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Nonlinear Dynamic Transformer Time-Domain
Identification for Power Converter Applications
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Abstract—For flyback converter applications, an accurate model
of the transformer is necessary for simulation studies, as well
as a basis for model-based controller design. In general, trans-
former modeling has either focused on the winding model, using
frequency-domain methods, or on the nonlinear core model, using
time-domain methods. Nonlinear modeling is confined to the time
domain and certain difficulties have precluded the use of time-
domain methods for winding model estimation, resulting in the
lack of integrated modeling approaches. This paper focuses on
identifying a complete nonlinear dynamic model of a 3-winding
transformer using time-domain system identification approaches.
Our study demonstrates a possible way to handle the difficulties
of working in the time domain and provides a model at least as
accurate as that obtained with the frequency response data. In ad-
dition to the parameters of the Jiles–Atherton model, which is used
to describe the nonlinear core behavior, the air-gap length is also
computed from the experimental data to enhance the core model
accuracy. The obtained transformer winding model, core model,
and full model are experimentally verified.

Index Terms—Magnetic hysteresis, modeling, system identi-
fication, time-domain analysis, transformer cores, transformer
windings.

I. INTRODUCTION

G IVEN the success of the primary-side regulation (PSR)
for flyback converters in discontinuous conduction mode

(DCM) [1], the extension to continuous conduction mode
(CCM), with the aim of achieving a higher performance and
a lower production cost, is of significant interest. However, the
study of PSR in CCM requires an accurate model of the flyback
transformer, particularly at high frequencies.

The topic of modeling a high-frequency transformer has been
investigated previously [2]–[15]. In general, most studies fo-
cus either on extracting a frequency-dependent winding model
with a linear core assumption [3]–[7], or on modeling non-
linear properties of a specific magnetic material using a high-
amplitude and high-frequency excitation voltage [8]–[12]. Al-
though it is claimed in [14] and [15] that they are able to han-
dle the frequency-dependent and hysteresis effects inside the

Manuscript received October 19, 2012; revised February 6, 2013; accepted
February 25, 2013. Date of current version July 18, 2013. This work was sup-
ported by the Semiconductor Research Corporation, Dallas, under Contract
2008-HC-1836. Recommended for publication by Associate Editor B. Ferreira.

T. T. Vu and J. V. Ringwood are with the Department of Electronic Engineer-
ing, National University of Ireland, Maynooth, Kildare 00353, Ireland (e-mail:
ttrongvu@eeng.nuim.ie; john.ringwood@eeng.nuim.ie).

S. O’Driscoll is with Texas Instruments, Cork, Ireland (e-mail: seamuso-
driscoll@ti.com).

Digital Object Identifier 10.1109/TPEL.2013.2251006

Fig. 1. Nonlinear dynamic model of a 3-winding transformer.

transformer at the same time, their models are obtained from
an analytical [13], [14] or numerical [15] approach, i.e., based
on physical equations or finite-element analysis, rather than a
measurement-based one. There is, to the best of our knowl-
edge, no investigation that tries to model both nonlinear and
winding effects together using experimental data and system
identification.

This paper is aimed at identifying and simulating a nonlinear
dynamic model (including winding configuration properties and
core characteristics) of a 3-winding transformer which is typi-
cally employed in a flyback converter. The equivalent model, as
shown in Fig. 1, is generalized from the T-model for a 3-winding
transformer [2]. The core behavior, consisting of a hysteresis ef-
fect and a nonlinear magnetic inductance, is characterized by
Zm . The impedance {Zi(s)}3

i=1 , which represents the effect of
the parasitic components in the ith winding, is generally defined
by

Zi(s) = Ri(s) + sLi(s), i = 1, 2, 3 (1)

where {Ri(s)}3
i=1 and {Li(s)}3

i=1 represent the power losses
and the leakage inductance in the ith winding, respectively. As
both {Ri(s)}3

i=1 and {Li(s)}3
i=1 are the functions of frequency,

the winding impedance {Zi(s)}3
i=1 does not have a fixed form

and depends on the configuration of each transformer. The ca-
pacitor Cm describes the electric energy storage in all windings
referred to the primary winding, while the electric energy stor-
age between windings is symbolized by C12 , C13 , and C23 . The
transformer voltage gains n2 and n3 account for the coupling
between transformer windings. The capacitances Cm ,C12 , C13 ,
and C23 and the voltage gains n2 and n3 are presumed constant
with frequency, in this study. The model in Fig. 1 is identified
from two steps. First, the winding parameters are obtained us-
ing a small excitation signal, while the core model is estimated
separately using a high-voltage source.

