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Abstract

This paper describes the development of neural model-based control strategies for the optimisation of an industrial aluminium
substrate disk grinding process. The grindstone removal rate varies considerably over a stone life and is a highly nonlinear function
of process variables. Using historical grindstone performance data, a NARX-based neural network model is developed. This model
is then used to implement a direct inverse controller and an internal model controller based on the process settings and previous
removal rates. Preliminary plant investigations show that thickness defects can be reduced by 50% or more, compared to other

schemes employed.
© 2004 Elsevier Ltd. All rights reserved.

Keywords: Neural networks; Nonlinear modelling; NARX models; Disk grinding process; Multilayer perceptrons; Direct inverse model control;

Internal model control

1. Introduction

Artificial neural networks (ANNs) have been success-
fully used in many process control applications. Their
ability to approximate arbitrary nonlinear vector func-
tions, combined with dynamic elements has yielded a
powerful tool for modelling nonlinear dynamical
systems. A recent survey by Dote and Ovaska (2001)
reviewing a decade of industrial innovations employing
soft computing techniques, identified ANNs as having
being successfully applied across a broad spectrum of
sectors, including manufacturing automation. They
estimate that, on the whole, publications on applications
of soft computing techniques have increased steadily in
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the past 10 years, with manufacturing automation and
robotics leading the growth by an average of 1.06% a
year.

Other reviews on applications of ANNs in manufac-
turing and industrial processes include Warwick, Irwin,
and Hunt (1992), Irwin, O’Reilly, Lightbody, Brown,
and Swidenbank (1995a), Irwin, Warwick, and Hunt
(1995b), Hunt, Irwin, and Warwick (1995) who report
on applications of neural networks in control and
system optimisation, Hussain (1999) who surveys the
chemical process industries and Udo (1992) and Zhang
and Huang (1995) who review applications such as
resource allocation, scheduling, injection moulding,
milling, metal cutting, arc welding and spray painting.

Furthermore, a recent European study on the
Stimulation Initiative for European Neural Applica-
tions, Esprit Project 9811 (SIENA project) indi-
cates ANNs are used in 39% of the production or
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manufacturing sectors, with 35% of the usage related to
control, monitoring, modelling and optimisation func-
tions (Heikkonen & Lampinen, 1999). The potential of
ANNSs has also been identified in the United Kingdom
(UK) with the Department and Trade and Industry
initiating a £5.7M awareness campaign on the applic-
ability of ANNSs in industry (Lennox, Montague, Frith,
Gent, & Bevan, 2001).

Machining processes alone account for a significant
portion of manufacturing operations (Shin, Chen,
& Kumara, 1992). It is estimated that 15% of the
value of all mechanical components manufactured
worldwide is derived from machining operations
(Merchant, 1998). With neural network properties in
mind, it is beneficial to apply them to these highly
nonlinear industrial applications, where reliable and
effective models are needed for operational planning
and control.

This paper presents the results of collaborative
research with Seagate Technology Media (Ireland) Ltd
(Seagate Technology: Company Facts Sheet, 2002) on
the optimisation of a ring grinding process. Seagate is
the world’s largest manufacturer of disc drives, with 15
million units shipped in the first quarter of 2002. The
main component of the disk drive, the aluminium
substrate disc, is manufactured at their plant in North-
ern Ireland. The subject of this study is the optimisation
of a grinding process used to machine the aluminium
substrate disks to a desired thickness. The process
involves 12 parts being simultaneously ground at each
machine cycle. A proprietary thickness control algo-
rithm, which employs thickness measurements before
and after grinding, is used to calculate the average stock
removal rate for each machine cycle. This approach does
not adequately account for the nonlinear variation of
the cycle-to-cycle removal rate, hence the call for a
better control methodology.

A number of researchers have investigated the
application of ANNSs for grinding process optimisation.
Chryssoloursis, Guillot, and Domroese (1988) in their
work on a sequential decision-making method used
three modelling techniques—multiple regression, group
method of data handling and ANNs on orthogonal
machining of aluminium tubes. They found that ANNs
provided the best overall accuracy in estimating the state
variables of the process.

Shin et al. (1992) developed an intelligent grinding
advisory system based on fuzzy logic inference for
assisting process engineers to design new grinding
processes. Liao and Chen (1994) used experimental data
to model a creep feed grinding process using simple
backpropagation for training the networks. Shin and
Vishnupad (1996) modelled a grinding system using
ANNSs based on data generated by an analytical model
of the grinding operation. However, the control was
performed by a fuzzy logic controller.

Brinkmeier, TSnshoff, Czenkusch, and Heinzel (1998)
described different methods for modelling and optimisa-
tion of a grinding process where the quality properties of
the process like surface texture and finishing are
required to be measured. The process was then modelled
using ANNSs, fuzzy sets, standard multiple regression
methods and deterministic methods which were finally
optimised using genetic algorithms (GAs). Chen and
Kumara (1998) developed an advisory system to
optimise surface grinding processes using fuzzy and
neural networks. They first built a fuzzy optimiser, and
used the trajectory it generated to train the correspond-
ing neural optimiser.

Finally, Lee and Shin (2001), developed a static model
of a ring grinding process similar to that under
consideration in the current study, which they adapted
on-line, and used it as the basis for a direct adaptive
inverse controller. They reported excellent simulation
results confirming the applicability of ANNSs to grinding
process optimisation.

