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Abstract—Energy-maximizing controllers for wave energy de-
vices are normally based on linear hydrodynamic device models.
Such models ignore nonlinear effects which typically manifest
themselves for large device motion (typical in this application) and
may also include other modeling errors. The effectiveness of a
controller is, in general, determined by the match between the
model the controller is based on and the actual system dynamics.
This match becomes especially critical when the controller is highly
tuned to the system. In this paper, we present a methodology for
reducing this sensitivity to modeling errors and nonlinear effects by
the use of a hierarchical robust controller, which shows small
sensitivity tomodeling errors, but allows good energymaximization
to be recovered through a passivity-based control approach.

Index Terms—Internal model control (IMC), passivity, robust
control, wave energy conversion (WEC).

NOMENCLATURE

nðtÞ; Nð!Þ Fourier transform pair.
xðtÞ Heaving position of floating body.
vðtÞ Heaving velocity of floating body.
fexðtÞ Wave excitation force.
fuðtÞ Power take-off force (control input).
fvðtÞ Viscous force.
Zið!Þ Intrinsic impedance of floating system.
Bð!Þ Radiation resistance of floating system.

K
ð0Þ
v Linear approximation of viscous damping.

1=H Ratio velocity to excitation force.
Xlim Constraint on heaving position.
KSGðsÞ Feedback controller based on small-gain.
KSPRðsÞ Feedback controller based on passivity.
Hs Significant wave height.
!0 Peak frequency.
� Sharpness of Ochi standard spectrum.
PTO Power take-off.
RCW Relative capture width.
WEC Wave energy converter.

I. INTRODUCTION

T HEUSE of energy-maximizing control has been accepted
as crucial to the development of economic wave energy

conversion [1]. The application of control to WECs allows the
effective bandwidth of WECs to be increased, generating a near
resonance condition at a wide range of wave frequencies. In
general, WEC controllers can be separated into two hierarchical
levels.

1) A high-level reference generation produces the optimum
velocity profile for efficient energy extraction, which can
also consider physical constraints on the system.

2) A low-level servo controller acts on the PTO force to
impose the desired velocity profile from 1) on the system.

Such a hierarchicalWEC control strategy has a strong analogy
with wind turbine control systems, where the ideal rotor velocity
is determined from optimal tip-speed considerations, with torque
control then used to implement the reference rotor velocity. The
overall structure of such hierarchical control schemes is depicted
in Fig. 1.

Despite the prevalent use of linear models inWEC evaluation,
simulation, and control [2], [3], there is an acknowledgment that
such models are relatively simplistic in their representation of
many nonlinear effects, including nonlinear Froude–Krylov
forces [4], [5] and viscous drag forces [6], [7]. In particular, the
concept of linearization around an equilibrium point (the zero
displacement point) where operation is in the region of this
equilibrium point is often violated, since the objective is to
amplify the WEC motion (via resonance) in order to maximize
energy capture. The achievement of resonance also produces
large device velocities (particularly in large seas), resulting in
significant viscous drag forces and vortex shedding. However,
linear models are attractive due to intuitive connection with
physical device quantities, their compact algebraic representa-
tion (permittingmodel-based control design), and their relatively
low computational overhead.

An ideal situation, therefore, is that we utilize a linear model
for WEC control, but address the issues associated with a lack of
fidelity of the model for more significant device motion. This is
addressed for the control structure in Fig. 1 as follows.

1) A reference generation controller is determined which is
only weakly dependent on the WEC model.

2) A robust servo-controller is employed to address model
uncertainty.

Such a concept has the advantages that the poor sensitivity and
robustness properties of feedforward control (used in reference
generation) are minimized, since the reference generation is
only weakly dependent on the WEC model, whereas model
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uncertainties can be directly addressed using a robust feedback
structure used to achieve the desired device velocity.