0885-8993/$31.00 © 2013 IEEE



VU et al.: NONLINEAR DYNAMIC TRANSFORMER TIME-DOMAIN IDENTIFICATION FOR POWER CONVERTER APPLICATIONS 319

Fig. 2. Generic procedure to estimate a model of an actual system from
sampled data.

For low-frequency applications, transformer winding model
estimation has been widely studied using both time- and
frequency-domain data [3], [4]. However, the studies for high-
frequency transformers have been carried out in the frequency
domain only [5]–[7]. The reason behind this selection is due to
the advantages of data collection in frequency domain (by an
impedance analyzer) over time domain (by an oscilloscope). In
particular, for systems having wide variations in their frequency
response, the collected time response data typically suffer from
a round-off error due to the finite bit resolution of the acquisition
device. Despite these limitations, the time-domain approach is
still preferred as it requires only a simple measurement facil-
ity and offers an easy way to deal with a complex transformer
model [3]. In the next section, a methodology is suggested to
handle the numerical difficulties occurring during the measure-
ment, and to obtain a frequency-dependent winding model of a
transformer using system identification techniques.

A variety of modeling techniques have been suggested to em-
ulate the hysteresis properties in the magnetic material [8]–[12].
Among them, the Jile–Atherton (J–A) model [8], [9], which
offers the best tradeoff between simplicity and accuracy, can be
considered as the most suitable approach for our application.
Due to the effect of the air gap, the gap length is also considered
as a variable during the estimation of the J–A model.

The remainder of the paper is organized as follows. Section II
introduces two nominal approaches to continuous-time system
identification, while the data collection and application of these
identification algorithms to transformer winding model are ex-
amined in Section III. The core model is described in Section IV.
The flyback transformer is identified and verified in Section V.
Conclusions are drawn in Section VI

II. SYSTEM IDENTIFICATION METHODS

System identification has been widely applied in various
fields to seek mathematical models of actual systems from their
input–output behavior. As illustrated in Fig. 2, a typical sys-
tem identification procedure requires a set of input–output data
{u(tk ), y(tk )}N

k=1 , a model structure (i.e., black box, gray box,
etc.), and an estimation technique (i.e., least squares, maximum
likelihood, etc.). For each model structure, model parameters
are obtained by minimizing the error between the output signal
{ŷ(tk )}N

k=1 predicted by the model and the actual output signal
{y(tk )}N

k=1 . A dynamic system model can be in discrete-time or
continuous-time form. A high-fidelity continuous-time model is
of primary interest in this paper.

Identification methods for a continuous-time system are typ-
ically classified as: 1) a direct approach which handles a
continuous-time model of the system directly and 2) an indi-
rect approach, in which a discrete-time model of the system
is first identified and is then transformed into continuous-time
form [16].

A. Direct Continuous-Time Model Identification

Due to the continuous-time nature of the transformer model in
Fig. 1, a direct identification procedure is perfectly suitable to es-
timate transformer parameters. Various methods can be applied
to the transformer model estimation problem [16]. However,
only the most reliable method, denoted the simplified refined
instrumental variable method for continuous-time system iden-
tification (SRIVC) [17], is chosen here. Let the continuous-time
model of the actual system be

G(s) =
Bc(s)
Ac(s)

=
bnb

snb + bnb −1s
nb −1 + · · · + b0

sna + ana −1sna −1 + · · · + a0
. (2)

Since only causal systems are considered, the transfer func-
tion G(s) must be proper (i.e., nb ≤ na ). The prediction error
between the real and predicted output signals can be written as

ε(t) = y(t) − ŷ(t) = y(t) − Bc(s)
Ac(s)

u(t)

=
Ac(s)
Ac(s)

y(t) − Bc(s)
Ac(s)

u(t). (3)

Let us assume that Ac(s) in (3) is known; hence, L(s) =
1

Ac (s) can be considered as a low-pass filter. Substituting filtered
signals yf (t) = L(s)y(t) and uf (t) = L(s)u(t) into (3), we
have

ε(t) = Ac(s)yf (t) − Bc(s)uf (t)

= y
(na )
f (t) + ana −1y

(na −1)
f (t) + · · · + a0yf (t)

− bnb
u

(nb )
f (t) − bnb −1u

(nb −1)
f · · · − b0uf (t) (4)

where
⎧
⎪⎪⎨

⎪⎪⎩

y
(i)
f (t) = L−1

{
si

Ac(s)

}

∗ y(t), i = 0, . . . , na

u
(j )
f (t) = L−1

{
sj

Ac(s)

}

∗ u(t), j = 0, . . . , nb .

