
International Journal of Marine Energy 3–4 (2013) e53–e69
Contents lists available at ScienceDirect

International Journal of Marine Energy

journa l homepage: www.e lsev ier .com/ locate / i jome
Constrained control of arrays of wave
energy devices
2214-1669/$ - see front matter � 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.ijome.2013.11.011

⇑ Corresponding author.
E-mail addresses: giorgio.bacelli@eeng.nuim.ie (G. Bacelli), john.ringwood@eeng.nuim.ie (J. Ringwood).
Giorgio Bacelli ⇑, John Ringwood
Center for Ocean Energy Research, NUI Maynooth, Maynooth, Co. Kildare, Ireland

a r t i c l e i n f o
Keywords:
Array

Control
Global
Independent
Constraints
a b s t r a c t

It is well known in the literature that the total absorbed energy of a
farm of wave energy converter depends, within a wide range of
variability, on the hydrodynamic interaction between the individ-
ual devices. Several studies have addressed the problem of control-
ling the wave energy converters so as to exploit the positive
interaction between the devices in order to increase the total
amount of absorbed energy.

This paper studies two types of control systems for array of wave
energy converters: the first is similar to the classical optimal con-
trol which uses the complete (linear) hydrodynamic model of the
array and information about the status (velocity) of the other
devices, while the second is a suboptimal control systems which
calculates the optimal motion while neglecting completely the
interaction between the devices. Most importantly the comparison
is carried out considering the effects of constraints on the maxi-
mum allowed oscillation amplitude and PTO force.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Wave energy converters (WECs) are likely to be deployed in arrays composed of multiple devices,
in order to both exploit the eventual economy of scale and to exploit the positive hydrodynamic inter-
action. The design of such a positively-interacting collective depends on a number of factors, including
the wave farm layout. In addition, the optimality of the layout (spacing, orientation, etc), with respect
to positive reinforcement, depends on sea state and incident wave direction, which are variable.
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For a given wave farm layout, however, the motion of each device determines the radiated wave
patterns, which are a significant function of the control strategy employed on each device. This opens
the possibility that devices can, via inter-device communication, coordinate their motion to the mu-
tual benefit of all devices in the farm, with maximum farm power production as an objective. Such a
structure, for a simple 2-device array, is shown in Fig. 1.

Wave energy arrays include both large devices (circa 1 MW), individually moored, and closely-
packed arrays of devices, which are contained within a larger superstructure. Examples of larger indi-
vidual devices include Pelamis [1], Oyster [2] and Powerbuoy [3], while closely-spaced arrays include
those by Wavestar [4], Fred Olsen Lifesaver [5] , Manchester bobber [6] and Trident Technologies [7].
In particular, compact circular arrays have been shown to be capable of extracting more energy than a
single device of the same volume, and presenting a larger spectral bandwidth [8].

Original work in the area of global control of arrays was carried out by Evans [9] and Falnes [10],
who developed optimal control for a number of oscillating bodies. Subsequently, Justino and Clement
[11] developed a suboptimal control strategy, followed in a similar approach by other works as in
[12,13,7]. Linear damping has also been widely considered for the control of array and it is generally
divided into two categories: the first is where all the devices have the same damping coefficient, such
as in[14–17], while the second is where the damping of each device composing the array has been se-
lected by some optimisation criteria so as to maximise a given objective, which is generally the total
absorbed energy, as in [13–15].

In this paper, two control strategies are compared for the control of WEC arrays, namely Global
Control (GC) and Independent Control (IC). Both GC and IC are model-based control strategies; how-
ever, GC is based on a centralised control algorithm which uses the complete hydrodynamic model of
the array whereas, with IC, each device is controlled independently using the hydrodynamic model
of a single isolated device. For comparison purposes, it is assumed that the total local hydrodynamic
force on each WEC can be estimated for both GC and IC, where the total hydrodynamic force is in-
tended to be the sum of the force exerted by the incoming wave, diffraction and radiation. While
we consider several layouts, separations and body geometries, it is not the objective of this study to
conclude on optimal shapes or layouts, but rather to achieve some consistency of conclusion. How-
ever, it is appreciated that WEC array performance is sensitive to both layout and device geometry
[18]. The comparison if the two control strategies is carried out also with respect to constraints on
the PTO and oscillation amplitude. Original work in the study of constrained control of system of oscil-
lating bodies was carried out by Evans [19] and Thomas and Evans [18], followed by Falnes and Budal
[20]. Also Fitzgerald and Thomas [21] considered array of devices with oscillation amplitude
constraints, as well as DeBacker et al. [14]. However, constraints on the PTO force have only been
considered for the single device case as in Hals et al. [22] and Cretel et al. [23].
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Fig. 1. Layout for a 2-body array. Motion and PTO force is restricted to heave only.
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We formulate the optimal GC and IC problems in the time domain, which are then discretised and
solved as nonlinear programs. A preliminary analysis of the constrained GC problem using this ap-
proach was already reported in [24]. In the literature, the predominant metric used to evaluate the
performance of a WEC array is the q-factor [18], which indicated the average device performance of
an array element compared to an isolated device. In this paper, however, we consider the ratio of
the total array (energy) performance for the GC and IC cases, because the main objective is to compare
the performance of these two control strategies for any given WEC in any given array configuration.
The q-factor allows the evaluation of the absorption performance for an ensemble of devices with re-
spect to an isolated device, and it provides a useful metric for the comparison of the overall perfor-
mance of different array configurations. However, the q-factor does not allow to discern between
the effect of the control strategy and the hydrodynamics on the total absorbed power, that is, two
control strategies may provide different total absorbed power while having the same q-factor.

