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Hylobius abietis, a major problem for seedling survival on forested land, develops under the bark of
stumps of felled conifers. We investigated the efficacy of entomopathogenic nematodes (EPN) and fungi
(EPF) applied to stumps to suppress adult emergence. We performed five field trials over three years and
assessed results through destructive sampling and emergence trapping. We used two strategies in appli-
cation: eradicant, where treatments were applied after weevil colonisation and prophylactic, where treat-
ments were applied prior to colonisation. At prophylactic sites no treatment significantly reduced weevil
emergence. At all eradicant sites, treatments including nematodes were more efficacious than those not.
EPF-only treatment did not significantly reduce weevil emergence compared to controls, but there was a
non-significant (P =0.058) numerical reduction at one site. The effects of EPF and EPN were additive.
There was evidence of mortality due to native Beauveria sp. at all three eradicant sites, identified as Beau-
veria caledonica at one. A proportion of weevils at depths of up to 18 cm in the soil were infected by the
applied Beauveria bassiana showing that applied fungi can reach this cryptic pest. If choice of EPF strain
and application technologies are optimised, EPF may present a viable control method for pine weevil in
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the future.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The large pine weevil, Hylobius abietis L., is a major pest of
natural regenerating and plantation forestry throughout much
of the Palaearctic coniferous forest region. Females, attracted to
plant volatiles following clear-felling, oviposit in or around coni-
fer stumps and larvae develop under the bark for one to three
years depending on temperature (Leather et al., 1999; Inward
et al., 2012). Following emergence, adults feed on the bark of
young trees and replanted sites can suffer up to 100% mortality
of newly planted trees if no control measures are taken. Pine
weevil is estimated to cost the UK economy £2 million per an-
num (Weslien, 1998; Leather et al., 1999). Current control mea-
sures include the synthetic chemicals alpha cypermethrin or
cypermethrin, which are administered in nursery pre-treatment
either via electrodyne application or dipping of young trees prior
to planting and/or through on-site post-planting spray. However,
with concerns over potential environmental impacts, cypermeth-
rin is being phased out across Europe (E.C., 2012). Also, under
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Forest Stewardship Council (FSC) guidelines, alpha cypermethrin
and cypermethrin are considered “highly hazardous chemicals”
applied only under derogation, so there is an obligation on FSC
certified companies to find alternatives to chemical control. Fur-
thermore, current pesticides have a repellent effect on the pine
weevil and, while this protects young plants, it does little to im-
pact on the local populations of the pest (Torr et al., 2005;
Leather et al., 1999).

Alternatives to the chemical control of pine weevil include
changes in silviculture practices, including mounding, planting
later in the season and leaving sites fallow for a number of years
(Von Sydow, 1997; Orlander and Nilsson, 1999; Orlander and
Nordlander, 2003). Another cultural tactic is the application of
the fungus Phlebiopsis gigantea (Fr.: Fr.) Juelich in the biocontrol
of Heterobasidion annosum (Fr.) Bref, which has the additional
benefit of making stumps unsuitable for weevil oviposition and
development (Skrzecz, 1996, 2001). Another approach to weevil
control is to manage forest blocks in a landscape context with
regard to pine weevil meta-population dynamics; to this end a
Hylobius integrated management system using GIS technology
has been developed (Wainhouse et al., 2001; Evans et al,
2004). The use of bio-pesticides, such as entomopathogenic
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nematodes (EPN), applied in aqueous suspension around stumps
to target the developing larvae and pupae, has also been investi-
gated (Dillon et al., 2006, 2007; Brixey et al., 2006; Torr et al.,
2007). Infective juveniles (IJs) or dauers, the free-living host-
seeking stage, enter the host via body openings (spiracles, mouth
and anus) or through the cuticle and release symbiotic bacteria
(Photorhabdus sp. in the case of Heterorhabditidae or Xenorhab-
dus sp. in the case of Steinernematidae) (Kaya and Gaulgler,
1993). The bacteria digest the host tissue producing a nutrient
medium on which developing nematodes subsequently feed. To
date, Steinernema carpocapsae Weiser is the only species that
has been used against pine weevil at an operational level in Eur-
ope. Previous studies have shown that Heterorhabditis downesi
Stock, Griffin and Burnell is more effective against the pest (Dillon
et al., 2006; Williams et al., 2013), though this species is not
commercially produced. Entomopathogenic nematodes are safe
to plants and vertebrates (Boemare et al., 1996; Ehlers and
Hokkanen, 1996), have limited persistence in the environment
(Dillon et al., 2008; Harvey, 2010) and do not affect non-target
coleopteran diversity, species richness or community structure
when applied to control pine weevil (Dillon et al., 2012).