The reference-generation feedforward component was studied
in [8]. This paper proposes two possibilities for the design of a
robust feedback controller that deals with system nonlinearities.
In the first approach, the nonlinearities are modeled as uncer-
tainty bounds in the frequency domain and a linear controller is
shaped based on the small-gain conditions for robust stability.
The second approach is based on the concept of passivity and
allows achieving robust stability as well as performance, without
requiring a model of the nonlinearities. Although a less conser-
vative nonlinear controller could be designed (e.g., by extending
the linear model predictive control (MPC) designs proposed in
[9]–[12]), an accurate model of the nonlinearity, for control
purposes, is not always easy to obtain andmodel uncertainties are
still present, in practical situations. In addition, nonlinear MPC
controllers generally involve iterative calculations and the inclu-
sion of a nonlinear model accentuates the convergence issues
associated with WEC MPC controllers [12].

The remainder of the paper is laid out as follows. Section II
develops the nonlinearWECmodel, including the linear approx-
imation for the nominal control design. In Section III, both
feedforward (velocity reference) and feedback (velocity servo)
controllers are detailed, with the investigations of two options for
the design of the robust controller, to accommodate the linear
model uncertainty. Section IV then documents a case study for a
particular heaving buoy WEC operating in a irregular wave
climate, showing the efficacy of the robust controller, whereas
conclusions are drawn in Section V.

II. MODEL OF THE WEC

A. Hydrodynamic Model

We consider a single-body floating system oscillating in
heave, as shown in Fig. 2. Energy is extracted from the relative
motion with the sea bottom, through a generic PTO mechanism.
The external forces acting on theWECare the excitation from the
waves and the control force produced by the PTO, namely fexðtÞ
and fuðtÞ. Additional hydrodynamic and hydrostatic forces
arising due to the motion of the body in the water are the
radiation force frðtÞ, the diffraction force fdðtÞ, the viscous
force fvðtÞ, and the buoyancy fbðtÞ [3]. The equation ofmotion in
one degree of freedom, excluding mooring forces, is specified as
follows:

M _vðtÞ ¼ frðtÞ þ fvðtÞ þ fbðtÞ þ fexðtÞ þ fuðtÞ (1)

where vðtÞ is the heaving velocity.

With the assumptions of linear potential theory [3], namely:
1) irrotational, incompressible, and inviscid fluid;
2) small-body approximation (wave elevation constant across

the whole body);
3) small oscillations (constant wetted surface),

the following simplifying equations apply (more details
in [3]):

fex ¼
Z t

�1
hexð�Þ�ðt� �Þd� (2)

frðtÞ ¼ �
Z t

0

zrð�Þvðt� �Þd� (3)

fbðtÞ ¼ ��gSw

Z t

0

vð�Þd� (4)

fvðtÞ ¼ 0: (5)

In (2), the excitation (including diffraction) force is related to
the incident wave �ðtÞ through the excitation kernel function
hexðtÞ. Equation (3) expresses the radiation force as a linear
convolution of the radiation kernel zrðtÞ with the oscillation
velocity. The buoyancy fbðtÞ models the hydrostatic equilibri-
um, related to the heaving position through a linear coefficient
that depends on the gravity acceleration g, the water density �,
and the surface area of the body cut by the mean water level Sw.
Note the noncausality of the expression for the excitation force,
where hexðtÞ 6¼ 0 for t � 0 [3].

However, the assumptions of linear potential theory are not
necessarily valid for oscillating WECs which are subject to
significant motions around the mean water level. Several studies
have been carried out in order to include quadratic terms of the
fluid potential and the variations in time of the wetted surface [5],
[13]. Simulation results clearly show how the linear model
consistently overestimates the body motion, particularly in large
waves. However, an explicit expression of the hydrodynamic
forces that account for such nonlinearities has never been derived
to date.