2. Formulation of hydrodynamic model

The control systems are implemented on different array layouts and for several geometries of the
WECs composing the arrays. The WECs are vertical cylinders of radius r, draught h and the distance
between their vertical axis is denoted with d, as depicted in Fig. 1 for the particular case of a two-body
array.

2.1. Equations of motion

For this work we assume linear wave theory and non-compressible irrotational flow. Therefore, the
motion of the device can be described, in the time domain, by Cummin’s equation [25]:
Mt €uðtÞ þ B _uðtÞ þ
Z t

t0

Kðt � sÞ _uðsÞdsþ SuðtÞ ¼ f ðtÞ; ð1Þ
where uðtÞ 2 Rm is the vector of the vertical positions of the WECs, and m the number of degrees of
freedom of the system, which corresponds to the number of WECs composing the array, because
the motion of each device is assumed to be restricted to heave only. Mt ¼Mþm1 where M 2 Rm�m

is the generalised mass matrix and m1 2 Rm�m is the asymptotic values of the added mass at infinite
frequency; B 2 Rm�m is the viscous damping term; S 2 Rm�m is the hydrodynamic stiffness and
KðtÞ 2 Rm�m is the matrix of the radiation impulse responses. The vector of external forces f ðtÞ 2 Rm

is given by f ðtÞ ¼ feðtÞ þ fptoðtÞwhere feðtÞ is the exciting force and fptoðtÞ is the PTO force. The excitation
force is calculated as feðtÞ ¼ F�1 XðxÞgðxÞf g, where gðxÞ is the Fourier transform of the wave eleva-
tion and XðxÞ is the frequency domain exciting force transfer function.

2.2. Numerical modelling

The hydrodynamic coefficients m1 and KðtÞ are calculated from the frequency domain radiation
impedance matrix Z(x) by applying Ogilvie’s relations [26,27]. The matrices X(x), Z(x) and S are then
computed in the boundary element solver WAMIT� [28]. This package is widely applied in studies of
WEC arrays, as in [14,16,17]. In WAMIT the high order method is used and computations are per-
formed for 160 frequencies equally spaced at intervals of 0.0151 rad/s. All control simulations are
implemented in MATLAB� and are performed with the same frequency resolution as the WAMIT out-
put. The software simulates the motion of the devices, the PTO forces, the instantaneous converted
power and the vertical velocities and displacements of the WECs for a representative surface elevation
time-history of a given wave spectrum.

2.3. Viscous damping approximation

The viscous effect of a fluid on a body is usually described, under certain conditions [29], as a force
proportional to the square of the relative velocity between the body and the fluid surrounding the
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body; that is fd ¼ ð1=2ÞCdq _uj _ujA, where q is the fluid density, A is the area of the body projected onto
the plane orthogonal to the velocity _u, and Cd is the drag coefficient, which is obtained experimentally
(see for example Appendix 2 in [29]). Several recent studies have considered the effects of viscosity on
WEC motion, such as [7,30,31].

The objective of the approximation is to find a force f̂ d which is linearly proportional to the velocity
and that dissipates the same amount of energy as the force fd. This procedure is known as Lorentz lin-
earisation [32], and it has been used in the case of WECs by Folley et al. [33]. The approximation is
carried out by equating the work of the nonlinear force fd with the work of the linear approximation
f̂ d ¼ Bv _u which result in

R T
0 fd _udt ¼

R T
0 f̂ d _udt. By means of simple manipulations, the damping coeffi-

cient Bv can be expressed as
Bv ¼
CdqA

R T
0

_u2ðtÞj _uðtÞjdt

2
R T

0
_u2ðtÞdt

: ð2Þ
For the special case of a vertical cylinder of radius r oscillating sinusoidally in heave with velocity
_uðtÞ ¼ U cosðxtÞ, the coefficient Bv is:
Bv ¼ 4Cdqr2xU=3: ð3Þ
Knowledge of the velocity is required to calculate the coefficient Bv , but the velocity itself depends
on Bv , therefore an iterative procedure has been implemented. The procedure is initiated by setting Bv

to an initial value B0
v , which is not critical for the convergence because the relation between Bv and the

velocity _u is monotonic ( _u decreases when Bv increases). The i-th iteration of the procedure is com-
posed of two steps, which are:

(1) Calculate the velocity _ui using the value of Bi�1
v

(2) Calculate Bi
v using the velocity _ui and the formula (2), or (3) in the case of regular waves.