Other potential bio-pesticides are entomopathogenic fungi
(EPF) in the genera Beauveria and Metarhizium. Like EPN, Beauveria
and Metarhizium can be mass produced, have a broad host range
and are considered to be environmentally safe (Feng et al., 1994;
Scheepmaker and Butt, 2010; Zimmermann, 2007; Strasser et al.,
2000). Laboratory studies have shown that all stages of pine weevil
(including adults) are susceptible to these fungi, with larvae and
pupae being highly susceptible (Ansari and Butt, 2012). EPF are
widely used against several horticultural pests (Lacey et al.,
2001), but their use against forestry pests has been less widespread
(Lacey et al., 2001; Reay et al., 2007). There are currently no pub-
lished field trials of EPF efficacy against pine weevil though there
have been laboratory studies (Wegensteiner and Fiihrer, 1988;
Ansari and Butt, 2012). Ansari and Butt (2012) note that EPF have
several advantages over the currently used nematodes for pine
weevil control, including better shelf life, and the potential for
application as either “wet” or “dry” conidia. Transport of the large
volume of water required for EPN application' adds considerably to
the expense of a nematode-based strategy. Two agents combined -
an EPN and an EPF - may act synergistically, resulting either in im-
proved control or allowing reduced application rates and hence costs
(Ansari et al., 2006, 2008).

The aim of the present study was to investigate the efficacy of
EPN and EPF, alone and in combination, against the large pine wee-
vil on a number of clear-felled sites and to investigate potential
synergy between these agents. Previous studies of EPN efficacy
and operational use have concentrated on an eradicant strategy
i.e. applying agents after colonisation of stumps by pine weevil.
We used this strategy and, in addition, tested whether treatment
of stumps prior to weevil colonisation (i.e. prophylactic treat-
ments), would also be effective. In the latter case, application of
agents during timber harvesting, when machinery and personnel
are already on site, could provide a more cost-effective solution,
especially since the high costs of applying biological control agents
is a major obstacle to their widespread adoption in forestry opera-
tions. Forestry equipment currently used to deliver urea to stumps
during felling could be adapted to deliver pine weevil control
agents. Prophylactic strategies have been widely used in classical
(inoculative) biological control (Mumford, 1992) and have more
recently been successful with inundatively applied EPN (Llacer
et al., 2009; Shapiro-Ilan et al., 2009).

! Recommended rates of application are 3.5 x 10° IJs in 500 mL of water applied to
each stump. With up to 2000 stumps per ha this equates to 1000 L of water per ha
with an average cost of €500 per ha (Dillon and Griffin, 2008).

2. Materials and methods
2.1. Sites for field studies

There were five field sites, three eradicant (Eradication 1-3) and
two prophylactic (Prophylactic 1 and 2) (Table 1). All sites were
clear-felled lodgepole pine (Pinus contorta Douglas), except Pro-
phylactic 2, which was Scots pine (Pinus sylvestris L.). Sites were lo-
cated in mid to east Ireland in counties Meath (Eradicant 1 and
Prophylactic 2), Westmeath (Eradicant 2), Laois (Eradicant 3) and
Kildare (Prophylactic 1) where temperatures are mild and rainfall
is moderate to high. Sites were planted between 1967 and 1977
and, prior to felling, trees were classified as yield class 16, except
the Scots pine at Prophylactic 2, which was yield class 10. On all
sites the soil was peaty. A meta-analysis of eradicant field trials
showed that EPN were more efficacious on peaty sites than sites
with a mineral soil substrate and that efficacy was independent
of both host tree species (Sitka spruce [Picea sitchensis] versus
lodgepole pine) and host density (Williams et al., 2013). We there-
fore concentrated on peat sites with pine since weevil populations
are generally higher in pine than in spruce (Dillon and Griffin,
2008; Williams et al., 2013) and so we would be less likely to miss
significant effects due to zero-inflated data and high variance at
low population densities.

At each site, treatments were arranged in a randomised block
design with ten replicates (stumps) per treatment, one per block.
For sites in which multiple assessments were performed (e.g.
destructive sampling, emergence trapping in different years), sep-
arate blocks were used for each method and/or time of trapping.

2.2. Treatments and application

S. carpocapsae in vermiculite formulation and dry conidiospores
of Beauveria bassiana (Bals.) Vuill. (experimental strain 1694) were
supplied by the Becker Underwood company. The Novozymes
product Met 52 (Metarhizium anisopliae [Metsch.] Sorokin), which
is produced as conidiospores on rice grains and used to control
vine weevil (Otiorhynchus sulcatus [Fabricius, 1775]) was also used.
H. downesi (strain K122) was cultured in Galleria mellonella (L.) lar-
vae and harvested IJs were washed by sedimentation in tap water
three times (Kaya and Stock, 1997). IJs were stored at 9 °C in aque-
ous suspension in 5L containers aerated with aquarium pumps.
Commercial products (S. carpocapsae, B. bassiana and Met 52) were
stored for up to two weeks at 4 °C prior to application. Met 52 was
supplied in granular form on rice. For Met 52, conidiospores were
shaken off the grains of rice prior to making the suspension, except
in the case of a granular application in Eradication 2, where the ap-
plied formulation was applied on rice grains as supplied. EPN and
EPF were mixed in aqueous suspensions to the required concentra-
tions on the day of application. Concentrations of EPN IJs and EPF
conidiospores were determined using standard methods (Kaya
and Stock, 1997; Goettel and Inglis, 1997), the latter by using
haemocytometer counts (Goettel and Inglis, 1997). All aqueous
fungus treatments contained 0.05% (by volume) of Tween 80 (poly-
sorbate 80) as a surfactant.