Another unacceptable assumption, in practical situations, is
the absence of viscous forces.An experimental lawwas proposed
by Morison [14]

fvðtÞ ¼ �RCdjvðtÞjvðtÞ þ ��R2Ci _vðtÞ (6)

Fig. 2. One-degree of freedom floating system for wave energy conversion.

Fig. 1. Hierarchical control structure for wind turbines and wave energy devices.
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where � is the water density, R is the cylinder radius, Cd is the
drag coefficient, and Ci is the inertia coefficient. Empirical
validations of the Morison equation have proved its validity,
and methods have been proposed to evaluate the coefficients
Cd; Ci for certain specific shapes [6], [7].

A full nonlinear model of the WEC goes beyond the scope
of this paper. For our study, we are going to assume that the
nonlinearity of the system comes from the drag component of
the viscous force, setting Ci ¼ 0 [a nonzero Ci would only
result in an additive constant to the mass M in (1)], without
restricting the generality of our results. The heaving cylinder
of Fig. 2 is, therefore, simulated by the following nonlinear
model:

M _vðtÞ þ
Z t

0

zrð�Þvðt� �Þd� þKvjvðtÞjvðtÞ þ

Kb

Z t

0

vð�Þd� ¼ fexðtÞ þ fuðtÞ (7)

where Kv ≜ �RCd and Kb ≜ �gSw, and it is assumed that
vðtÞ ¼ 0 for t � 0.

B. Linear Model for Control Design

For convenience of control design, the force-to-velocity
model of a WEC is typically expressed using a linear model in
the frequency domain [3], [8]

V ð!Þ
Fexð!Þ þ Fuð!Þ ¼

1

Zið!Þ ≜ Pnð!Þ (8)

where Zið!Þ is termed the intrinsic impedance of the system and
Pnð!Þ will be referred to as the nominal model. In (8),
V ð!Þ; Fexð!Þ, and Fuð!Þ represent the Fourier transform of the
velocity vðtÞ, excitation force fexðtÞ, and control force fuðtÞ,
respectively. Note that, in the following, unless stated otherwise,
the Fourier transform of time-domain signals or functions will
be denoted by the corresponding capital letter, namely
Xð!Þ ≜ FfxðtÞg.

The intrinsic impedance Zið!Þ of the model in (8) is specified
as (refer to [3], [8] for the full derivation)

Zið!Þ ¼ Bð!Þ þKð0Þ
v þ j! M þMað!Þ þM1 �Kb

!2

� �
(9)

where Bð!Þ is the radiation resistance (real and even [3], [15]),
Mað!Þ þM1 is the added mass (the constant term at infinite
frequency M1 is separated to yield a well-define Fourier trans-
form of zrðtÞ [3]), and K

ð0Þ
v is a linear damping coefficient

approximating the nonlinear viscous damping in (7).
The model in (8) allows the derivation of conditions for

optimal energy absorption and the intuitive design of the feed-
back controller in the frequency domain [3], [8]. Note that, of
course, the controller can be designed directly from the nonlinear

model. However, as specified in Section II-A, an explicit
parametric nonlinear model is not attainable, in general. This
study, therefore, shows how the simple design of the controller
based on the linear model can be made robust to uncertainties
stemming from unmodelled nonlinearities.

The WEC system considered in this study consists of a
heaving cylinder with radius R ¼ 7 m, height H ¼ 20 m,
draught h ¼ 16 m, and mass M ¼ 2:54� 106 Kg. The radia-
tion and excitation transfer functions Hrð!Þ and Hexð!Þ are
identified numerically through the hydrodynamic software
Wamit [16]. The drag coefficient is set to Cd ¼ 1, based on the
numerical study in [6]. The linear viscous coefficient is set to
K

ð0Þ
v ¼ 3:17� 105 Kg/s, such that the linear model is accurate

when excited by waves of about 2 m in amplitude.
Fig. 3 compares the magnitude and phase response of the

nonlinear model in (7), calculated with waves of different height
and frequency, against the linear model in (8). The frequency
response of the nonlinear system is evaluated in the sense of a
describing function [17], as the complex amplitude-dependent
ratio of the output fundamental to the input sinusoid, evaluated
based on time-domain simulations.