The procedure is stopped when the difference between two subsequent values of Bv is smaller than
a threshold d, that is jBi

v � Bi�1
v j < d. For any given geometry, controller type and sea state, the coeffi-

cient Bv is calculated by simulating an isolated device.
3. Energy maximising control

The control problem is defined as it follows: find the optimal profile for the PTO forces which max-
imises the total energy absorbed by the array described by the equation of motion (1) over a time
interval of length T. The total energy absorbed by the array is considered to be the sum of the mechan-
ical work performed by each of the PTO forces as:
W ¼ �
Xn

k¼1

Z T

0

_ukðtÞ f k
ptoðtÞ dt; ð4Þ
where _ukðtÞ and f k
ptoðtÞ are, respectively, the heave velocity and the PTO force of the k-th device.

In the ideal case, assuming the wave excitation is known completely into the future, the optimisa-
tion is performed over an infinitely long the time interval, that is for T ! þ1; however, it has been
shown [34] that a limited horizon suffices to achieve close to optimal energy absorption. As a conse-
quence, the real-time implementation of the control algorithm can be performed in a receding horizon
fashion, as described in [35], where future knowledge of either wave elevation or excitation force, up
to time T ahead, is obtained by prediction. Since the focus of this paper is on the control of arrays of
WECs, we neglect the effects of prediction by applying the separation principle [36], which is a stan-
dard approach in control engineering, allowing the design of the optimal control to be separated from
the design of the predictor; thus perfect knowledge of future wave elevation is assumed, in order to
isolate the effects of control on the total energy produced.
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3.1. Discretisation

The control problem is discretised by approximating the velocity and the PTO force with a linear
combination of basis functions, resulting in a finite dimension optimisation problem. In this paper,
trigonometric functions are chosen as basis functions, thus the PTO force and the velocity are approx-
imated with the truncated zero-mean Fourier series
_ukðtÞ �
XN=2

n¼1

mn;c
k cosðnx0tÞ þ mn;s

k sinðnx0tÞ; ð5Þ

fptok
ðtÞ �

XN=2

n¼1

/n;c
k cosðnx0tÞ þ /n;s

k sinðnx0tÞ: ð6Þ
The best approximation of the solution for the equation of motion (1) is sought by applying the
Galerkin method, the details of which are presented in [35] , and the result is the linear system
GX ¼ P þ E; ð7Þ
where X; P;E and G are defined as
X ¼
X1

X2

� �
P ¼

P1

P2

� �
E ¼

E1

E2

� �
G ¼

G11 G12

G21 G22

� �
: ð8Þ
The vectors Xk and Pk, for k ¼ 1;2, are the vectors of the Fourier coefficients of the velocity and PTO
force of the k-th device, respectively, and are arranged as
Xk ¼ m1;c
k ; m1;s

k ; m2;c
k ; m2;s

k ; . . . ; m
N
2;c
k ; m

N
2;s
k

h iT

Pk ¼ /1;c
k ;/1;s

k ;/2;c
k ;/2;s

k ; . . . ;/
N
2;c
k ;/

N
2;s
k

h iT
for k ¼ 1;2:
The elements of the vectors Ek are the Fourier coefficients of the excitation force on the k-th device
and are arranged in the same manner as the vectors Xk and Pk. The matrices Gij 2 RN�N composing the
matrix G are block diagonal, where each of the N=2 square blocks is of size two and the l-th block is
defined as
Gl
ij ¼

Dl
ij Ml

ij

�Ml
ij Dl

ij

" #
for l ¼ 1; . . . ;N=2

Dl
ij ¼ Rijðlx0Þ þ Bij

Ml
ij ¼ lx0 Mij þmijðlx0Þ

� �
� Sij=ðlx0Þ:

ð9Þ
Bij;Mij and Sij are, respectively, the elements of the matrices B;M and S, while RijðxÞ and mijðxÞ are
the elements of the radiation impedance matrix ZðxÞ, which is computed by WAMIT and is defined as
ZðxÞ ¼ RðxÞ þ ixmðxÞ.

3.2. Constraints

Physical limitations of the WECs are taken into account by introducing constraints on their motion.
In particular, an oscillation amplitude constraint is introduced to reflect the finite excursion of the
PTO, and an anti-slamming constraint to prevent the device from completely emerging from, and
being submerged by, water.