At all field sites 500 mL of the suspension of IJs and/or conidia or
water was applied to the base of stumps. All sites consisted of at
least four treatments: Full dose S. carpocapsae, full dose B. bassiana,
a mixed treatment of half dose of both S. carpocapsae and B. bassi-
ana and a control (water). In addition, Eradication 2 and 3 included,
respectively, either M. anisopliae or H. downesi, and half doses of all
agents applied singly (Table 1). Half doses were included to facili-
tate assessment of interactions between agents in mixed treat-
ments. Eradication 2 also included a full dose granular
application of M. anisopliae (Table 1). Full doses of EPF were applied
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Table 1

Field site summary data including locations, years of felling and application, treatments and number of weevils emerging. All sites were clear-fells of lodgepole pine except
Killaconnigan, which was Scots pine. Sc = Steinernema carpocapsae, Hd = Heterorhabditis downesi, Bb = Beauveria bassiana and Ma = Metarhizium anisopliae.

Site No. Site name Location Felling month Date applied Treatments Mean weevil
emergence + SE in control
stumps”
Year 1 Year 2
Eradicant
Eradication 1 Summerhill 53°27'N 6°44'W  1/09 3/6/10 Sc, Bb, 1/2Sc +1/2 Bb 260.5+35.57 8.7+245
Eradication 2 Kilduff 53°20'N 7°19W  3/10 9/6/11 Sc, Bb, Ma, 1/2 Sc, 1/2 Bb, 1/2 Ma, 1/2 Sc+1/2 Bb, 70.4 +16.24
1/2 Sc +1/2 Ma, Ma (granular)
Eradication 3 Rossnagad 53°5'N 7°21'W  11/10 - 3/11  6/6/12 Sc, Hd, Bb, 1/2 Sc, 1/2 Hd, 1/2 Bb, 1/2 Sc+1/2 Bb, 36.8 + 12.69
1/2 Hd +1/2 Bb
Prophylactic
Prophylactic 1 Hortland 53°22'N 6°48'W  5/10 4/6/10 Sc, Bb, 1/2 Sc+1/2 Bb 105.0+£26.54 7+2.49
Prophylactic 2 Killaconnigan 53°33'N 7°0'W  5/11 12/9/11 Sc, Bb, 1/2 Sc+1/2 Bb 245.8 +57.56

" Emergence Year 1 and Year 2 at eradicant sites = emergence in the summer of application and one year after; at prophylactic sites = emergence in the summer in the year

after application and the following summer (two years after application).

at a rate of 10° conidospores per stump and full doses of EPN were
applied at a rate of 3.5 x 10°Js per stump. At eradicant sites,
agents were applied 15-19 months after felling when weevils were
present in larval and pupal stages - confirmed by destructively
sampling a number of stumps prior to application, whereas at pro-
phylactic sites agents were applied one to four months after felling
and prior to weevil colonisation, which was also confirmed by
destructively sampling a number of stumps (Table 1).

2.3. Assessment of efficacy

Efficacy of eradicant treatments was assessed by destructive
sampling of stumps three weeks after the application of control
agents. Emergence trapping of adult weevils was carried out in
the year of application and, on one site (Eradication 1), in the year
after application also. For prophylactic treatments, assessment was
by emergence trapping in the year after application in both sites
(Prophylactic 1 and 2) and, on one of the sites (Prophylactic 1),
in the summer two years after application.

2.3.1. Destructive sampling

Destructive sampling of stumps followed the methods of Dillon
et al. (2006), with one quarter of each stump being destructively
sampled. A chisel was used to carefully remove the bark. The stage
(larva, pupa, callow adult or adult) and infection status (alive, nem-
atode-killed, fungus-killed, dead [indeterminate]) of individuals
were recorded in the field. Also, the location of the individuals
was noted (depth relative to soil level and distance from the bole
of the stump). Pine weevils were removed with a clean forceps
and brought back to the laboratory in 24 well plates. Larvae, pupae
and adults were kept at ambient laboratory temperature for two
weeks and checked for the presence of EPF hyphae and then dis-
sected to check for EPN presence.

2.3.2. Monitoring emergence

At eradicant sites emergence traps, modified after a design by
Moore (2001), were erected four weeks after application of control
agents and emptied every 1-4 weeks throughout the season until
weevils ceased emerging in November. In Eradication 1, traps were
also erected over another series of stumps (again ten replicates per
treatment) in June of the summer after application and assessed in
the same way. Where a prophylactic strategy was employed, emer-
gence traps were erected in June, 9-12 months after application of
control agents and monitored in the same way.