III. CONTROL SYSTEM DESIGN

The control system architecture is shown in Fig. 4 andwas first
introduced in [8], in the context of WECs. Based on the wave
excitation force, a high-level controller calculates a reference
velocity such that the energy absorption is maximized and the
motion is within desired constraints. The velocity is then im-
posed on the WEC through a low-level feedback controller that
acts on the PTO force.

Section III-A gives an overview of the high-level controller
(the reader is referred to [8] for the full details). The design of the
low-level controller, which is themain focus of this study, is then
dealt with in Section III-B.

Fig. 3. Comparison between frequency response of linear system and nonlinear
system at waves of different amplitudes.
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A. High-Level Control

It is a well-known result that maximum wave power absorp-
tion from the WEC is achieved when [3]

V ð!Þ ¼ 1

2Bð!Þ þ 2K
ð0Þ
v

Fexð!Þ (10)

which gives the optimal amplitude and phase of the oscillating
velocity in terms of the excitation force and the hydrodynamic
properties of the system. However, noncausality [3], [15], [18]
and excessive requirements in terms ofmotion/forces [3], [8], [9]
make condition (10) impractical for many situations.

Based on the assumption that the wave excitation force is a
narrow-banded harmonic process with a time-varying frequency
!ðtÞ and amplitude FexðtÞ, the reference velocity is calculated as
a linear proportion of the wave excitation force

vrefðtÞ ¼ 1

HðtÞ fexðtÞ (11)

where HðtÞ is adapted, online, according to the rule [8]

1

HðtÞ ¼
1

2Bð!Þþ2K
ð0Þ
v

; if !̂Xlim

F̂ex
> 1

2Bð!Þþ2K
ð0Þ
v

!̂Xlim

F̂ex
; otherwise

(
(12)

such that optimal power absorption is achieved, under themotion
constraint jxðtÞj � Xlim [8]. The estimation of !̂ðtÞ and F̂exðtÞ
are obtained by use of the extended Kalman filter (EKF) applied
to the true excitation force signal fexðtÞ, assumed known [8], [18]
(in practice, it would have to be estimated from motion and/or
wave-elevation sensors).

The reference velocity, calculated from (11) and (12), is
weakly dependent on the model of the system, which will result
in close-to-optimal performance. In fact,

1) velocity and excitation force are always in phase, indepen-
dent of the model;

2) the amplitude of the velocity is optimal in the constrained
region, i.e., the second condition in (12), independent of
the model;

3) in the unconstrained region, i.e., the first condition in (12),
the amplitude of the velocity is suboptimal and depends on
the approximation 2Bð!Þ þ 2K

ð0Þ
v .

As already studied in [8], particularly in large waves (more of
interest for energy extraction), WECs will mostly work in a
constrained regime, so that the reference-generation strategy in
(12) will only depend on the model for relatively small waves,
where the linear model is more accurate. In this sense, we
consider the proposed high-level controller to be weakly depen-
dent on the model. Moreover, knowledge of the response of the
nonlinear system at excitations of different magnitude could be
incorporated in (12) to improve the accuracy of the amplitude
relation, by adaptingKð0Þ

v as a function of both !̂ and F̂ex, e.g., by
means of a look-up-table and experimental data of the type
shown in Fig. 3.

Note that alternative choices based, e.g., on modifications of
the classicalMPC [9]–[12] could be considered in the production
of a velocity set-point, but these are not considered, here, since
the focus of this paper is on the servo-controller loop.