Here, the symbol L−1 and ∗ denote the inverse Laplace
transform and convolution, respectively. By evaluating (4)
at sampling instants {tk}N

k=1 , we have N equations in
na + nb + 1 variables, which are the model parameters θ =
(a0 , a1 , . . . , ana −1 , b0 , b1 , . . . , bnb

). If N > na + nb + 1, an
unbiased solution of the model parameters can be found by
a recursive instrumental variable algorithm. A detailed in-
vestigation of the SRIVC technique is documented in [17].
The implementation of the SRIVC method is available in the
CONTSID toolbox for MATLAB [18].
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B. Indirect Continuous-Time Model Identification

Though the indirect identification of a continuous-time model
contains some potential issues induced by the discretization of
a continuous-time system [16], this approach has been success-
fully applied in various applications, including the transformer
model determination [3], [4]. For the comparison purpose, a
discrete-time system identification algorithm based on a linear
least-squares estimator (LSE) is presented. It is presumed that
the discrete-time model of the actual system is given by

G(z) =
Bd(z)
Ad(z)

=
β0 + β1z

−1 + · · · + βnβ
z−nβ

1 + α1z−1 + · · · + αnα
z−nα

. (5)

Due to the negative power representation of the variable z
in (5), the system G(z) is always causal irrespective of the nα

and nβ values. The signal ŷ(tk ) can be estimated from the past
observation of the input signal {u(th)}th ≤tk

and output signal
{y(tl)}tl ≤tk −1 as

ŷ(tk ) = (1 − Ad(z))y(tk ) + Bd(z)u(tk ) (6)

or in matrix form

ŷ(tk ) = ϕ(tk )θT (7)

where the vector θ = [α1α2 . . . αnα
β0β1 . . . βnβ

] contains the
model parameters and the vector

ϕ(tk ) = [−y(tk − 1) − y(tk − 2) . . . − y(tk − nα )

u(tk )u(tk − 1) . . . u(tk − nβ )]. (8)

The prediction error at time instance tk (max(nα , nβ ) < tk ≤
N) is

ε(tk ) = y(tk ) − ŷ(tk ) = y(tk ) − ϕ(tk )θT . (9)

The lower bound of tk is defined to make sure that all past input
and output samples in ϕ(tk ) of (8) are available. If the prediction
error {ε(tk )}N

tk =max(nα ,nβ )+1 is white noise, an estimate of the
model parameters θ can be solved using the least squares as

θ̂ =
[
ΦT

Nα
ΦNα

]−1
ΦT

Nα
YNα

(10)

where YNα
= [y(nα + 1)y(nα + 2) . . . y(N)]T is the output

vector and ΦNα
=

[
ϕT (nα + 1)ϕT (nα + 2) . . . ϕT (N)

]T
de-

notes the regressor matrix. In the case of a colored prediction
error, the instrumental variable method and/or a noise model is
typically employed to avoid a biased estimation of θ [19].

By applying a discrete-to-continuous (D2C) time transfor-
mation to G(z), one can determine a continuous-time model
G(s) of the actual system. Though various mappings between
the discrete and continuous time domain are available, only the
Tustin’s transformation is considered to preserve the frequency
response of the system with resemble fidelity. One limitation of
indirect system identification is the nonpreservation of model
order during a D2C transformation. This is partly due to na, nb

in (2) and nα , nβ in (5) have different roles in describing sys-
tem properties. The nonpreserved model order implies that we
cannot control the order of G(s) by only specifying the order of
G(z). However, the order of G(s) can be retained by putting a
constraint on the model parameters of G(z). Starting with G(s)

described by (2), discretizing G(s) using the Tustin’s transfor-
mation s = 2

T
1−z−1

1+z−1 , we have

G(z)=
bnb

(
2
T

1−z−1

1+z−1

)nb

+ bnb −1

(
2
T

1−z−1

1+z−1

)nb −1
+ · · · + b0

(
2
T

1−z−1

1+z−1

)na

+ ana −1

(
2
T

1−z−1

1+z−1

)na −1
+ · · · + a0

.

