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Abstract: Local Controller Networks (LCNs) provide nonlinear control by interpolating between a
set of locally valid, subcontrollers covering the operating range of the plant. Constructing such
networks typically requires knowledge of valid local models. This paper describes a new genetic
learning approach to the construction of LCNs directly from the dynamic equations of the plant, or
from modelling data. The advantage is that a priori knowledge about valid local models is not
needed. In addition to allowing simultaneous optimisation of both the controller and validation
function parameters, the approach aids transparency by ensuring that each local controller acts
independently of the rest at its operating point. It thus is valuable for simultaneous design of the
LCNs and identification of the operating regimes of an unknown plant. Application results from a
highly nonlinear pH neutralisation process and its associated neural network representation are
utilised to illustrate these issues.

1 Introduction

Local Controller Networks (LCNs) provide a divide-and-
conquer approach to the design of global controllers for
complex nonlinear systems. The operating space is decom-
posed into a number of regimes and the required global
controller is then formed by interpolating between simpler
sub-controllers that are locally valid [1, 2]. Knowledge of
these local operating regimes is therefore a key requirement
for building such controllers. It is known that a large class of
nonlinear systems can be controlled in this way, including
most batch processes and many control system applications
[3]. Apart from normal operation, the control system may
also have to function correctly during startup and shutdown
cycles and to operate during maintenance and fault
conditions, all of which constitute different operating
regimes. In most applications, the design of a suitable
LCN is done on the basis of a priori plant knowledge
[4–11]. The interpolation is done such that the local
controller which is most valid at an operating point will be
given the greatest weight, neighbouring ones will be
weighted less, and those for distant operating regimes will
not contribute anything to the global control at that point.
Each local controller is thus associated with a weighting
function that provides smooth interpolation and also
indicates the relative validity of each local controller at a
given operating point.
In [6] and [7], linear local models were first designed at

each a priori known operating point and interpolated with

normalised Gaussian validity functions to provide a global
model of a non-linear plant. A separate linear controller for
each local model was then designed and interpolated with
the same validity functions to construct the global
controller. The validity functions thus only allow a single
linear controller to act at an operating point and facilitate
smooth transition to a different controller when the
operating point changes. This approach works well when
the local operating regimes are known but, in practice, their
identification is difficult. The complexity of the target
mapping, the representational ability of the local models
associated with the validity functions and the availability of
data all have to be taken into account [7]. Genetic
algorithms have been successfully applied [12, 13] to
simultaneously identify the optimum number of local
operating regimes and to construct the parameters of local
ARX models and their validity functions from plant data. It
was also shown in [12] that a GA could be used to design a
global controller, with the same validity functions as the
local models, by constructing all the local controllers
together. This contrasted to earlier approaches where each
local controller was designed separately. In all the methods
mentioned above, knowledge of the local models and their
validity functions at each operating point is required in order
to design the local controllers.

This paper extends some preliminary work by the authors
[14] on LCN construction using GAs to minimise a mean-
square-error criterion. However, no consideration was given
in this case to dynamic performance and robustness in the
construction of a LCN. This paper introduces a new fitness
function for a GA to ensure from the outset that the LCN
follows the setpoint trajectory with an acceptable rise-time,
overshoot and settling time. A method for selecting a
setpoint trajectory is also introduced to cover all the relevant
process operating points and the robustness of the LCN
controller is illustrated. Further, a procedure for adjusting
the step duration in the setpoint trajectory is introduced to
produce faster training by the GA. To achieve this a genetic
algorithm, enhanced by fuzzy coding [15], is used. The
fitness function is selected so that the controller validity
functions do not overlap too much, hence producing local
controllers that are ’almost orthogonal’ [1] to one another.
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Each local controller can then act independently within its
own operating regime without disturbing the others. As well
as offering transparency, this facilitates the identification of
distinct operating regimes, which is important for practical
applications [7, 10].

