugation.
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Theorem 4.4 (LDP for rate function estimators). The sequence of empirical rate function
estimators, {In}, satisfies the LDP in XI equipped with τAW and rate function

II(f) = IM (L−1(LF−1(f))) =

{
IM (g) : g(θ) = exp

(
sup
x∈R

(xθ − f(x))

)
for all θ ∈ R

}
.

Proof. See Section 8.

5 Characterizing the Rate Function

The super-additivity approach does not directly provide a useful form for the resulting rate
functions governing the LDPs. As L and LF are injective, to characterise II and IΛ it suffices
to characterise IM . Based on the appearance of relative entropy in the more restricted results
in [12], one anticipates it has a role to play here.

The approach we take to create a useful characterization relies heavily on continuity and inverse
continuity of mappings from subsets of the set of MGFs to measures on R. This reliance on
continuity suggests that there may be some version of the contraction principle that could be
applied directly to prove the LDP. However, since the mapping from XM to M(R) is not well-
defined (consider the function finite only at 0), and the inverse mapping is not surjective (there
are functions in the effective domain of IM that are not mapped to by any measure) this seems
unlikely.

Garcia’s extension of the contraction principle, [22][Theorem 1.1], almost suffices if we consider
Sanov’s Theorem for empirical measures in the weak toplogy [8] and the map taking measures
to their MGFs. However, due to the possible unboundedness of the support of those measures,
that map is not continuous for any x ∈M(R) and in any case IM will turn out not to coincide
with the rate function given in [22]; if f mimics fν , we may get IM (f) = ∞ even though, if it
were possible, an application of the contraction principle would give a finite value. Moreover,
there are conditions independent of the continuity that characterise IM , so it appears that an
alternate approach is necessary.

Propositions 5.1, 5.2 and 5.3, which follow, together provide the characterization in Theorem
3.1.

5.1 Convexity of IM

In the process of proving that IM is convex, we must establish that {(f, g) : (f + g)/2 ∈ G} ⊂
XM×XM is an open set in the product topology for each open G ∈ XM . That is, that averaging
is a continuous operation in XM . The proof of this result indicates why convex combinations
are not a continuous operation in X ′M , hence the need to restrict our LDP to XM in Theorem
4.1. As an example, consider fn(θ) = 1 + θn and gn(θ) = 1 − nθ for |θ| ≤ 1/n and infinite
otherwise, converging to f and g finite only at 0, where they both equal 0. (fn + gn)/2 is equal
to 1 on [−1/n, 1/n] and infinite otherwise, so that it converges to (f + g)/2 + 1, not (f + g)/2.

We establish global convexity of IM by creating an argument along the lines of [8][Lemma
4.1.21]. The conditions of that Lemma as stated do not hold here as XM is not a topological
vector space: we do not have additive inverses, closure under scalar multiplication or addition,
and nor is there a zero element. The proof of [8][Lemma 4.1.21], however, relies only on two
deductive conclusions of those hypotheses, which we establish directly in Section 8.

Proposition 5.1 (Convexity of IM ). The MGF rate function, IM , is convex on its entire
domain.
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Proof. See Section 8.

5.2 Characterizing IM for MGFs

Proposition 5.2 (IM (f) for f an MGF). For all moment generating functions fν finite on a
non-empty open interval,

IM (fν) = H(ν|µ).

Moreover, for f ∈ XM finite only at 0,

IM (f) ≤ inf
ν:f=fν

H(ν|µ).

Proof. See Section 8.

This result is proved by three smaller results, the first two of which rely on continuity or inverse
continuity of the ν 7→ fν operation when restricted to certain subsets of M(R) or XM . First,
for any moment generating function fν finite on a non-empty open interval, IM (fν) ≥ H(ν|µ).
Second, for any fν ∈ XB, IM (fν) ≤ H(ν|µ). Finally, for any moment generating function fν ,
IM (fν) ≤ inf{ν:f=fν}H(ν|µ). For any MGFs f finite on a non-empty open interval, f = fν
for exactly one measure ν, giving us IM (fν) = H(ν|µ). For f finite only at 0, more work is
required.

5.3 Characterizing IM for the MGF finite only at 0 and for non-MGFs

In short, we prove the following result, contained in Theorem 3.1.

Proposition 5.3 (IM (f) for f mimicking a MGF).

(a) For f satisfying f(0) = 1 and f(θ) =∞ otherwise,

IM (f) = inf
{ν:f=fν}

H(ν|µ).

(b) For any f ∈ D[α,β] that is not a MGF but instead mimics the MGF fν ,

IM (f) = IM (fν) + inf
{g∈D[α,β],g a MGF}

IM (g)

=

{
IM (fν) if IM (g) <∞ for some g ∈ D[α,β], g a MGF

∞ otherwise.

Proof. Proposition 5.3 will follow from Lemmas 5.1 and 5.2 below; see Section 8.

Part (a) is, perhaps, to be expected in light of earlier results. The first equality in part (b)
appears less useful than the second, but it gives more insight into the reason that the rate
function takes the form that it does. It may seem surprising that functions in XM that are not
MGFs lie in the effective domain of IM , but this is the case.

We begin with a condition for when a function f ∈ D[α,β] that is not moment generating function
is in the effective domain of IM , i.e. that any moment generating function in D[α,β] is in the
effective domain of IM , along with the moment generating function that f is mimicking.
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Lemma 5.1 (Characterizations for f not a MGF). We have the following characterizations.

1. For f satisfying f(0) = 1 and f(θ) =∞ for θ 6= 0, IM (f) ∈ {0,∞}.

2. If IM (g) < ∞ for some function g ∈ D[α,β], [α, β] 6= [0, 0], then IM (f) ≤ IM (fν) for
f ∈ D[α,β] mimicking fν .

3. If f ∈ D[α,β] mimics fν for some [α, β] 6= [0, 0] then IM (f) ∈ {IM (fν),∞}.

Proof. See Section 8.

Combining statements 2 and 3 gives us that if fν , f and g satisfy IM (fν), IM (g) < ∞, g, f ∈
D[α,β], and f mimics fν , then IM (f) < ∞. Establishing conditions for when IM (f) = ∞ is
quite involved and to do so we prove the following.

Lemma 5.2 (Five equivalences). The following are equivalent for all pairs (α, β) ∈ [−∞, 0]×
[0,∞]:

1. The random walk associated with eγX1, where the distribution of X1 corresponds to the
measure µ, satisfies Cramér’s Theorem for some γ 6∈ [α, β],

2. IM (f) =∞ for all f ∈ D⊂[α,β],

3. H(ν|µ) =∞ for all ν with fν ∈ D⊂[α,β],

4. H(ν|µ) =∞ for all ν with fν ∈ D[α,β],

5. IM (f) =∞ for all f ∈ D[α,β].

Proof. See Section 8.

Note that in light of Proposition 5.2, when [α, β] 6= [0, 0], (2) and (4) can be restated as
IM (fν) = ∞ for all f ∈ D⊂[α,β] and fν ∈ D[α,β] respectively. Therefore (4) ⇒ (5) implies that

IM (f) = ∞ for all f ∈ D[α,β] if IM (f) = ∞ for all MGFs in D[α,β], giving us a sufficient
condition for when IM (f) =∞ for f ∈ D[α,β], f not a MGF.

Some of these statements may not be of interest in their own right. The condition (1) is
included mainly as an aid to establishing the other equivalences. Indeed, in light of Proposition
5.2 we only need (4)⇒ (5) to prove Proposition 5.3. However, it will be seen in Section 6 that
(1) ⇒ (4) is useful for characterising IM for specific distributions. The relation (5) ⇒ (1) is
also of interest, as it gives us the following corollary. Although it will not be used to prove any
of the main results, it is useful in practical characterisations of IM for specific distributions µ,
as seen is Section 6.

Corollary 5.1 (To lemma 5.2). Under the assumptions of the Theorem 3.1,

1. There exist α0 ∈ [−∞, 0], β0 ∈ [0,∞] such that f ∈ D[α,β] mimicking fν with IM (fν) <∞
satisfies IM (f) = IM (fν) if [α0, β0] ⊂ [α, β], otherwise IM (f) =∞.

2. For any f ∈ XM , IM (f) <∞⇒ Df ⊃ [α0, β0].

3. For f ∈ XM finite only at 0, IM (f) = 0 if and only if α0 = β0 = 0.

Proof. See Section 8.
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The first statement entirely characterises IM for functions f mimicking fν , saying that if the
closure of the effective domain of f contains some interval then IM (f) = IM (fν), otherwise
IM (f) =∞. It also tells us that IM has a unique zero if and only if [α0, β0] 3 Dfµ . The second
states that this same interval must be in the closure of the effective domain of any function g
such that IM (g) < ∞, giving a necessary condition for functions to be in the effective domain
of IM .

5.4 Proving the main results

Equipped with these results we are now able to prove Proposition 5.3. Using Propositions 5.2
and 5.3 and Theorem 4.1, as well as Theorems 4.2, 4.3 and 4.4 we can prove Theorem 3.1,
from which Corollary 3.1 follows. The proofs appear subsequently in Section 8. Theorem 3.2 is
established in Section 7.

6 Examples

As summarised in Theorem 3.1, IM (fν) = H(ν|µ) for all MGFs, fν , finite on a non-empty open
interval, while IM (f) =∞ if f ∈ XM is neither a MGF nor mimics one. The question remains
as to the value of IM (f) for f mimicking a moment generating function, fν , and for the special
function

f(θ) =

{
1 if θ = 0

∞ otherwise.

This issue is reduced to that of finding α0 and β0 defined in Corollary 5.1.

The following table gives the values of α0 and β0 in a variety of contexts. The calculations are
straight forward and are not shown. They can be evaluated by considering for what values of γ
does eγX1 have a MGF finite in a neighbourhood of the origin, giving upper and lower bounds
for both α0 and β0 respectively, and by showing for what values of α and β Lemma 5.2 (4) does
not hold, implying that Lemma 5.2 (1) does not hold and hence giving lower and upper bounds
for α0 and β0 respectively.

Distribution α0 β0

µ compactly supported −∞ ∞
µ ∼ Normal(η, σ2) 0 0

µ(dx) ∝ e−eλxdx for x > 0, λ > 0 −∞ λ

µ(dx) ∝ e−ex
λ

dx for x > 0, λ > 1 −∞ ∞

For µ compactly supported, α0 = −∞ and β0 =∞ so that IM is finite only at MGFs, recovering
[12][Theorem 1]. As the value of β0 depends only on the right tail, and a heavier right tail in µ
implies a smaller or equal β0, and similar for left tails and α0, the values of α0, β0 can be gleaned
for many other distributions using the results above. For example, if µ ∼ Exp(λ) then its left
tail behaves like a bounded random variable and so α0 = −∞, and its right tail is heavier than
that of a Normal random variable, and so β0 = 0. The final two distributions serve as examples
of unbounded distributions for which β0 ∈ (0,∞]. Similar constructions yield α0 ∈ [−∞, 0) and
so using a combination of these distributions with others, any pair (α0, β0) is attained by some
distribution µ.
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7 Estimating Loynes’ Exponent

7.1 A LDP for {δn}

Consider Loynes’ exponent, (4):

δ = sup{θ : Λ(θ) ≤ 0} = sup{θ : M(θ) ≤ 1} ∈ [0,∞].

If we decide to estimate Loynes’ exponent, we might do so using Mn in the following way:

δn = sup{θ : Mn(θ) ≤ 1}.