The grinding process modelling research outlined above
is based on the use of static models and no attempt has
been made to date to account for any underlying process
dynamics. The main contribution of this paper is that the
dynamic process variations are captured using past values
of the process as inputs to a Nonlinear AutoRegressive
with eXogenous input (NARX) model. A novel metho-
dology of separately modelling the high- and low-
frequency variations in the process data is also proposed.
The development and testing of this NARX model is
described in detail. Test results on actual grindstone data
indicate that the resultant neural network grindstone
model is vastly superior to the static scheme proposed by
Lee and Shin (2001).

Utilising the neural NARX model as the basis for
controller design several alternative control schemes are
investigated and shown to yield much tighter process
control than the existing proprietary control scheme and
the direct inverse scheme proposed by Lee and Shin (2002).

The remainder of the paper is organised as follows:
Section 2 describes the grinding process application,
while in Section 3, the relevant process variables are
identified along with preliminary model development.
Section 4 introduces the generalised MLP and develops
the new NARX-based grinding process model proposed.
Then in Section 5, various control schemes are described
and their performance on actual grindstone data is
reported in Section 6. Finally, the conclusions of the
study and suggestions for further work are given in
Section 7.

2. Ring grinding process

The aluminium substrate disks are ground in batches
of 12 between two grindstones, as shown in Figs. 1
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Fig. 1. Layout of the ring grinding process.
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and 2. The stones can be moved apart to allow loading
and unloading of the disks using a pick and place unit.
During operation the grindstones are rotated in opposite
directions with pressure applied to the upper stone. This
causes the substrate disks between them to rotate
ensuring uniform grinding of their surfaces. The rate
at which the disks are ground, called the removal rate, is
the critical variable. It varies depending on a number of
parameters including stone wear, exerted pressure,
lubricant viscosity and coolant flow rate. The initial
thickness of the disks also varies, although the disks in
any one batch are sorted to be approximately the same
thickness (i.e. within +1.25um). Disk thickness is
measured in situ using a non-contact thickness gauge
known as an air gauge'. Currently, the thickness of one
disk from each batch is measured before the batch is
ground. The system controller determines the actual
removal rate from the previous batch and estimates the
current value of removal rate using a proprietary control
law. It predicts how much material has to be removed by
subtracting the target thickness from the input thickness
and then calculates the necessary grinding duration for
the current batch.

When the grinding is completed, the selected disk is
measured again. If it is within specification, then the
whole batch is passed. If the disk is too thick (above the
upper specification limit), the disks are ground again
(i.e. reworked) but if the disk is too thin (below the
lower specification limit), the batch is rejected. When a
grindstone is newly installed (i.e. replaced due to wear),
the pressure is initially set to a low value and then
gradually increased to an upper limit to counteract the
stone deterioration, which in turn increases the removal
rate. Subsequently, the removal rate decreases until a
stage is reached where it is so low that the grindstone has
to be resurfaced. This is done by slicing off the worn
part of the grindstone. Once re-installed the whole
process is repeated.

"This uses the relationship between the pressure of a jet of air from
the gauge nozzle and the gap between the nozzle and the aluminium
substrate, to determine the gap width and hence disk thickness.

Pressure

aringsons:

Disks Direction of Motion

Fig. 2. The ring grinding process.

3. Preliminary modelling work

The main objective of this investigation is to develop
an accurate control scheme for the thickness of the
aluminium substrate disks in order to minimise
the number of out of specification disks produced by
the grinding process. This process optimisation will be
achieved through manipulation of the grind cycle time.
As almost all advanced control methods are model
based, the first step is to identify an accurate process
model. The model developed here is one which predicts
the grindstone removal rate for each grind cycle on the
basis of the current state of the process. Since analytical
modelling is not feasible, data-based modelling techni-
ques have to be employed. This will now be discussed.

Various process variables are logged for each grind
cycle as part of the company’s own process perfor-
mance-monitoring procedure. These include the current
removal rate, the pressure between the grindstones, the
cumulative cycle time and the idle time. Cumulative
cycle time is logged as it is an indication of wear and
aging of the grindstones while idle time is monitored
because of its effect on grindstone operating tempera-
ture, which in turn impacts on the removal rate.
A summary of these variables and the identifiers used
for them in this paper is provided in Table 1.

Lifetime data for 5 different grindstones (numbered
1-5) were available for this research.

The data was detrended and normalised to lie within
the interval [—1;1]. The removal rate data contained
high-frequency variations, which made it difficult to
model with low-order models. Furthermore, these high-
frequency variations were unaffected by p; or cct; as
these variables are of low bandwidth. Consequently, the
data was divided into its low- and high-frequency
components with each one modelled separately and
then combined to produce the final prediction of the
removal rate as illustrated in Fig. 3.

This partioning was achieved by filtering using a 10-
point moving average (MA) filter (Masters, 1995). The
filter order was deduced by performing correlation tests
on the residuals to ensure that they contained no
significant information. Fig. 4 provides a snapshot of
the actual removal rate data before and after filtering.
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Table 1
Grinding process variables

Variables Definition

Removal rate, ry

Previous removal rate, r;_,;
Cycle time, ¢

Cumulative cycle time, cct;
Pressure, pj

Idle time, it

Loading thickness, 7-
Unloading thickness, #;
Target thickness, ;7
Upper control limit, ucly
Lower control limit, /c/;

Rate of material removal from a disk during the grind cycle

Removal rate from the previous grind cycle

Cycle time of the current grind cycle

Sum of all previous cycle times since the grindstone was last resurfaced
Pressure between the grindstones

Length of time that the grindstone remains idle before the next batch of disks are ground
Thickness of the disk before the grinding process begins

Thickness of the disk after the completion of the grinding process
Desired thickness required for each grind cycle

Upper control thickness limit specification

Lower control thickness limit specification

rk Low Pass A r|: Low Freq rk-v-l + rk+l
Filter Model -
A
P ccet,
f\- Ark High Freq Arkﬂ
+\ Model
Ark_p itk

Fig. 3. Removal rate prediction model.