To show the effectiveness of the proposed scheme, a
highly nonlinear pH process is employed. The LCN is
developed for a pH process represented by dynamic
equations [16] and shown to generate stable control actions
spread throughout the required operating region. Since,
dynamic equations of the plant are often not available in
practice, a neural black-box model of the pH process was
thus also considered for LCN construction, with similar
results.

2 Local controller networks (LCNs)

The general discrete LCN representation is shown in Fig. 1.
Here, the same inputs, x, are fed to all the controllers and the
outputs are weighted according to some scheduling variable
or variables, c. The LCN output ŷy is given by the weighted
sum:

ŷy ¼
XN
i¼1

riðcÞfiðxÞ ð1Þ

where riðcÞ is the validity or interpolation function
associated with the ith local controller, fiðxÞ and N is the
number of local controllers.

The validity functions riðcÞ are normalised so that the
total contribution from all the local controllers is 100%. The
most widely used riðcÞ in the literature are normalised
Gaussian functions represented as:

riðcÞ ¼
exp � c� sik k2=2s2i
� �PN

j¼1 exp � c� sj
�� ��2=2s2j� � ð2Þ

while the fiðxÞ are linear controllers. Second order ARX-
type linear controllers were used in [13] for fiðxÞ. With this
formulation both local controller parameters and initial local
controller states had to be optimised. This resulted in a large
search space and consequently long training times for the
GA. To avoid the controller initialization problem and
reduce the GA search space, discrete-type PID controllers
are considered for LCN construction, in this paper.

A continuous-time PID-control law is described by

uðtÞ ¼ kpeðtÞ þ kd _eeðtÞ þ kI

Z
edt ð3Þ

where kp, kd and kI are the proportional, differential and the
integral gains, u is the control action and e is the error. The
equivalent PID controller in discrete form is

uðkÞ ¼ uðk � 1Þ þ kp½eðkÞ � eðk � 1Þ� þ kd½eðkÞ

� 2eðk � 1Þ þ eðk � 2Þ� þ TskIeðkÞ ð4Þ

where k is the sample number and Ts is the sampling
interval.

For (2) and (4) the unknown parameters in each regime
are the validity function centres, si, standard deviations si

and the PID-control parameters kp, kd and kI . The
identification of local operating regimes and simultaneous
design of a global LCN is difficult in the absence of a priori
knowledge about the unknown plant. This paper introduces
a new approach for finding such operating regimes and for
the construction of a suitable LCN based on genetic
algorithms.

3 Genetic construction of LCN

3.1 Fuzzy coding

Fuzzy coding is an indirect method of encoding a real
parameter, where a parameter is selected from appropriate
fuzzy sets depending upon its contribution within a problem
domain. It has been shown that this type of encoding of real
parameters can result in increased convergence speed and
better accuracy in the final solution [15].

Suppose each parameter has five associated fuzzy sets
NM, NS, ZR, PS and PM. The corresponding degrees of
membership NM(x), NS(x), ZR(x), PS(x) and PM(x)
evaluated at x then represent the degrees of firing (m).
Three types of membership functions, fuzzy sigmoid (FS),
fuzzy Gaussian (FG) and fuzzy normal (FN), within the
desired range (L,U) of a parameter value are used to
represent these five fuzzy sets, as shown in Fig. 2. The FS
shape provides global support in the sense that it divides the
feature space into two halves, one where the response is
approaching 1 for increasing value of parameters and
another where it is approaching 0 for decreasing values
(Fig. 3). The FGmembership function has local support and
divides the feature space into two halves in the opposite
sense to FS, while FN is of linear shape and is selected to
provide a distribution with support lying somewhere
between local and global (Fig. 3).

Instead of providing a real value of a parameter the GA
selects the optimum number of fuzzy sets and the m
associated with the chosen shape of membership function.
Each chromosome parameter then takes a value between L
and U, depending upon the type of membership function,
the fuzzy sets selected and the corresponding m values.

