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bstract

Murine mesenchymal stem cells (MSC) have the ability to inhibit allogeneic immune responses. Two different mechanisms, either cell contact-
ependent or independent, have been proposed to account for this immunosuppression. The focus of this study was to elucidate the involvement of
oluble suppressive factors secreted by murine MSC in an inflammatory setting, and their role in MSC immunomodulation. In a non-inflammatory
nvironment, bone marrow derived murine MSC constitutively expressed low levels of COX-2, PGE-2, TGF-�1 and HGF, but not IL-10, PD-1,
D-L1 or PD-L2. These MSC were able to significantly reduce alloantigen driven proliferation in mixed lymphocyte reactions as well as mitogen
riven proliferation. The pro-inflammatory cytokines IFN-� and TNF-� did not ablate MSC mediated immunosuppression. MSC expression
f PGE-2, IDO and PD-L1 was differentially regulated by these cytokines. COX-2 and PGE-2 expression by MSC were upregulated by both
FN-� and TNF-�, and using a biochemical inhibitor this was shown to have an essential, non-redundant role in modulating alloantigen-driven
roliferation. However, the surface expression of PD-L1 was induced by IFN-� but not TNF-� and similarly functional IDO expression was only
nduced by IFN-� stimulation. Blocking studies using neutralising antibodies and biochemical antagonists revealed that while PD-L1 induction

as not essential, IDO expression was a prerequisite for IFN-� mediated MSC immunomodulation. These data demonstrate that murine MSC

xpression of immunomodulatory factors dramatically changes in a pro-inflammatory environment and that IFN-� in particular has an important
ole in regulating MSC immunomodulatory factor expression.

2007 Elsevier B.V. All rights reserved.
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. Introduction

Mesenchymal stem cells (MSC) are multipotent adult pro-
enitor cells which have the ability to differentiate into a number
f lineages [1–3]. These cells are primarily found in the bone
arrow but have also been isolated from other sites in the body

4]. Recent advances in the isolation, culture and differentiation
f bone marrow derived MSC have highlighted the potential use
f these cells in regenerative medicine. A number of studies
ave shown beneficial effects of therapeutic MSC delivery in

ivo. Horwitz et al. showed engraftment of donor MSC and the
ormation of new bone in a case of osteogenesis imperfecta [5].
LA identical MSC were shown to be safe and associated with
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reversal of pathology in a study of metachromatic leukodys-
rophy [6]. Surprisingly, engraftment of allogeneic human MSC
esulted in improved bone marrow stroma reconstitution in a
ase of severe aplastic anaemia [7]. Mouse models have also
roved useful in the development of regenerative medicine ther-
pies and for probing immunological mechanisms. For example,
dministration of murine MSC before the onset of disease pre-
ented pathology in EAE, a model of multiple sclerosis [8].
imilarly, administration of MSC before the onset of lung dam-
ge induced by bleomycin, ameliorated fibrotic effects and
ecreased inflammation [9]. Recently, MSC have also been
hown to be anti-tumorigenic in a mouse model of Kaposi’s
arcoma by inhibiting AKT activity [10].
A major caveat in the application of MSC based regenera-
ive medicine therapies concerns the potential immune-mediated
ejection of allogeneic cells. Intriguingly a growing body of evi-
ence suggests that mismatched MSC evade regular immune
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llorecognition [2,11–14] and can inhibit immune responses
11,15–18]. The mechanisms by which MSC mediate these
mmunosuppressive effects have not been fully elucidated, how-
ver both contact dependent and independent mechanisms have
een proposed [18–20]. Krampera and colleagues have shown
hat the suppressive activity of MSC was abrogated when cells
ere physically separated by a transwell membrane [18]. Other

tudies have shown that MSC may interfere directly with T cell,
r antigen presenting cell phenotype, causing these cells to adopt
egulatory functions [17,18,21,22,24,25]. MSC may interfere
ith ligand–receptor interactions required for T cell activation

nd proliferation. In contrast, other studies have proposed a
ole for soluble factors in MSC mediated immunosuppression
sing transwell cultures or MSC supernatant [20,26,27]. Sev-
ral candidate cytokines have been implicated in MSC mediated
uppression, including IL-10 and TGF-�1.

The therapeutic use of MSC may well require delivery to sites
f inflammation and the potential possibility for immunomod-
latory activity by MSC under these conditions is not clear.
reviously, we have proposed that MSC mimic many of the

mmunomodulatory aspects of the fetal allograft [28]. The fetal
llograft uses an array of soluble factors with immunomodu-
atory potential as well as contact dependent mechanisms to
revent fetal loss [29,30]. To address this hypothesis, several
oluble factors known to be involved in immunosuppression by
he fetal allograft were examined for their role in MSC mediated
mmunosuppression under inflammatory and non-inflammatory
onditions.