Although this mapping from XM to [0,∞] is not continuous (consider the sequence of MGFs
fn(θ) = eθ/n), we can still use the LDP of {Mn} to construct a LDP for {δn} with rate function
Iδ using Garcia’s extension of the contraction principle [22]. Assuming P (X1 ∈ (−r, r)) = 0 for
some r > 0, as in [14], makes proof immediate by an application of Puhalskii’s extension of the
contraction principle [40][Theorem 2.2]. Here we will deal with the general case. Throughout
this section that that P (X1 > 0), P (X1 < 0) ∈ (0, 1), as otherwise proof of an LDP and
characterization of the rate function is trivially equal to that in Theorem 3.2. We also let x be
the argument of the functions in XM so as not to confuse δ and δn with θ.

The LDP for Loynes’ exponent is proved directly using Garcia’s extension of the contraction
principle [22], the relevant part of which is recapitulated below.

Theorem 7.1 (Garcia [22], Theorem 1). Assume Ω
Xn−−→ X G−→ Y, X , Y are metric spaces,

and {Xn} satisfies the large deviation principle with good rate function I#. Define Gx = {y ∈
Y|( ∃ xn → x)G(xn)→ y)}. If for every x with I#(x) <∞, Gx satisfies

1. Every sequence converging to x has a subsequence along which the function G converges.

2. For every y ∈ Gx there is a sequence {xn} converging to x such that G(xn) → y, G is
continuous at xn and I#(xn)→ I#(x).

Then {G(Xn)} satisfies the large deviation principle with good rate function I defined by

I(y) = inf{I#(x) : y ∈ Gx}.

Here, G is the Loynes’ exponent mapping, X = XM and Y = [0,∞]. With this result we are
ready to prove Theorem 3.2; see Section 8.

Note in the statement of Theorem 3.2 that Cx is closed (and therefore compact in X ′M ) for all
x ∈ [0,∞]. Indeed, for each x ∈ [0,∞], Cx is the closure of the set {f : sup{y : f(y) ≤ 1} = x},
inverse image of x under the Loynes’ exponent mapping. For x = ∞ this set is closed, but in
general Cx = {f : sup{y : f(y) ≤ 1} = x} ∪ Aδ0 , where Aδ0 = {f : f(x) ∈ {1,∞} for all x},
the set containing the MGF of the Dirac measure δ0, and all functions mimicking it. This
characterisation of Cx is useful as it helps us to prove certain properties of Iδ.

7.2 Properties of Iδ

It should be noted that a weak law can be proven for {δn} without applying Theorem 3.2,
by showing that P (δn ∈ ·) is eventually concentrated on any set of the form [0, a) for any
a > δµ or (b,∞] for b < δµ, and deducing concentration on their intersection. Interestingly
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this is a necessary deduction, as the rate function Iδ may not have a unique zero. Consider the
Exp(λ1, λ2) distribution with λ1, λ2 > 0, defined by the measure

µ(dx) =


λ1

2
eλ1xdx x < 0

λ2

2
e−λ2xdx x ≥ 0.

This distribution has mean 1/2(1/λ2 − 1/λ1), and so δµ > 0 if λ2 > λ1. Also H(ν|µ) < ∞
for any ν ∼Exp(γ1, γ2), and fν is finite on (−γ1, γ2). So by Theorem 3.1(c) any f that mimics
fµ satisfies IM (f) = 0, and so Iδ(x) = 0 for all x < θµ. Note however, that we cannot have
Iδ(x) = 0 for x > θµ.

Lemma 7.1 (Positive on (δµ,∞]). Iδ(x) > 0 for all x > δµ.

Proof. See Section 8.

A necessary and sufficient condition for a unique zero is stated below.

Proposition 7.1 (Conditions for unique zero). Iδ(x) > 0 for x < θµ if and only if the random
walk associated with eyX1 satisfies the conditions of Crameŕ’s Theorem for some y > x. There-
fore Iδ has a unique zero if and only if the random walk associated with eyX1 obeys Cramér’s
Theorem for all y ∈ (0, δµ).

Proof. See Section 8.

Although the condition in Proposition 7.1 may seem strict, it is true for any distribution bounded
above.

Without too much analysis, we can prove a number of properties of Iδ.

Theorem 7.2 (Properties of Iδ).

(a) Iδ is increasing on [θµ,∞] and decreasing on [0, θµ],

(b) Iδ is finite everywhere and therefore bounded,

(c) For all x ∈ (θµ,∞), Iδ(x) = IM (f) for some f satisfying f(x) = 1,

(d) If y is the smallest value for which Iδ(y) = 0, and moreover y > 0 then Iδ is continuous at
all x 6= y. If y = 0 then Iδ is continuous everywhere.

Proof. See Section 8.

After considering the proof of Theorem 7.2(d) it should be clear that the methods involved
will not suffice to prove continuity at the smallest value of x for which Iδ(x) = 0 if x > 0,
as it is possible that Iδ(x) = IM (f) for some f satisfying f(x) < 1. In fact this is true if
x < θµ. However it is easy to prove continuity for this x if f(x) = 1 or if there exists some
g ∈ D[−∞,x] with g(x) = ∞ and IM (g) < ∞, as we can then use g instead of fµ+ in the proof
that limε↓0 Iδ(x − ε) ≤ Iδ(x), because although f(x − ε) 6→ 1, g(x − ε) → ∞ and so aε → 1,
as required. Whether or not there exists a µ such that Iδ is discontinuous at this point is not
considered further here.
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8 Proofs

8.1 Section 4

Proposition 4.1. Characterization of possible limits of MGFs in X ′M . Consider any f ∈
X ′M that is the limit of a sequence of MGFs {fn} ⊂ XB, with corresponding distribution func-
tions {Fn}. Since fn ∈ XB, each Fn is uniquely determined. An application of the Helly
Selection Principle tells us that if we have a sequence of distribution functions {Fn}, then a
subsequence of them converge point-wise to a function F . We can replace {Fn} with this con-
vergent subsequence and so replacing {fn} with the corresponding subsequence of MGFs, we
find they still converge to f . F can be seen to be monotonic increasing with codomain [0, 1],
and therefore can only have countably many discontinuities. Its upper semi-continuous regular-
isation [33], denoted F �, is therefore a distribution function when the sequence of probability
measures corresponding to Fn is tight, i.e. when supx∈R infn (Fn(x)− Fn(−x)) = 1. Since F
and F � only have a countable number of discontinuities they are equal almost everywhere with
respect to Lebesgue measure and so this, along with monotonicity, can be used to show that
they have the same limit as x→ ±∞.

Here we deal with three cases regarding the limit of the distribution functions, which are exhaus-
tive and completely characterise the possible limit functions F and f . Let a = limx→−∞ F (x)
and b = limx→∞ F (x). It suffices to prove the following. If

a > 0 and b < 1,

then f is of Type 1 or 2. If

a = 0 and b < 1, or a > 0 and b = 1,

then f is of Type 2. If

a = 0 and b = 1,

then f is of Type 1 or 3. The proof of this final statement generalises ideas presented in [29],
which does not deal with the case of moment generating functions that were not finite in a
neighbourhood of the origin.

In the first case, it holds that

for all ε > 0, x ∈ R there exists Nε, x such that Fn(x) < F (x) + ε ≤ b+ ε for all n > Nε, x.

Fix ε > 0, x ∈ R, θ > 0, and see that for n > Nε, x,

fn(θ) =

∫ x

−∞
eθydFn(y) +

∫ ∞
x

eθydFn(y) ≥
∫ ∞
x

eθydFn(y) ≥ eθx(1− Fn(x)) > eθx(1− (b+ ε)).

This is true for any x, so in particular we can increase x without bound and this is still true,
although it does change Nε, x. This gives us limn→∞ fn(θ) = ∞ as we can choose ε so that
1 − (b + ε) > 0. An analogous argument using a > 0 will give us the same result for θ < 0.
Thus the τAW limit of fn must also satisfy f(θ) = ∞ for θ 6= 0. It can be shown easily that
f(0) ≤ 1; assume that f(0) > 1. Then (0, 1) 6∈ epi(f), so that d((0, 1), epi(f)) = δ > 0. Then as
(0, 1) ∈ epi(fn) for all n, we can show that for ε < δ and any set B 3 (0, 1), (7) does not hold
for any n, so that we cannot have fn → f . Therefore f(0) ≤ 1; f is of Type 2 if f(0) < 1, and
of Type 1 if f(0) = 1.

For the second case, we can assume b < 1 and a = 0, as proving the other case is analogous. In
this case we still have f(θ) =∞ for θ > 0 using the arguments from the previous case. Assume
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that f(θ) < ∞ for some θ < 0, as otherwise we are back to the aforementioned case of the
function infinite everywhere but at 0. We have that

for all ε > 0, there exists xε such that F (xε) > b− ε,
for all ε > 0, there exists Nε such that Fn(xε) > F (xε)− ε for all n > Nε,

⇒ for all ε > 0, there exists xε, Nε such that Fn(xε) > b− 2ε for all n > Nε.

Similarly as before we have that

for all ε > 0, there exists Nε such that Fn(xε) < b+ ε for all n > Nε.

We can assume that xε → ∞ as ε → 0. Fixing ε > 0, and θ < 0 in the interior of Df , see that
for n > Nε where Nε fits both of the above conditions,

fn(θ) =

∫ xε

−∞
eθxdFn(x) +

∫ ∞
xε

eθxdFn(x) ≤
∫ xε

−∞
eθxdFn(x) + eθxε(1− Fn(xε))

<

∫ xε

−∞
eθxdFn(x) + eθxε(1− (b− 2ε)).

For each n, define X∗n by the distribution function F ∗n(x) = Fn(x)/Fn(xε) for x ≤ xε. Then
dFn(x) = Fn(xε)dF

∗
n(x) and

fn(θ) < Fn(xε)E(eθX
∗
n) + eθxε(1− (b− 2ε))

< (b+ ε)E(eθX
∗
n) + eθxε(1− (b− 2ε)).

It can similarly be shown that

fn(θ) ≥ Fn(xε)E(eθX
∗
n) > (b− 2ε)E(eθX

∗
n).

If we look at the point-wise limits of these functions, this gives us

(b− 2ε) lim sup
n→∞

E(eθX
∗
n) ≤ lim sup

n→∞
fn(θ) ≤ (b+ ε) lim sup

n→∞
E(eθX

∗
n) + eθxε(1− (b− 2ε))

⇒ b lim sup
ε→0

lim sup
n→∞

E(eθX
∗
n) ≤ lim sup

n→∞
fn(θ) ≤ b lim sup

ε→0
lim sup
n→∞

E(eθX
∗
n)

⇒ lim sup
n→∞

fn(θ) = b lim sup
ε→0

lim sup
n→∞

E(eθX
∗
n).

The τAW limit f and {fn} are convex and continuous on the interior of Df and {Dfn} respec-
tively, so the point-wise limit of fn(θ) exists and equals f(θ) on the interior of Df , which can
be shown by a minor modification of [5][Lemma 7.1.2]. Therefore we have

f(θ) = b lim sup
ε→0

lim sup
n→∞

E(eθX
∗
n).

As limit superiors of convex functions are convex, lim supε→0 lim supn→∞E(eθX
∗
n) is a non-

negative convex function for all θ ∈ R with value 1 at θ = 0 and finite on some interval in
(−∞, 0). Therefore we know that limθ↑0 lim supε→0 lim supn→∞E(eθX

∗
n) ≤ 1. So as f is lower

semi-continuous and convex,

f(0) = lim
θ↑0

f(θ) = b lim
θ↑0

lim sup
ε→0

lim sup
n→∞

E(eθX
∗
n) ≤ b,

so f is of Type 2.