Figure 4 shows a chromosome representation in fuzzy
coding where each parameter is represented by two sections.
In the first, the fuzzy sets associated with each parameter are
binary encoded, with a ’1’ representing the corresponding
set selected. Here each parameter has five associated fuzzy
sets NM, NS, ZR, PS and PM. In the second section, each
parameter contains the degrees of membership NM(x),
NZ(x), ZR(x), PS(x) and PM(x) evaluated at x for each of
these fuzzy sets. These are encoded as real numbers and
represent the degrees of firing.

The GA now optimises m and the number of fuzzy sets,
while the actual parameter value of interest is obtained
through defuzzification. Thus, every parameter can easily
have different ranges by proper choice of the L andU values.
The selection of the membership functions to use for a
particular parameter depends upon the nature of its
contribution in a given problem. A detailed analysis of
this issue can be found in our previous paper [15].Fig. 1 General architecture of local controller network
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The genetic representation of LCN based on fuzzy coding is
described next.

3.2 Genetic representation of LCN

Genetic algorithms can simultaneously identify the number
of local controllers and the unknown parameters in (2) and
(4). The genetic representation of the LCN is shown in Fig. 5
where each individual in the population is composed of two
segments of strings. The higher segment is coded in binary
and represents the number of local controllers, where a ’1’
denotes that a particular local controller is selected. The total
number of bits in this first segment equals the total number
of local controllers considered. In the application investi-
gated here 10 controllers are initially retained. The lower
segment is a fuzzy coding to represent the parameters
associated with each local controller and its Gaussian
validity function.
The GA then simultaneously searches for the optimal

number of local controllers (from a given maximum
number), the parameters of these local controllers and the
parameters of the validity functions. Rather than selecting
the parameters randomly, when a particular local controller
is reselected, the weight values previously found are again
used in order to produce better convergence. The genetic
learning scheme applied to the encoded chromosomes is
now described.

3.3 Genetic learning scheme for LCN

The encoded chromosomes representing the LCNs were
randomly initialised for genetic evaluation. The fitness
function in the GA was selected so that preference was

given to the chromosomes that correspond to LCN with
fewer valid local controllers and which follows the setpoint
trajectory with faster rise-time, lower overshoot and shorter
settling time. The validity of local controllers was
determined by riðcÞ, with a value of riðcÞ ¼ 1 in a
particular operating region indicating a valid local
controller.

Each chromosome, corresponding to a LCN, can follow
the step trajectory in many ways. Figs. 6a, 6b and 6c shows
the three possible closed-loop step responses considered,
with a total of Nr reference trajectory samples. Fig. 6a
represents an under-damped response trajectory, Fig. 6b
shows a less under-damped one while Fig. 6c is the critically
or over-damped case. Chromosomes representing other
response trajectories will take more time to produce a final
solution which follows the setpoint trajectory with accep-
table rise-time, overshoot and settling time. Therefore, at
each generation those chromosomes which produce one of
these three setpoint trajectories were retained in the
population. The rest of the chromosomes were randomly
reinitialised in the genetic evolution process. This ensures
that, right from the beginning, the population contains more
chromosomes with the required features which will lead to a
faster convergence of the GA.

The errors E corresponding to these three trajectories
were as defined in (5), (6) and (7) respectively.

E ¼ ðe3 � e2Þ=ðe1 � e2Þ ð5Þ

E ¼ �e2=e1 ð6Þ

E ¼ 1

Nr

XNr

i¼1

Si � Ri

Si
ð7Þ

where e1, e2 and e3 are the first overshoot, first undershoot
and second overshoot respectively. Si and Ri are the values
of setpoint and response trajectory at sample i. A smaller
value of E reduces damping and overshoot in the first two
trajectories while improving the rise-time in the third. In all
cases the E values lay in the range 0 to 1.

The analytical expression for the fitness function of an
individual i in the population was of the form

Ji ¼
Pi

ð1þ EÞðTCiÞ
ð8Þ

where TCi is the total number of local controllers and Pi is a
positive weighting. The Pi for a given LCN was calculated

Fig. 2 Membership functions for FS, FG and FN distributions

Fig. 3 FS, FN and FG distributions for the NM membership
function
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at each sample as the total number of points for which
riðcÞ ¼ 1, within the operating region. This helped to
promote transparency by encouraging all valid local
controllers to be mutually orthogonal, such that each local
controller acted independently of the rest at its operating
point. The next Section describes the genetic operators
applied with this learning scheme.