B. Low-Level Feedback Control

The low-level servo controller is designed based on the
principle of internal model control (IMC) [19], shown in Fig. 5.
The feedback signal dðtÞ can be interpreted as the difference
between the output of the system P and the expected output
based on the nominal model Pn. IMC exploits the idea that if a
process and all its inputs are known perfectly, there is no need for
feedback control or in other words that, for stable processes,
feedback control is only needed because of uncertainty [19].
Note that IMC was already proposed in the context of wave
energy [20], but the robust design was not explicitly addressed.

It can be easily shown [19] that the conceptual scheme in Fig. 5
is equivalent to the classical feedback loop of Fig. 4 when

KðsÞ ¼ QðsÞ
1� PnðsÞQðsÞ : (13)

As is typical in control systems design, in (13) and in the
following, s 2 C denotes the complex frequency in the Laplace
domain, on which transfer functions of finite-order linear sys-
tems are defined. The nominal model PnðsÞ is a finite-order
approximation of Pnð!Þ, defined in (8), such that
Pnðs ¼ j!Þ � Pnð!Þ. The approximation is based on a finite-
order approximation of the system radiation defined in [21] and
more details can also be found in [8].

Although KðsÞ is the actual feedback controller to be im-
plemented in practice, the filterQðsÞ is the only design parameter
of the IMC controller. Thanks to the special structure of IMC,

Fig. 4. Architecture of the hierarchical controller. The reference velocity is
calculated by applying the adaptive gain 1=HðtÞ to the excitation force, based
on (12).

Fig. 5. IMC structure [19].
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QðsÞ can be quite intuitively chosen, based on performance and
robustness specifications, as will emerge in the following.

The relation between the output vðtÞ, the control input vrefðtÞ,
and the external excitation (disturbance) fexðtÞ of the system in
Fig. 5 is

v ¼ PQ

1þQðP � PnÞ vref þ
1� PnQ

1þQðP � PnÞPfex

¼ Tvref þ SPfex (14)

where the dependence on the complex variable s has been
dropped for brevity. The sensitivity function SðsÞ and the
complementary sensitivity function T ðsÞ are defined [19] as

S ≜
1� PnQ

1þQðP � PnÞ ¼
v

Pfex
(15)

T ≜
PQ

1þQðP � PnÞ ¼
v

vref
: (16)

The sensitivity function expresses the response of the feed-
back system to the external disturbance. The complementary
sensitivity indicates the tracking ability of the closed-loop system
as well as the sensitivity to measurement disturbances [19].
When the plant coincides with the nominal model
PnðsÞ ¼ P ðsÞ, the ideal choice for QðsÞ is

~QðsÞ ¼ P�1
n ðsÞ (17)

such that perfect control is achieved: S ¼ 0 (perfect disturbance
rejection) and T ¼ 1 (perfect reference tracking). However, the
resulting K ¼ ~Q=ð1� Pn

~QÞ is not physically realizable, since
PnðsÞ can be shown to be strictly proper, with relative degree 1,
and nonminimum phase, with a zero at s ¼ 0 [8], [15].

Therefore, the filter QðsÞ is augmented as

~QðsÞ ¼ F ðsÞP�1
n ðsÞ (18)

whereF ðsÞ should be proper with relative degree of at least 1 and
a zero at s ¼ 0, in order to remove the unstable pole at s ¼ 0
appearing from the inversion of PnðsÞ. As already proposed in
[8] and similarly in [20], F ðsÞ is designed as follows:

F ðsÞ ¼ s

ðsþ 0:2Þ �
5

sþ 5
(19)

i.e., a band-pass filter which approximates perfect control in the
frequency range [0.3, 2] rad/s (wave period of [21, 6.28] s). Note
that this choice of F ðsÞ is somewhat arbitrary.

The controller thus-far obtained, namely ~KðsÞ, does not
ensure closed-loop stability because the nominal model PnðsÞ
is only a linear approximation of the actual behavior of theWEC.
In the following, we investigate two approaches to adjust ~KðsÞ
such that the final controller KðsÞ yields a robustly stable
feedback loop.