Fig. 5 shows the variations in all the variables used in
the process modelling for grindstone 1. The high-
frequency data, Ar, plotted in Fig. 6, is simply the
residual after the filtered data has been subtracted from
the raw measurement of removal rate data.

This partitioning of the modelling problem allows
low-order models to be obtained. Initial attempts
at modelling the unfiltered data concluded that models
of order 10 were required to obtain acceptable
performance. In effect the additional terms inherently
provide the filtering needed. However, this is an
unsatisfactory approach as the parameter space is much
larger.

The existing proprietary controller will be used as a
base reference for evaluating the performance of the
models developed in the following sections. Since this
controller is essentially model-free, it does not generate
an explicit removal rate prediction, 7. However, this
can be inferred from the generated cycle time, ¢, using
the formula

L _ ,SP
po= Kl G.1)
Cke

Here, ¢F is the loading thickness and 757 is the set-
point or target thickness. Note that the actual removal
rate, ry, is obtained by replacing 27 by the measured

05} i
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Fig. 4. The removal rate, r,, after being filtered and conditioned
(—Raw data, —Filtered data).

unloading thickness, #;, in the above formula,
that is

L
o=tk (32)
Ck

Fig. 7 compares the predicted filtered removal rate, 7y,
and the actual filtered removal rate, ry, for grindstone 1.
The accuracy of the prediction is measured in terms of
the percentage normalised mean prediction error
(MPE), defined as

1 n _ Y
MPE=-%" Ire =7l 100, (3.3)
n —l [

In this case the MPE for grindstone 1 is 6.8%. This is
considered a reasonable performance and is consistent
with the low number of rejects observed on the process
with the existing controller. The occurrence of rejects
can be explained by the observation that locally the
MPE performance can be much poorer as demonstrated

The variance is defined as v, = var(ry) = E[(rx — p,)?], where u, =
E(ry) is the mean and o, = std(ry) = /[Jv, is the standard deviation of
variable r, respectively, and n is the number of data samples.
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by the highlighted data segment in Fig. 7. Consequently,
when assessing model performance, both local and
global MPE need to be considered.

An investigation into lincar modelling (Fig. 8)
concluded that the best model for the filtered portion
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Fig. 5. The variables used in the modelling of the grinding process.
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Fig. 6. High-frequency data sample, Ary (the residual after the filtered
data is subtracted from the raw data).
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was of the form:

. . . .
P = aifr—1 + aofp—3 + asfr_s + bipy

~+ byccty + bsccty_y. (3.4)

Modelling accuracy was subsequently further im-
proved by an average of 3.8% (see Section 4.3) when the
filtered model was augmented with a high-frequency
variation model:

APy = 1 Ari_ + 2 Ari_3 + c3Ar_s + dyity. (3.5)

However, the overall result was still quite poor. It is
evident that while the data does indeed contain linear
trends, there are also significant nonlinear trends. The
obvious next step was to form a linear model and to
augment it with nonlinear terms, as depicted in Fig. 9.
The generalised multilayer perceptron (GMLP) provides
an ideal framework for doing this, as described in the
next section.

4. Generalised multilayer perceptron (GMLP) for
process modelling and control

The generalised MLP (Fig. 10) is an extension of the
standard one. The addition of direct connections, from
the inputs to the outputs introduces weights between
nodes in non-adjacent layers. The GMLP provides an
ideal tool for modelling both the linear and the
nonlinear dynamic components of the plant as it can
be initialised as a linear model and then adapted to
produce the required nonlinear model (Sjoberg, 1997).
GMLPs with multiple hidden layers are not used here
as, given enough hidden neurons, a single-layer GMLP
is sufficient to approximate any continuous function to
an arbitrary degree of accuracy. This follows directly
from the universal approximation results for MLPs
(Hornik, 1989; Cybenko, 1989) as MLPs are a subset of
the functions represented by GMLPs.

Here GMLPs with sigmoidal nonlinear activation
functions, a(.), in the hidden layer and linear activation
functions (y = x) in the output layer were employed.
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&
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S
N
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Fig. 7. Example of the filtered removal rate, r}, prediction from the proprietary scheme.
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Fig. 8. Sample of the linear model prediction of the filtered removal rate, r}.
_ x; is the ith element of the network input vector x. The
Input u';gzr * output various wei.ghts whigh make up the overall weight vector
+ w are: ij is the weight between the jth neuron in the
hidden layer and the linear (L) output neuron; wijL is the
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, weight between the ith input and the jth nonlinear
3 3 hidden (VL) layer neuron; wPl is the weight between the
} MLP } ith input and the linear (L) output neuron; b; is the bias
! ! on the jth hidden neuron and d is the bias on the linear
3 : output neuron.
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Fig. 9. Block diagram of the nonlinear modelling approach.
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Weighted Direct Links Neurons

Fig. 10. The generalised multilayer preceptron (GMLP) architecture.

The overall input-output mapping for a multi-input,
single-output, single hidden layer GMLP with a linear
output neuron can be expressed mathematically as

y = g(x,w)
Np

N,‘ Ni
= Z wlLa (Z wf}'in + b,) + Z Wf)l‘xi +d, (4.1
j=1 i=1 i=1

where N; and N, are the number of inputs and hidden
layer neurons, respectively, y, is the network output and

In this work, the Full Memory Broyden—Fletcher—
Shanno—Goldfarb (BFGS) algorithm, a quasi-Newton
method was used for training (McLoone & Irwin,
1997).