3.4 GA operators

In this paper a steady-state GA [17], with a mutation
probability ðpmÞ of 0.01 and crossover probability ðpcÞ of
0.65, was applied to an initial population of 20 chromo-
somes. Five fuzzy sets were selected to represent a
parameter in fuzzy coding for LCN construction and NN
modelling. For each successive generation the two best
chromosomes in the population were retained, producing
offspring to replace the two worst chromosomes. Crossover
and mutation, with the following modifications, were
applied to the whole population. Uniform crossover [18],
where bits were interchanged on the basis of a generated
mask, was applied to the binary coded part. In the fuzzy
coded part, the GA operators were applied between selected
chromosomes, as detailed in reference [15]. In the fuzzy
coding, the values for Gaussian centres and covariances
were selected within the operating ranges of scheduled
variables (c) while the ranges for the local PID-controllers
parameters lay between �2.

4 The pH neutralisation process

A schematic diagram of the pH neutralization process is
shown in Fig. 7. Acid, buffer and base streams are mixed in
a tank and the effluent pH is measured. This is a highly
nonlinear process and hence offers a suitable application for
the demonstration and evaluation of LCN techniques. The
non-linearity in the process can readily be seen from the
open-loop responses to�10% step changes in base flow rate
(q3). The process gain varies by more than 250% for these

small input changes as illustrated in Fig. 8. This chemical
process was described by three nonlinear differential
equations and a nonlinear output equation for the pH [16]:

_hh ¼ 1

A
ðq1 þ q2 þ q3 � Cvh

0:5Þ; ð9Þ

Fig. 8 Open-loop response of the pH neutralisation system for
step changes in the base flowrates

Fig. 6 Trajectory considered in a fitness function of GA

a Under-damped response
b Less under-damped response
c Critically damped or over-damped response

Fig. 7 pH neutralisation system

Fig. 4 Fuzzy coding representation of a chromosome

Fig. 5 Genetic representation of the LCN
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_WWa4 ¼
1

Ah

h
ðWa1 �Wa4Þq1 þ ðWa2 �Wa4Þq2

þ ðWa3 �Wa4Þq3
i

ð10Þ

_WW b4 ¼
1

Ah

h
ðWb1 �Wb4Þq1 þ ðWb2 �Wb4Þq2

þ ðWb3 �Wb4Þq3
i

ð11Þ

Wa4 þ 10pH4�14 þWb4

1þ 2� 10 pH4�pK2

1þ 10pK1�pH4 þ 10pH4�pK2

� 10�pH4 ¼ 0

ð12Þ

where h is the liquid level, Wa4 and Wb4 are the reaction
invariants of the effluent stream, and q1, q2v and q3 are the
acid, buffer and base flowrates respectively. The pH
measurement is assumed to be delayed by a transportation
lag b so pH4m ¼ pH4ðt � bÞ. Acid and buffer flow rates
were kept constant at their nominal values, with the base
flow rate manipulated to excite the plant dynamics across
the operating range. The nominal model parameters and
operating conditions used in the simulation studies are
shown in Table 1. The output time delay is 0.5min and the
sampling period (Ts) was chosen as 0.25min.
The construction of a LCN for this pH neutralisation

process is described next.

5 Local controller network (LCN) design

Figure 9 shows the design of a LCN involving PID-type
local controllers. Here the LCN consists of m PID-type local
controllers. The output of the ith PID-type local controller at
sample k is ciðkÞ and the overall LCN output is defined as
cðkÞ ¼

Pm
i¼1 ciðkÞ. The control action applied to the pH

process at sample k is given by uðkÞ ¼ cðkÞ þ uðk � 1Þ.
The same error, eðkÞ ¼ rðkÞ � yðkÞ, is applied to all
local controllers in the network. The scheduling variable

for the validity function, riðcÞ, were chosen as
c ¼ ½yðk � 1Þ; uðk � 1Þ�, where y(k) is the pH process
output and r(k) is the reference setpoint. Genetic algorithms
were now used to construct a LCN for this process.