In the third case the usc-regularisation of F , F � is a monotonic right-continuous function, also
with the above limits, and so is a distribution function. It is from this point that we follow the
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work in [29]. As again we need not consider the case of f finite only at 0, let f be finite for some
interval on the left of the origin. To be precise, let f be finite on (α, 0], but not on (−∞, α) (if
−∞ < α). We cannot apply [38][Theorem 2] as we cannot assume that f is a moment generating
function. We also cannot apply [29][Theorem 2(a)] because we cannot assume f is finite in a
neighbourhood of 0, but we do not need to. Instead, we show that if M(x) = supn Fn(x), that

lim
x→−∞

M(x)etx = 0 for all t ∈ (α, 0). (19)

Choose t and γ so that α < γ < t < 0, and see that for x < 0,

Fn(x) =

∫ x

−∞
dFn(u) ≤

∫ x

−∞
eγ(u−x)dFn(u) ≤ e−xγfn(γ),

⇒M(x)etx ≤ ex(t−γ) sup
n
fn(γ).

As γ is in the interior of Df , {fn(γ)} converges and is finite for all n, so the supremum over n
is finite, and taking the limit as x→ −∞ reduces the above expression to 0, as t− γ > 0. Now
let θ and γ be such that α < γ < θ < 0, and let Mγ = supx<0M(x)eγx. By the above we have
shown that Mγ is finite. Using integration by parts, and assuming −N is a continuity point of
Fn, we see that∫ −N

−∞
exθdFn(x) = exθFn(x)|−N−∞ − θ

∫ −N
−∞

exθFn(x)dx

≤M(−N)e−Nθ − 0− θ
∫ −N
−∞

ex(θ−γ)eγxM(x)dx

≤M(−N)e−Nθ − θ
∫ −N
−∞

ex(θ−γ)Mγdx

= M(−N)e−Nθ −Mγ
θ

θ − γ
e−N(θ−γ).

By (19), we can make this expression as small as we want for large enough N . Also, as F also
satisfies F (x) ≤M(x), we can do the same if we replace dFn with dF . Moreover, as F and F �

only disagree on at most countably many points, we can choose a large N (specifically so that
−N is a point of continuity of F and F �) so that integrating with respect to dF is equivalent
to integrating with respect to dF �. Finally, as Fn → F point-wise and therefore to F � weakly,
−N is a point of continuity of F and F �, and eθx is bounded on x ∈ [−N,∞) we have∫ ∞

−N
eθxdFn(x)→

∫ ∞
−N

eθxdF (x) =

∫ ∞
−N

eθxdF �(x)

point-wise for each θ ∈ (γ, 0). Combining this with the above result for the integral from −∞
to −N gives us that fn(θ) → fν(θ) point-wise on (γ, 0), where fν is the MGF corresponding
to F �. But we can make γ as close to α as we want, so we have point-wise convergence on
(α, 0). As discussed before τAW convergence implies that fn → f pointwise on (α, 0), so that
f(θ) = fν(θ) for θ ∈ (α, 0). Moreover as f and fν are convex and lower-semicontinuous,
f(0) = limθ↑0 f(θ) = limθ↑0 fν(θ) = 1 and f(α) = limθ↓α f(θ) = limθ↓α fν(θ) = fν(α) if α is
finite, even if fν(α) = ∞. If f was finite on [0, β) but not on (β,∞) we could similarly show
that f(θ) = fν(θ) for θ ∈ [0, β], and so in general f(θ) = fν(θ) for all θ ∈ Df . If Df = Dfν then
f = fν and f is a moment generating function, and so is of Type 1. Otherwise f mimics fν and
so is of Type 3.
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Proposition 4.2. Functions with infinite rate. If we define XINT to be the space of all
moment generating functions finite on some open interval, equipped with the subspace topology,
andM(R) to be the space of probability measures on R equipped with the weak topology, then
the mapping from XINT into the space of probability measures, Φ : XINT → M(R), is well
defined, as seen in [38][Theorem 2]. Let Gm be a descending countable base containing f , and
let Φ(Gm ∩ XB) = Am. Let Ln be the empirical measure of {Xi}ni=1, and see that

inf
G3f

m(G) = lim
m→∞

lim sup
n→∞

1

n
logP (Mn ∈ Gm)

= lim
m→∞

lim sup
n→∞

1

n
logP (Mn ∈ Gm ∩ XB)

= lim
m→∞

lim sup
n→∞

1

n
logP (Ln ∈ Am)

≤ − lim
m→∞

inf
ν∈Am

H(ν|µ)

= − inf
ν∈C

H(ν|µ)

where C = ∩∞m=1Am. The last line follows from [8] [Lemma 4.1.6 (b)]. Let ν ∈ C. As M(R) is
metrizable, let Um be a descending countable base for ν, and for each m let {νm,n}∞n=1 ⊂ Am
be a sequence satisfying νm,n → ν as n → ∞. If Nm is such that for n ≥ Nm, νm,n ∈ Um, and
if ν∗m = νm,Nm , ν∗m ∈ Am and ν∗m ∈ Um, so that ν∗m → ν. For each ν∗m there is a corresponding
f∗m ∈ Gm, and so f∗m → f . If f(0) < 1 and f∗m → f , then by the proof of Proposition 4.1
a subsequence of their corresponding distribution functions tends to a function that is not a
distribution function, and so their measures do not converge. By contradiction, it must follow
that C is empty, and so infG3f m(G) = −∞.

Proposition 4.3. Local convex base. In order to establish Proposition 4.3, it suffices to
demonstrate:

1. For each f such that f(0) = 1 and Df 6= {0} and each k ∈ N, f ∈ Ak(f).

2. For each f such that f(0) = 1 and Df 6= {0} and each k ∈ N, Ak(f) is open.

3. For each f such that f(0) = 1 and Df 6= {0} and each k ∈ N, Ak(f) is convex.

4. For each f such that f(0) = 1 and Df 6= {0} and each k ∈ N, A2k(f) ⊂ Vk(f).

As our construction of W (f ]k) is based on nested epigraphs, the following estimate, readily
deducible from [5][Lemma 1.5.1], will prove useful. As epi(f ]) ⊂ epi(f),

sup
x∈Bk

|d(x, epi(f ]))− d(x, epi(f))| = sup
x∈Bk

d(x, epi(f ]) ∩B2k+2)− d(x, epi(f) ∩B2k+2)

≤ ed(epi(f) ∩B2k+2, epi(f ]) ∩B2k+2)

= sup
x∈epi(f)∩B2k+2

d(x, epi(f ]) ∩B2k+2), (20)

where ed(A,B) is the excess between two sets A and B. The first equality comes from the
fact that x ∈ Bk and (0, 2) ∈ epi(f ]), so that d(x, epi(f ])) = d(x, (a, b)) ≤ d(x, (0, 2)) for some
(a, b) ∈ epi(f ]), and so (a, b) ∈ B2k+2. The same is true for f . Also, as epi(f ]) ⊂ epi(f),
d(x, epi(f ])) ≥ d(x, epi(f)) for all x ∈ R2, which justifies the removal of the absolute value.

For item 1, by construction, θf,l < θ
f]k,l

< θ
f]k,r

< θf,r and f(θ) < f ]k(θ) for all θ ∈ [θ
f]k,l
, θ
f]k,r

]

so that f ≪ f ]k and thus f ∈ W (f ]k) for all k. It remains to show that f is also an element of
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Vk(f
]
k). From equation (20) it suffices to prove that

ed(epi(f) ∩B2k+2, epi(f ]k) ∩B2k+2) < 1/k, (21)

which will follow from the construction of f ]k. It suffices to consider x = (θ, f(θ)) for θ ∈
[−2k−2, 2k+2]. If θ ∈ [θ

f]k,l
, θ
f]k,r

], d(x, epi(f ]k)) ≤ 1/(2k). If θ ∈ [ηf,l,k, θf]k,l
] or θ ∈ [θ

f]k,r
, ηf,r,k],

defined in equation (16), more care is needed. Consider the former and note that by the triangle
inequality

d((θ, f(θ)), epi(f ]k)) ≤ d
(

(θ, f(θ)),
(
θ
f]k,l
, f(θ

f]k,l
)
))

+ d
((
θ
f]k,l
, f(θ

f]k,l
)
)
, epi(f ]k)

)
.

By equation (18), the first term is less than 1/(2k) and, as above, the second term is less than
or equal to 1/(2k) so that equation (21) is ensured and f ∈ Ak(f).

For item 2, the set Vk(f
]
k) is open as it is an element of a local base for f ]k, so it suffices to show

that W (f ]k) is open. For ease of notation, we shall show that W (f) is open for any f such that
−∞ < θf,l < θf,r < ∞. To do this, let g ∈ W (f). We shall construct a set Vk(g) such that
Vk(g) ⊂W (f).

As g ≪ f and g is convex, g is continuous on [θf,l, θf,r] so that f − g is lower semi-continuous
on this range and therefore its infimum is attained and positive:

δ = inf
θ∈[θf,l,θf,r]

(f(θ)− g(θ)) > 0.

Let

0 < ε < min

(
θf,l − θg,l, θg,r − θf,r,

δ

2
, 1

)
be such that

max (g(θf,l − ε)− g(θf,l), g(θf,r + ε)− g(θf,r)) <
δ

2
.

By convexity, the second condition ensures that g(θ ± ε) − g(θ) < δ/2 for any θ ∈ [θf,l, θf,r].
Now choose k ∈ N so that

(θ, g(θ)) ∈ Bk, for all θ ∈ [θf,l − ε, θf,r + ε], and
1

k
< ε.

Thus for any h ∈ Vk(g),

sup
x∈Bk

|d(x, epi(g))− d(x, epi(h))| < 1

k
and so sup

θ∈[θf,l−ε,θf,r+ε]
d((θ, g(θ)), epi(h)) < ε.

So, for any θ ∈ [θf,l − ε, θf,r + ε] there exists (xθ, yθ) ∈ epi(h) such that

max(|θ − xθ|, |g(θ)− yθ|) < ε. (22)

In particular, consider θ = θf,l−ε, then xθ < θf,l−ε+ε = θf,l and h(xθ) ≤ yθ < g(θf,l−ε)+ε <∞
and so θh,l < θf,l. It can similarly be shown that θh,r > θf,r.

To show that h ≪ f , it remains to be proven that for any θ ∈ [θf,l, θf,r], that h(θ) < f(θ).
This will follow from convexity of g and h. Consider such a θ, then by equation (22) at θ ± ε,
since xθ−ε ≤ θ ≤ xθ+ε we have that

h(θ) ≤ max(h(xθ−ε), h(xθ+ε)) < max(g(θ − ε), g(θ + ε)) + ε <

(
g(θ) +

δ

2

)
+
δ

2
≤ f(θ).

So if h ∈ Vk(g), then h ∈W (f) and thus W (f) is open as required.
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For item 3, assume g, h ∈ Ak(f), let α ∈ [0, 1] and let lα(θ) = αg(θ) + (1− α)h(θ) for all θ. We

wish to show that lα ∈ Ak(f). lα ∈ W (f ]k) as lα(θ) ≤ max{g(θ), h(θ)} for all θ and therefore

lα ≪ f ]k.

We must show that lα ∈ Vk(f ]k). Note that for any x, d(x, epi(lα)) ≥ min{d(x, epi(g)), d(x, epi(h))}
as epi(lα) ⊂ epi(g) ∪ epi(h). Thus as lα, g, h ∈W (f ]k), we have that

|d(x, epi(f ]k))− d(x, epi(lα))| = d(x, epi(f ]k))− d(x, epi(lα))

≤ d(x, epi(f ]k))−min{d(x, epi(g)), d(x, epi(h))}

= max{|d(x, epi(f ]k))− d(x, epi(h))|, |d(x, epi(f ]k))− d(x, epi(g))|}.

Taking the supremum over all x ∈ Bk, as g, h ∈ Vk(f ]k) the right hand side is less 1/k and so

lα ∈ Vk(f ]k).