3.2.1. Oscillation amplitude constraints
The oscillation amplitude constraint for the k-th device is defined as j ukðtÞ j6 Uk. The approxi-

mated position is obtained by integrating (5) and the resulting amplitude constraint is:
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XN=2

n¼1

xn;c
k

sinðnx0Þ
nx0

� xn;s
k

cosðnx0Þ
nx0

�����
����� 6 Uk;
where the condition
P

xn;s
k ¼ 0 is imposed to obtain a zero-mean position. Since it is not possible to

find the maximum of a Fourier series analytically, the constraint is imposed only at specified time in-
stants tl in the interval ½0; T�, defined as tl ¼ lDt for l ¼ 0;1; . . . ;Nc , and where T ¼ NcDt. Conse-
quently, the approximated amplitude constraints result in the 4Nc linear inequalities in the vector P
SlG�1P 6 U� SlG�1E

� SlG�1P 6 Uþ SlG�1E forl ¼ 0; . . . ;Nc

ð10Þ
where U ¼ ½U1;U2�T and the matrices Sl 2 R2�2N are constructed from the matrix S and the vectors Tl

as in (11). The matrix S 2 RN�N is block diagonal with a total of N=2 square blocks of size 2, where the
l-th block Sl is defined as
Sl ¼
0 1

lx0

� 1
lx0

0

" #
; Sl ¼

STl 01�N

01�N STl

� �
: ð11Þ
The vector Tl 2 RN is defined as Tl ¼ TðtlÞ where
TðtÞ ¼ cosðx0tÞ; sinðx0tÞ; . . . ; cos
Nx0t

2

� �
; sin

Nx0t
2

� �� �
:

3.3. PTO force constraint

Similarly to the oscillation amplitude constraint, the PTO force constraint for the k-th device is de-
fined as jfptok

ðtÞ 6 Fk. By noting that the approximated PTO force in (6), for t ¼ tl can be written as
fptok
ðtlÞ � TlPk;
where Pk are the components of the PTO force vector P relative to the k-th device, the constraint on the
PTO force can be expressed as the system of linear inequalities:
Tl 01�N

01�N Tl

� �
P 6 F

Tl 01�N

01�N Tl

� �
P 6 �F forl ¼ 0; . . . ;Nc

ð12Þ
3.4. Global control

The control system of the GC strategy is aware of the whole configuration of the array; the resulting
optimisation problem is defined by the cost function W ¼ �ðT=2ÞPT X, which is obtained by substitut-
ing (5) and (6) into the definition of the total absorbed energy in (4). If G is non-singular, the cost func-
tion can be expressed as a function of P by solving (7) w.r.t X, and the coefficients PI of the optimal
PTO forces that maximise the absorbed energy for the array are obtained by solving the optimisation
problem1
PH ¼ arg max
P
� PT G�1P � PT G�1E; ð13Þ
subject to the linear inequality constraints in (10) or (12).
term T=2 is a positive scaling factor that can be neglected for the calculation of the optimal PTO force because the vector PI

aximises W ¼ �ðT=2ÞPT X also maximises the cost function W ¼ �PT X.
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3.5. Independent control

For the IC case, it is assumed that each device is equipped with its own controller and an excitation
force estimator. It is also assumed that no communication occurs between the devices, and each con-
troller uses the model of a single isolated device. That is, the control system of each device uses the
model (1) where the variables uðtÞ and f ðtÞ are scalars and where Mt;B;KðtÞ; S are also scalars and they
are the parameters of a single isolated device with the same shape and dimensions of the devices com-
posing the corresponding array. For the example case of an array composed of two WECs (as shown in
Fig. 1, the controllers of devices 1 and 2 use, respectively, the discretised models
GsX1 ¼ P1 þ E1 ð14Þ
GsX2 ¼ P2 þ E2 ð15Þ
where Gs 2 RN�N is analogous to the matrix G in the approximated equation of motion of the array in
(7). However, in this case, Gs is calculated using the hydrodynamic coefficients of a single isolated de-
vice. In particular, Gs is a block diagonal matrix with square blocks of size two, and is constructed in
the same manner as the diagonal blocks Gii of the matrix G, as described in (9) for i ¼ j, with the dif-
ference being that the elements Dl

ij and Ml
ij of Gs are calculated using the radiation impedance matrix

of a single isolated device.
Ek is the excitation force measured by the estimator on WEC k; more specifically, E1 ¼ E1 � G12X2

and E2 ¼ E2 � G21X1. In fact, it is assumed that the excitation force estimator on each device is not
capable of discerning the excitation force due to incoming waves from the radiation generated by
other bodies; therefore, the estimator provides a signal which is the sum of the radiation force caused
by other bodies (G12X2 and G21X1) and excitation from incoming waves (E1 and E2).