We multiply both numerator and denominator of G(z) by(
1 + z−1

)na and rearrange the result to the form

G(z) =
(
1 + z−1)na −nb

[
β0 + β1z

−1 + · · · + βnb
z−nb

1 + α1z−1 + · · · + αna
z−na

]

=
(
1 + z−1)na −nb G∗(z) (11)

where

G∗(z) =
β0 + β1z

−1 + · · · + βnb
z−nb

1 + α1z−1 + · · · + αna
z−na

and β0 , β1 , . . . , βnb
are a linear combination of

b0 , b1 , . . . , bnb
and α1 , α2 , . . . , αna

are a linear combination
of a0 , a1 , . . . , ana −1 . It can be demonstrated that when the pa-
rameters a0 , a1 , . . . , ana −1 and b0 , b1 , . . . , bnb

are independent,
β0 , β1 , . . . , βnb

and α1 , α2 , . . . , αna
are also independent. This

means that there is no constraint on the parameters of G∗(z),
and that the numerator order nb and denominator order na of
G(s) can always be preserved if G(z) satisfies (11) and Tustin’s
transformation is used. Identifying G(z) from the input–output
data {u(tk ), y(tk )} now reduces to the estimation G∗(z) from
the filtered data {u(tk )

(
1 + z−1

)na −nb , y(tk )} and then apply-
ing (11). It should be noted that the idea of using a prefilter to
establish a unique mapping between parameters of continuous-
time model and its equivalent discrete time has been exploited
somewhere in [20]. However, the study in [20] can only be
applied when the model structure is known and simple.

III. TRANSFORMER WINDING MODEL IDENTIFICATION

A. Data Collection

Time-domain data can be collected in many ways depending
on the algorithm used to estimate the transformer model and the
specifications of the measurement equipment [3], [4]. Since the
transformer parameters in Fig. 1 generally exhibit different or-
ders of magnitude, it is preferable to determine them separately
using different sets of input/output data [4]. This can be achieved
by running different experiments, each of which is configured
such that the response of some model parameters is dominant
in the collected data while the effect of other parameters can
be neglected. Though various experimental configurations, for
example short circuiting the transformer winding, removing the
ferrite core, using band-limited excitation signals, etc., have
been studied in [4], [6], and [7], their performance is dependent
on the transformer under test. For simplicity, each experiment
in this paper is carried out by a random excitation signal in
combination with a particular short circuiting arrangement.

A circuit arrangement used to obtain time-series data for an
experiment is exemplified in Fig. 3. The transformer is simply
depicted by the 3-port network T. A random binary voltage
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Fig. 3. Experimental configuration to collect input/output data for 3-winding
transformer model estimation.

Fig. 4. Transformer winding model with a linear core.

VRBS(t), which has a virtually flat spectrum over the frequency
range of interest, is injected into the primary winding. The sens-
ing resistor RS is deliberately inserted to provide a current mea-
surement. Only a short circuited connection of the secondary
winding is involved in this experiment. The data for system
identification (e.g. VRBS(t), VS (t) and V3(t)) are collected by
a digital oscilloscope. These voltages can serve as either input
or output data for system identification depending on the objec-
tive of the particular test. For other experiments, the excitation
signal VRBS(t) might be applied to other transformer terminals
with different winding short circuit setup. However, the resistor
RS is always kept in series with VRBS(t).

The difficulties of time-domain identification methods arise
when the response of the system, e.g., VS (t) and V3(t) in Fig. 3,
varies significantly over a wide frequency range and cannot
be sufficiently resolved by the digital oscilloscope. The round-
off error occurring will distort the estimated result regardless
of the identification techniques used. Two options, consisting
of increasing the resolution of each sample (more expensive
measurement equipment), and considering only the dynamic
response of interest, can be used to reduce the round-off er-
ror. The latter approach will be used in this paper to enrich
some dynamic contents in VS (t) by adjusting RS , which plays
the same role as a ranging resistor in impedance measurement
circuits [21].

B. Parameter Estimation Procedure

Under small signal excitation, the nonlinear core model in
Fig. 1 is presumed linear and can be modeled by a parallel
Rm Lm circuit, as shown in Fig. 4. A set of six different experi-
ments is performed to derive all the parameters for the winding
model in Fig. 4. To clarify the measurement and identification

procedure, a fixed template for each experiment, described later,
is introduced.

1) Experimental configuration specification: It describes
how to set up the measurement circuit for each experiment.
The information in this item includes the transformer ter-
minals to which the voltage VRBS(t) is applied, the sensing
resistor value RS, and the short circuit connection between
transformer terminals. For example, AT1a1b , RS = 2 Ω,
and S2a2b means that VRBS is injected to the terminals 1a
and 1b of the transformer, the value of the sensing resistor
is 2 Ω, and a short circuit is made between terminals 2a
and 2b.

2) Data collection: It specifies which signal in the experi-
mental circuit will be captured by the oscilloscope.

3) Identification objective: It denotes the transfer function
and model parameters obtained from measured data.