Finally, for item 4, we have that A2k(f) = V2k(f
]
2k) ∩W (f ]2k) ⊂ V2k(f

]
2k) so that it suffices to

show that V2k(f
]
2k) ⊂ Vk(f). Let g ∈ V2k(f

]
2k) and, using the triangle inequality, consider

sup
x∈Bk

|d(x, epi(f))− d(x, epi(g))|

≤ sup
x∈B2k

|d(x, epi(f))− d(x, epi(g))|

≤ sup
x∈B2k

|d(x, epi(f))− d(x, epi(f ]2k))|+ sup
x∈B2k

|d(x, epi(f ]2k))− d(x, epi(g))|

<
1

2k
+

1

2k
=

1

k
,

and so g ∈ Vk(f) as required.

Proposition 4.4. Super-additivity. For each m > n, define the partial estimates

Mn+1,m(θ) =
1

m− n

m∑
i=n+1

exp(θXi)

and note that, for all θ ∈ R, M1,n+m is a convex combination of M1,n and Mn+1,n+m:

M1,n+m(θ) =
n

n+m
M1,n(θ) +

m

n+m
Mn+1,n+m(θ).

Assume f is such that f(0) = 1 and Df 6= {0}, and consider fixed Ak(f). By the convexity of
Ak(f) proved in Proposition 4.3, we have that if M1,n ∈ Ak(f) and Mn+1,n+m ∈ Ak(f), then
M1,n+m ∈ Ak(f), so that, by independence and identical distribution of increments,

P (M1,n+m ∈ Ak(f)) ≥ P (M1,n ∈ Ak(f),Mn+1,n+m ∈ Ak(f))

= P (M1,n ∈ Ak(f))P (Mn+1,n+m ∈ Ak(f))

= P (M1,n ∈ Ak(f))P (M1,m ∈ Ak(f)).

Thus the sequence {logP (Mn ∈ Ak(f))} is super-additive and we have existence of the limit

lim
n→∞

1

n
logP (Mn ∈ Ak(f)) = sup

n

(
1

n
logP (Mn ∈ Ak(f))

)
,

as required.

If f(0) = 1 and f(θ) = +∞, then we cannot use Proposition 4.3, but for this specific function
we can show that Vk(f) ∩ XB is convex in much the same way that we showed that Ak(f)
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is in Proposition 4.3 so that the result follows as above. See that if g, h ∈ Vk(f) ∩ XB then
lα = αg + (1 − α)h ∈ XB. Also, as they all take the value 1 at the origin, we have that
epi(f) ⊂ epi(g), epi(h), epi(lα), so

|d(x, epi(f))− d(x, epi(lα))| = d(x, epi(f))− d(x, epi(lα))

≤ d(x, epi(f))−min{d(x, epi(g)), d(x, epi(h))}
= max (d(x, epi(f))− d(x, epi(h))|, |d(x, epi(f))− d(x, epi(g))|) .

Again, by taking the supremum over all x ∈ Bk we can show that lα ∈ Vk(f), so that Vk(f)∩XB
is convex. As P[Mn ∈ Vk(f)] = P[Mn ∈ Vk(f) ∈ XB] it follows as for Ak(f) that

lim
n→∞

1

n
logP (Mn ∈ Vk(f)) = sup

n

(
1

n
logP (Mn ∈ Vk(f))

)
.

Proposition 4.5. Compactness. The collection of all closed sets in R2 equipped with τAW

is compact. This can be deduced as a result of [5][Theorem 5.13], which proves that the space
is compact when equipped with the Fell topology, and [5][Exercise 10(b), pg 144], which shows
the Attouch-Wets and Fell topologies coincide on R2 as the closed and bounded subsets of R2

are compact. Thus to prove that {f ∈ X ′M : f(0) ≤ 1} is compact, it suffices to show that it is
closed in this larger space.

To establish this, consider a sequence of functions {fn} ⊂ X ′M such that fn(0) ≤ 1 and
limn→∞ epi(fn) = A in the τAW topology. That A = epi(f) for some f can be readily shown
by assuming that there exists an (x, y) ∈ A and z > 0 such that (x, y + z) 6∈ A, and showing
it must follow that the same holds for some epi(fn), which cannot be true. Thus, to show that
{f ∈ X ′M : f(0) ≤ 1} is closed it is sufficient to show that f = limn→∞ fn satisfies f ∈ X ′M and
f(0) ≤ 1. Hence we will prove that: (i) f is lower semi-continuous; (ii) f is non-negative;
(iii) (0, 1) ∈ epi(f); and (iv) f is convex.

(i) This follows as (2R
2
, τAWd

) is compact and therefore complete, so that epi(f) is closed.

(ii) Let (x, y) ∈ Bk. As

|d((x, y), epi(fn))− d((x, y), epi(f))| ≤ sup
z∈Bk

|d(z, epi(fn))− d(z, epi(f))|,

it follows that d((x, y), epi(fn)) → d((x, y), epi(f)) as n → ∞. This is true for all (x, y) ∈ R2

and is a well-known feature of the Attouch-Wets topology. If y < 0, d((x, y), epi(fn)) is bounded
below by |y| by the non-negativity of fn. Therefore d((x, y), epi(f)) ≥ |y| and so (x, y) 6∈ epi(f).

(iii) d((0, 1), epi(f)) = limn→∞ d((0, 1), epi(fn)) = limn→∞ 0 = 0. As epi(f) is closed it follows
that (0, 1) ∈ epi(f).

(iv) Fix (x1, y1), (x2, y2) ∈ epi(f), α ∈ [0, 1], and let α(x1, y1) + (1 − α)(x2, y2) = (x3, y3). As
epi(fn) is closed, there exist some δi, εi, i = 1, 2 such that

d((xi, yi), epi(fn)) = d((xi, yi), (xi + δi, yi + εi))

and (xi + δi, yi + εi) ∈ epi(fn). Thus there exist δ, ε satisfying δ = αδ1 + (1− α)δ2,
ε = αε1 + (1− α)ε2 such that

α(x1 + δ1, y1 + ε1) + (1− α)(x2 + δ2, y2 + ε2) = (x3, y3) + (δ, ε) ∈ epi(fn)

and so

d((x3, y3), epi(fn)) ≤ max{|δ|, |ε|} ≤ max{|δ1|, |δ2|, |ε1|, |ε2|}
= max{d((x1, y1), epi(fn)), d((x2, y2), epi(fn))}.

Therefore d((x3, y3), epi(f)) = limn→∞ d((x3, y3), epi(fn)) = 0, and so (x3, y3) ∈ epi(f).
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Theorem 4.1. LDP for MGF estimators. First see that f ∈ XM if and only if it is of
Type 1 or 3 as given in the statement of Proposition 4.1, so that XM = XB ∩ {f : f(0) = 1}.
Proposition 4.5 gives that the measures are exponentially tight, while Propositions 4.2 and 4.4
give coincidence of the upper and lower deviation functions, and therefore by [8][Lemma 1.2.18],
we obtain the result for the MGF estimators {Mn}. We can then reduce this to an LDP in XM
by [8][Lemma 4.1.5(b)] as the effective domain of IM is a subset of XM , which is measurable.

Lemma 4.1. Continuity of L. This proof follows from [11][Proposition 3], although not im-
mediately as the map L fails that proposition’s criteria. We will by bypass this difficulty
by considering a sequence of restrictions of L that satisfy the propositions criteria and such
that the images of elements of XM under such restrictions are equal to their image under L
when intersected with an increasingly large neighbourhood of the origin. First, consider the
function g : R2 7→ R × (0,∞) : (θ, ψ) 7→ (θ, exp(ψ)). Then epi(L(f)) = g∗(epi(f)), where
g∗ : P(R× (0,∞)) 7→ P(R2), with P denoting the power set, and g∗(D) = {(θ, ψ) : g(θ, ψ) ∈ D}
is the pull back. Although g is bijective, continuous and maps bounded sets to bounded
sets, its inverse fails to be uniformly continuous on bounded sets, so that the assumptions
of [11][Proposition 3] do not hold.

Now consider gn = g|R×[−n,∞), the function g restricted to the set R× [−n,∞) with codomain
R× [exp(−n),∞), and the corresponding pullback g∗n : P(R× [exp(−n),∞)) 7→ P(R× [−n,∞)).
Then gn is bijective, continuous and with an inverse uniformly continuous on bounded subsets.
Therefore by [11][Proposition 3] g∗n is continuous. Now consider any sequence of closed subsets
of R×(0,∞), {Am}, all containing the point (0, 1) and converging in (P(R×(0,∞)), τAW) to A,
which, by properties of τAW convergence, must also contain the point (0, 1). Then by [5][Exercise
7.4.1] Am∩(R×[exp(−n),∞))→ A∩(R×[exp(−n),∞)) in (P(R×(0,∞)), τAW) as m→∞. By
(7) we can easily show that this implies convergence in (P(R× [exp(−n),∞)), τAW). Therefore
g∗n(Am ∩ (R × [exp(−n),∞))) → g∗n(A ∩ (R × [exp(−n),∞))) as m → ∞ for any n. Note
that g∗n(Am ∩ (R × [exp(−n),∞))) = g∗(Am) ∩ (R × [−n,∞)) when considered as elements of
P(R2). Therefore (7) holds for {g∗(Am) ∩ (R × [−n,∞))}∞m=1 for any ε > 0 and any bounded
set B ⊂ R× [−n,∞).

Now fix any bounded B ⊂ R2 and any ε > 0. Then B ⊂ R× [−n,∞) for some n, and for any
C ⊂ R2 containing the point (0, 0), such as g∗(Am) and g∗(A), d(x,C) = d(x,C ∩B2r) for any
x ∈ B where r is such that B ⊂ Br, and so for n > 2r and any x ∈ B,

d(x, g∗(Am) ∩ (R× [−n,∞))) = d(x, g∗(Am) ∩ (R× [−n,∞)) ∩B2r) = d(x, g∗(Am) ∩B2r)

= d(x, g∗(Am)).

The same if true for g∗(A) and so (7) also holds for {g∗(Am)}, any ε > 0 and any B ⊂ R2, so
that g∗(Am) → g∗(A) in (P(R2), τAW). This is true for every sequence {Am} containing the
point (0, 1), and so g∗ is continuous when its domain is restricted to sets containing the point
(0, 1), which implies that the functional L : XM → XΛ is continuous.

Theorem 4.2. LDP for CGF estimators. This result follows via an application of the con-
traction principle from the LDP for {Mn} in XM proved in Theorem 4.1 through the function
defined in Lemma 4.1.

Lemma 4.2. Continuity of J . Although the notation Df has thus far been used for MGFs,
here we will use it for elements of XΛ to denote their effective domain. Fix some f ∈ XΛ

satisfying Df 6= {0}, Df ⊂ [0,∞), and let fn → f in τAW. Then fn → f pointwise on the
interior of Df and fn → ∞ pointwise outside Df . Therefore J (fn) → J (f) pointwise on the
interior of Df , J (fn) → ∞ outside Df ∪ [0,∞) and J (fn) → −∞ on (−∞, 0). This can be
extended to uniform convergence on compact subsets of the interior of Df by the convexity of
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J (f) and J (fn) on (0,∞), and so by a minor modification of [5][Lemma 7.1.2] we have that
J (fn) → J (f) in (XJ , τAW), so that J is continuous at f . Proof is identical if Df 6= {0},
Df ⊂ (−∞, 0], as J (f) and J (fn) are concave on (−∞, 0).

Now assume that f is finite in a neighbourhood of the origin, and let fn → f in τAW. Let f−

and f+ mimic f with Df− = Df ∩ (−∞, 0], Df+ = Df ∩ [0,∞), and define f−n , f
+
n similarly.