For NARX modelling, the filtered removal rate was
estimated as a function of previous filtered removal
rates, rf_,, ri_s and rj_s, current pressure, py, and the
current and past cumulative cycle times, cct; and ccty_;.
Thus,

e = f(Fr—1, Pr—3, Pr—s, Py, CCli, cCly—y), 4.2)

where the GMLP is trained to learn the unknown
mapping of f{.). Similarly, the high-frequency removal
rate variation, Ar,, was estimated as a function of
previous values, Ar,_;, Arr_3 and Ar,_s, and current
idle time, that is

(4.3)

Note that the selection of the filtered and high-
frequency removal rate variations interval were
chosen to avoid ill-conditioning in the prediction.
The resulting neural model is illustrated schematically
in Fig. 11.

In the remainder of the paper, the single block
diagram on the right and the acronym DNNM will be
used to represent this model.

The performance index used in training was the mean-
squared-error (MSE), defined as

AP = g(Ari_1, Ari_s, Arg_s, ity).

1 & .2
ME:—E T )
S . (ri —F)

i=1

(4.4)
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Fig. 12. Comparison of the prediction and actual filtered removal rate for grindstone 1.

where r; is the actual removal rate while 7; is the estimate
and »n is the number of data samples. The GMLP
networks were trained using the first 600 grindstone data
points, with the remainder of the data retained for
validation. The goal was to minimise the MSE on this
validation data set. This procedure was employed to
obtain low- and high-frequency removal rate models for
each of the 5 grindstones. After experimenting with
different architectures, the network that was found to
produce the minimum MSE error was a (6-5-1) one for
the filtered data and a (4-5-1) network for the high-
variation data. The networks were initialised 10 times
where the weights are initialised randomly each time,
and the best results recorded for each stone. All analysis
was performed offline using Matlab™. Fig. 12 com-
pares the filtered data GMLP model obtained for
grindstone 1 with the corresponding linear model and
clearly shows the benefit of moving to a nonlinear
modelling framework. Globally, the MPE has been
reduced by 18% compared to the earlier linear model,
while locally the reduction is of the order of 71%.

4.1. Predict-correct scheme for improved removal rate
prediction

Error feedback can also be used to compensate for
low-frequency offsets in the ANN removal rate model
prediction. This “predict-correct” (PC) technique uses
past plant outputs and the corresponding model
predictions to generate a correction to the current
estimate 7; and successful applications have been
reported in Rovlak and Corlis (1991), Willis, Di
Massimo, Montague, Tham, and Morris (1991), Light-
body (1993), and Irwin et al. (1995a, b). The PC scheme
is usually implemented as follows:

IS IR .
P =Tk + N ;(l’kﬁ' — Fr—j) (4.5)

J

A first-order PC was incorporated into the DNNM
removal rate predictor as shown in Fig. 13. The
performance of the PC scheme for grindstone 1 is
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illustrated in Fig. 14. A modest improvement in both the
global and local MPE is observed.

4.2. Lee and Shin static model

In contrast to our dynamic modelling approach, Lee
and Shin (2001) used a static model for predicting
removal rate. This was based on a radial basis function
(RBF) neural network, with cumulative material re-
moved, > Af; and current pressure, p; as inputs and
removal rate, ry, as the output as shown in Fig. 15.

A study of this model showed that it was not able to
perform adequately for this grinding process. Fig. 16
shows the modelling performance obtained on stone 1
where the static model clearly cannot capture the
dynamic variation in the process.

4.3. Modelling the high-frequency removal rate variation

The previous sub-sections have confirmed that
accurate modelling of the low-frequency removal rate
variation is possible using the NARX approach.
Modelling of the high-frequency component, however,
proved to be much less successful. While this component
and 26%

accounted for between 11% of the total

Mp Dynamic .
Neural f,
Ar_ K
kp Network
X T | Mode
k=p (DNNM)

Fig. 13. The predict correct (PC) scheme.
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removal rate variation in each grindstone, modelling
was only able to explain somewhere between 1.5% and
9% of this variation. A typical result for grindstone 1 is
shown in Fig. 17.

Table 2 provides a summary of the performance of
linear and NARX modelling of the high-frequency
(H.F.) removal rate data for each grindstone and also
provides some statistics on this data. These include the
variance of the actual removal rate, the variance
represented by the high-frequency data, and the
percentage of the high-frequency variation explained
by the linear and NARX models. As can be seen, while
NARX models are superior to lincar models at
predicting the high-frequency variation, overall the
predictability of the data is very low.

The residuals of the high-frequency data models were
found to be normally distributed and uncorrelated as
illustrated in Fig. 18 for grindstone 1, leading to the
conclusion that the remaining unmodelled removal rate
variation is Gaussian white noise. This can be attributed
to measurement noise generated by the thickness gauge
used to measure the loading and unloading thicknesses
utilised in the calculation of removal rate (see Eq. (3.2)).
This is supported by the observation that the estimated
noise variance (variance of the residual shown in
Table 2) is consistent across all grindstones.

5. Grinding process control

Having successfully identified a model of the removal
rate, the next step is to design an appropriate thickness
control system. In this section, a number of different

P ——

NN Model f
SAf,

Fig. 15. Static removal rate model proposed by Lee and Shin (2001).
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Fig. 14. Comparison of the filtered removal rate predictions from the NARX model, the NARX model with predict correct (PC) and the actual for

grindstone 1.
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Fig. 17. NARX model of the high-frequency data for grindstone 1.