Each of the independent controllers calculates the optimal PTO force that maximises the energy ab-
sorbed by the corresponding WEC using the models in (14) and (15). The optimal PTO forces (P�1 and
P�2) are the solutions of the optimisation problems
P�1 ¼ arg max
P1

W1 ¼ arg max
P1

� PT
1G�1

s P1 � PT
1G�1

s E1 ð16Þ

P�2 ¼ arg max
P2

W2 ¼ arg max
P2

� PT
2G�1

s P2 � PT
2G�1

s E2 ð17Þ
the cost functions of which are the energy absorbed by each device, that is W1 ¼ �PT
1X1 and

W2 ¼ �PT
2X2. However, the solutions of the optimisation problems in (16) and (17) are coupled be-

cause P�1 depends on E1, which is function of the velocity of body 2 (X2), and vice versa; the problem
is then effectively solved iteratively. The initial condition is considered to be with the PTOs switched
off (P1 ¼ P2 ¼ 0). The velocities X1 and X2 are then calculated by means of the equation of motion (7)
and the controller calculates the PTO forces by solving the optimisation problems (16) and (17). When
the PTO forces are applied to the WECs, the new velocities are calculated again, using (7), and the pro-
cess is repeated. The computations performed by the controller at the n-th step of the iteration are :
Xn ¼ G�1ðbPn�1 þ EÞbPn
1 ¼ arg max

P1

� PT
1G�1

s P1 � PT
1G�1

s E1 � G12Xn
2

� �
bPn

2 ¼ arg max
P2

� PT
2G�1

s P2 � PT
2G�1

s E2 � G21Xn
1

� �
;

where n > 1; bP0 ¼ 0 and bPn; bPn
1;
bPn

2;X
n;Xn

1;X
n
2 are defined according to (8). The iteration stops when the

PTO forces approach to their asymptotic values, which is implemented by the condition
kPn

k � Pn�1
k k < e 8k ¼ 1;2.

3.5.1. Adaptive constraints for independent control
The control models in (14) and (15) used by the ICs are not accurate because they neglect part of

the hydrodynamic interaction between the WECs. Consequently, the solution of the ICs constrained
optimal control problem given by (16) and (17) subject to the linear constraints (10) and/or (12)
may produce a motion that violates one of the amplitude constraints. The constrained optimal control
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problem for the IC is the approached by first solving the optimal control problems defined in (16) and
(17), with constraints (10) and (12). If the motion of any of the devices violates a constraint, the opti-
mal control problem is solved again, but with a more restrictive constraint. In practice, if the motion of
the k-th device violates its amplitude constraint Uk, the control problem is solved again, but the new
amplitude constraint �Uk is �Uk ¼ aUk with a < 1. The sequence is then repeated until all constraints are
satisfied.

3.6. Calculation of the solution of optimisation problem

The optimisation problems for GC and IC are convex quadratic programs. In fact, it can be verified
that the matrices G and Gs of the quadratic cost functions (13), (16) and (17) are positive definite and
constraints (10) and (12) are linear. The active set algorithm [37] is used to solve the optimisation
problems, which is implemented in Matlab by the function quadprog.

4. Results

We consider three possible array layouts (Fig. 2): layout 1 is composed of two heaving cylinders;
layout 2 is a linear array of three WECs, while layout 3 is composed of three WECs placed at the ver-
tices of an equilateral triangle. For each layout, we have chosen 24 values of the inter-body spacing d,
logarithmically spaced between 2:2r to 10r. Three device geometries for the WECs composing each ar-
ray have been simulated, each of which has approximately the same volume (�160 p m3) but different
resonant periods; Table 1 lists the radii r, draughts h and resonant period Tr for each device.

The optimal control laws for each WEC in the case of IC are obtained by iteration, and it is assumed
that, between consecutive iterations, there is enough time for the waves radiated from a device to
reach all the other devices, and enough time for the estimator and predictor on each WEC to build
a reliable forecast of the incoming waves (reach quasi steady state). While this is not feasible in prac-
tice, it provides a best-case scenario for the IC case, providing an upper performance bound for the IC
case. However, the comparison between the GC and the ICs is also carried out by considering only the
first iteration of the ICs, which start from an initial condition where each PTO is switched off. The com-
parison of the GC with first iteration of the ICs is interesting from a practical point of view, since it
highlights the effect of the PTO (and therefore the control system) on the interaction between devices.

Each of the three array layouts depicted in Fig. 2 has been simulated for all the three WEC geom-
etries in Table 1. Both GC and ICs have been computed for each of the resulting nine possible arrays
with inter-body spacing ranging between 2:2r and 10r, and considering four Bretschneider spectra
with Hs = 1 m and Tp ¼ f6;8;10;12g s. The parameters x0 and N for the discretisation of the control
problem are N ¼ 160 and x0 ¼ 2p=200 rad=s respectively, while the thresholds d and b for the adap-
tive approximation of the viscous damping (Section 2.3) and the ICs (Section 3.5), respectively, are
d ¼ 1 and e ¼ 10. The simulations of both GC and IC have been carried out using the same model given
by linear the equation of motion of the array in (1).

The patterns exhibited by the results are illustrated by the representative cases depicted in Figs. 3–5,
which show the ratio between the energy absorbed using IC and GC (Eig ¼ Ei=Eg), with respect to the
normalized amplitude constraint U and normalizes force constraint F, defined as
1 2 3 d

x

y

β

d

dd

d

d

1 2 1

2 3

Layout 1

Layout 2

Layout 3

Fig. 2. Top view of array layouts and of incident waves angle b.