Experiment 1:
1) AT1a1b , RS = 465.5Ω, no short connection.
2) VRBS , VS .
3) Zc m (s)Zm (s)

Zc m (s)+Zm (s) , Rm , Lm ,Cm .
Experiment 2:

1) AT1a1b , RS = 6.84 Ω, S2a2b .
2) VRBS , VS , V3 .
3) Z1(s), Z2(s).

Experiment 3:
1) AT1a1b , RS = 6.84 Ω, S3a3b .
2) VRBS , VS , V2 .
3) Z1(s), Z3(s).

Experiment 4:
1) AT1a2a , RS = 465.5 Ω, S1a1b , S2a2b3a3b .
2) VRBS , VS .
3) 2RS (C1 2 +C1 3 )s

2RS (C1 2 +C1 3 )s+1 , C12 + C13 .
Experiment 5:

1) AT1a2a , RS = 465.5 Ω, S1a1b3a3b , S2a2b .
2) VRBS , VS .
3) 2RS (C1 2 +C2 3 )s

2RS (C1 2 +C2 3 )s+1 , C12 + C23 .
Experiment 6:

1) AT2a3a , RS = 465.5 Ω, S1a1b2a2b , S3a3b .
2) VRBS , VS .
3) 2RS (C2 3 +C1 3 )s

2RS (C2 3 +C1 3 )s+1 , C23 + C13 .

The voltage transform ratios are computed as n2 = N2
N1

and

n3 = N3
N1

, where N1 , N2 , and N3 are the number of turns in first,
second, and third windings, respectively. In order to explain how
to obtain the model parameters in Fig. 4 from each experiment,
the following assumptions are made.

1) Interwinding capacitances C12 , C23 , and C13 can be iden-
tified separately from the rest of the winding model.

2) Impedance Zm (s) is typically much larger than Z1(s);
hence, we can neglect Z1(s) in Experiment 1.

3) Impedance of Cm , say Zcm (s), is much higher than
Z1(s), Z2(s), and Z3(s) in the frequency range under in-
vestigation; therefore, Zcm (s) is ignored in Experiments
2 and 3.

Given the measurement setup and assumption for Experiment
1, one can establish the relation between the measured voltages
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VRBS(t) and VS (t) as

VRBS(t) − VS (t) =
Zcm (s)Zm (s)

Zcm (s) + Zm (s)
VS (t)
RS

. (12)

Equation (12) shows that by applying the techniques in Sec-
tion II with input data VS (t)/RS and output data VRBS(t) −
VS (t), one can estimate the transfer function Zc m (s)Zm (s)

Zc m (s)+Zm (s) =
Rm Lm s

Rm Lm Cm s2 +Lm s+Rm
which is a basis for the determination of

Rm ,Lm , and Cm .
For Experiment 2, the identification of the impedances Z1(s)

and Z2(s) requires an extra processing step. Let us start from
(13) which relates the collected signals V3(t) and VS (t) with
transformer parameters by

V3(t) = n3
Z2(s)Zm (s)

Z2(s) + n2
2Zm (s)

VS (t)
RS

. (13)

Divide both sides of (13) by Z2 (s)Zm (s)
Z2 (s)+n2

2 Zm (s) and rearrange the
result as

n3

(
VS (t)
RS

− Îm (t)
)

=
1

Z2(s)
n2

2V3(t) (14)

where

Îm (t) =
1

n3Zm (s)
V3(t). (15)

Since Zm (s) is available from Experiment 1, we can easily
calculate Îm (t) from V3(t) via (15). Let us assume that Z2(s)
is not proper. Using n2

2V3(t) and n3(VS (t)/RS − Îm (t)) as
input and output data for system identification, respectively,
one can obtain 1/Z2(s) according to (14) and Z2(s) through
the inversion of 1/Z2(s). In the case of a proper impedance
Z2(s), by interchanging the input–output role of n2

2V3(t) and
n3(VS (t)/RS − Îm (t)) during an identification step, an estima-
tion of Z2(s) can be achieved. For estimation of Z1(s), one can
rely upon (16) and the data VRBS(t), VS (t), and V3(t) acquired
in Experiment 2, via

VS (t)
RS

=
1

Z1(s)

(

VRBS(t) − VS (t) − V3(t)
n3

)

. (16)

The determination of the impedances Z1(s) and Z3(s) in
Experiment 3 can be carried out in a similar way as implemented
in Experiment 2. Since the impedance Z1(s) can be obtained
from either Experiment 2 or 3, the similarity of the two results
will act as a validation for the estimation technique.