In this study, we report the constitutive expression of low
evels of immunomodulatory factors: COX-2, PGE-2, TGF-�1
nd HGF by MSC. We demonstrate that high level expression
f PD-L1, IDO and PGE-2 by MSC are differentially regu-
ated by IFN-� and TNF-�. Using blocking studies, the role
f these factors was examined to show that murine MSC retain
mmunomodulatory capability under inflammatory conditions
nd that IFN-� or TNF-� upregulation of PGE-2 may be of
articular importance in maintaining this effect. Overall this
tudy supports the potential therapeutic use of allogeneic MSC
nd provides support for a rational mechanism by which MSC
vade allogeneic rejection despite the presence of inflammatory
ytokines.

. Materials and methods

.1. Animals

Six- to eight-week-old female BALB/c and C3H/HeN mice
Harlan, UK) were used for experiments under the guidelines of
he Irish Department of Health and the research ethics committee
f the National University of Ireland Maynooth.

.2. Isolation and culture of bone marrow derived
esenchymal stem cells
Murine MSC were isolated and expanded using an in-house
odification of the method of Peister and colleagues [31].
urine MSC were obtained from 8- to 10-week old female

(
u
o
b
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ALB/c mice (Harlan, Oxon, UK). Mice were sacrificed by
ervical dislocation and the femur and tibia removed, cleaned
f all connective tissue, and placed in ice cold isolation medium
onsisting of RPMI-1640 supplemented with 10% (v/v) heat
nactivated fetal bovine serum (Invitrogen-Gibco, Paisley, Scot-
and), 10% (v/v) equine serum (Hyclone laboratories, Logan,
T), 1% (v/v) penicillin/streptomycin (Invitrogen-Gibco,), and
% (v/v) l-glutamine (Invitrogen-Gibco). The ends of the bones
ere cut to expose the marrow. Cells were then flushed out
ith isolation medium using a 5 ml syringe with a 27-gauge
eedle. Cell clumps were disaggregated using a 21-gauge nee-
le and syringe followed by filtration through a 70-�m nylon
esh filter. Cells were then centrifuged (600 × g, 5 min), resus-

ended in 15 ml isolation medium and cultured at 37 ◦C, 5%
O2. Non-adherent cells were removed 24 h later by washing
ith sterile phosphate buffered saline, and cultures fed with iso-

ation medium. This process was repeated every 3–4 days for
8 days. After 28 days, cells were removed from the flask by
ild trypsinisation. Passage 2 cells were seeded at low density

50 cells/cm2) and cultured in expansion medium (essentially
solation medium in which RPMI 1640 is replaced by � Mini-

um Essential Medium (Invitrogen-Gibco)). Contamination in
SC populations is a key confounding variable; therefore rig-

rous quality control was adopted at passage 3 and thereafter
o ensure that MSC were not contaminated with hematopoietic
r other cell contaminants, and that cells retained differentiation
apacity as previously described [31]. MSC used in these stud-
es were MHC class I+, Sca-1+, CD80+, CD44low, CD106low,

HC class II−, CD11b−, CD34−, CD45− and CD117−. Stem
ells were used between passages 3–10.

.3. Characterisation of mesenchymal stem cells

The following antibodies were used to characterise murine
SC. MHC class I-FITC, MHC class II-PE, Sca-1-FITC,
D106-FITC, PD-1-FITC, PD-L1-PE, PD-L2, CD45 (eBio-

ciences, San Diego, CA), CD11b-PE, CD34-PE, CD45R-PE,
D44-FITC, CD80-PE, CD86-FITC, CD90-PE, CD117-FITC

ImmunoTools, Friesoythe, Germany). Unconjugated antibod-
es were detected with a secondary antibody conjugated to FITC
anti-biotin FITC, Miltenyi Biotech, Surrey UK) or Extravadin
E (Sigma–Aldrich, Dublin, Ireland). MSC were analysed for
urface expression of these markers by flow cytometry. Briefly
× 105 cells were incubated with fluorochrome conjugated

pecifically or isotype control antibody at 4 ◦C for 30 min; cells
ere then washed and analysed using a FACScaliburTM with
ellQuest softwareTM (Becton Dickinson, San Jose, CA).