Table 2

Modelling results for high-frequency variation removal rate data

Data Set Var(ry) Var(Ary) % of r; variation % of the H.F. data % of the H.F. data Estimated
represented by the H.F. explained by a linear explained by a NARX noise variance
data model model

1 0.0726 0.0187 25.7207 1.4731 1.8026 0.0183

2 0.1111 0.0152 13.6499 3.6762 3.8536 0.0146

3 0.0964 0.0125 12.9675 3.9978 8.6986 0.0114

4 0.0977 0.0116 11.8802 4.3767 4.5908 0.0113

S 0.0984 0.0141 14.3105 5.7073 7.0959 0.0135

control schemes are considered, starting with a simple
open-loop controller and ending with a neural internal
model controller. This incremental approach is adopted
to give some insight into the underlying control problem
and how it can be addressed. In particular, the open-
loop controller is included to show how the removal rate
model can be used to implement an exact direct inverse
model controller for process. This then provides the
platform for developing more sophisticated model or
inverse-model-based control.

Fig. 19 shows a block diagram of the disk grinding
process highlighting the variables relevant to the
thickness control problem. The unloading thickness,

tr, 1s governed by the current cycle time, ¢, the current
pressure exerted onto the grindstones, py, and various
unmeasured disturbances, d;. The latter include coolant
flow rate fluctuations, mechanical vibration, thermal
effects and variation in the incoming disk thickness. The
material removal rate, r, can be considered an internal
process state which is a function of pressure and the
unknown disturbances.

5.1. Open-loop control

A basic open-loop controller for the process can be
implemented using ¢, as the manipulated input on the
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Fig. 19. The ring grinding process block diagram.

basis of an assumed constant removal rate, 7 (this could
be chosen for example as the average removal rate over
the past 100 cycles) (Fig. 19).
L _ ,SP SP
P ek S (5.1)
Tk Tk

Here ¢f is the measured loading thickness of the disks,
#7¥ is the desired/set-point thickness and A’ is the
thickness of material to be removed. In practice,
however, the use of a constant removal rate value 7
would be a poor choice since grindstone performance
deteriorates over time. To counter this, an aging factor
can be incorporated into the r, estimate using for
example an expression of the form

Ve = UFj—1 (ﬂ—pk )
k—1

Here « is the aging rate, |o|<1, and the ratio py/pr_,
factors in the positive effect of ramping up the pressure
following resurfacing (see Fig. 5).

Alternatively, the DNNM model identified previously
can be used to provide an accurate estimate of r; at each
iteration leading to the open-loop control scheme
depicted in Fig. 20.

This in fact is a direct inverse model (IM) control
implementation as may be deduced as follows. First, note
that the DNNM removal rate model can also be used to
generate a ¢;-to-t; forward process model as shown in
Fig. 21. Lee and Shin (2001) pointed out that an

(5.2)

el

Fig. 20. Open-loop control using a ANN removal rate predictor.
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Fig. 21. Forward process model.

important feature of this particular formulation is that
it allows the inverse plant model to be obtained without
having to invert the ANN model, as is usually the case
with a neural-control scheme (Hunt, Sbarbaro—Hofer,
Zbikowski, & Gawthrop, 1992). Thus, Fig. 20 represents
an exact inverse of the forward process model and
therefore a direct IM controller. The complete direct IM
control scheme is therefore as shown in Fig. 22.

5.2. Classical feedback control

The controllers outlined in the previous section are
open-loop controllers and therefore do not have a
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Fig. 22. Open-loop direct IM control using the NARX modelling
method of the grinding process.

Process

(rd K

Fig. 23. Classical error feedback control using an integral action (IC).

mechanism to counter disturbances or model mismatch.
This can be resolved by incorporating an error feedback
loop. The control law here is typically of proportional-
plus-integral (PI) controller form defined as

ek = cp—1 — Kiep — Kp(er — ex—1), (5.3)

where K, and K; are the proportional and integral gains,
respectively (Fig. 23).

Classical error feedback control using an integral
action (IC), the feedback error, ¢, is defined as

e = ZEP — I. (5~4)

Note that the signs of the controller gains are negative
to account for the negative gain of the process. From
initial experiments it was found that the P term in the PI
controller (Fig. 23 below) had little or no positive effect
on thickness control and consequently the P term was
omitted in the final implementation yielding an integral
only controller (i.e. IC). According to Astrém and
Wittenmark (1997), special cases exist where an un-
known constant disturbance acting on a plant can be
controlled by just an integral action controller (IC).
Incoming thickness variation is an example of such a
disturbance.

5.3. Feedforward direct neural inverse control with error
feedback

Both PC and feedback control with integral action
(i.e. IC) have the same goal—removing the effect of low-
frequency and constant offsets, the former in the
removal rate predictions, the latter in the tracking of
the desired or set-point unloading thickness. These
schemes can be combined with the direct IM control
approach to provide the more advanced composite
control scheme, shown in Fig. 24.

Inver se Process q tk
Model

Fig. 24. The proposed neural direct IM control with error feedback
compensation (IM +IC).

. DNNM Cx Process 4
nVE(MSOdéDCeS (r k) k

DNNM
Forward Process
Model

Robustness
Filter

Fig. 25. The proposed internal model control (IMC) with a NARX
Model scheme.

In this case the composite control is given by
i = ir—1 — Kiex, (5.5

where ¢ is the estimate of the control action produced
by the IM controller and K;e, is the IC correction. The
inclusion of the IC will be particularly effective at
reducing the effects of disturbances such as incoming
thickness variation.