1) Robustness Based on the Small-Gain Theorem: The
following result, given in [19], can be conveniently utilized to

derive a robust stability condition in terms of the filter QðsÞ, by
taking advantage of the IMC structure.

Theorem 1: Assume that all the plants P ðsÞ in the family �

� ¼ P ðsÞ : jP ðj!Þ � Pnðj!Þj
jPnðj!Þj � �P ð!Þ

� �
(20)

have the same number of stable poles and that a particular
controller KðsÞ stabilizes the nominal plant PnðsÞ. Then, the
closed-loop system is robustly stable with the controllerKðsÞ if
and only if the complementary sensitivity function for the
nominal plant TnðsÞ satisfies the following condition:

jjTnðj!Þ�P ð!Þjj1 ≜ sup
!

jTnðj!Þ�P ð!Þj < 1: (21)

Proof: Immediate from the small-gain theorem [19]. ◽

Based on (16), the complementary sensitivity function for the
nominal plant is TnðsÞ ¼ QðsÞPnðsÞ and robust stability is
ensured if and only if

sup
!

jQðj!ÞPnðj!Þ�P ð!Þj < 1: (22)

By accounting for the nonlinearities as unstructured deviations
from the nominal model, in the frequency domain, we can then
make use of the result in Theorem 1. Fig. 6 shows�P ð!Þ for the
model given in Section II, calculated from time-domain
simulations of the nonlinear model in (7) over a range of
operating conditions, as given in Fig. 3. In practice, if a
nonlinear model is not available, one may equally use
physical wave-tank testing (by experimentally measuring the
response of a prototype to sinusoidal waves) to produce an
estimate of �P ð!Þ.

Fig. 7 shows how the initial ~QðsÞ, given in (18), violates
condition (21) at some frequencies and therefore, does not
guarantees robust stability. The typical approach with IMC, as
proposed in [19], is to augment the filterQðsÞwith an additional
low-pass filter that rolls off the complementary sensitivity above
a certain frequency. Usually, in fact, the uncertainty of a plant
increases at high frequencies, due to unmodelled fast dynamics,
and high complementary sensitivity at such frequencies is not
required for performance.

In our case, however, the maximum uncertainty, as well as the
violation of the condition for robust stability, ismaximumaround

Fig. 6. Maximum relative uncertainty bound�P ð!Þ for the nominal model with
respect to the nonlinear system, as defined in (20).
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the center of the region (system resonance) where high
complementary sensitivity would be desired, i.e., in the region
[0.3, 2] rad/s. In order to achieve a better compromise between
the drop in complementary sensitivity and improved robustness,
the filterQðsÞ is, therefore, augmented with a notch filter, as also
proposed in [22]

QðsÞ ¼ ~QðsÞNðsÞ (23)

where

NðsÞ ¼ s2 þ 2��!0 þ !2
0

s2 þ 2�!0 þ !2
0

: (24)

In (24), !0 specifies the frequency of maximum attenuation
(center of the notch), � determines the bandwidth of the attenua-
tion (width of the notch), and� is directly related to themaximum
attenuation. Fig. 7 shows the effect of a choice of
!0 ¼ 0:7 rad/s; � ¼ 1=1:42 � 0:71 (peak variation of comple-
mentary sensitivity is nearly 1.42), and a bandwidth � ¼ 0:05
(peak of uncertainty quite narrow). The resulting T ðsÞ satisfies
the condition in (22) for robust stability.

The resulting controller is referred to as KSGðsÞ

KSGðsÞ ¼
~QðsÞNðsÞ

1� PnðsÞ ~QðsÞNðsÞ : (25)

Although the proposedmodification ensures robust stability, it
also negatively affects tracking performance since a reduction in
the complementary sensitivity causes an increase of the output
sensitivity to the excitation force, as from (14). An alternative
approach is investigated next, which allows us to safely address
the robustness, while maintaining tracking performance.