It follows from [5][Exercise 7.4.1] that f−n → f−, f+
n → f+ in τAW, and so J (f−n ) → J (f−),

J (f+
n ) → J (f+). Defining A+

n = epi(J (f+
n )), A−n = epi(J (f−n )), C+

n = A+
n ∩ {(x, y) : x ≥

0, or x = 0, y ≥ Jn(f)(0)}, and A+, A− and C+ similarly, as {(x, y) : x ≥ 0, or x = 0, y ≥
Jn(f)(0)} is closed it follows again by [5][Exercise 7.4.1] that C+

n → C+ in τAW. As epi(J (f)) =
A− ∪ C+ and similarly for epi(fn), for any fixed closed and bounded set B ⊂ R2, x ∈ B
and n ≥ 1, without loss of generality we can assume d(x,A−n ∪ C+

n ) = d(x,A−n ) and that
|d(x, epi(J (f)))− d(x, epi(J (fn)))| = d(x, epi(J (f)))− d(x, epi(J (fn))) so that

|d(x, epi(J (f)))− d(x, epi(J (fn)))| = d(x, epi(J (f)))− d(x, epi(J (fn)))

= d(x,A− ∪ C+)− d(x,A−n ∪ C+
n )

= d(x,A− ∪ C+)− d(x,A−n )

≤ d(x,A−)− d(x,A−n )

≤ |d(x, epi(J (f−)))− d(x, epi(J (f−n )))|.

This is true for all n and for all x ∈ B, so that

sup
x∈B
|d(x, epi(J (f)))− d(x, epi(J (fn)))|

≤max{sup
x∈B
|d(x, epi(J (f−)))− d(x, epi(J (f−n )))|, sup

x∈B
|d(x, epi(J (f+)))− d(x, epi(J (f+

n )))|},

and so as J (f−n )→ J (f−) and J (f+
n )→ J (f+), we can apply (7) to show that J (fn)→ J (f)

in τAW.

Now assume that f ∈ XΛ satisfies Df = {0}. Then for any sequence fn → f , J (fn)(θ) → ∞
for all θ > 0 and J (fn)(θ) → −∞ for all θ < 0. To prove that J (fn) → J (f) in τAW, we will
apply [5][Theorem 3.1.7] that states that for a collection {An} and A, non-empty closed subsets
of a metric space X, An → A in τAW if and only if for every k ≥ 1,

sup
x∈A∩Bk(x0)

d(x,An)→ 0 and sup
x∈An∩Bk(x0)

d(x,A)→ 0

as n→∞, where x0 is any fixed point in X, Bk(x0) is a closed ball of radius k and centre x0,
and by convention supx∈∅ d(x,C) = 0 for any non-empty set C.

In our case, An = epi(J (fn)), A = epi(J (f)) and Bk(x0) = Bk, the closed ball in R2 of
radius k around the origin. First consider supx∈epi(J (f))∩Bk d(x, epi(J (fn))) for some k ≥ 1.

As epi(J (f)) ∩ Bk is closed, for all n there exists some (xn, yn) ∈ Bk with xn ≤ 0 such
that d((xn, yn), epi(J (fn))) = supx∈epi(J (f))∩Bk d(x, epi(J (fn))). As xn ∈ [−k, 0] for all n, a

subsequence of xn converges, say to some x ∈ [−k, 0]. First assume x < 0 and fix some ε > 0.
Then along this subsequence, when n is large enough so that |xn − x| < ε and J (fn)(x) < −k,
then as yn ≥ −k, (x, yn) ∈ epi(J (fn)) and so d((xn, yn), epi(J (fn))) ≤ d((xn, yn), (x, yn)) < ε.
This is true for all ε > 0 and so along any subsequence of {fn} such that {xn} converges to some
x < 0, supx∈epi(J (f))∩Bk d(x, epi(J (fn))) → 0. Now assume a subsequence of {xn} converges

to 0. Then for any ε > 0 and n large enough so that xn < −ε and J (fn)(−ε/2) < −k, we
again have that d((xn, yn), epi(J (fn))) < ε. Therefore supx∈epi(J (f))∩Bk d(x, epi(J (fn))) → 0

along any convergent subsequence of {xn}. If supx∈epi(J (f))∩Bk d(x, epi(J (fn))) 6→ 0, that is

supx∈epi(J (f))∩Bk d(x, epi(J (fn))) > ε infinitely often for any ε > 0, then along this subsequence
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we can find a sub-subsequence such that {xn} converges, which would yield a contradiction.
Therefore supx∈epi(J (f))∩Bk d(x, epi(J (fn)))→ 0 along the entire sequence.

Now consider supx∈epi(J (fn))∩Bk d(x, epi(J (f))) for some k ≥ 1. Assume that epi(J (fn))∩Bk∩
([0,∞) × R) 6= ∅ for any n, as if this is the case then supx∈epi(J (fn))∩Bk d(x, epi(J (f))) = 0.
If this is not true infinitely often then we still need to show convergence along that subse-
quence, and if it is not true only finitely often then convergence holds immediately. With
this assumption, notice that for all n there exists some (xn, yn) ∈ Bk with xn ≥ 0 such that
supx∈epi(J (fn))∩Bk d(x, epi(J (f))) = d((xn, yn), epi(J (f)) = xn. It is easy to see that xn =

sup{θ ∈ [0, k] : fn(θ) ≤ k}, and by lower semi-continuity of J (fn) on (0,∞), J (fn)(xn) ≤ k.
Also, J (fn)(xn) ≤ k ⇒ fn(xn) ≤ kxn ≤ k2, so that supx∈epi(fn)∩Bk2

d(x, epi(f)) ≥ xn. But

as fn → f , sup
x∈epi(fn)∩B2

k
d(x, epi(f)) → 0 so that supx∈epi(J (fn))∩Bk d(x, epi(J (f))) = xn →

0.

Theorem 4.3. LDP for Jarzynski estimators. This result follows from the continuity of
J and the contraction principle.

Theorem 4.4. LDP for rate function estimators. This result follows from the continuity
of LF and the contraction principle.

Section 5

Proposition 5.1. Convexity of IM . We establish global convexity of IM by creating an ar-
gument along the lines of [8][Lemma 4.1.21], but the conditions of that Lemma as stated do not
hold here as XM is not a topological vector space. The proof of [8][Lemma 4.1.21], however,
hinges only on two properties that we instead establish directly.

First, we need to show continuity of averaging in XM . That is, if {fn}, {gn} ⊂ XM are such
that fn → f ∈ XM and gn → g ∈ XM in τAW, then (fn + gn)/2→ (f + g)/2 in τAW. If f or g is
finite and continuous at one point in the domain of the other, then we can apply [5][Theorem
7.4.5] to show that limn→∞(fn + gn) = f + g in X ′M . To show continuity of multiplication by
1/2, see that {(fn + gn)/2} is a sequence in {h : h(0) ≤ 1} which is compact by Proposition 4.5,
so it has a convergent subsequence. Replacing {(fn + gn)/2} with this subsequence with limit
h and applying [5][Theorem 7.4.5] it follows that

f + g = lim
n→∞

[(fn + gn)/2 + (fn + gn)/2] = 2h

so that h = (f + g)/2. This is true for every subsequence of {(fn + gn)/2}, which lies in a
compact set, and so it must follow that (fn + gn)/2 → h = (f + g)/2 and so multiplication
by 1/2 is a continuous operation in X ′M . It then follows that averaging is continuous in X ′M
and therefore in XM . If it not the case that f or g is finite and continuous at one point in the
domain of the other, then it must follow that f(θ) = ∞ for θ > 0 and g(θ) = ∞ for θ < 0, or
vice versa. In this case (f + g)/2 is finite only at 0 and (fn(θ) + gn(θ))/2 → ∞ point-wise for
each θ 6= 0, so h = limn→∞(fn + gn)/2 satisfies h(θ) = ∞ for θ 6= 0, and so h = (f + g)/2 if
h(0) = 1. Consider (0, y) for y < 1. As f(0) = 1, d((0, y), epi(fn)) → d((0, y), epi(f)) > 0, and
similarly for d((0, y), epi(gn)). Furthermore,

(fn(θ) + gn(θ))/2 ≥ min{fn(θ), gn(θ)}
⇒ epi((fn + gn)/2) ⊂ epi(fn) ∪ epi(gn)

⇒ d((0, y), epi((fn + gn)/2)) ≥ min{d((0, y), epi(fn), d((0, y), epi(gn))}
⇒ d((0, y), epi((fn + gn)/2)) 6→ 0

⇒ d((0, y), epi(h)) > 0.
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Therefore h(0) > y for any y < 1, so h(0) = 1 as required.

Second, we need to show the continuity of βf + (1 − β)g with respect to β ∈ (0, 1). First
notice that Dβf+(1−β)g = Df ∩Dg for all β ∈ (0, 1). Moreover we have pointwise convergence of
βf + (1− β)g on the interior of Df ∩ Dg as β → β0 ∈ (0, 1). This can be extended to uniform
convergence on bounded subsets of the interior of Df ∩ Dg by the convexity of βf + (1 − β)g.
Convergence in τAW follows from [5][Lemma 7.1.2], with simple modifications to handle the
possibility of open domains and common domains not necessarily equal to R. Now see that for
any sets A1 and A2, letting (A1 +A2)/2 = {g : g = (f1 +f2)/2, f1 ∈ A1, f2 ∈ A2} and following
the notation of Proposition 4.4,

P (Mn ∈ A1, Mn+1,2n ∈ A2) ≤ P
[
M2n ∈

A1 +A2

2

]
⇒ P (Mn ∈ A1)P (Mn ∈ A2) ≤ P

(
M2n ∈

A1 +A2

2

)
⇒ 1

2n
logP (Mn ∈ A1) +

1

2n
logP (Mn ∈ A2) ≤ 1

2n
logP

(
M2n ∈

A1 +A2

2

)
⇒ 1

2
lim inf
n→∞

1

n
logP (Mn ∈ A1) +

1

2
lim inf
n→∞

1

n
logP (Mn ∈ A2) ≤ lim sup

n→∞

1

n
logP

(
Mn ∈

A1 +A2

2

)
.

As (f1, f2) 7→ (f1 + f2)/2 is a continuous operation, as is β 7→ βf + (1− β)g for any f, g ∈ XM
and β ∈ (0, 1), the remainder of the proof follows identically to that of [8][Lemma 4.1.21].

Proposition 5.2. IM (f) for f an MGF. First it is worth noting that ν is uniquely defined if
f is finite on an open interval, which need not include 0 [38]. As in Proposition 4.2, if we define
XINT to be the space of all moment generating functions finite on some open interval, equipped
with the subspace topology, then the mapping from MGFs to measures Φ : XINT →M(R) is
well defined and continuous when XINT is equipped with the subspace topology, as convergence
of MGFs that are finite on some open interval to another MGF that is finite on some open
interval implies convergence of their distributions, as seen in [38] and in the proof of Proposition
4.1. So we have that for every open G ⊂M(R), Φ−1(G) = G′ ∩XINT for some open G′ ⊂ XM .
As Φ−1(ν) = fν for fν ∈ XINT , G 3 ν ⇒ G′ 3 fν and so if Ln is the empirical distribution
governed by the same sample as for Mn,

lim inf
n→∞

1

n
logP (Ln ∈ G) = lim inf

n→∞

1

n
logP (Mn ∈ G′ ∩ XINT )

= lim inf
n→∞

1

n
logP (Mn ∈ G′) = m(G′) ≥ −IM (fν)

This implies that

inf
G3ν

lim inf
n→∞

1

n
logP (Ln ∈ G) ≥ −IM (fν)⇒ −H(ν|µ) ≥ −IM (fν).

To prove the second inequality, let YN = {ν ∈M(R) : ν is supported on [−N,N ]}, and let Γ be
the mapping from measures to MGFs. Since convergence of measures in YN implies convergence
of the corresponding moment generating functions, we have that Γ|YN is continuous and so
GN ∩YN = Γ−1(G′ ∩Γ(YN )) is open for every open set G′ ⊂ XM . Note that we do not know if
the same G ⊂ M(R) forms the inverse image of G′ ∩ Γ(YN ) for every N , hence the use of the
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subscript, yet we can demand that GN ⊂ GN+1. Note that

Γ−1(G′ ∩ Γ(YN )) = Γ−1((G′ ∩ Γ(YN )) ∩ (G′ ∩ Γ(YN+1)))

= Γ−1(G′ ∩ Γ(YN )) ∩ Γ−1(G′ ∩ Γ(YN+1))

= (GN ∩ YN ) ∩ (GN+1 ∩ YN+1)

= (GN ∩GN+1) ∩ YN .