.4. Semi quantitative RT-PCR

MSC were seeded at 2 × 105 cells/ml in 24 well tissue culture
lates (Nunc, Rorsklide, Denmark) overnight and harvested the
ext day for RNA isolation, carried out using TRI ReagentTM
Molecular Research Centre, Cincinnati, OH) according to man-
facturer’s instructions. cDNA were analyzed for the expression
f TGF-�1, HGF, IL-10, PD-1, PD-L1, PD-L2, IDO and COX-2
y MSC. PCR primers for mTGF-�1 were forward 5′-TGA-
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GTCACTGGAGTTGTACGG-3′, reverse 5′-GGTTCATGTC-
TGGATGGTGC-3′; mHGF: forward 5′-CATTCAAGGCCA-
GGAGAAG-3′, reverse 5′-AACTCGGATGTTTGGGTCA-
-3′; mIL-10: forward 5′-TCCTTAATGCAGGACTTTA-
GGGTTACTTG-3′, reverse 5′-GACACCTTGGTCTTGGA-
CTTATTAAAATC-3′; mCOX-2: forward 5′-GGGTTGCT-
GGGGAAGAAATGTG-3′, and reverse 5′-GGTGGCTGTT-
TGGTAGGCTGTG-3′.

PCR primers for mPD-1 and mPD-L1 were based on the
equence of Augello et al. [20]. mPD-1: forward 5′-TTC-
CCTGCAGCTTGTCCAA-3′, reverse 5′-TGGGCAGCTGT-
TGATCTGG-3′; mPD-L1: forward 5′-AAAGTCAATGC-
CCATACCG-3′, reverse 5′-TTCTCTTCCCACTCACGGGT-
′; mPD-L2 forward 5′-CGTGACAGCCCCTAAAGAAG-3′,
everse 5′-GATGACCAGGCAACGGTACT-3′; mIDO: for-
ard 5′-GGCTAGAAATCTGCCTGTGC-3′, reverse 5′-AGA-
CTCGCAGTAGGGAACA-3′; GAPDH: forward 5′-GGT-
AAGGTCGGAGTCAACG-3′ and reverse 5′-CAAAGTTGT-
ATGGATGACC-3′.

.5. Quantitative real time RT-PCR

cDNA was analyzed for the expression of murine HGF by flu-
rogenic 5′-nuclease PCR assay (MJ Research Inc., Waltham,
A). Briefly, cDNA (500 ng) were amplified in the presence of

YBR® Green PCR mastermix. As an internal positive control
APDH-specific forward and reverse primers were used in a

imilar reaction. Accumulation of gene-specific PCR products
as measured continuously by means of fluorescence detec-

ion over 35 cycles. Standard curves for HGF expression were
enerated amplifying 10-fold serial dilutions of known quan-
ities of HGF PCR product standards. Quantification of target
ene expression was obtained using sequence detector system
oftware (MJ Research Inc.).

.6. In vitro stimulation of MSC

MSC were seeded at 2 × 105 cells/ml and cultured overnight
n 1 ml volumes then stimulated with the pro-inflammatory
ytokines TNF-� (10 ng/ml) (R&D systems, Abington, UK)
nd/or IFN-� (10 or 200 ng/ml) (Peprotech, London, UK) for
h. Concentrations and times were chosen after optimization

tudies (data not shown). mRNA was isolated from 6 h cultures
nd expression of TGF-�1, HGF, IL-10, PD-1, PD-L1, PD-L2,
DO and COX-2 by MSC was measured by RT-PCR.

.7. Cytokine and soluble factor measurement

Cytokines and soluble factors present in MSC or MLR cell
ulture supernatants were measured after 4 days culture by stan-
ard sandwich ELISA techniques using commercially available
LISA kits: TGF-�1 (BD Biosciences, Oxford, UK), IL-10 and
FN-� (R&D Systems, Abington, UK), PGE-2 (Cayman Chem-
cal, Michigan, USA) according to manufacturers’ instructions.
ytokine concentrations were calculated by comparison with
nown cytokine standards, all determinations were made in

i
�
a
i
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riplicate, results are presented as mean cytokine concentration
±S.E.)

.8. Mixed lymphocyte reactions

MSC were seeded in 100 �l cultures in 96 well flat-bottom
lates (Nunc, Rorsklide, Denmark) in complete RPMI (cRPMI)
t 0.75 × 105 cells/ml and cultured for 24 h at 37 ◦C, 5% CO2.
4 h later, spleenocytes were isolated from mice by disaggrega-
ion of spleens. Erythrocytes were lysed by NH4Cl lysis and
ells washed three times in cRPMI. Responder and stimula-
or spleenocytes were seeded in triplicate cultures (±MSC)
t a concentration of 1 × 106 cells/ml in a total volume of
00 �l. In mitogen-driven proliferation assays, cultures con-
ained 5 �g/ml concanavalin A (Con A) (Sigma–Aldrich). After

days incubation, cultures were pulsed with 5 �Ci/ml 3H-
hymidine (Amersham, Buckinghamshire, UK) for 6 h. Cells
ere harvested and thymidine incorporation quantified as pro-

iferation in counts per minute. Results are expressed as count
er minute (±S.E.).