1000 random steps across the operating range of the base
flow rate were first applied to the open-loop pH process. The
step duration was chosen by trial-and-error and 75min was
found to be appropriate to allow the pH output to reach
steady-state. The steady-state values of pH and the
corresponding base flow rate were then plotted, as shown
in Fig. 10. This is a typical titration curve for a pH
neutralisation process and shows clearly the highly non-
linear nature of the plant. From this titration curve the
setpoint trajectory for training the LCN was determined as
follows. Those points on the curve whose successive slope
values were greater than 0.3 were chosen where slope is
defined as, slope ¼ jDpH4mj=jDq3j. The rectangles in Fig. 10
mark the selected points on the titration curve. All the
important bends in the titration curve were effectively
covered in this manner. With more than two variables,
k-means clustering [19] can be used to select suitable points.
These selected points were now taken at random and their
corresponding pH values used to form a setpoint reference
trajectory for designing the LCN. At each generation, the
best chromosome was evaluated to represent a LCN and its
response to the required setpoint was considered acceptable
only if it was within 0:2% of the target value for the last 2
minutes of each step.

Since equal weight was not given to transient and steady-
state performance, each LCN was unable to produce a good
control performance for reference trajectory steps of the
same duration. An interval of 10 minutes was found to be
appropriate to achieve at least a target step and this was thus
selected as the initial step duration for use in the setpoint
trajectory. Starting with this initial step duration the GA
strategy, as previously described, was run for 200
generations and the LCN response was evaluated for the
chromosome with the best fitness value. If the response
trajectory for a particular step duration failed to meet the

Table 1: Nominal pH system operating conditions [16]

A ðcross-sectional areaÞ ¼ 207 cm2 Wb2 ðreaction invariantÞ ¼ 3 � 10�2 M

Cv ðvolume constantÞ ¼ 8:75ml cm�1 s�1 Wb3 ðreaction invariantÞ ¼ 5 � 10�5M

pK1 ðconstantÞ ¼ 6:35 q1 ðacid flow rateÞ ¼ 16:6ml s�1

pK2ðconstantÞ ¼ 10:25 q2 ðbuffer flow rateÞ ¼ 0:55ml s�1

Wa1 ðreaction invariantÞ ¼ 3 � 10�3 M q3 ðbase flow rateÞ ¼ 15:6ml s�1

Wa2 ðreaction invariantÞ ¼ �3 � 10�2 M h ðliquid levelÞ ¼ 14:0 cm

Wa3 ðreaction invariantÞ ¼ �3:05 � 10�3 M pH4ðpH valueÞ ¼ 7:0

Wb1 ðreaction invariantÞ ¼ 0 y ðoutput time delayÞ ¼ 0:5min

Fig. 9 PID-type local controller network (LCN) acting on a pH process
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required setpoint, this was increased by 5min and the GA
was again run for 200 generations with this new setpoint
trajectory. This process was repeated until the response
trajectory fulfilled the desired control performance criteria
for all the steps in the setpoint trajectory.

A total of 20 chromosomes in a population were
considered for genetic learning. At each generation,
chromosomes were ranked according to fitness function
defined in eqn. (8). After running the algorithms initially for
1000 generations, the number of local controllers from the
best chromosome were selected as the optimum one and
a new group of chromosomes was formed using only

Fig. 11 Setpoint tracking by a trained LCN acting on the pH
process

Fig. 12 Variation in error function with number of generations

Fig. 13 Variation in fitness value with number of generations

Fig. 14 Validity function r1 for local controller C1

Fig. 10 Titration curve of a pH process for selecting a training
data for the LCN design