Ck = Ck — I,

5.4. Neural internal model control

The final control scheme considered is the well-
known, internal model control (IMC) scheme. This
has been extensively studied for linear systems control,
and has proven to be robust against disturbances and
model mismatch (Zafiriou & Morari, 1991). Nonlinear
implementations of this scheme have also proven
effective, e.g. Psichogios and Ungar (1991), Hunt and
Sbarbaro (1991), Hunt et al. (1992) and Kalkkuhl and
Hunt (1996), and Lightbody and Irwin (1997).

This method has similarities to the composite open-
loop direct IM control scheme in Section 5.1. The main
difference is that the control action of the IM controller
is an input to a neural network model as well as to the
actual plant. The difference between the actual unload-
ing thickness, #;, and the predicted unloading thickness,
f1, is then fed back to the controller, as shown in Fig. 25.
A set-point tracking/model mismatch signal is thus
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available to the controller. Provided the controller is an
exact inverse of the model, which is guaranteed with the
adopted model structure, the system has zero steady-
state error. Lightbody and Irwin (1997) provide some
theoretical results on neural IMC.

The use of the robustness filter offers disturbance
response performance. Here, a first-order exponential
filter given by

(1- e—l/r)z—l
1 — e—l/rZ—l
was adopted. The filter time constant, 7, was chosen to

obtain optimum closed-loop performance as describe in
Section 6.

F(z) = (5.6)

6. Results

The experimental results were obtained using actual
historical data gathered over 5 grindstone lifetimes to
gauge the performance of the various process optimisa-
tion schemes presented here. Several performance
criteria were chosen. These included the mean and
standard deviation of the unloading thickness error, the
number of rejects (i.e. disks exceeding either the
upper or lower unloading thickness specifications) and
the process capability index, C,;, which is defined as
follows (Degarmo, Black, & Kosher, 1990; Lee & Shin,
2002);

min{|UCL — X|,|LCL — X
o = TnUCE = X1, i 61

In Eq. (6.1), UCL and LCL are the upper and lower
control limits of the unloading thickness, while Xando
are the mean and the standard deviation of the
unloading thickness, respectively. If C,>1, then at
least 99.7% of all products of the process will be within
specification limits while Cp, <1, some non-conforming
disks are being produced. Table 3 summarises the
performance of the different control schemes described
in Section 5, on each of the 5 grindstone data sets. The
results presented are the combined performance values,

Table 3

which have been averaged and normalised over all the
data sets.

Results for Seagate’s proprietary control scheme and
the static ANN direct inverse control method proposed
by Lee and Shin (2001) are also included for compar-
ison. The proprietary control scheme is based on an IC
whose gain varies as a function of the removal rate.
However, due to confidentiality issues, the details of the
algorithm cannot be disclosed here. The parameters of
the control schemes proposed were optimised using the
first 600 data points of each grindstone (approximately
25% of the data) and subsequently evaluated on the
remainder of the data. For the IC controller, K; was set
between 0.0004 > K;>0.0005 for each of the grindstones.
Meanwhile the time constant, 7, for the robustness filter,
F(z), of the IMC scheme was identified as 0.85>1>0.88.

While Lee and Shin (2001) reported good results with
their control scheme, it is clear that it does not provide
satisfactory performance for the ring grinding machine
investigated here. This may be because their process did
not have significant dynamic variations, or it may be
that the online adaptation procedure they have em-
ployed to obtain an adaptive direct inverse controller
compensated for the unmodelled dynamics of the
process.

Figs. 26-28 compare the unloading thickness distri-
bution of the proprietary control scheme with those
obtained using IC, Lee and Shin’s controller and IMC.
The thickness distribution obtained with the NARX
model control scheme clearly shows that tighter thick-
ness control is achieved, that is, there is less variation in
the unloading thickness. Fig. 29 provides a graphical
comparison of the C,; and the rejects reduction ratio,
¢, for each controller. The latter is defined as

Rejects with proprietry control

by = (6.2)

" Rejects with proposed controller x

This again reflects the superiority of the DNNM-based
control schemes in reducing the number of defects
compared to the alternatives.

Clearly from the results above, it can be seen that the
DNNM model-based control are significantly better

Performance summary of all the optimisation techniques (IC = integral control, IM = direct inverse model control, IM + PC = direct inverse model
with predict correct control, IM + IC = direct inverse model with integral control, IM +PC +IC = direct inverse model with predict correct and

integral control, IMC = internal model control)

Control scheme Mean of the thickness deviation Std. of the thickness deviation Ratio of improvement on rejects Norm. G
Proprietary 17.7318 16.0271 — 0.66
Lee and Shin 4.0046 22.7474 0.31 0.46
IC 0.0684 20.9696 0.76 0.46
IM 2.7073 12.6789 2.99 0.81
IM +PC 2.6570 12.6803 2.95 0.81
IM+IC 1.2927 13.0698 2.62 0.76
IM+PC+IC 0.3901 13.1431 2.07 0.74
IMC 0.1226 12.7508 2.59 0.76
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Fig. 28. Unloading thickness distribution plot of the IM method
compared to the proprietary scheme.

than the other schemes studied. However, in practice,
there was little significant difference in performance
between the different implementations. This is a reflec-
tion of the quality of the process model obtained, in that
the model has sufficiently captured all the dynamic
characteristics of the ring grinding process, leaving
nothing for the controllers to do.