.9. Statistical methods

Results are expressed as the mean ± (S.E.). A Student’s t-test
as used to determine significance among the groups. A value of
< 0.05 was considered significant. Analyses and graphical rep-

esentation were performed using Graph-Pad PrismTM software
Graphpad, San Diego, CA).

. Results

.1. Murine MSC constitutively express low levels of
OX-2 and the immunomodulatory mediators PGE-2,
GF-β1, and HGF

Murine MSC have the ability to suppress alloreactivity. The
pecific mechanisms by which this occurs have not yet been elu-
idated. Conflicting data report that this inhibitory effect could
e mediated through either cell contact or through soluble fac-
ors [18–20,23]. Initially, this study sought to focus on and to
haracterise the immunomodulatory cytokines that murine MSC
xpress. In line with previous studies, murine MSC did not stim-
late but significantly inhibited alloantigen driven proliferation
hen co-cultured with MHC mis-matched donor spleen cells

Fig. 1A). Similarly, MSC significantly (P < 0.001) inhibited
itogen driven proliferation (Fig. 1B). Murine fibroblast cells

howed no such effect (data not shown).
A number of candidate cytokines and immunomodulatory

actors were chosen and investigated because of their known
mmunosuppressive functions. IL-10 and TGF-�1 are known
mmunosuppressive cytokines involved in immune regulatory
rocesses [32]. Hepatocyte growth factor (HGF) or scatter fac-
or has the ability to modulate dendritic cell function [33] and

mprove GVHD [34]. To investigate a possible role for TGF-
1, HGF or IL-10 in the immunosuppression observed above,
llogeneic MLR were performed with these cytokines at phys-
ologically relevant concentrations. TGF-�1 at a concentration
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Fig. 1. MSC or immunosuppressive cytokines suppress alloantigen or mito-
gen driven proliferation. (A) MSC were co-cultured with spleen cells from
MHC mismatched mice (D1 or D2) for 96 h and alloantigen driven prolifer-
ation measured by 3H-thymidine incorporation expressed as mean cpm ± S.E.
Significant reduction in proliferation by responder spleen cells (**p < 0.01) was
determined by t-test analysis. (B) MSC also significantly suppressed Con A mito-
gen (5 �g/ml) driven proliferation (***p < 0.001). MSC or spleen cells cultured
alone are shown for comparison. (C) Exogenous cytokines reduced alloantigen
driven proliferation. Selected cultures contained MSC, recombinant mouse HGF
(10 ng/ml), IL-10 (2000 pg/ml) or TGF-�1 (10 ng/ml). Results are representative
of three experiments, each performed at least in duplicate. Statistical analysis
b
p
o

o
n
n
a
C

Fig. 2. MSC constitutively express immunomodulatory factors determined by
RT-PCR (A) and ELISA (B). Six-hour cultures of unstimulated MSC were
lysed, RNA isolated and subjected to semi-quantitative RT-PCR for expres-
sion of TGF-�1, HGF, COX-2, IL-10, PD-1, PD-L1 and PD-L2 as detailed in
Section 2. GAPDH was the internal positive control (A). Supernatants from
parallel cultures were also examined at 48 h for PGE-2, TGF-�1 and IL-10 pro-
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y t-test showed that only TGF-�1 significantly decreased alloantigen driven
roliferation comparable to MSC (**p < 0.01). No significant loss of viability
r induction of apoptosis was detected in this or subsequent experiments.

f 10 ng/ml (Fig. 1C), but not 200 pg/ml (data not shown) sig-

ificantly reduced proliferation comparable to MSC, however
either HGF nor IL-10 significantly reduced proliferation when
dded into an MLR (Fig. 1C). The expression of the enzyme
OX-2 was also examined as it is involved in the production

a
v
l
e

ein expression by ELISA (B). Results are representative of three experiments,
LISA determinations were each performed in triplicate and expressed as mean
oncentration ± S.E.

f Prostaglandin E2 (PGE-2), known to be involved in immune
egulation [35]. Murine MSC constitutively expressed COX-2,
GF-�1 and low levels of HGF mRNA, but not IL-10, PD-1,
D-L1 or PD-L2 (Fig. 2A). TGF-�1 and PGE-2 were detected

n supernatants from 4 day cultures by ligand specific ELISA.
either IL-10 protein or mRNA could not be detected above

hreshold levels using ELISA or RT-PCR respectively (Fig. 2B).
The role of PGE-2 in MSC mediated immunosuppression

as further examined using biochemical antagonists. Addition
f indomethacin, a specific COX-2 inhibitor [36] significantly
educed PGE-2 production by MSC (Fig. 3A). Furthermore,
ntroduction of indomethacin into an allogeneic MLR cultured in
he presence of MSC resulted in the significant restoration of cell
roliferation (Fig. 3B) suggesting that PGE-2 plays an important
ole in the suppression by MSC of allogeneic responses under
on-inflammatory conditions.