As the same procedure can be used to determine model pa-
rameters from captured data in Experiments 4–6, hence only
consideration for Experiment 4 is taken into account. Thanks to
the effect of the circuit layout in Experiment 4, only capacitors
C12 and C13 are involved in shaping the voltage VS (t) by

VS (t) =
2RS (C12 + C13)s

2RS (C12 + C13)s + 1
VRBS(t). (17)

It is obvious from (17) that when the signals VRBS(t) and VS (t)
are known, one can easily work out the value of C12 + C13 .
Combining the results from Experiments 4–6, there exists a
unique solution for C12 , C13 , and C23 .

In addition to the input–output data, a properly chosen or-
der for each transfer function is a prerequisite for the system
identification procedure. Fortunately, the transfer function or-
der can be computed based on the impedance of the model
parameters that we want to determine in each experiment. For
the constant parameters, say Lm ,Rm ,Cm ,C12 , C23 , and C13 ,
their corresponding impedances have a fixed order. By con-
trast, the impedances Z1(s), Z2(s), and Z3(s) of the frequency-
dependent parameters have an undefined order, as shown by

Zi(s) = Ri(s) + sLi(s)

=
bi1s

ni b −1 + bi2s
ni b −2 + · · · + bini b

sni a + ai1sni a −1 + · · · + aini a

, i = 1, 2, 3. (18)

The general description of {Zi(s)}3
i=1 in (18) is suitable for

the identification step but difficult to implement in electrical
simulators. This problem can be solved by constraining the
parameters of (18) so that {Zi(s)}3

i=1 can be represented by
Foster’s network [6]. In most cases, we found that a simple
condition between {nib}3

i=1 and {nia}3
i=1 , as shown in (19), is

enough to obtain {Zi(s)}3
i=1 with Foster’s network form

nib = nia + 2, i = 1, 2, 3. (19)

The values of {nib}3
i=1 in both Experiments 2 and 3 are obtained

using a singular value decomposition (SVD) [19]. The result
from the SVD is consistent with that from both the Akaike infor-
mation criterion and minimum description length [19], though
these complexity weightings give a less definitive selection.

IV. NONLINEAR CORE MODEL IDENTIFICATION

The nonlinear effect of the ferrite core is represented by mod-
eling the magnetizing inductance Zm in Fig. 1 as a nonlinear
inductor. Applying the J–A model [8], the current Im passing
through Zm can be computed from the voltage Vm across it, via

dB

dt
=

Vm

N1Ac
(20)

H =
B

μ0
− M (21)

He = H + αM (22)

Man = Ms

[

1 − coth

(
He

a

)

+
(

a

He

)]

(23)

dMan

dHe
=

Ms

a

[

1 − coth2
(

He

a

)

+
(

a

He

)2
]

(24)

dMirr

dHe
=

γ(Man − Mirr)
kδ

(25)

δ =

⎧
⎪⎨

⎪⎩

1 if
dH

dt
≥ 0

−1 if
dH

dt
< 0

γ=
{

1 if Man − Mirr ≥ 0
0 if Man − Mirr < 0

dM

dB
= μ0

(1 − c) dM i r r
dHe

+ c dM a n
dHe

1 + (1 − α)c dM a n
dHe

+ (1 − α)(1 − c) dM i r r
dHe

(26)
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dM

dt
=

dM

dB

dB

dt
(27)

Im =
1

N1

[

H(le − la) +
Bla
μ0

]

(28)

where B and H are the flux density and applied magnetic field
inside the ferrite core, respectively. M,Mirr , and Man represent
the total, irreversible, and anhysteresis magnetization quanti-
ties. The rate-dependent effect of the magnetic material has not
considered herein, but could be incorporated to the given static
model by adding an extra dynamic to the magnetization M [9].

The nonlinear inductor model parameters include the primary
winding turns N1 , effective magnetic path length le , air-gap
length la , effective core area Ac , and J–A model parameters
(Ms, a, α, c, and k). Apart from N1 , le , and Ac which can be
determined from a transformer core datasheet, the other param-
eter including the J–A model parameters and the gap length
la will be estimated using an optimization method. In particu-
lar, Ms, a, α, c, k, and la are selected to minimize the objective
function in

ε =
N∑

k=1

(Im exp(k) − Im sim (k))2

N
(29)

where N denotes the total number of data points, and Im exp
and Im sim are the experimental and simulated inductor cur-
rents, respectively. Since both α and la contribute to the slope
of the hysteresis curve, the identification of the model param-
eters should be carried out in two stages. In the first step, the
gap length la is kept fixed, while the J–A parameters are found
using the differential evolution (DE) method [22]. All param-
eters obtained in the first step including la are then used as an
initial condition for the Nelder–Mead algorithm in the second
step. We note that the value of la in the first step can be read
from the transformer design specification.