However, should a disturbance occur in the process,
control schemes with error feedback can be expected to
out-perform the open-loop controllers. One possible
source of disturbance is the loading thickness of the
aluminium substrate disks. Currently this is measured at
each grind cycle but the company is considering
omitting this measuring phase to speed up the overall
productivity (this task normally takes about 0.1% of the
total production cycle) and to rely on the suppliers
providing the disks within pre-specified loading thick-
ness tolerances.

To gauge the effectiveness of the various controllers
for this scenario, their performance has been evaluated
on historical data from grindstone 1. A disturbance was
simulated by introducing an undetected 3¢ deviation
change in the disk loading thickness, % of the way
through the grindstone life. Unloading thickness time-
histories obtained with the IMC and IM controllers in
response to this disturbance are provided in Fig. 30.
Table 4 provides a summary of the performance of all
control schemes considered for this disturbance. The
equivalent results without the disturbance are also
included for comparison. As expected, the control
schemes incorporating error feedback effectively reject
the disturbance with IMC providing the best overall
performance.

7. Conclusions and future work

Neural network-based modelling and control have
been used to optimise an industrial grinding process
used in machining of aluminium disks, a key component
of computer hardisk drives. Linear and nonlinear
dynamic models of the grindstone removal rate have
been studied and the key findings were as follows:

1. Linear models were unsatisfactory, indicating that the
underlying removal rate dynamics were nonlinear.

2. Including local dynamic variations improved model
accuracy, while modelling the high-frequency varia-
tions separately reduced the model order.

3. Nonlinear dynamic models, in the form of generalised
multilayer perceptron NARX-based structures, pro-
vided an ideal framework for building on a priori
knowledge in the form of linear modelling experience
and produced good results.

4. While most of the high-frequency variation in
removal rate could not be characterised by the
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Table 4
Disturbance rejection performance comparison

Control scheme Without disturbance With disturbance

Normalised mean of Normalised std. of the Normalised Normalised mean of Normalised std. of the Normalised

the thickness thickness deviation Cpi the thickness thickness deviation (o

deviation deviation
Lee and Shin 1.2495 8.5909 0.9215 22.8875 17.7152 0.0397
IC 0.0507 8.8028 0.9447 0.1037 9.5463 0.8693
IM 1.3283 6.3109 1.2503 22.9663 16.4221 0.0413
IM+PC 1.2353 6.2836 1.2607 22.8732 16.3645 0.0433
IM+IC 0.0499 6.3488 1.3100 0.1651 7.7799 1.0641
IM+PC+IC 0.0496 6.3374 1.3123 0.1649 7.7670 1.0658

IMC 0.0027 6.8595 1.2147 0.0496 8.2328 1.0102
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measured variables, analysis indicated that this
component could be regarded as Gaussian white
noise.

Various model-based control strategies were investi-
gated and compared with the existing proprietary
control scheme. These included direct inverse control,
direct inverse control with error feedback and internal
model control (IMC). Results showed that:

1. Much tighter control of the variation in the unload-
ing thickness was achieved using such controllers,
with the number of rejects reduced by a factor of two
or more.

2. There was little significant difference between the
performances of the neural open-loop and error-
feedback control schemes, indicating the absence of
significant disturbances in the current grinding
process.

3. Using a simulated step change in disk loading
thickness it was confirmed that the error-feedback
controllers were superior at rejecting disturbances.
The dynamic neural network-based IMC scheme
provided the best overall performance.

On the whole the results of this investigation suggest
that the ring grinding process can be effectively
optimised by employing dynamic neural network
model-based control. The authors are currently looking
into implementing these methods on other grinding
processes within the aluminium subtrate disk industry.

Acknowledgement

The first author wishes to acknowledge the technical
and financial support of Seagate Technology Media
(Ireland) Ltd. and Queen’s University Belfast.

References

Astrém, K. J., & Wittenmark, B. (1997). Computer-controlled systems:
Theory and designs (3rd ed.). Prentice-Hall Information and System
Sciences Series, 1997.

Brinkmeier, E., T$nshoff, H. K., Czenkusch, C., & Heinzel, C. (1998).

Modelling and optimization of grinding processes. Journal of

Intelligent Manufacturing, 9, 303-314.

Chen, Y. T., & Kumara, S. R. T. (1998). Fuzzy logic and neural
networks for design of process parameters: a grinding process
application. International Journal of Production Research, 36(2),
395-415.

Chryssolouris, G., Guillot, M., & Domroese, M. (1988). A decision
making approach to machining control. Journal of Engineering for
Industry, ASME, 110, 397-398.

Cybenko, G. (1989). Approximation by superpositions of a sigmoidal
function. Mathematics of Control, Signals, and Systems, 2, 303-314.

Degarmo, E. P., Black, J. T., & Kosher, R. A. (1990). Materials and
processes in manufacturing (7th ed.). Reading, NJ: Prentice-Hall.

Dote, Y., & Ovaska, S. P. (2001). Industrial applications of
soft computing: A review. Proceedings of the IEEE, 89(9),
1243-1265.

Heikkonen, J., & Lampinen, J. (1999). Building industrial applications
with neural networks. Proceedings of the European symposium on
intelligent techniques. Orthodox Academy of Crete, Chania,
Greece, June 34, 1999.

Hornik, K. (1989). Multilayer feedforward networks are universal
approximators. Neural Networks, 2, 359-366.

Hunt, K. J., Irwin, G. W., & Warwick, K. (Eds.) (1995). Neural
network engineering in dynamical control systems. Advances in
industrial control series. Berlin: Springer.

Hunt, K. J., & Sbarbaro, D. (1991). Neural networks for nonlinear
internal model control. IEE Proceedings—Part D: Control Theory
and Applications, 138(5), 431-438.