.2. IFN-γ and TNF-α upregulate expression of COX-2,
GE-2, and HGF

In order to use allogeneic MSC for regenerative processes in
ivo, it is desirable that MSC retain their immunosuppressive
roperties under conditions where pro-inflammatory cytokines
re present. The site of inflammation in vivo is an environment
ich in pro-inflammatory cytokines, in particular TNF-� and
FN-� [37]. The effect of IFN-� and TNF-� on MSC medi-

ted inhibition of cell proliferation was therefore examined in
itro. An inflammatory environment was simulated by stimu-
ating MSC in vitro with exogenous IFN-� and TNF-�. MSC
xposed to IFN-� and cultured in an allogeneic MLR resulted



K. English et al. / Immunology Letters 110 (2007) 91–100 95

Fig. 3. Murine MSC modulated alloresponses through prostaglandin E-2 production. (A) Murine MSC constitutively expressed PGE-2 determined by specific ELISA
and expression was upregulated in the presence of an allogeneic MLR (D1 + D2) from 48 h culture supernatants of MSC and allo-MLR. Addition of indomethacin
( as inv
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Indo, 20 �M) significantly reduced PGE-2 expression. (B) Likewise PGE-2 w
HC mismatched donors (D1 + D2) as in Fig. 1, but some cultures contained indo

hree experiments, each performed at least in triplicate. t-test analysis showed th

n consistent inhibition of cell proliferation; suggesting that this
ytokine could not break MSC mediated immune suppression
Fig. 4A). TNF-� exposure to MSC produced a similar effect

Fig. 4A). Furthermore, the combination of IFN-� and TNF-�
id not break MSC mediated suppression (Fig. 4A). Interest-
ngly, both IFN-� and TNF-� significantly upregulated MSC
roduction of PGE-2 as shown by ELISA (Fig. 4B). Consistent

a
r

m

ig. 4. IFN-� or TNF-� did not ablate MSC suppression of alloresponsiveness. (A
egend to Fig. 1. Additionally selected wells contained IFN-� (200 ng/ml) and/or TNF
xperiments, each performed in triplicate; t-test analysis showed a significant reducti
NF-� (***p < 0.001). (B) MSC production of PGE-2 was significantly upregulated
nd upregulation of COX-2 mRNA by MSC was also determined by RT-PCR.
olved in alloantigen driven proliferation. MSC were co-cultured in MLR with
acin (Indo) as a an antagonist of PGE-2 production. Results are representative of
-2 inhibition significantly restored alloantigen driven proliferation (*p < 0.05).

ith this, COX-2 mRNA expression by MSC could be upregu-
ated by either IFN-� or TNF-� (Fig. 4C), although expression
ould not be enhanced by combining both cytokines (Fig. 4B

nd C). These data support retention of an immunosuppressive
ole for MSC at sites of inflammation.

Quantitative Real Time PCR confirmed significant HGF
RNA upregulation by both IFN-� and TNF-� (Fig. 5A). Fur-

) MLR were performed in the presence or absence of MSC as described in
-� (10 ng/ml) for the duration of the culture. Results are representative of three

on in proliferation by responder spleen cells even in the presence of IFN-� and
by both IFN-� and TNF-� as detected by ELISA. (C) Constitutive expression
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Fig. 5. IFN-� and TNF-� upregulated HGF, but decreased TGF-�1 expression
by MSC. Levels of HGF mRNA (6 h) were determined by quantitative real time
PCR from unstimulated or IFN-� and/or TNF-� stimulated murine MSC. (A)
IFN-� and TNF-� significantly upregulated HGF mRNA expression by MSC
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*p < 0.05). (B) In contrast TGF-�1 protein expression by MSC was reduced
n the presence of IFN-� and TNF-� measured by cytokine specific ELISA
**p < 0.01, ***p < 0.001).

hermore, this upregulation was significantly greater when both
ytokines were used in combination (Fig. 5A, p < 0.05 com-
ared to either TNF-� or IFN-� alone, and p < 0.01 compared
o control). In contrast TGF-�1 protein expression by MSC was
ignificantly reduced by IFN-� and also by TNF-� (Fig. 5B)
ut expression was not further reduced by a combination of
oth cytokines (data not shown). These data suggest that in
he presence of IFN-� or TNF-�, it is COX-2, PGE-2 and pos-
ibly HGF expression, rather than TGF-�1 that supports the
mmunomodulatory capacity of MSC.