Table 1
WECs dimensions and resonance period.

WEC geometry 1 2 3

Radius r (m) 4 5 6.25
Draught h (m) 10 6 4
Resonance Tr (s) 7.1 5.9 5.4

Fig. 3. Layout 1; geometry 2; d = 20 m.
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U ¼ U
max u1

u
F ¼ F

max f 1
ptou

;

where u1
u is the oscillation amplitude of a single isolated and unconstrained device, and f 1

ptou
is the opti-

mal PTO force of a single isolated and unconstrained device.
It can be noticed immediately that the relative performance of IC with respect of GC is more sen-

sitive to the force constraint than the oscillation amplitude constraint. In particular, when restricting
the maximum allowed PTO force, the performance of the IC approaches the performance of the GC
(Eig ! 1). On the other hand, the relative performance of the IC degrades when imposing a more
restrictive the oscillation amplitude constraint (i.e. when decreasing U). These observations about
the behaviour of the ratio Eig with respect to U and F are consistent for the three layouts and across
several sea states and wave heading angles, as it can be seen by comparing Figs. 3–5.

Tables 2 and 3 provide a wider range of results for Eig as function of the peak period and the wave
heading angle, for the array layouts 2 and 3, respectively. For each Tp and b the tables list three entries:



Fig. 4. Layout 2; geometry 2; d ¼ 20 m.
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the first, denoted by Unc, is the ratio Eig for the unconstrained case; the entry denoted by ðrEigÞU is the
average gradient of Eig in the direction of the amplitude constraints, while ðrEigÞF is the average gra-
dient in the direction of the force constraint. Tables 2 and 3 confirm that the relative performance of
the IC is more sensitive to the force constraint than the oscillation amplitude constraint, and that by
reducing the maximum allowed PTO force the ratio Eig ! 1. However, there is an exception for the
case of the smallest peak period (Tp ¼ 6s) where a restriction of the maximum PTO force causes, on
average, a degradation of the relative performance of the IC. In particular, by looking at Table 2, which
lists the simulation results for the array layout 2 composed of WECs of geometry 2, when Tp = 6 s the
sensitivity of Eig decreases in magnitude when the heading angle b increases, which means that the
performance degradation of the IC is reduced when the array is in terminator position (b ¼ 90�). When
Tp = 6 s, the negative values of the gradient ðrEigÞF for both layouts 2 and 3 (Tables 2 and 3, respec-
tively) could be due the fact that the corresponding peak wavelength is approximately 56 m (in infi-
nite depth water), which is slightly less than three times the inter-body distance d ¼ 20 m. Thus, the
small ratio between the wavelength and d may cause strong inter-body interference which penalise
the IC.

In all cases, the magnitude of ðrEigÞF is larger than the magnitude of ðrEigÞU; that is, Eig is more
sensitive to variations in the force constraint than variations in the amplitude constraint, indepen-
dently whether the variation is positive or negative.

The effect of the inter-body distance on Eig , in conjunction with the wave heading angle and for the
three layouts, is shown in Figs. 6–8. Each plot contains four curves, corresponding to different con-
straints configurations: the curve labelled ‘‘u’’ depicts Eig as function of the inter-body distance for
the unconstrained case; the curves labelled ‘‘a’’ and ‘‘f’’ correspond the cases where only one type



Fig. 5. Layout 3; geometry 2; d ¼ 20 m.

Table 2
Layout 2; geometry 2; d = 20 m.

Tp = 6 s Tp = 8 s Tp = 10 s Tp = 12 s

b ¼ 0� Unc 0.953 0.971 0.880 0.975
ðrEigÞ�U 0.007 �0.015 �0.002 �0.032

ðrEigÞ�F �0.050 �0.005 0.165 0.068

b ¼ 30� Unc 0.963 0.971 0.867 0.974
ðrEigÞ�U 0.004 �0.014 0.002 �0.039

ðrEigÞ�F �0.036 0.027 0.184 0.087

b ¼ 45� Unc 0.962 0.954 0.852 0.972
ðrEigÞ�U 0.008 �0.008 �0.005 �0.041

ðrEigÞ�F �0.021 0.066 0.209 0.097

b ¼ 60� Unc 0.957 0.914 0.834 0.919
ðrEigÞ�U 0.010 0.011 0.029 �0.028

ðrEigÞ�F �0.011 0.099 0.235 0.145

b ¼ 90� Unc 0.945 0.897 0.813 0.938
ðrEigÞ�U 0.014 0.017 0.008 �0.041

ðrEigÞ�F �0.016 0.111 0.260 0.151
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Table 3
Layout 3; geometry 2; d ¼ 20 m.