2.4. Molecular identification of fungal isolates from destructive
sampling

In Eradication 3, fungi from infected weevils recovered during
destructive sampling were subjected to molecular characterisation
using a Restriction Fragment Length Polymorphism (RFLP) protocol
to distinguish between Beauveria caledonica Bissett and Widden
and B. bassiana (applied strain). B. caledonica has been isolated
from pine weevil collected in Ireland (Glare et al., 2008) and from
baited soil collected from around stumps (Williams and Harvey,
unpublished data). Insects showing white hyphal growth indica-
tive of Beauveria infection were placed on PDA plates covered with
a layer of colourless sterile cellophane to facilitate peeling off hy-
phal growth for DNA extraction (Reay et al. 2008). The commercial
strain of B. bassiana applied in experiments and a Scottish strain of
B. caledonica (x type provided by R.A Humber, ARS USDA) were
grown by plating dry spores and hyphae, respectively. Plates were
incubated at 20 °C for up to two weeks to allow for hyphal growth.
Where hyphal growth was insufficient after two weeks, hyphae
were taken directly from the insect for DNA extraction. DNA was
extracted from hyphal tissue using the DNEasy Plant Kit (Qiagen,
Manchester, UK). A region of the internal transcribed spacer unit
of the ribosomal DNA, ITS1-5.8s-ITS2, was amplified via PCR using
primers TW81 (5'GTTTCCGTAGGTGAACCTGC) and AB28 (5'-ATA-
TGCTTAAGTTCAGCGGGT) (Curran et al.,, 1994) in the following
reaction mix: reaction buffer (5x): 5 pL, MgCl, (25 mM): 2.5 pL,
GoTaq Polymerase: 0.125 pL (0.625 Units) (Promega; Sothampton,
UK), forward and reverse primers: 1 pL each of 10 pM stock solu-
tion, dNTPs (10 mM): 0.5 pL each, ddH,0: 10.875 pL, template
DNA: 2.5 puL (<50 ng/uL extract concentration). PCR was carried
out for 40 cycles in an Eppendorf MasterCycler (Eppendorf; Steve-
nage, UK) with reaction steps as described by Glare et al. (2008),
resulting in an ITS fragment of approximately 500 bp length.

To identify unique restriction sites to distinguish between B.
bassiana and B. caledonica, we used NEBcutter 2.0 (New England
Biolabs; Hitchin, UK) to perform in silico digests of ITS sequence
data for the commercial B. bassiana strain (3 replicates, sequenced
by MWG Operon, Ebersberg, Germany) and the published sequence
of an Irish B. caledonica isolate (Glare et al., 2008; Genbank acces-
sion No. DQ529230). Two restriction sites were identified, one for
Ban 11 and one for Hinf 1, each present in only one of the two inves-
tigated Beauveria spp., thus resulting in distinct banding patterns
for the two Beauveria spp. (Fig. 1). These enzymes were chosen
for subsequent RFLP analysis of ITS DNA to identify Beauveria sp.
isolates from insects. For restriction, 5 pL of PCR product, 2 pL of
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Fig. 1. Gel showing the distinguishing banding patterns of Beauveria bassiana and
Beauveria caledonica when subjected to two different restriction enzymes (Ban Il
and Hinf I).

reaction buffer (10x), 1 pL of enzyme (Ban Il or Hinf1; New England
Biolabs; Hitchin, UK) and 12 pL ddH,0 were combined and incu-
bated at 37 °C for 16 h in an Eppendorf Mastercycler. Restriction
fragments were visualized in a 4% agarose gel in 1x TAE buffer
and scored against control digests of the B. bassiana commercial
strain and the Scottish B. caledonica x-type isolate (control digests
included on each gel). Additional in silico digest on published Beau-
veria spp. ITS sequence data (Glare et al., 2008) revealed that this
RFLP protocol allowed distinction between B. caledonica and all
other Beauveria clades posited, except sister species B. vermiconia
(Glare et al., 2008; Genbank accession No. AY532012). To clarify
identity of isolates scored as B. caledonica, we sequenced ITS PCR
product for one isolate which was collected from block seven of
the half B. bassiana treatment (MWG Operon) and aligned it with
the B. caledonica ITS sequence from Ireland used in the in silico di-
gest (Glare et al., 2008; Genbank accession No. DQ529230), using
ClustalX (Larkin et al., 2007).

2.5. Statistical analysis

Analysis of variance (ANOVA) with Tukey’s (all pair-wise) and
Dunnett’s (comparison with control) post hoc tests were performed
on field trial data. Residuals were tested for normality using the
Kolmogorov-Smirnov test. Kruskal-Wallis tests with Dunn’s mul-
tiple comparisons, adjusted for tied ranks, were performed on
infection data that could not be transformed to normality. Compar-
isons of weevil infection across all sites required Log + 1 transfor-
mation for proportion of weevils infected by nematode and
proportion infected by fungus. When analysing each site sepa-
rately, these variables could not be transformed to normality and
Kruskal-Wallis tests were used. For emergence data Log + 1 trans-
formation to normality was necessary only for Erradication 3. All
statistics were performed using SPSS version 19 (SPSS, 2011).

For Eradication 2 and 3, interactions between agents (synergis-
tic, additive or antagonistic) in the combination treatments were
determined using j? tests (Ansari et al., 2006). Expected infection
in the mixed doses was calculated using infection data with the fol-
lowing formula: Iz = Iy + Ir (1 — Iy), where [ is the expected infec-
tion in the mixed application, Iy is the infection in the half dose
nematode treatment and I is the infection in the half dose fungus
treatment. The »? value was calculated with the following for-
mula: y? = (Ixr — Ig)?/Iz where Iyr is the observed infection for the

mixed application. The test statistic was compared with the tabu-
lated value to determine whether there was a significant departure
from additive interactions. A similar approach was taken with %
reduction in number of weevils emerging relative to untreated
control.