.3. IFN-γ and TNF-α induce MSC surface marker
xpression of PD-L1

The programmed death-1 (PD-1) pathway has emerged as
co-inhibitory pathway with immune regulatory properties

38,39]. This pathway has been implicated in murine MSC medi-
ted immune suppression [19]. Murine MSC were therefore
timulated with pro-inflammatory cytokines to examine their

ffect on expression of immunomodulatory factors. In particular
he effect exerted by TNF-� and IFN-� on PD-1 pathway mem-
ers by MSC was studied. Murine MSC did not constitutively
xpress PD-1 or its ligands PD-L1/PD-L2 (Fig. 6). However PD-
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1, but not PD-1 or PD-L2 mRNA expression could be induced
y IFN-� (Fig. 6A), and this was mirrored by surface marker
xpression (Fig. 6B), supporting a role for IFN-� in PD-L1
ignalling. In contrast to IFN-�, TNF-� did not induce PD-L1
rotein expression detectable by FACS. Typically mRNA pro-
les matched this although weak expression of PD-L1 mRNA
as observed occasionally (two from six times) from MSC

timulated with high concentrations (10 ng/ml) of TNF-�. This
xpression was transient and was never accompanied by surface
xpression in MSC (n = 6). Likewise combining TNF-� with
FN-� did not reduce PD-L1 protein expression supporting the
se of different mechanisms by the two cytokines, with the IFN-
response dominant. Interestingly, blockade of PD-1, PD-L1

r PD-L2 by neutralising antibodies did not restore alloanti-
en driven cell proliferation in MLR containing MSC (Fig. 6C).
aken together these data show that IFN-� plays a role in upregu-

ation of PD-L1 by MSC. However, some redundancy may exist
ith regard to the role of PD-L1 in MSC immunomodulation as

his could not be blocked through neutralisation.

.4. IFN-γ but not TNF-α differentially induced IDO
xpression by murine MSC

Indolamine 2,3-dioxygenase (IDO) is an enzyme which
atabolises l-tryptophan and is required for T cell prolifer-
tion, and has a defined role in fetal tolerance [30,40]. We
ave previously hypothesised that MSC may have retained
ome aspects of fetal tolerogenic capacity [28]. Unstimulated
urine MSC did not constitutively express mRNA for IDO but

his could be induced by IFN-� (Fig. 7A). Expression of IDO
RNA was not induced by TNF-� and TNF-� did not counter

FN-� induced expression (Fig. 7A); supporting independent
echanisms for these cytokines in supporting MSC mediated

mmunosuppression. To correlate mRNA expression with func-
ional IDO activity, blocking studies were performed using an
nhibitor of the IDO pathway, 1-methyl-l-tryptophan (1-MT).
he addition of 1-methyl-l-tryptophan to an allogeneic MLR
ontaining murine MSC resulted in significant restoration of
ell proliferation (Fig. 7B). Taken together, these data support
non-redundant role for IDO in inhibiting alloantigen driven

roliferation by MSC exposed to IFN-�.

. Discussion

In order to clarify the utility of using mesenchymal stem for
egenerative medicine, the soluble and surface immunomodu-
atory molecules expressed by MSC were characterised under
egular and inflammatory conditions. MSC retained the abil-
ty to suppress alloantigen driven proliferation in MLR in the
resence of IFN-� and TNF-�, however these cytokines used
ifferent mechanisms to achieve this effect. Both IFN-� and
NF-� upregulated COX-2 and PGE-2 expression and using

ndomethacin we show that this had an essential, non-redundant

ole in modulating alloantigen-driven proliferation. However,
FN-� but not TNF-� induced surface expression of PD-L1 by

SC and similarly IFN-� but not TNF-� induced expression
f functional IDO, an enzyme which catabolises l-tryptophan.
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Fig. 6. PD-L1, but not PD-1 or PD-L2 expression by MSC is upregulated by IFN-�. (A) mRNA from 6 h cultures of unstimulated, IFN-� and/or TNF-� stimulated
MSC were assayed by semi-quantitative RT-PCR for PD-1, PD-L1 or PD-L2 expression as detailed in Section 2. (B) FACS analysis for surface protein expression of
PD-1, PD-L1 or PD-L2 (solid shading) or isotype controls (open shading) was performed on corresponding 24 h cultures. (C) Proliferative responses were examined
for MSC co-cultured in MLR as in Fig. 1, but additionally cultures were established containing neutralizing antibodies to PD-1, PD-L1 and PD-L2 (5 �g/ml). Results
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re representative of three experiments, each performed in triplicate. Although M
ntibodies to PD-1 or its ligands did not significantly restore alloantigen driven

locking studies using neutralising antibodies and biochemi-
al antagonists revealed that while PD-L1 induction was not
ssential, IDO expression was a requirement for IFN-� medi-
ted MSC immunomodulation. Taken together these data clarify
he mechanisms used by MSC in immunomodulation, and sup-
ort the possible use of MSC in regenerative therapy during
nflammatory conditions.