So if GN 6⊂ GN+1, we can replace GN with GN ∩ GN+1. So fixing fν ∈ XB, fν ∈ Γ(YM ) for
some M , and so we have that for every G′ 3 fν , ν ∈ GM and so

P (Mn ∈ G′) = P (Mn ∈ G′ ∩ XB) = P (Mn ∈ ∪∞N=M (G′ ∩ Γ(YN ))) = P (Ln ∈ ∪∞N=M (GN ∩ YN ))

≥ P (Ln ∈ ∪∞N=M (GM ∩ YN )) = P (Ln ∈ GM ∩ Γ−1(XB)) = P (Ln ∈ GM ).

This implies that

m(G′) ≥ lim inf
n⇒∞

1

n
logP (Ln ∈ GM ) ≥ inf

G3ν
lim inf
n→∞

1

n
logP (Ln ∈ G) = −H(ν|µ).

This is true for every G′ 3 fν , and so

inf
G′3fν

m(G) ≥ −H(ν|µ)⇒ −IM (fν) ≥ −H(ν|µ).

To prove the third inequality, extending the second inequality to all moment generating func-
tions, fix any moment generating function fν ∈ XM . Let νn(dx) = ν(dx)/ν([n, n]) on [−n, n].
It can easily be shown that H(νn|µ) → H(ν|µ) as n → ∞. As discussed before, fνn → fν in
τAW, IM (fνn) = H(νn|µ) by the previous two lemmas and so by lower semi-continuity of IM ,

IM (fν) ≤ lim
n→∞

IM (fνn) = lim
n→∞

H(νn|µ) = H(ν|µ).

In the case of the moment generating function f finite only at 0, this statement is true for all
ν such that f = fν , and so IM (f) ≤ infν:f=fν H(ν|µ).

Lemma 5.1. Characterizations for f not a MGF. Point 1. Assume IM (f) < ∞. Then
for any g ∈ XM and any any γ ∈ (0, 1), γf + (1 − γ)g = f . By the convexity of IM proved in
Proposition 5.1, IM (f) = IM (γf + (1− γ)g) ≤ γIM (f) + (1− γ)IM (g), so that IM (f) ≤ IM (g).
This is true for all g ∈ XM , and so IM (f) = 0.

Point 2. See first that γg + (1 − γ)fν → f in τAW as γ → 0, as they converge uniformly on
closed subsets of (α, β) and are infinite outside [α, β], and so τAW convergence can be proven
by a minor modification of [5][Proposition 7.1.3]. Thus

IM (f) ≤ lim
γ→0

IM (γg + (1− γ)fν) ≤ lim
γ→0

(γIM (g) + (1− γ)IM (fν)) = IM (fν).

Point 3 First we show that IM (f) ≥ IM (fν), in a manner very similar to how we showed that
IM (g) = ∞ for g(0) < 1 in Proposition 4.2, except in this case it happens that C is non-
empty. Like before, let Gm be a descending countable open base of f , and let Am be defined
by Φ(Gm ∩ XB) = Am. See that

IM (f) = − lim
m→∞

lim sup
n→∞

1

n
logP (Mn ∈ Gm) = − lim

m→∞
lim sup
n→∞

1

n
logP (Ln ∈ Am)

≥ lim
m→∞

inf
κ∈Am

H(κ|µ) = inf
κ∈C

H(κ|µ),



32

where C = ∩∞m=1Am. It can be shown that C is non-empty, however here it is unnecessary to
do so, as if C is empty then IM (f) = ∞ and so IM (f) ≥ IM (fν) trivially. Let κ ∈ C. As
M(R) is metrizable, let Um be a descending countable base for κ, and let {κm,n}∞n=1 ⊂ Am be
a sequence satisfying κm,n → κ as n → ∞. Let Nm be such that for n ≥ Nm, κm,n ∈ Um.
Then if κ∗m = κm,Nm , κ∗m ∈ Am and κ∗m ∈ Um, so that κ∗m → κ. For each κ∗m there is a
corresponding f∗m ∈ Gm, and so f∗m → f . If f mimics fν , then we have a sequence of moment
generating functions converging to a function mimicking a moment generating function fν , and
a corresponding convergent sequence of measures, then it follows that κ = ν from the proof of
Proposition 4.1, and from [38][Theorem 2]. So C = {ν} and thus IM (f) ≥ H(ν|µ) = IM (fν).
Now assume that IM (f) <∞, then we can apply statement 2 of Lemma 5.1 with f = g and so
IM (f) = IM (fν).

Lemma 5.2. Five equivalences. (1)⇒ (2). Assume (1), so that the sequence 1/n
∑n

1=1 e
γXi

satisfies the conditions of Cramér’s Theorem. Assume without loss of generality that γ < α,
and so α ≤ 0 is finite. Fix f ∈ D⊂[α,β]. Then for k large enough so that α − 1/k > −k and

γ < α− 1/k,

Mn ∈ Vk(f)⇒Mn(α− 1/k) > k ⇒Mn(γ) > k

as d((α− 1/k, k), epi(f)) ≥ 1/k, so we can’t have (α− 1/k, k) ∈ epi(Mn). So

m(Vk(f)) ≤ lim sup
n→∞

1

n
logP (Mn(γ) > k) ≤ − inf

x≥k
I∗γ(x)

where I∗γ(x), the Cramér’s Theorem rate function for 1/n
∑n

1=1 e
γXi , has compact level sets.

Then

−IM (f) = lim
k→∞

m(Vk(f)) ≤ lim
k→∞

− inf
x≥k

I∗γ(x) = −∞

⇒ IM (f) =∞.

This is true for all f ∈ D⊂[α,β], so (1)⇒ (2).

(2)⇒ (3) follows immediately from Proposition 5.2.

(3)⇒ (4) is trivial as D[α,β] ⊂ D⊂[α,β].

(4) ⇒ (1) requires the lengthiest of proof. We first establish the result when µ is a discrete
distribution. Consider all ν such that fν ∈ D[α,β]. Then assuming (4),

∑
k≥0

ν(k) log

(
ν(k)

µ(k)

)
=∞ for all such ν or

∑
k<0

ν(k) log

(
ν(k)

µ(k)

)
=∞ for all such ν,

as otherwise, if ν and κ were distributions with fν , fκ ∈ D[α,β] that give a finite sum in the
first and second case respectively, then a distribution π satisfying π(k) ∝ ν(k) for k ≥ 0 and
π(k) ∝ κ(k) for k < 0 would still have moment generating function in D[α,β] and would have
H(π|µ) <∞. Without loss of generality assume that∑

k≥0

ν(k) log

(
ν(k)

µ(k)

)
=∞ for all such ν. (23)

If β = ∞, then for any ν with fν ∈ D[α,β], κ satisfying κ(k) = ν(k)/ν(−∞, 0] for k ≤ 0 and
κ(k) = 0 otherwise, also has fκ ∈ D[α,β], but (23) does not hold. So it follows that β <∞. Also
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fµ(ε) <∞ for some ε > 0. To see this, assume the contrary, that fµ ∈ D[α∗,0] for some α∗ ≤ 0.

Then ν(k) ∝ e−βkµ(k) for k ≥ 0 has fν ∈ D[α,β] for some suitable behaviour of the left tail. But∑
k≥0

ν(k) log

(
ν(k)

µ(k)

)
=
∑
k≥0

e−βk(−βk)µ(k) <∞

as e−βk(−βk) ≤ 0 for all k. As this is impossible, it must follow that fµ(ε) <∞ for some ε > 0.

We can assume X1 is not bounded above, as otherwise (1) holds trivially for any γ > β. Since
the support of µ has no upper bound we can find a ν supported on a subset of the support of µ
that satisfies limk→∞ ν(k)eγk = ∞ for all γ > 0, where the limit is taken along the support of
ν. To see this, let {bn} contained in the support µ satisfy bn > n for all n, and let {bn} be the
support of ν with ν(bn) ∝ n−2. We can write ν as ν(k) = Cνg(k)µ(k) for some non-negative
function g defined on the support of µ. Cν is a constant chosen so that ν is a distribution.
Without loss of generality we can set g(k) ≥ 3 for all k ≥ 0, as

∑
k≥0(g(k) + 3)µ(k) <∞ if and

only if
∑

k≥0 g(k)µ(k) < ∞. As stated before
∑

k≥0 e
εkµ(k) < ∞ for small enough positive ε

and so

lim
k→∞

eεk(g(k) + 3)µ(k) =∞⇔ lim
k→∞

eεkg(k)µ(k) =∞,

if the limit as k → ∞ is taken along the support of ν. So ν still satisfies limk→∞ ν(k)eγk = ∞
for all γ > 0. Define κ(k) = Dνν(k)/ log g(k) for all k ≥ 0, where Dν is chosen so that κ is a
distribution. As log g(k) > 1, κ(k) is summable and so Dν exists. The behaviour of κ(k) for
k < 0 is unimportant. It follows that∑

k≥0

κ(k) log

(
κ(k)

µ(k)

)
=
∑
k≥0

Dν
ν(k)

log g(k)
log

(
DνCν

g(k)

log g(k)

)
≤
∑
k≥0

Dν
ν(k)

log g(k)
log (DνCν) +

∑
k≥0

Dν
ν(k)

log g(k)
log (g(k))

≤
∑
k≥0

Dνν(k) log (DνCν) +
∑
k≥0

Dνν(k)

<∞.

So H(κ|µ) < ∞ and so fκ(γ) < ∞ for some γ 6∈ [α, β]. Since this is true no matter what the
behaviour of κ along its left tail it must follow that fκ(γ) <∞ for some γ > β, and so∑

k≥0

e(2θ+β)k ν(k)

log g(k)
<∞⇒ e(2θ+β)k ν(k)

log g(k)
→ 0

as k →∞ for some θ > 0. But eθkν(k)→∞, so it follows that

e(θ+β)k

log g(k)
→ 0.

Thus there exists K ≥ 0 such that for all k > K, log g(k) > e(θ+β)k. Then for any λ ≥ 0

E(eλe
(θ+β)X1

) ≤ eλ +
∑
k≥0

eλe
(θ+β)k

µ(k)

= eλ +
1

Cν

∑
k≥0

eλe
(θ+β)k ν(k)

g(k)

≤ eλ +
1

Cν

(
K∑
k=0

eλe
(θ+β)k ν(k)

g(k)
+
∑
k>K

eλe
(θ+β)k

e−e
(θ+β)k

ν(k)

)
.
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For 0 ≤ λ < 1 the above series converges. As E(eλe
(θ+β)Xµ

) ≤ 1 for λ < 0, e(β+θ)X1 has
a moment generating function finite in a neighbourhood of the origin. As finiteness of the
moment generating function in a neighbourhood of the origin is a sufficient condition for the
random walk associated with a distribution to satisfy the conditions of Cramér’s Theorem, we
have that (4)⇒ (1).

In order to extend the result to an arbitrary distribution, we need the following notation. For
any distribution ν, define ν∗(k) = ν([k + 1)) as the discretisation of ν. Notice that if X is a
random variable with distribution ν and X∗ = bXc where b·c is the floor function, then X∗ has
distribution ν∗ and X − 1 ≤ X∗ ≤ X, which implies that Dfν = Dfν∗ .