2) Robustness Based on Passivity: An important result from
input–output stability theory is the passivity theorem, stating that
the feedback interconnection of a passive system and a strictly
passive one is always input-output stable [23], [24].

Definition 1: A (possibly nonlinear) system yðtÞ ¼ fð _y; u; tÞ
is passive if

R T
0 yðtÞuðtÞdt � 0 8T � 0 and for any uðtÞ.

Definition 2:A function of a complex variableGðsÞ is positive
real if GðsÞ is analytic for Rfsg > 0; GðsÞ is real for real s, and

RfGðsÞg � 0 8Rfsg > 0. We say that GðsÞ is strictly positive
real (SPR) if RfGðsÞg > 0 8Rfsg > 0.

A linear time-invariant system is (strictly) passive if its transfer
function is (strictly) positive real [24].

Based on Definition 1, a passive system always dissipates
energy (energy always positive). It can be immediately verified
that the nonlinearmodel of theWEC, given in (7), is passive. The
linear part of the system (radiation and buoyancy effects) is
positive real [3], [21] and therefore passive, whereas the nonlin-
ear viscous force in (6) is passive, since fvðtÞ � vðtÞ > 0 always.
In addition, other nonlinear effects that may arise in the generic
WEC model, given in (1), are all of a dissipative nature.

Based on the passivity theorem, it is therefore sufficient to
design a SPR KðsÞ in order to ensure closed-loop stability.
Although it is difficult to approach the design of a controller with
the SPR constraint, it is indeed possible to obtain a SPR
approximation of an initial controller ~KðsÞ. In particular, the
nominal controller obtained in (18) and (13) is approximated
based on the procedure proposed in [24]

K̂ðsÞ ¼ argmin
1

2�

Z þ1

�1
j ~Kð|!Þ �Kð|!Þj2d!

subject to : KðsÞ is SPR: (26)

The SPR constraint is formally expressed in terms of the
coefficients of the denominator of the transfer functionKðsÞ, and
the problem in (26) is solved with nonlinear convex program-
ming [24]. Fig. 8 compares the real parts of ~KðsÞ (negative at
times) and the resulting KðsÞ (always positive).

Note that the design does not need any knowledge of the
nonlinearity of the system, unlike the procedure proposed in
Section III-B1. In addition, one can increase the gain of KðsÞ
while not worrying about the closed-loop stability (K is still
SPR) and independently improve the reference-tracking and
excitation-force-rejection properties of the servo controller. We
apply an additional multiplicative gain of 20 to the final KðsÞ,
based on intuitive design (the gain is increased until the velocity
tracking is acceptable), as in Fig. 9. The resulting controller is
referred to as KSPRðsÞ

KSPRðsÞ ¼ 20K̂ðsÞ: (27)

Fig. 9 shows the superior velocity-tracking ability ofKSPR as
opposed toKSG. Also, note how increasing the closed-loop gain
of KSG leads to instability, whereas this is not true for KSPR.

Fig. 7. Adjustment of the complementary sensitivity function, through a notch
filter, for robust stability.

Fig. 8. SPR approximation of the nominal controller ~KðsÞ based on (26).
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IV. RESULTS

A. Wave Data

Simulation results are produced under several wave condi-
tions. Random waves are generated from single-peaked, three-
parameters Ochi spectral distributions [25]

S��ð!Þ ¼
4�þ1
4 !4

0

� �
�ð�Þ � H2

s

!4�þ1
e�ð4�þ0:25Þ !0=!ð Þ4 (28)

where!0 is the peak frequency,Hs is the significant wave height,
and � is the sharpness.

The peak frequency is varied from 0.3 to 1.2 rad/s, with step
0.05, the significant wave heights are 0.5, 1, 2, and 4 m, and
� ¼ 5 (not important for the purposes of this study; the reader
may refer to [8] to verify how the bandwidth affects the high-
level control strategy). Random-wave time-series of 7200 s,
sampled at 2.56 Hz, are generated for each simulation, from
S��ð!Þ, based on the method proposed in [26] and also described
in [8]. Fig. 10 gives an example of Ochi wave spectra and wave-
elevation time-series.