Under regular culture conditions, bone marrow derived
urine MSC constitutively expressed low levels of COX-2,
GE-2, TGF-�1 and HGF, but not IL-10, PD-1, PD-L1 or PD-
2. These MSC were able to significantly reduce alloantigen
riven proliferation in mixed lymphocyte reactions as well as
itogen driven proliferation. As MSC may be required for

se in inflammatory environments such as the synovium, it is
nteresting to note that neither IFN-� nor TNF-� broke MSC

ediated immunosuppression. Our findings with directly iso-
ated MSC, conflict with MSC cell line derived data of Djouad
t al. [14], suggesting heterogeneity between MSC from dif-

erent sources. TNF-� or IFN-� addition to in vitro cultures
f MSC resulted in increased production of PGE-2 by MSC
nd subsequent blocking of PGE-2 production through prior
xposure of MSC to indomethacin, restored alloantigen driven

o
M
o
o

blated alloantigen driven proliferation, t-test analysis showed that neutralizing
eration.

roliferation in MLR, emphasising that both cytokines require
icosanoid production as part of the mechanism of suppression,
nd that combination of the factors could not further enhance
xpression. However, IFN-� and TNF-� do not use identical
echanisms to achieve the suppressive effect, and differ in their

apacity to induce PD-L1 and IDO expression by MSC. IDO
ould be induced by IFN-� but not TNF-�. The addition of a
pecific IDO inhibitor, the Tryptophan antagonist 1-methyl-l-
ryptophan, restored alloantigen driven proliferation indicating
n essential role for this mechanism in IFN-� but not TNF-
mediated suppression. Whilst IFN-� had a similar influence

n PD-L1 surface expression by MSC, neutralizing antibodies
o PD-1 or the ligands PD-L1 and PD-L2 did not ameliorate
uppression. This does not mean that PD-L1 is not involved in
uppression but may indicate either redundancy in this pathway
r the existence of an alternative receptor for PD-L1.

This study shows an important role for IFN-� in support-
ng immunosuppresssion mediated through MSC by induction

f soluble immunomodulatory factors. The role of cytokines in
SC mediated suppression has been investigated by a number

f groups, although findings have been confused by the variety
f model systems, MSC purification protocols and readouts. Di
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Fig. 7. IDO plays a role in MSC mediated suppression of allo-responsiveness.
Constitutive or inducible mRNA expression of IDO by MSC was examined by
semi-quantitative RT-PCR. (A) Six-hour cultures of unstimulated, IFN-� and/or
TNF-� stimulated MSC were lysed and assayed for IDO mRNA expression.
(B) MLR were performed with mismatched donors (D1 and D2) as described
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n Fig. 1, in the presence or absence of MSC and the IDO antagonist 1-methyl-
-tryptophan (1-MT) (40 �M). t-test analysis showed significant restoration of
roliferation when IDO was blocked (***p < 0.001).

icola et al. and others showed a role for TGF-�1 and HGF in
uman MSC immunosuppression using neutralizing antibodies
20,27]. In contrast other groups have suggested that TGF-�1
oes not play a central role in MSC mediated suppression of
lloantigen driven proliferative responses [18]. Although our
ata confirms that TGF-�1 reduces alloantigen driven prolifera-
ion in MLR, it is unlikely that this cytokine plays a central role
n MSC mediated immune suppression at inflammatory sites,
iven that TNF-� and IFN-� reduced expression of TGF-�1 by
urine MSC (Fig. 5B).
IL-10 was not constitutively expressed by murine MSC in

his study and was not induced by pro-inflammatory cytokines.
onsistent with this finding Krampera et al. did not find IL-10
xpression by murine MSC [18]. This is in contrast to findings
rom our own laboratory using human MSC, which constitu-
ively express IL-10 (Ryan et al. manuscript submitted), and
tudies from Rasmusson et al. and Beyth et al. who only found
L-10 in human MSC co-cultures [26,42]. A possible role for
L-10 in human MSC mediated immunosuppression has been
ndicated by studies showing that the suppressive effect of MSC
as partially ablated by neutralising IL-10 activity in MLR [26].
iven that IL-10 is downregulated by inflammation, these results

uggest that IL-10 is unlikely to be mediating IFN-� or TNF-
driven effects on MSC. Nevertheless these findings highlight

hat species differences and differences in isolation procedure
ay have a profound influence on the characteristics of MSC.