Tp = 6 s Tp = 8 s Tp = 10 s Tp = 12 s

b ¼ 0� Unc 0.930 0.944 0.764 0.957
ðrEigÞ�U 0.005 �0.051 �0.013 �0.072

ðrEigÞ�F �0.015 0.098 0.344 0.158

b ¼ 30� Unc 0.933 0.942 0.763 0.957
ðrEigÞ�U �0.005 �0.054 0.017 �0.071

ðrEigÞ�F �0.022 0.133 0.345 0.160

b ¼ 45� Unc 0.924 0.942 0.763 0.957
ðrEigÞ�U 0.000 �0.047 �0.014 �0.072

ðrEigÞ�F �0.015 0.110 0.345 0.159

b ¼ 60� Unc 0.922 0.944 0.764 0.957
ðrEigÞ�U 0.009 �0.050 �0.015 �0.071

ðrEigÞ�F �0.014 0.109 0.344 0.158

b ¼ 90� Unc 0.927 0.946 0.765 0.957
ðrEigÞ�U 0.011 �0.037 �0.016 �0.071

ðrEigÞ�F �0.025 0.087 0.343 0.149

2 3 4 5 6 7 8 9 10
0.8

0.9

1

E ig

Layout #1

u
a
f
af

2 3 4 5 6 7 8 9 10
0.8

0.9

1

E ig

Layout #2

2 3 4 5 6 7 8 9 10
0.8

0.9

1

E ig

Layout #3

d/r

Fig. 6. Geometry 2; Tp ¼ 10 s; b ¼ 0� .

e64 G. Bacelli, J. Ringwood / International Journal of Marine Energy 3–4 (2013) e53–e69
of constraint is active and it is set to its minimum value considered in this paper, the normalized value
of which is 0.5. More in detail, the curve labelled as ‘‘a’’ is obtained by imposing U ¼ 0:5 and leaving
the PTO force unconstrained, while the curve ‘‘f’’ is obtained by setting F ¼ 0:5. The last curve (‘‘af’’) is
obtained by simulating the system when both the normalized PTO force and normalized oscillation
amplitude constraints are set to 0.5.

As expected, the IC behaves similarly to the GC in terms of total absorbed energy (the ratio Eig ! 1)
for large inter-body spacing. In fact, the inter-body hydrodynamic interactions (both radiation and dif-
fraction) decrease with increasing distance, and the error introduced in the control model used by the
IC becomes negligible.



2 3 4 5 6 7 8 9 10
0.8

0.9

1

E ig

Layout #1

2 3 4 5 6 7 8 9 10
0.8

0.9

1

E ig

Layout #2

2 3 4 5 6 7 8 9 10
0.8

0.9

1

E ig

Layout #3

d/r

u
a
f
af

Fig. 7. Geometry 2; Tp ¼ 10 s; b ¼ 45� .
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Figs. 6–8 also highlight how restrictions in the motion and PTO force causes the performance of the
IC to improve when compared to GC, because the curves referring to any constrained configuration
(‘‘a’’, ‘‘f’’, ‘‘af’’) are always above the curve of the unconstrained motion and force (‘‘u’’). It is also evi-
dent from Figs. 6–8 that the effect of the PTO force constraint on Eig is larger than the effect of the mo-
tion constraint, as the curves ‘‘f’’ and ‘af’’ are always overlapped; this means that a variation on the
amplitude constraint has no effect on Eig when the normalized force constraint is set to F ¼ 0:5.

Figs. 6–8 correspond to simulations performed with the same geometry of the WEC (G 2) and same
sea state (Tp ¼ 10 s), and to different wave heading angles b. By comparing these figures, it can
be noted that Eig for layout 2 (linear array with three WECs) is the most sensitive to b, while for the
layout 1, which is composed of two devices, is less sensitive; when considering layout 3, Eig is practi-
cally unaffected by the wave heading angle.



Table 4
d ¼ 20 m; Tp ¼ 8 s; geometry 2.

L 1 L 2 L 3

b ¼ 0� Unc 0.976 0.971 0.944
ðrEigÞ�U �0.009 �0.015 �0.051

ðrEigÞ�F 0.018 �0.005 0.098

b ¼ 30� Unc 0.977 0.971 0.942
ðrEigÞ�U �0.011 �0.014 �0.054

ðrEigÞ�F 0.022 0.027 0.133

b ¼ 45� Unc 0.977 0.954 0.942
ðrEigÞ�U �0.014 �0.008 �0.047

ðrEigÞ�F 0.023 0.066 0.110

b ¼ 60� Unc 0.969 0.914 0.944
ðrEigÞ�U �0.006 0.011 �0.050

ðrEigÞ�F 0.032 0.099 0.109

b ¼ 90� Unc 0.953 0.897 0.946
ðrEigÞ�U 0.005 0.017 �0.037

ðrEigÞ�F 0.048 0.111 0.087

Table 5
d ¼ 20 m; Tp ¼ 10 s; geometry 2.