B. Results

The performance of the hierarchical control system in Fig. 4 is
evaluated across the range of waves described in Section IV-A,
overwhich the linearmodel ofWEChas a quite limited accuracy,
as highlighted in Fig. 3. Two possible designs of a robust servo-
controller are evaluated: 1) based on the small-gain theorem and
on an unstructured frequency-bound model of the nonlinearity,
namedKSGðsÞ and detailed in Section III-B1; and 2) based on the
passivity theorem not requiring any knowledge of the nonlinea-
rities, other than the assumption of their being dissipative
(passive), named KSPRðsÞ, designed in Section III-B2, which
is true in practice. As a comparison, we consider the nominal
controller designed in Section III-B, denoted asKnðsÞ, although
this should not be implemented in practice, since it would cause
instability.

A first general measure of the robustness, shown in Fig. 11, is
the overall energy extraction, in terms of RCW [8], obtained
by the controllers over the whole range of wave conditions.
Clearly, the open-loop nominal controller produces unwanted
results (negative energy extraction) over a wide range of
frequencies around resonance (0.7 rad/s), where the largest model
uncertainty is. Both of the proposed servo-controller, on the other
hand, are clearly robust in all sea conditions, producing the
expected RCW. KSPRðsÞ is seen to be superior, particularly for
low-frequency waves, and this is due to the superior velocity-
tracking performance, highlighted in Section III-B. Fig. 12
shows how the actual velocity produced by KSGðsÞ is not quite
in phase with the desired velocity, which is the main cause for its
lower performance, in terms of energy capture.

The root-mean-square error (RMSE) between the reference
velocity and the actual velocity is shown in Fig. 13, and the
superior performance of the controller based on passivity is even

Fig. 9. Velocity tracking of KSGðsÞ and KSPRðsÞ when increasing gain. Refer-
ence velocity is a sinusoid with frequency 0:7 rad/s.

Fig. 10. Example of simulated waves. (a) Ochi spectral distributions [25].
(b) Time series simulated from the spectrum [26].

Fig. 11. Performance of the proposed robust controller against the open-loop
controller based on the nominal model.
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more evident. The gain of KSPRðsÞ can, in fact, be increased
without affecting the closed-loop stability so that the controller is
much faster in responding to the changes in reference velocity.

The importance of accurately following the desired reference
velocity is not only evident in the energy-capture performance of
the WEC, but also in the ability to satisfy the desired motion
constraints. The proposed strategy for the generation of the
velocity setpoint, given in (12), also accounts for the motion
constraint Xlim ¼ �2 m. Fig. 14 shows the distribution of the
heaving position over the whole range of proposed simulations.
The given constraint is exceeded about 6.5%of the timeswith the
open-loop nominal controller, whereas less than 2% of the times

with the proposed robust controllers. Given the very accurate
reference-tracking performance of the controller KSPRðsÞ, in
particular, such constraint violations are mostly due to the
monocromatic time-varying approximation of key system vari-
ables and instantaneous frequency/amplitude estimations of the
high-level controller, already discussed in [8].

V. CONCLUSION

This paper addresses realistic control of wave energy devices.
We have attempted to find a sensible tradeoff between perfor-
mance and simplicity, resulting in a fixed parameter controller
with no requirement for wave forecasting, while directly addres-
sing linear modeling errors due to nonlinear viscosity effects.
The design procedure is both intuitive and straightforward, with
no requirement for numerical optimization; yet, physical system
constraints can be directly addressed. Although the performance
of the resulting controller is sub-optimal, with some conserva-
tism due to the robust formulation, we feel that the performance
penalty over a nonlinear controller which deals explicitly with
system nonlinearities is more compensated by the linear control-
ler simplicity.
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