Now assume (4) for some arbitrary distribution µ, i.e. that H(ν|µ) = ∞ for all ν with fν ∈
D[α,β]. Consider µ∗, and any κ supported on a subset of the support of µ∗ with fκ ∈ D[α,β]. Then
κ(k) = g(k)µ∗(k) for some non-negative function g defined on Z. Define ν(dx) = g(bxc)µ(dx),
then ν∗ = κ, and the effective domain of the moment generating function of ν is the same as
that of ν∗ = κ, so H(ν|µ) =∞. Then

∞ =

∫ ∞
−∞

ν(dx) log
ν(dx)

µ(dx)
=

∫ ∞
−∞

g(bxc)µ(dx) log g(bxc)

=

∞∑
k=−∞

g(k)µ(k) log g(k) =

∞∑
k=−∞

κ(k) log

(
κ(k)

µ∗(k)

)
.

So H(κ|µ∗) = ∞. This is true for any κ supported on a subset of the support of µ∗ with
fκ ∈ D[α,β]. As any κ that is not supported on a subset of the support of µ∗ also satisfies
H(κ|µ∗) = ∞, Lemma 5.2 (4) holds for µ∗ and so as we already established (4) ⇒ (1) for dis-
crete distributions, if Xµ∗ is a random variable with distribution µ∗ then the moment generating
function of eγXµ∗ is finite in a neighbourhood of the origin for some γ 6∈ [α, β]. By arguments
similar to those showing domain equivalence of MGFs of discretised and non-discretised distribu-
tions, it follows that the moment generating function of eγX1 is also finite in a neighbourhood
of the origin for the same γ 6∈ [α, β]. As finiteness of the moment generating function in a
neighbourhood of the origin is a sufficient condition for the random walk associated with a
distribution to satisfy the conditions of Cramér’s Theorem, we have that (4)⇒ (1).

The proof is now almost complete. (1) ⇒ (2) ⇒ (3) ⇒ (4) ⇒ (1). That (5) ⇒ (4) is readily
seen from Proposition 5.2. But then (4) ⇒ (2) by the equivalence of (1)-(4), and (2) ⇒ (5) as
D[α,β] ⊂ D⊂[α,β], so that (5)⇔ (4) and we have equivalence of all 5 statements.

Corollary 5.1.

1. Let β0 be the supremum over all values of γ such that the random walk associated with
eγX1 satisfies the conditions of Cramér’s Theorem, and let α0 be the infimum. Note that
β0 ≥ 0, α0 ≤ 0. Let β ≥ β0 , α ≤ α0, and let fν satisfy IM (fν) < ∞ and [α, β] ⊂ Dfν .
Then for any f ∈ D[α,β] mimicking fν , IM (f) = IM (fν) as Lemma 5.2 (1) does not hold
for α, β, so that Lemma 5.2 (5) does not hold, and so we can apply statements 2 and 3 of
Lemma 5.1. If α > α0 or β < β0, Lemma 5.2 (1) holds, so that Lemma 5.2 (5) holds and
so any f ∈ D[α,β] mimicking fν satisfies IM (f) =∞ 6= IM (fν).

2. Let f be such that IM (f) < ∞, f ∈ D[α,β]. Then Lemma 5.2 (5) does not hold, so that

Lemma 5.2 (1) does not hold, so that Df = [α, β] ⊃ [α0, β0].

3. If α0 = β0 = 0, fn ∈ D[− 1
n
, 1
n

] mimic fµ and f is the MGF finite only at 0, then fn → f

and so IM (f) ≤ limn→∞ IM (fn) = 0. If [α0, β0] 6= {0} then letting α, β = 0 Lemma 5.2
(1) holds for some γ 6= 0 so that Lemma 5.2 (5) holds and so IM (f) =∞.
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Proposition 5.3. IM (f) for f mimics.

(a) Let [α, β] = [0, 0] in the statement of Lemma 5.2. Then we have that for f ∈ XM finite only
at 0

IM (f) =∞⇔ inf
ν:fν=f

H(ν|µ) =∞

using (4)⇔ (5). We have already shown that IM (f) ∈ {0,∞} by Lemma 5.1; we will show
the same for the other term. See that for any ν with fν = f , κ = aν + (1 − a)µ satisfies
fκ = f for any a ∈ (0, 1], so that if H(ν|µ) <∞ for some such ν,

inf
ν:fν=f

H(ν|µ) ≤ H(κ|µ) ≤ aH(ν|µ)→ 0

as a→ 0 by the convexity of H(·|µ), so infν:fν=f H(ν|µ) ∈ {0,∞} also and equality holds.

(b) See first that [α, β] 6= [0, 0] if f ∈ D[α,β] is not a MGF but mimics one. Note that for
any g ∈ D[α,β] and µn(dx) = µ(dx)/µ([−n, n]) for any n, γg + (1 − γ)fµn ∈ D[α,β] for any
γ ∈ (0, 1], so if IM (g) <∞ for some g ∈ D[α,β]

inf
{g∈D[α,β],g a MGF}

IM (g) ≤ IM (γg + (1− γ)fµn) ≤ γIM (g) + (1− γ)IM (fµn)→ IM (fµn)

as γ → 0. By letting n→∞ we get inf{g∈D[α,β],g a MGF} IM (g) = 0, and so in general

inf
{g∈D[α,β],g a MGF}

IM (g) ∈ {0,∞}.

For the 0 value equality holds in the statement of Proposition 5.3(b) by statements 2 and 3 of
Lemma 5.1, and for the ∞ value equality holds by Lemma 5.2 (4)⇒ (5), as by Proposition
5.2 (4) is equivalent to the expression inf{g∈D[α,β],g a MGF} IM (g) taking the value ∞.

8.2 Section 3

Theorem 3.1. LDP for large deviation estimates. By Theorem 4.1 we have that a LDP
holds in XM . Proposition 5.2 contains part (a), while Proposition 5.3 is equivalent to parts part
(b) and (c). The subsequent statements about {Λn}, {Jn} and {In} are proved in Theorems
4.2, 4.3 and 4.4 respectively.

Corollary 3.1. Weak laws. As {Mn} satisfies a LDP in (XM , τAW), we know that P (Mn ∈ ·)
is eventually concentrated on the closed set A0 = {f : IM (f) = 0} [33], i.e. P (Mn ∈ G)→ 1 for
every open G containing A0. First note that f ∈ A0 implies that f(θ) = fµ(θ) for all θ ∈ Df ,
as H(ν|µ) has a unique zero at ν = µ. See that Cγx = {f : f(γ) ≤ x} is a closed set for
every x and every γ by a proof identical to that of Proposition 4.5, so fix some γ such that
fµ(γ) = E(eγX1) <∞, and let x > fµ(θ). Then by the weak law of large numbers

P (Mn ∈ Cγx ) = P (Mn(γ) ≤ x)→ 1

and so P (Mn ∈ ·) is eventually concentrated on Cγx . Also note that since XM is a Normal space,
disjoint closed sets have disjoint open neighbourhoods and so we can show that P (Mn ∈ ·)
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is eventually concentrated on Cγx ∩ A0, in the following way. Fix any neighbourhood G of
Cγx ∩A0, and note that Cγx\G and A0\G are disjoint closed sets. Then they have disjoint open
neighbourhoods U and V respectively, and so G∪U and G∪V are open neighbourhoods of Cγx
and A0 respectively, with intersection G. Thus P (Mn ∈ G ∪U)→ 1, P (Mn ∈ G ∪ V )→ 1, and
so by the inequality

1 ≥ P (Mn ∈ (G ∪ U) ∪ (G ∪ V )) = P (Mn ∈ G ∪ U) + P (Mn ∈ G ∪ V )− P (Mn ∈ G)

we have that P (Mn ∈ G) → 1. Thus P (Mn ∈ ·) is eventually concentrated on Cγx ∩ A0,
which consists of functions f satisfying f(θ) = fµ(θ) everywhere f is finite, which includes
γ. We can similarly show that the measures are eventually concentrated on Cγ1x1 ∩ C

γ2
x2 ∩ A0

if fµ(γ1) < x1, fµ(γ2) < x2. Assume now that fµ is finite in a neighbourhood of the origin.
Fix some neighbourhood Vk(fµ) of fµ, and let γ+ > 0 and γ− < 0 be large enough so that
C
γ+
x+ ∩ C

γ−
x− ∩ A0 ⊂ Vk(fµ) for x+ > fµ(γ+), x− > fµ(γ−). Then Vk(fµ) is a neighbourhood

of C
γ+
x+ ∩ C

γ−
x− ∩ A0 and so P (Mn ∈ Vk(fµ)) → 1 as n → ∞. This can be done for all k and

thus P (Mn ∈ ·) is eventually concentrated on the singleton set {fµ} and we have a weak law.
If fµ(θ) = ∞ for all θ > 0 (resp. θ < 0), then in the above construction we need only use γ−

(resp. γ+), and if fµ is finite only at 0 then A0 is already a singleton set.

The results for {Λn}, {Jn} and {In} follow from the continuous mapping theorem, e.g. [6][Theorem
2.7].

Section 7

Theorem 3.2. LDP for Loynes’ exponent estimates. First see that XM is metrizable [5],
as is [0,∞]. Let δ0 be the Dirac measure at 0, let G be the Loynes’ exponent mapping, and
let f ∈ XM neither equal fδ0 nor mimic it. It must follow that f is equal to 1 at at most one
non-zero point in its domain. Therefore if G(f) ∈ [0,∞), for x > G(f) d((x, 1), epi(f)) > 0 and
so for any sequence {fn} converging to f in τAW fn(x) > 1 for large enough n and so G(fn) ≤ x.
Similarly if G(f) ∈ (0,∞], for any 0 < x < G(f) f(x) < 1 and as τAW convergence implies
pointwise convergence on the interior of Df , fn(x) < 1 for large enough n and so G(fn) ≥ x.
Together this proves that G(fn)→ G(f) and so G is continuous at f . Therefore Gf is a singleton
set containing only G(f), the first condition of Theorem 7.1 holds, and for the sequence fn = f
for all n the second condition holds.

Now consider fδ0 . Assume IM (fδ0) < ∞ as otherwise we need not consider it. Note that
this implies that µ has a point mass at 0. Fix any y ∈ [0,∞] and any MGF fν ∈ XM finite
everywhere satisfying G(fν) = y and IM (fν) < ∞. Letting ν equal some convex combination
of µ conditioned on (−∞, 0) and µ conditioned on (0,M) for some M will show that such an
fν exists for any y ∈ [0,∞]. Let lα = αf + (1− α)fδ0 . Then lα → fδ0 as α→ 0 and G(lα) = y
for all α ∈ (0, 1), so that G(lα) → y as α → 0. This gives us that Gfδ0 = [0,∞], and as [0,∞]
is compact the first condition of Theorem 7.1 holds trivially. Moreover as lα = fαν+(1−α)δ0 ,
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IM (lα) = H(αν + (1− α)δ0|µ)

=

∫
R

(αν(dx) + (1− α)δ0(dx)) log

(
αν(dx) + (1− α)δ0(dx)

µ(dx)

)
= α

∫
R\{0}

ν(dx) log

(
αν(dx)

µ(dx)

)
+ (αν(0) + (1− α)δ0(0)) log

(
αν(0) + 1− αδ0(0)

µ(0)

)
→ δ0(0) log

(
δ0(0)

µ(0)

)
as α→ 0

= H(δ0|µ)

= IM (fδ0).

Taking the limit has the desired result as H(ν|µ) <∞. Therefore for every y ∈ Gfδ0 , the second
condition of Theorem 7.1 holds. If g mimics fδ0 and IM (g) <∞, say with supDg = b then the
proof is similar. For any y ∈ [0, b] the same fν can be chosen, so that Gg contains [0, b]. As any
sequence converging to g must obey fn(θ)→∞ for all θ > b it follows that lim supn→∞G(fn) ≤
b and so Gg = [0, b] and agin the first condition of Theorem 7.1 holds trivially. With lα = αfν +
(1−α)g we have that lα mimics the MGF fαν+(1−α)δ0 . As IM (g) <∞ and Dg = Dlα we can use
statements 2 and 3 of Lemma 5.1 to show that IM (lα) = IM (fαν+(1−α)δ0) = H(αν+(1−α)δ0|µ).
Identical calculations follow as above to show that IM (lα)→ IM (f).