Hunt, K. J., Sbarbaro-Hofer, D., Zbikowski, R., & Gawthrop, P. J.
(1992). Neural networks for control systems—a survey. Automa-
tica, 28, 1083-1112.

Hussain, M. A. (1999). Review of the applications of neural networks
in chemical process control—simulation and online implementa-
tion. Artificial Intelligence in Engineering, 13(1), 55-68.

Irwin, G. W., O’Reilly, P., Lightbody, G., Brown, M., & Swidenbank,
E. (1995a). Electrical power and chemical process applications. In
Irwin, G. W., Warwick, K., & Hunt, K. J. (Eds.), Neural network
applications in control. IEE control engineering series 53. London,
UK: The Institution of Electrical Engineers.

Irwin, G. W., Warwick, K., & Hunt, K. J. (Eds.) (1995b). Neural
network applications in control. IEE control engineering series 53.
London, UK: The Institution of Electrical Engineers.

Kalkkuhl, J. C., & Hunt, K. J. (1996). Discrete-time neural model
structures for continuous nonlinear systems: fundamental proper-
ties and control aspects. In Zbikowski, R., & Hunt, K. J. (Eds.),
Neural adaptive control, Vol. 1 (pp. 3-40). Singapore: World
Scientific.

Lee, C. W., & Shin, Y. C. (2001). Intelligent modelling and control of
computer hard disk grinding processes. Proceedings of the third
international conference on intelligent processing and manufacturing
of materials (pp. 829-838). Vancouver, Canada, July 29th—August
2nd, 2001.

Lennox, B., Montague, G. A., Frith, A. M., Gent, C., & Bevan, V.
(2001). Industrial application of neural networks—an investiga-
tion. Journal of Process Control, 11(5), 497-507.

Liao, W. T., & Chen, L. J. (1994). A neural network approach for
grinding processes: modelling and optimization. International
Journal of Machine, Tools and Manufacturing, 34(7), 919-937.

Lightbody, G. (1993). Identification and control using neural networks.
Ph.D. dissertation. The Intelligent Systems and Control Group,
The Queen’s University of Belfast, Northern Ireland, UK.

Lightbody, G., & Irwin, G. W. (1997). Nonlinear control structures
based on embedded neural system models. IEEE Transactions on
Neural Networks, 8(3), 553-567.

Masters, T. (1995). Neural, novel & hybrid algorithms for time series
prediction (p. 103). New York: Wiley.

McLoone, S. F., & Irwin, G. W. (1997). Fast parallel off-line training
of multilayer perceptrons. IEEE Transactions on Neural Networks,
8(3), 646-653.

Merchant, M. E. (1998). An interpretive look at 20th century research
on modelling of machining. Proceedings of the first CIRP
international workshop on modelling of machining operations
(pp. 27-31). Atlanta, GA, USA, May 19, 1998.

Psichogios, D. C., & Ungar, L. H. (1991). Direct and indirect model
based control using artificial networks. Industrial and Engineering
Chemistry Research, 30(12), 2564-2573.

Rovlak, J. A., & Corlis, R. (1991). Dynamic matrix based control of
fossil power plants. IEEE Transactions on Energy Conversion, 6(2),
320-326.




1258 J.J. Govindhasamy et al. | Control Engineering Practice 13 (2005) 1243-1258

Seagate Technology: Company Facts Sheet (2002). http://www.seaga-
te.com/newsinfo/about/profile/Dlal.html.

Shin, Y. C., Chen, Y. T., & Kumara, S. (1992). Framework of an
intelligent grinding process advisor. Journal of Intelligent Manu-
facturing, 3, 135-148.

Shin, Y. C., & Vishnupad, P. (1996). Neuro-fuzzy control of complex
manufacturing processes. International Journal of Production
Research, 34(12), 3291-3309.

Sjoberg, J. (1997). On estimation of nonlinear black-box models: how

to obtain a good initialization. Report CTH-TE-60 (Proceeding of

IEEE workshop in neural networks for signal processing. Amelia
Island Plantation, Florida, September 24-26).

Udo, G. J. (1992). Neural networks applications in manufacturing
processes. Computers and Industrial Engineering, 23(1-4), 97-100.

Warwick, K., Irwin, G. W., & Hunt, K. J. (Eds.) (1992). Neural
networks for control and systems. IEE control engineering series 46.
London, UK: Peter Peregrinus.

Willis, M. J., Di Massimo, C. D., Montague, G. A., Tham, M. T., &
Morris, A. J. (1991). Artificial neural networks in process
engineering. [EE Proceedings—Part D: Control Theory and
Applications, 138(3), 256-266.

Zafiriou, E., & Morari, M. (1991). Internal model control: Robust
digital controller synthesis for multivariable open-loop stable or
unstable processes. International Journal of control, 54(3), 665-704.

Zhang, H. C., & Huang, S. H. (1995). Applications of neural networks
in manufacturing: a state of the art review. International Journal of
Production Research, 33, 705-728.


http://www.seagate.com/newsinfo/about/profile/D1a1.html
http://www.seagate.com/newsinfo/about/profile/D1a1.html

	Neural modelling, control and optimisation of an �industrial grinding process
	Introduction
	Ring grinding process
	Preliminary modelling work
	Generalised multilayer perceptron (GMLP) for process modelling and control
	Predict-correct scheme for improved removal rate prediction
	Lee and Shin static model
	Modelling the high-frequency removal rate variation

	Grinding process control
	Open-loop control
	Classical feedback control
	Feedforward direct neural inverse control with error feedback
	Neural internal model control

	Results
	Conclusions and future work
	Acknowledgement
	References