3. Results
3.1. Eradicant strategy

When results were pooled for the four treatments common to
all three eradicant sites (i.e. full doses of S. carpocapsae and B. bas-
siana, a mixed treatment of S. carpocapsae and B. bassiana and a
water control), there was a significant effect of site and treatment
on the proportion of weevils infected with either EPN or EPF and
the proportion infected with EPN only, but not on that infected
with EPF only (Table 2). The interaction between treatment and
site was highly significant for both proportions of weevils infected
with EPN or EPF and, therefore, necessitated that each site be ana-
lysed separately (Table 3). The population structure of weevils at
destructive sampling is shown in Table 4. In all sites, most weevils
(>70%) were pupae at destructive sampling. In Eradication 2 and 3
a higher proportion of weevils were adults as opposed to larvae,
but this was reversed in Eradication 1.

In Eradication 1, all treatments that included EPN had a signif-
icantly higher proportion of weevils infected than controls; and the
mixed dose, which included only half as many IJs, had approxi-
mately half the level of infection (33.4%) of the full dose of EPN
(62.9%). This pattern was repeated in the proportion of EPN-infec-
tion results (second column of Table 3). A different pattern of infec-
tion is shown for Eradication 2 and 3. In Eradication 2, only
treatments including a half dose of S. carpocapsae had a signifi-
cantly higher proportion of weevils infected compared to the con-
trol: 33.1% for the mixed application of S. carpocapsae and B.
bassiana and 35.4% for the half dose S. carpocapsae (first column
of Table 3) compared to 4.3% in the control. In Eradication 3, all
treatments that contained nematodes had a significantly higher
proportion of weevils infected than controls and all, except the half
dose of S. carpocapsae, also had a significantly higher proportion of
weevils that were nematode-infected. The proportion of weevils
infected with EPF did not differ among treatments at any of the
sites (third column of Table 3). In Eradication 2 and 3, where half
doses were applied, we tested for interaction between fungi and
nematodes. This was additive both for % reduction of weevils
emerging and % infected.

Table 2

Two-way ANOVA of infection of weevils by nematodes, fungus, and either nematodes
or fungus and the reduction of weevil populations relative to control for treatments
common to all three eradicant sites (Control, Sc, Bb, 1/2 Sc+1/2 Bb). Significant
results in bold.

Response variable Source F P
Proportion infected Treatment 68.28 <0.001
Site 11.47 <0.001
Treatment = Site 5.82 <0.001
Log (Proportion infected by Treatment 106.39 <0.001
nematodes + 1)
Site 843 <0.001
Treatment = Site 8.34 <0.001
Log (Proportion infected by fungus + 1) Treatment 059  0.624
Site 424  0.017
Treatment = Site 0.70  0.647
Percentage reduction relative to Treatment 446  0.096
control
Site 400 0.111
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Table 3

Mean (+standard error) proportion of pine weevils infected with either entomopathogen and median (+interquartile range) proportion of
insects infected with EPN and EPF at each of three eradicant sites. Within sites, values with the same superscripts are not significantly
different (ANOVA followed by Tukey’s for proportion infected, and Kruskal Wallis followed by Dunn’s multiple comparisons, adjusted for
tied ranks, for proportion EPN-infected and EPF-infected). Co-infections are included in all columns.

Site/treatments

Prop. infected

Prop. EPN-infected

Prop. EPF-infected

(mean + SE) (median = IQR) (median + IQR)

Eradication 1

Control 0.035% £ 0.061 0.000° + 0.000 0.000? + 0.033
S. carpocapsae 0.629° +0.055 0.580" + 0.340 0.000% + 0.000
B. bassiana 0.027% £ 0.058 0.000° + 0.000 0.000? + 0.000
1/2S.c1/2Bb 0.334° + 0.055 0.310° +0.243 0.000% + 0.038
Eradication 2

Control 0.043% £ 0.062 0.000*" +0.000 0.008* +0.018
S. carpocapsae 0.219*" + 0.062 0.210*"+0.11 0.0172 +0.018
B. bassiana 0.038% +0.059 0.000° + 0.06 0.000* +0.017
1/2S.c1/2Bb 0.331° + 0.062 0410 +0.41 0.000% +0.018
1/2 S.c 0.354° + 0.065 0.310°+0.23 0.000% +0.019
1/2 Bb 0.138%" +0.065 0.000* +0.188 0.0007 + 0.000
1/2 M. anisopliae 0.129%" + 0.059 0.000*" +0.000 0.000? + 0.45
M. anisopliae 0.094%" +0.062 0.000*" +0.000 0.000? £ 0.05
1/2S.c1/2 Ma 0.239%" £ 0.062 0.130°*+0.11 0.0007 + 0.000
Granular M.a 0.113*" + 0.062 0.080%" +0.15 0.000%  0.000
Eradication 3