V. EXPERIMENTAL RESULTS

A. Winding Model Determination and Validation

The identification procedure, described in Section III, is ap-
plied to a 3-winding flyback transformer designed for a power
supply application. The transformer operates with a nomi-
nal switching frequency of 100 kHz. The first, second, and

Fig. 5. Circuit structure for validating the transformer winding model in time
domain.

third winding turns are 46, 10, and 6, respectively. An E core
(E25/13/7 type, EPCOS N87) with an air-gap length of approxi-
mately 0.15 mm is required to provide an expected inductance of
800μH. A signal generator circuit is designed and implemented
to provide a symmetrical random binary voltage VRBS(t), hav-
ing an adjustable amplitude of 0–2 V, a clock of 5 MHz, and a
flat spectrum from 100 Hz to 5 MHz. The input–output data are
acquired by an Agilent digital oscilloscope (DSO6054A) with
a preset sampling rate of 50 MHz and 12 bits for each sample.

The estimated parameters of the winding model from both
SRIVC and LSE methods in Section II are summarized in
Table I, where the impedance Z1(s) obtained from Experiments
2 and 3 are both included for comparison. From Table I, the
two independent estimates of Z1(s) are closely matched. This
effectively validates our estimation approach. In addition, the
results from SRIVC and LSE demonstrate that by imposing
a proper constraint [see (11)] on the discrete time model, the
LSE approach can perform, as well as the SRIVC method, in
estimating a continuous time model.

Both time- and frequency-domain validations are essential
to examine the accuracy of the obtained winding models. The
circuit prototype, as shown in Fig. 5, is implemented to cap-
ture data for time-domain validation. A random binary voltage
V1(t), a part of which is plotted in Fig. 6, is injected to the
primary transformer. The corresponding secondary and third
winding voltages, which are returned from the experiment and
simulation, are compared in Fig. 6. The excellent fit between
the measured and simulated signals strongly confirm the accu-
racy of the obtained model. The comparison with different load
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Fig. 6. Measured and simulated results obtained from the time-domain model
validation scheme in Fig. 5.

TABLE II
FREQUENCY-DOMAIN TEST CONFIGURATIONS

resistors, not presented here due to space limitation, also shows
good agreement.

A frequency-domain test is performed using an HP4194A
Impedance/Gain-Phase Analyzer. The primary impedance of
the transformer is measured and calculated between 500 Hz and
15 MHz in three different circuit configurations, as presented in
Table II. The results for each configuration are, in turn, depicted
in Figs. 7–9. In these figures, the estimated frequency response
is obtained from the sampled voltage and current signals using
spectral analysis [19], while the measured data are provided by
the impedance analyzer. The estimated frequency response has a
big transition at multiples clock frequency of 5 MHz. This is due
to the excitation voltage (random binary signal), the spectrum
of which typically has a notch at the clock frequency and its
harmonics. When comparing the modeled, estimated, and mea-
sured frequency responses in the three test cases (see Table II),
one can say that both models can accurately predict all dynamics
of the real transformer over a wide frequency range. The only
noticeable discrepancy between the measured and modeled re-
sults is shown in Fig. 9, when the frequency is smaller than
10 kHz. This offset is probably due to the error when measuring
the primary impedance at low frequencies using the impedance
analyzer.

Fig. 7. Primary transformer impedance for test case 1 (open circuit secondary
and third windings).

Fig. 8. Primary transformer impedance for test case 2 (open circuit secondary
and short circuit third winding).

B. Core Model

The voltage Vm and current Im data for the core model es-
timation in Section IV are obtained using the conventional test
method for ring cores [10], [11] except that the sample under
investigation is now the flyback transformer. Specifically, the
excitation source to the primary winding is a sinusoidal voltage
having a frequency of 1 kHz and a variable amplitude of 2 –
12.5 V, while the data are measured using a digital oscilloscope
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Fig. 9. Primary transformer impedance for test case 3 (short circuit secondary
and open circuit third winding).

TABLE III
OPTIMIZED NONLINEAR INDUCTOR MODEL PARAMETERS

at the secondary winding and the current sense resistor of 3.9 Ω.
To ensure that the obtained model can work accurately over a
wide variety of operating condition, different levels of Vm and
Im (corresponding to different hysteresis curves) are included
in the optimization procedure. The optimized parameters, which
are returned by the DE and Nelder–Mead algorithms, are pre-
sented in Table III. Note that the initial values of the parameters
in Table III are required by the DE method.