urine and human MSC constitutively express COX-2 (Fig. 4A,

nd Ryan et al. manuscript submitted). COX-2 is an inducible
nzyme involved in the production of PGE-2 [28] and PGE-2
roduction is upregulated after co-culture of human MSC with

h
i
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BMC [13,41], suggesting communication between MSC and
ymphocytes that leads to the increased production of immuno-
uppressive factors such as PGE-2. Using an inhibitor of COX-2
nd therefore PGE-2 biosynthesis, we have demonstrated that
GE-2 plays a role in the suppression of alloresponsiveness.
hese findings are consistent with those of Rasmusson et al.
ho demonstrated a partial effect using indomethacin but only

n MLR cultures stimulated with PHA [42]. These data are
lso supported by Aggarwal but conflict with data from Tse
ho saw no such effect [13,41]. However, despite the differ-

nces in source and purification protocols, results from three
ifferent laboratories including our own, have demonstrated that
GE-2 is a significant factor mediating suppression of allore-
ponsiveness [13,42]. Furthermore, the present study showed
hat IFN-� and TNF-� upregulation of COX-2 is an essential,
on-redundant, component of MSC immunomodulation. This
bservation provides a rational mechanism explaining the allo-
uppressive capacity of MSC and suggests that their therapeutic
se may be feasible under inflammatory conditions.

PD-1 and its ligands PD-L1 and PD-L2 are known to reg-
late immune activity [43–45]. The PD-1 pathway appears to
romote survival of cardiac allografts [46], and PD-L1 has a
ole in mediating peripheral T cell tolerance [43]. PD-1 engage-
ent is known to inhibit the progression of the cell cycle in some

ell types [47]. This point is noteworthy because MSC mediated
nhibition of T cell proliferation has been linked to control of
he cell division cycle [48]. Although the present study found no
ssential role for the PD-1 pathway in MSC mediated suppres-
ion, Augello et al. have previously shown that bone marrow
esenchymal progenitor cells inhibited lymphocyte prolifera-

ion through activation of this pathway [19]. In contrast to the
ata herein, that study showed constitutive expression of PD-1,
D-L1 and PD-L2 by bone marrow mesenchymal progenitor
ells, and upregulation of PD-1 and PD-L1 upon stimulation
ith PHA. The reasons for these differences are most likely due

o the very different stem cell populations studied. The cell pop-
lation used by Augello et al. expressed CD28, CD13 and CD34,
arkers which are not usually associated with MSC but more

haracteristic of cells known to constitutively express PD-1 [43].
lthough a direct effect for this pathway was not observed in

his study, it is intriguing that pro-inflammatory cytokines induce
D-L1 and it may be that this pathway has some involvement
ut that either a degree of redundancy is present in the system
r an alternative receptor exists for PD-L1.

Recent data has shown a role for IDO in human MSC medi-
ted immune suppression [29]. IDO is the rate-limiting enzyme
nvolved in the catabolism of the essential amino acid tryptophan
nto its breakdown product Kynurenine [49]. IDO is involved in
he inhibition of T cell proliferation by dendritic cells [50] and
he expression of IDO by dendritic cells can be induced by IFN-

[49]. MSC do not constitutively express IDO, however when
timulated with IFN-�, MSC can be induced to express IDO
29]. We and others have suggested a role for this enzyme in

uman MSC suppression [28,29,51,52]. Addition of a specific
nhibitor of IDO, resulted in reversal of MSC mediated inhibi-
ion of proliferation, supporting the findings of Meisel et al. [29].
owever, in direct contrast to the present study, Tse et al. did
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ot find a significant restoration of proliferation after addition
f 1 mM 1-methyl-l-tryptophan [41]. The observation herein
hat IFN-� but not TNF-� induced IDO expression by MSC
tudy clarifies that discrepancy. That finding, and the associated
ntagonist studies (Fig. 7B), indicates that whilst IDO is not an
xclusive mechanism for MSC immunomodulation, it is essen-
ial for that mediated in the presence of IFN-�. This complexity

ay explain the apparently conflicting data, in that the role of
DO is either redundant or essential depending on the nature of
he inflammatory stimulus. Although IDO expression by MSC

ay induce T cell apoptosis [53], we observed no significant
ncrease in apoptosis over the time course of these studies (data
ot shown).

This study sheds light on the immunomodulatory factors
hat murine MSC constitutively express and subsequently delin-
ates how pro-inflammatory cytokines affected the expression of
hese. This study demonstrates that murine MSC share many but
ot all features of human MSC immunomodulation. Although
here are species differences in the role of IL-10, the immunosup-
ressive effects of murine MSC mediated through production of
GE-2 and IDO, are consistent with data seen in human MSC.
mmunosuppressive activity was not ablated by stimulation with
nflammatory cytokines but IFN-� upregulated expression of
OX-2, PGE-2 and IDO suggesting an important role for IFN-�

n murine MSC mediated immunomodulation. Taken together
hese data indicate that murine MSC model a number of impor-
ant aspects of human MSC interaction with the immune system,
ighlight the significance of COX-2, PGE-2 and IDO expression
nd offer rational mechanisms supporting the therapeutic use of
llogeneic MSC.
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