Control 0.046 ? +0.02713 0.000? + 0000 0.000? + 0.052
S. carpocapsae 0.618 ® +0.05558 0.510° +0.15 0.000* + 0.000
B. bassiana 0.076 * +£0.03353 0.000° £ 0.000 0.050% £ 0.09
1/2S.c1/2Bb 0.532 P +0.04813 0.560° + 0.24 0.000? + 0.006
1/2 Sc 0.367 ® £0.04228 0.300*" + 0.095 0.000? + 0.023
1/2Bb 0.110 * £ 0.04267 0.000*" + 0.000 0.05* £0.155
1/2 H. downesi 0.493 ® +0.08708 0.410° +0.385 0.035% £ 0.078
H. downesi 0.546 ° +0.05993 0.53" +0.240 0.000? + 0.06
1/2Hd 1/2 Bb 0.513 ®+£0.07126 0.48”+0.34 0.000? + 0.000

Table 4

Population structure of pine weevils (numbers and percentages in parentheses) and
the mean weevil abundance + SE in quarter control stumps at destructive sampling at
eradicant sites.

Number (%): Eradication  Eradication  Eradication
1(10 2 (10 3(10
stumps) stumps) stumps)

Larvae 23 (12.0) 3(4.2) 6(4.2)

Pupae 152 (79.2) 51 (71.8) 117 (81.8)

Adults 17 (8.9) 17 (23.9) 20 (14.0)

Mean + SE weevil abundance in 20.2 +4.47 7.6+1.94 14.9+2.48
quarter stumps at destructive
sampling

Fig. 2 shows the cause of mortality at each of the three sites.
There was a low, but consistent proportion of fungus-infected wee-
vils in many treatments including the control. The percentage of
weevils infected with EPF (Beauveria sp.) in the control stumps ran-
ged from 1.3% to 3.5% across sites. In Eradication 2, there was also a
low level of nematode infection in stumps to which nematodes had
not been applied. There was some occurrence of co-infection with
both EPN and EPF in Eradication 2 and 3 for mixed applications, but
co-infection also occurred in controls in Eradication 2. Metarhizium
was not found infecting any insect. As a number of insects were re-
corded as ‘dead due to other causes’, percentage infection may
underestimate the efficacies of the treatments. To account for this,
we also analysed the data in terms of proportion of weevils alive.
The results were similar to proportion infected except that when
using this metric, there was no difference between S. carpocapsae
and mixed applications in Eradication 1.

In Eradication 3, EPF recovered from infected pine weevil were
subject to RFLP analysis. A majority (41/48) of EPF isolates were
identified as B. caledonica, which was recovered from most treat-
ments. Whereas B. caledonica was present in treatments that

included B. bassiana and treatments that did not, B. bassiana was
mostly (6/7) recovered from stumps to which it had been applied
(Table 5). ITS sequence data for the sequenced isolate showed
100% identity (449 bp alignment) with the published sequence of
an Irish isolate from a pine weevil in Galway (Glare et al. 2008).

Weevils infected with B. caledonica were found at depths rang-
ing from 8 cm above soil level to 30 cm below soil level (median
10.5 cm below soil level) and from 0 cm to 33 cm distance from
the bole of the stump (median 0 cm distant from the bole). Weevils
infected with B. bassiana ranged from 8 cm to 18 cm below soil le-
vel (median 17 cm) and from O to 28 cm (median 10 cm) distant
from the bole of the stump.

When data from all sites were combined (Table 6), the percent-
age of insects infected with S. carpocapsae was similar for larvae,
pupae and adults, whereas infection with H. downesi was higher
among larvae than pupae or adults. Infection with Beauveria sp.
also tended to occur in larvae rather than pupae or adults. Co-
infection with both EPN and EPF was too low to draw any valid
conclusions.

The emergence of adult weevils was recorded at each eradicant
site as a second measure of efficacy. Treating all sites together for
the four treatments common to all sites, there was no significant
effect of treatment or site on percentage reduction of emergence
relative to control (Table 2). Significantly fewer adult weevils
emerged from S. carpocapsae-only and mixed treatments compared
to control stumps in Eradication 1, while weevil emergence in B.
bassiana alone treatments did not significantly differ from any of
the other treatments. The mixed treatment was numerically the
lowest (Fig. 3a). Relative to the control, weevil numbers were re-
duced by 66.7%, 53.9% and 32.3% for mixed, S. carpocapsae alone
and B. bassiana alone, respectively. Emergence was significantly
lower in the second year of sampling than in the first: ~8 weevils
emerged per stump in 2012 versus ~250 in 2011 (comparison of
control stumps, independent samples T-test, n=10, T=7.062,
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Fig. 2. Condition of pine weevils at destructive sampling as a proportion of the total collected for each treatment at each of the three eradicant sites - Eradication 1 (a),

Eradication 2 (b) and Eradication 3 (c).

P<0.001). There were no significant differences in emergence
among treatments in year 2, but trends were similar to those in
year 1 (Fig. 3b). For analysis of Eradication 3, it was necessary to
Log (x + 1) transform the data to obtain normally distributed resid-
uals. Treatments including EPN at this site generally had lower
numbers of weevils emerging from stumps than either of the
two B. bassiana-only treatments or the control, with the full dose

of H. downesi being the most effective treatment (Fig. 4). With Tu-
key’s post hoc test there was no significant difference between any
treatment and control, but with Dunnett’s test the full dose of H.
downesi significantly differed from control. The percentage reduc-
tion in weevil emergence for S. carpocapsae alone and mixed S.
carpocapsae-B. bassiana was similar to that in Eradication 1
(62.0% and 59.8%, respectively).
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Table 5

Entomopathogenic fungi isolated from 48 infected Hylobius abietis larvae recovered
from stumps, some of which had been treated with Beauveria bassiana. Fungi were
identified by RFLP. y? =5.091, P=0.024.