The obtained nonlinear model is verified by comparing the
experimental and simulated inductor current Im under two dif-
ferent levels of the excitation voltage Vm . As can be seen in
Fig. 10, the model can fully describe the nonlinear effect oc-
curring in the ferrite core, although some accuracy is lost when
increasing the excitation level.

C. Application of the Dynamic Transformer Model to a
Flyback Converter

Since the two winding models from the SRIVC and LSE
methods in Section V-A achieve the same performance, one
of these two results can be combined with the core model in
Section V-B to form a dynamic transformer model. A direct val-
idation of the dynamic model is to simulate a flyback converter
application as a setup shown in Fig. 11. Basically, the simulation
can be carried out by any circuit-based simulators which allow

Fig. 10. Nonlinear core model validation under different levels of excitation
voltage.

Fig. 11. Circuit prototype of a flyback converter for verification of the dynamic
transformer model in Fig. 1.

analog behavioral modeling (ABM), for convenience we go
with SimElectronics/Simulink. The ABM capability is required
in here for the purpose of the dynamic transformer model im-
plementation. Particularly, the magnetic core Zm in Fig. 1 is
achieved by a behavioral block in SimElectronics. Once the
block representing Zm is available, the integrated transformer
model in Fig. 1 can be easily established.

To fully characterize the transformer behavior, the converter
in Fig. 11 should be run within open loop (i.e., with an indepen-
dent PWM duty cycle). The working condition of the converter
is, therefore, decided by the load Rs , the duty ratio d, and the
switching frequency fsw of the PWM signal. Since the trans-
former model is mainly applied to primary-side sensing control,
only the primary current Ig and third winding voltage V3 are
of interest. The transformer is examined under the two working
conditions of the flyback converter. Under the first condition,
the converter is set up (Rs = 16.97, d = 0.45, fsw = 100 kHz)
to operate in CCM, while the second working condition is
selected (Rs = 16.829, d = 0.38, fsw = 50 kHz) to see the
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Fig. 12. Comparison between measured and simulated primary current Ig and
winding voltage V3 under CCM (Rs = 16.97, d = 0.45, fsw = 100 kHz).

Fig. 13. Comparison between measured and simulated primary current Ig and
winding voltage V3 under DCM (Rs = 16.829, d = 0.38, fsw = 50 kHz).

saturation in the core and the ringing effect in DCM. The results
for the first and second tests, which are presented in Figs. 12 and
13, respectively, show very good agreement between the mea-
surement and simulation waveforms. By examining the primary
current waveforms in Figs. 12 and 13, specifically during the
MOSFET on-time, one can claim that the integrated transformer
model can fully represent the behavior of a practical transformer
in both linear and nonlinear regions. This conclusion could be
further confirmed by observing the ringing in the voltage V3 at
the end of each switching cycle (see Fig. 13). As can be seen

from the magnified windows in Figs. 12 and 13, the simulation
is unable to reproduce all the details of the experimental results
during the ringing interval after each switching instance. This
is due to the imperfection of our simulation program in which
the parasitics inside semiconductor devices and between circuit
components have been not modeled properly or even ignored.
In addition to modeling impairment, the thermal noise which
always exists in practice further aggravates the issue.

VI. CONCLUSION

This study presents a full procedure to extract a nonlinear dy-
namic model for a 3-winding transformer in time domain. The
extraction procedure includes an estimation of the transformer
winding model using a time-domain system identification ap-
proach and a determination of the core model using an opti-
mization method. The study points out the numerical difficulty,
particularly round-off error, associated with the time-domain
data collection and proposes using different sensing resistor Rs

values to improve the estimation results. As demonstrated in the
paper, the time-domain approach can provide a winding model
at least as accurate as obtained with the frequency response
data. With a longer data time series record, a more accurate
transformer model is obtained, particularly at low frequencies.
Though the selection of different sensing resistor values for dif-
ferent experiments is quite tedious, the time-domain approach
requires only simple measurement equipment (say a digital os-
cilloscope) and most importantly offers an easy way to calculate
winding model parameters separately. Since the same trans-
former is employed to get the data for core model estimation,
the obtained model can accurately predict all the nonlinearity
occurring throughout the operating regime. In addition, the use
of the air-gap length as a variable for estimation, significantly,
improves the model accuracy. The results in this paper are valid
for both small and large signals and are useful for controller
design, system validation purpose, etc.
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