Therefore we have that for all f ∈ XM satisfying IM (f) < ∞, the conditions of Theorem 7.1
hold, and so we have that {δn} satisfies the LDP in [0,∞] with rate function

Iδ(x) = inf
f :x∈Gf

IM (f).

As seen by the characterisations of Gf above for all f ∈ XM , for x ∈ [0,∞] x ∈ Gf if and only
G(f) = x, f = fδ0 , or f mimics fδ0 and is finite at x, i.e., if and only if f ∈ Cx. Therefore

Iδ(x) = inf
f∈Cx

IM (f),

as required.

Lemma 7.1. Positive on (θµ,∞]. As Cx is closed, Iδ(x) = IM (f) for some f satisfying
f(x) ≤ 1. As fµ(x) > 1, f does not mimic fµ and so IM (f) > 0.

Proposition 7.1. Conditions for unique zero. Fix x ∈ [0, θµ). If Iδ(x) = 0, then Iδ(x) =
IM (f) for some f ∈ D⊂(−∞,x] mimicking fµ with f(x) ≤ 1, and as IM (f) = 0, by the contra-

positive of Lemma 5.2(5) ⇒ (1) Cramér’s Theorem does not hold for eyX1 for any y > x. If
Iδ(x) > 0, then IM (f) = ∞ for f mimicking fµ with Df = Dfµ ∩ (−∞, x], and so IM (g) = ∞
for all g satisfying Dg = Dfµ ∩(−∞, x] by Theorem 3.1(c). So by Lemma 5.2(5)⇒ (1) Cramér’s
Theorem holds for eyX1 for some y 6∈ Dfµ ∩ (−∞, x]. As this cannot be true for any y 6∈ Dfµ , it
must hold for some y > x, proving the first statement. Therefore if eyX1 satisfies the conditions
of Cramér’s Theorem for all y ∈ (0, θµ) then Iδ(x) > 0 for all x ∈ [0, θµ) and so Iδ has a unique
zero, and if exX1 does not satisfy the conditions of Cramér’s Theorem for some x ∈ (0, θµ), then
eyX1 does not satisfy the conditions of Cramér’s Theorem for any y > x, so Iδ(x) = 0 and the
second statement also holds.

Theorem 7.2. Properties of Iδ.
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(a) Fix any finite x > θµ, and any function g with g(x) ≤ 1. Then let fµn be the moment
generating function of µ conditioned on [−n, n]. As discussed before IM (fµn) → IM (fµ),
and as fµ(x) > 1, fµn(x) > 1 for large enough n. For such an n,

ag(x) + (1− a)fµn(x) = 1

for some a ∈ (0, 1], and so

Iδ(x) ≤ IM (ag + (1− a)fµn) ≤ aIM (g) + (1− a)IM (fµn) ≤ IM (g) + IM (fµn)

⇒ Iδ(x) ≤ lim
n→∞

(IM (g) + IM (fµn)) = IM (g).

We used fµn because we didn’t know that fµ was finite at x. This is true for all g with
g(x) ≤ 1, and so it follows from the definition of Iδ that

Iδ(x) = inf
f :f(x)≤1

IM (f).

Then for all θµ < x < y

Iδ(θµ) ≤ Iδ(x) = inf
f :f(x)≤1

IM (f) ≤ inf
f :f(y)≤1

IM (f) = Iδ(y)

as f(y) ≤ 1⇒ f(x) ≤ 1. Moreover

Iδ(x) = inf
f :f(x)≤1

IM (f) ≤ inf
f∈C∞

IM (f) = Iδ(∞),

so Iδ is increasing on [θµ,∞]. For x < θµ satisfying Iδ(x) > 0,

Iδ(x) = inf
f :f(x)=1

IM (x) (24)

as since I(x) > 0 all functions f infinite for all y > x satisfies IM (f) = ∞ by Proposition
7.1 and Lemma 5.2. For any g with g(x) ≥ 1

ag(x) + (1− a)fµ(x) = 1

for some a ∈ (0, 1] and so

Iδ(x) ≤ IM (ag + (1− a)fµ) ≤ aIM (g) + (1− a)IM (fµ) ≤ IM (g).

This is true for all g with g(x) ≥ 1 and so using (24)

Iδ(x) = inf
f :f(x)≥1

IM (f).

Similar to before we can now show that Iδ(θµ) ≤ IM (x) ≤ IM (y) for any y < x. This is
trivially true for y < x < θµ with Iδ(x) = 0. Moreover

Iδ(x) = inf
f :f(x)≥1

IM (f) ≤ inf
f∈C0

IM (f) = Iδ(0),

and so Iδ is decreasing on [0, θµ].

(b) If µ+, µ− are µ conditioned on [0,∞), (−∞, 0] respectively then Iδ(0) ≤ IM (fµ+) <∞ and
Iδ(∞) ≤ IM (fµ−) < ∞, so together with part (a) this proves that Iδ is finite everywhere
and bounded.
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(c) Let ∞ > x > θµ. Iδ(x) = IM (f) > 0 for some f ∈ Cx. If f(x) < 1 then for fµn with µn
the distribution µ conditioned on (−∞, n] we can choose n large enough so that fµn(x) > 1
and IM (fµn) < IM (f), as IM (fµn)→ IM (fµ) = 0. Moreover

afµn(x) + (1− a)f(x) = 1

for some a ∈ (0, 1) and so

Iδ(x) ≤ aIM (fµn) + (1− a)IM (f) < IM (f).

So we cannot have f(x) < 1, and therefore we must have f(x) = 1.

(d) First let ∞ > x ≥ θµ. By monotonicity and lower semi-continuity, we need only show that

lim
ε↓0

Iδ(x+ ε) ≤ Iδ(x) (25)

in order to show continuity at x. Iδ(x) = IM (f) for some f ∈ Cx. We may assume that f
is a moment generating function, as if x > θµ then f(x) = 1 by (c), so if it is mimicking a
moment generating function fν then it also holds that fν ∈ Cx. If x = θµ then we can have
f = fµ. So f = fν for some distribution ν. Assume for now that fν(y) is finite for some
y > x. Then fν(x+ ε) > 1 for all ε > 0, and for sufficiently small ε

aεfν(x+ ε) + (1− aε)fµ−(x+ ε) = 1

for

aε =
fµ−(x+ ε)− 1

fµ−(x+ ε)− fν(x+ ε)
→ 1

as ε→ 0. Therefore

Iδ(x+ ε) ≤ IM (aεfν + (1− aε)fµ−) ≤ aεIM (fν) + (1− aε)IM (fµ−)→ IM (fν) = IM (x)

as ε ↓ 0. Now assume fν(y) =∞ for all y > x. Then the support of ν is not bounded above.
Let fνn be the moment generating function of ν conditioned on (−∞, n]. Then fνn is finite
on [0,∞), fνn(x) < fν(x), and fνn converges point-wise to fν , or to ∞ where fν is infinite.
Therefore if εn is such that fνn(x + εn) = 1 (εn may not exist for small n if ν([0, n]) = 0),
then εn > 0 and εn → 0 as n→∞. Moreover

Iδ(x+ εn) ≤ IM (fνn)

⇒ lim
n→∞

Iδ(x+ εn) ≤ lim
n→∞

IM (fνn) = IM (fν).

As Iδ is increasing on [θµ,∞), to prove (25) it is sufficient to prove that limn→∞ Iδ(x+εn) ≤
Iδ(x) for some positive sequence εn converging to 0. Now assume 0 < x ≤ θµ. This time is
is sufficient to show that

lim
ε↓0

Iδ(x− ε) ≤ Iδ(x) (26)

in order to prove continuity at x. If IM (x) = 0 and moreover IM (y) = 0 for some y < x
then proof is trivial. So we need only prove continuity for x satisfying IM (x) > 0. Then
Iδ(x) = IM (f) > 0, so that f(x) = 1 as shown in part (a). Then for all ε > 0,

aεf(x− ε) + (1− aε)fµ+(x− ε) = 1
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for

aε =
fµ+(x− ε)− 1

fµ+(x− ε)− f(x− ε)
→ 1

as ε→ 0. Moreover,

Iδ(x− ε) ≤ aεIM (f) + (1− aε)IM (fµ+)

⇒ lim
ε↓0

Iδ(x− ε) ≤ IM (f) = Iδ(x),

as required. Continuity at∞ and at 0 is immediate by monotonicity and lower-semicontinuity,
completing the proof.
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[25] L. Györfi, A. Rácz, K. Duffy, J. T. Lewis, and F. Toomey. Distribution-free confidence
intervals for measurement of effective bandwidths. J. Appl. Probab., 37:1–12, 2000.

[26] G. Hummer and A. Szabo. Free energy reconstruction from nonequilibrium single-molecule
pulling experiments. Proc. Natl. Acad. Sci. U.S.A., 98(7):3658–3661, 2001.

[27] C. Jarzynski. Nonequilibrium equality for free energy differences. Phys. Rev. Lett., 78:2690–
2693, 1997.

[28] F. P. Kelly. Notes on effective bandwidths. In F. P. Kelly, S. Zachary, and I. B. Ziedins,
editors, Stochastic Networks: Theory and Applications, pages 141–168. Oxford University
Press, 1996.

[29] W. Kozakiewicz. On the convergence of sequences of moment generating functions. Ann.
Math. Stat., 18(1):61–69, 1947.

[30] R. Kulik and Z. Palmowski. Tail behaviour of the area under a random process, with
applications to queueing systems, insurance and percolations. Queueing Syst., 68(3–4):275–
284, 2011.



42

[31] O. E. Lanford. Entropy and equilibrium states in classical statistical mechanics. In Lecture
notes in physics, volume 20, pages 1–113. Springer, Berlin, 1973.

[32] M. Lelarge. Tail asymptotics for discrete event systems. Discrete Event Dyn. Syst.,
18(4):563–584, 2008.

[33] J. T. Lewis and C. E. Pfister. Thermodynamic probability theory: some aspects of large
deviations. Russ. Math. Surv., 50(2):279–317, 1995.

[34] J. T. Lewis, C.-E. Pfister, and W. G. Sullivan. Entropy, concentration of probability and
conditional limit theorems. Markov Process. Related Fields, 1:319–386, 1995.

[35] J. T. Lewis, R. Russell, F. Toomey, B. McGurk, S. Crosby, and I. Leslie. Practical con-
nection admission control for ATM networks based on on-line measurements. Comput.
Commun., 21(17):1585–1596, 1998.

[36] J. Liphardt, S. Dumont, S. B. Smith, I. Tinoco, and C. Bustamante. Equilibrium infor-
mation from nonequilibrium measurements in an experimental test of Jarzynski’s equality.
Science, 296(5574):1832–1835, 2002.

[37] S. P. Meyn. Control techniques for complex networks. Cambridge University Press, 2008.

[38] A. Mukherjea, M. Rao, and S. Suen. A note on moment generating functions. Statist.
Probab. Lett., 76(11):1185–1189, 2006.

[39] I. P. Natanson. Theory of functions of a real variable. Frederick Ungar Publishing Co.,
New York, 1955.

[40] A. Puhalskii. On functional principle of large deviations. New trends in probability and
statistics, 1, 1991.

[41] R. T. Rockafellar. Convex Analysis. Princeton University Press, 1970.

[42] C. M. Rohwer, F. Angeletti, and H. Touchette. Convergence of free energy and large
deviation estimators. Phys. Rev. E., 92:052104, 2015.

[43] D. Ruelle. Correlation functionals. J. Mathematical Phys., 6:201–220, 1965.
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