Recorded fungus

Treatment Beauveria caledonica  Beauveria bassiana
Including Beauveria bassiana® 18 6
Not including Beauveria bassiana® 23 1

2 Half dose Beauveria bassiana, Full dose Beauveria bassiana, mixed application of
Beauveria bassiana and Steinernema carpocapsae and mixed application of Beauveria
bassiana and Heterorhabditis downesi.

b Half dose Steinernema carpocapsae, full dose Steinernema carpocapsae, half dose
Heterorhabditis downesi, full dose Heterorhabditis downesi and water control.

Table 6

Total numbers of larvae, pupae and adult pine weevils infected with EPN, EPF and
both agents across all treatments at all three eradicant sites. Numbers in parentheses
are the percentage infection.

Pooling all treatments across all eradicant sites, there was a sig-
nificant correlation between proportion of weevils infected and
percentage reduction in emergence (P < 0.001, R-squared = 0.803).

3.2. Prophylactic strategy

No destructive sampling was performed at prophylactic sites as
entomopathogens were expected to act over a prolonged period, as
weevil populations developed in the stumps. A two-way ANOVA on
weevil emergence in Prophylactic 1 showed that treatment effects
were contingent on year of sampling, so each year was analysed
separately. In year 1, significantly fewer weevils emerged from S.
carpocapsae-treated stumps than from stumps treated with a mix-
ture of S. carpocapsae and B. bassiana (Fig. 5a). No treatments re-
duced emergence relative to the control. For the second year of
sampling (two years after the application of agents), there were
no significant differences among any of the treatments, and none
reduced emergence compared to the control (P> 0.05) (Fig. 5b).
Again, emergence in the second year of sampling was much lower
than in the first- ~7 compared to ~100 weevils emerging per
stump, respectively (comparison of control stumps, independent

S. H.d i B ia sp. EPF and EPN
C?moc;lp sae (Ownjﬁ ea(uver)m P ( ar; samples T-test, n =10, T =3.876, P = 0.004).
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Adult 30 (10.5) 7 (24) 2(0.7) 1(04) ments 1q Prophy a.ctlc. 2 (Fig. 6) though, in contrast to Prophylactic
1, the mixed application had the lowest mean emergence.
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Fig. 3. Mean (+SE) number of pine weevil emerging during (a) year 1 and (b) year 2 at Eradication 1 (Summerhill). Treatments sharing superscripts are not significantly
different (ANOVA F = 6.929, P=0.001, R? = 0.366, Tukey’s post hoc test). Numbers above bars indicate percentage reduction relative to control.
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control.

4. Discussion

At the eradicant sites S. carpocapsae performed quite well in
terms of both infecting pine weevils and reducing the population
emerging from treated stumps, up to 62% relative to untreated
controls. This is consistent with the results of previous studies
(Dillon et al., 2007 [57-64%]; Torr et al., 2007 [65-70%]). At
the one site where H. downesi was also included (Eradication
3), this species performed better than S. carpocapsae, which is
again consistent with previous studies (Dillon et al., 2006; Wil-
liams et al,, 2013). Interestingly, our results indicate that half
the recommended operational dose of nematodes (1.75 x 106 IJs
per stump) may sometimes be as effective as a full dose
(3.5 x 10°Js per stump). In Eradication 2, the infection rate with
a half dose of S. carpocapsae differed from the control while that
with the full dose did not. However, weevil emergence for the
full dose at this site was much lower than at each of the other
two eradicant sites, while that for the half dose was similar to
the half dose in Eradication 3. Therefore, we suspect that the
apparent superiority of the half dose in Eradication 2 is due to
an unexplained failure of the full dose. However, in Eradication
3, the number of weevils emerging was not significantly affected
by nematode dose for either species. Dillon et al. (2007) reported
a very similar, slight effect of application rate on H. downesi,
with a larger and more varied effect on S. carpocapsae, while
in other similar studies halving the dose of either species did
not affect weevil emergence (Foster, Dillon & Griffin, unpub-
lished data). This suggests that it may be profitable to conduct
larger studies at an operational level to investigate the efficacy
of reduced nematode does in the control of pine weevil. We
demonstrate, for the first time, that effects of biological control
agents on H. abietis suppression may persist into the second year
after application, with the same numerical trends as in the first,
despite the great reduction in weevil emergence as stumps be-
come less favourable for pine weevils as they age (Orlander
et al., 1997). This may reflect persistence of the applied agents
or, more likely, the recycling of the agents in H. abietis (Dillon
et al., 2006; Harvey, 2010; Torr et al., 2007; Brixey et al., 2006).