L 1 L 2 L 3

b ¼ 0� Unc 0.929 0.880 0.764
ðrEigÞ�U �0.005 �0.002 �0.013

ðrEigÞ�F 0.087 0.165 0.344

b ¼ 0� Unc 0.929 0.867 0.763
ðrEigÞ�U �0.003 0.002 0.017

ðrEigÞ�F 0.088 0.184 0.345

b ¼ 0� Unc 0.929 0.852 0.763
ðrEigÞ�U 0.004 �0.005 �0.014

ðrEigÞ�F 0.090 0.209 0.345

b ¼ 0� Unc 0.928 0.834 0.764
ðrEigÞ�U 0.008 0.029 �0.015

ðrEigÞ�F 0.092 0.235 0.344

b ¼ 0� Unc 0.928 0.813 0.765
ðrEigÞ�U 0.007 0.008 �0.016

ðrEigÞ�F 0.096 0.260 0.343
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The behaviour of Eig with respect to the heading angle and the array layout is confirmed by looking
and the data in Tables 4 and 5, which list the values of Eig and its gradients for additional values of b
and for two sea states (Tp ¼ 8 s for Table 4 and Tp ¼ 10 s for Table 5).

The effect of the WEC geometry on the relative performance of IC compared to GC can be inferred
form data in Tables 6 and 7, which list the values of Eig ; ðrEigÞU and ðrEigÞF for the three layouts and
the three WEC geometries; both tables refer to the same wave heading angle b ¼ 90� and normalized
distance d=r ¼ 4. The IC performs worse for the device with the strongest radiative properties (G = 3)
in all the situations; this observation was expected, because a stronger interaction implies a larger
effect of the error in the control model used by the IC, with the consequent degradation in relative
performance.



Table 6
Tp ¼ 8s; d=r ¼ 4; b ¼ 90� .

L 1 L 2 L 3

G 1 Unc 0.966 0.925 0.975
ðrEigÞ�U 0.005 0.009 �0.015

ðrEigÞ�F 0.017 0.083 0.015

G 2 Unc 0.953 0.897 0.946
ðrEigÞ�U 0.005 0.017 �0.037

ðrEigÞ�F 0.048 0.111 0.087

G 3 Unc 0.924 0.868 0.917
ðrEigÞ�U 0.025 0.031 �0.030

ðrEigÞ�F 0.063 0.113 0.119

Table 7
Tp ¼ 10 s; d=r ¼ 4; b ¼ 90� .

L 1 L 2 L 3

G 1 Unc 0.965 0.896 0.875
ðrEigÞ�U 0.009 0.021 0.006

ðrEigÞ�F 0.037 0.145 0.175

G 2 Unc 0.928 0.813 0.765
ðrEigÞ�U 0.007 0.008 �0.016

ðrEigÞ�F 0.096 0.260 0.343

G 3 Unc 0.897 0.761 0.690
ðrEigÞ�U 0.021 0.033 �0.041

ðrEigÞ�F 0.139 0.307 0.439

G. Bacelli, J. Ringwood / International Journal of Marine Energy 3–4 (2013) e53–e69 e67
5. Conclusions

The results in Section 4 clearly indicate that a significant performance improvement (up to 10%, or
more) can be obtained using global control of arrays, compared to independent control. Moreover, the
methodology applied in this paper provides an upper bound for relative the performance of the Inde-
pendent Controller when compared to the Global Controller. Thus, considering the more realistic case
where the ICs will not have time to fully converge on a quasi steady-state (which assumes that the sea
state is strictly stationary), significantly greater benefits of GC are indicated, with improvements of
greater than 20% possible for small d. The performance of both GC and IC will be affected also by
the prediction of wave elevation or excitation force, which has not been studied in this paper because
the authors have applied the separation principle (Section 3).

The benefits of GC are greatest for layouts which have maximum device interaction (e.g. layout 3 in
our analysis) and devices which have strong radiation properties (e.g. geometry 3, which has a large
radius/draught ratio). The degree of benefit of the GC over the ICs, as expected, diminishes as the inter-
action between devices decreases. Therefore, the greatest benefit of GC is likely to be manifest for clo-
sely-packed arrays of WECs, such as Wavestar [4], Fred Olsen Lifesaver [5] , Manchester bobber [6] and
Trident Technologies [7] systems.

In addition, the effect of PTO force and oscillation amplitude constraints on the relative perfor-
mance of the IC with respect to the GC has been studied. The results show that by restricting the mo-
tion of the devices, or restricting the maximum force exerted by the PTO, generally reduces the
performance gap between the IC and the GC. However, a significant reduction in the performance
gap is only obtained for a restriction in the maximum allowed PTO force, while a restriction on
the device motion affects the ratio Eig with a smaller magnitude. Also, it has to be noted that the
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performance gap may not be significantly reduced in practice because the total absorbed energy for
the IC is an upper bound, which can only be obtained in an ideal, non realistic situation.
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