EPF did not perform nearly as well as EPN in our field trials
although the low infection rates were probably the result of early
destructive sampling (three weeks after application), which was
timed to detect cadavers infected with EPN before they disinte-
grate. Nematodes, with their active host-finding infective juvenile
stage would seem a priori more suited to the task of infecting cryp-
tic pests that are under the tree bark deep in the soil, compared
with the spores of EPF, which are dependent on passive transport.
In no case did EPF alone effect a significant reduction in number of
weevils emerging, nor was the proportion of weevils infected by
EPF different from that in the untreated stumps. However, as indi-
cated by RFLP results, at least some H. abietis larvae infected by B.
bassiana were recovered from stumps to which this species had
been applied in Eradication 3. These infected insects were found
at depths of up to 18 cm and up to 28 cm from the bole of the tree
where they had been applied, indicating that the soil and bark
around stumps do not represent an impassable barrier to applied
conidiospores. In a similar context Reay et al. (2007) found that
B. bassiana conidia could penetrate several centimetres into the
tunnels of pinhole borers when applied to infested logs. In Eradica-
tion 1, the B. bassiana-only treatment had fewer pine weevil
emerging than control stumps, though not as few as the S. carpo-
capsae and the S. carpocapsae-B. bassiana mixture, the latter of
which was numerically the lowest. At the other eradicant sites
(Eradication 2 and 3), mixed applications and EPF-only treatments
did not achieve significant control.

Mixed applications of EPN and EPF have been reported to act
synergistically against several coleopteran species (Ansari et al.,
2006, 2008), which was in part the impetus for this research. We
found no evidence of synergy between control agents, possibly
due to the fact that the EPF infection rate was so low. However,
at one site (Eradication 1), the mixed application did result in
numerically the lowest emergence of weevils. We focussed on B.
bassiana for our field trials for a number of reasons: in preliminary
laboratory tests the strain we used here was the best strain of both
species tested (Williams, unpublished data); B. bassiana is superior
at colonising organic media (Vega, 2008) and so might be expected
to persist and spread in the stump/soil environment; there are no
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records of M. anisopliae having been isolated in Ireland although it
is registered for use against horticultural pests. Most of the combi-
nations that have shown synergy have included M. anisopliae as the
fungus (Ansari et al., 2006, 2008). In parallel, similar studies apply-
ing EPN and EPF have been undertaken on spruce (Picea sitchenis
[Bong.] Carr.) clearfell sites in Wales (Evans, pers comm.) using
M. anisopliae in combination with either S. carpocapsae or H. bacte-
riophora and they have also not demonstrated synergy against pine
weevil (Evans, pers comm.)

The results of the prophylactic strategy were inconsistent in
that in Prophylactic 1, weevil emergence was highest in the mixed
treatment, a trend which continued in the second year of sampling,
while weevil emergence was lowest in the mixed treatment of Pro-
phylactic 2. Although reduction of weevil emergence at our pro-
phylactic sites was inadequate - the economic threshold for H.
abietis is approximately six weevils per stump (Dillon and Griffin,
2008) - with opitimised EPF strains and/or application strategy
this approach may have a place in the integrated management
strategy of the pest with the added advantage of a low cost due
to personnel and vehicles already being on site for felling.

The detection of EPF-infected insects in stumps to which no EPF
had been applied complicated the assessment of weevil infection
rates at the eradicant site. Almost half of the Beauveria isolates
from EPF-infected weevils in stumps treated with B. bassiana
scored as native B. caledonica. One of the seven isolates that scored
as B. bassiana was from a stump not treated with this EPF, but since
B. bassiana has so far not been recorded in Ireland (Rehner and
Buckley, 2005; Glare et al., 2008), we suspect that this was the re-
sult of phoresis or accidental transfer of B. bassiana. On the other
hand, infection of weevils with local EPF is promising; we have evi-
dence that local EPF infection (probably with B. caledonica) oc-
curred at all of our eradicant sites. This might provide a future
avenue of investigation for the use of EPF in the control of pine
weevil, particularly as we detected a low but consistent presence
of infected pine weevil in control stumps at all of our eradicant
sites (averaging 2.5% across the three sites). B. caledonica is the only
EPF isolated from H. abietis in Ireland and Scotland so far, and it has
also been isolated from other scolytids under bark in a habitat sim-
ilar to that of H. abietis (Reay et al., 2008). The RFLP protocol we
used does not resolve B. caledonica from its sister species B. vermi-
conia, as both species produce identical banding patterns for the
target ITS region after digest with Ban Il and Hinf 1. However, B. ver-
miconia has so far only been isolated in Chile (Glare et al., 2008)
and the sequence data we obtained for a putative B. caledonica iso-
late showed complete alignment with the Irish isolate reported by
Glare et al. (2008). It appears likely that, though we only confirmed
the identity of the native EPF at one of our sites (Eradication 3), B.
caledonica was the Beauveria sp. present on all of the sampled sites.
The fact that B. caledonica kills pine weevil in their cryptic habitat
makes it an attractive target for further development of biocontrol
agents for this pest, even when adopting a prophylactic strategy.
Its use in this habitat is further recommended by the fact that re-
cent studies show that it appears to be restricted to forest coleop-
tera, particularly scolytids (Reay et al., 2008), thus indicating that
the impact of this EPF on non-target insects is likely to be low.
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