Fig. 15 Validity function r2 for local controller C2

Fig. 16 Validity function r3 for local controller C3
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the parameter values for these local controllers, along with
the centres and covariances of the associated validity
function. Fine-tuning of these local controller parameters
and their Gaussian interpolation functions was then
performed through genetic evaluation by running the
algorithm for a further 1000 generations. This two-step
approach speeds up the learning process, as it is only
necessary to deal with the subset of controllers selected
from the initial search.
Figure 11 compares a typical setpoint trajectory and

actual closed-loop response from a local controller

network trained in this manner and shows that good
tracking performance is achieved. This graph also shows
how the step duration of the setpoint signal has been
adapted to achieve a balance between transient and steady
state behaviour. Figures 12 and 13 show the variation of
the error function and fitness value with respect to
successive generations respectively. Finally, it is worth
noting that in this case the GA construction process
selected a LCN with three local controllers. This is
consistent with previous results for this application [12]
where three local models were shown to be adequate for
LMN construction and subsequent LCN design. Figures
14, 15 and 16 illustrate the respective interpolation
regions for these three local controllers. Further, Fig. 17
contains a plan view with the training data superimposed.
It can be seen that the GA has selected the local
controllers that are occupying 100% and thus transparent
somewhere in the operating regions. The three PID-type
local controllers defining the LCN were:

C1ðkÞ ¼ 0:9448½eðkÞ � eðk � 1Þ� � 0:2433½eðkÞ

� 2eðk � 1Þ þ eðk � 2Þ� þ 0:0956eðkÞ ð13Þ

C2ðkÞ ¼ 0:6164½eðkÞ � eðk � 1Þ� þ 0:3882½eðkÞ

� 2eðk � 1Þ þ eðk � 2Þ� þ 0:0759eðkÞ ð14Þ

Fig. 17 Plan view of validity regions with training data

Fig. 18 Variation in PID gains with number of GA generations

a kp̂p
b kîi
c kD̂D
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C3ðkÞ ¼ 0:0712½eðkÞ � eðk � 1Þ� � 0:0209½eðkÞ

� 2eðk � 1Þ þ eðk � 2Þ� þ 0:0499eðkÞ ð15Þ

where eðkÞ ¼ rðkÞ � yðkÞ is again the error between the
reference and controller trajectory. The centres and covari-
ances for the Gaussian interpolation functions were r1:
(4.7272,11.6520) and (0.5319,0.6327), r2: (6.9552,17.3752)
and (0.6143,0.7082) and r3: (9.6695,12.6338) and
(0.6252,0.4898).

The convergence trends of PID gains with successive
generations are shown in Figs. 18a, 18b and 18c
respectively whereas Figs. 19a, 19b, 20a and 20b illustrate
the corresponding variation of centres and widths of the
Gaussian functions for pH and base flow rate respectively.

The robustness of the controller was next tested on two
different, previously unseen, setpoint trajectories which
spanned the entire operating region. The first consisted of
pH steps of unequal height ranging from 0.5 to 5.0. The
duration of each was selected to be 50min to allow for the
longest settling time in the process. Figure 21 confirms the
excellent setpoint tracking produced by the LCN. Results in
references [6, 7] and [11, 12] show that, while the stability

of a local controller acting on a local plant model is easily
proved, the global stability of the overall closed-loop system
is more problematic. Another way to test the robustness of
the controller was to show that it was stable throughout the
operating space of the pH process. To this end, a random
sequence of 90 steps, each of 50min duration, covering the
entire pH operating region was generated. Figure 22 shows
that the LCN generated a stable closed-loop response and
smoothly followed the reference trajectory in this case also.
Figure 23 is the plan view of the LCN with the control
actions (base flow rate values) generated with the corre-
sponding output pH value. This confirms that the LCN
effectively covered the whole operating space and produced
the required stable control action.

The design of a LCN for a NN black-box model of the pH
process was now considered to account for the situation
where the plant equations are unknown, but input and
output-modelling data is available. A process model can
first be developed using such data and then be used as the
basis for LCN design. Separate training and test data sets
[12] were used to create a multilayer-perceptron model of
the pH process. A genetic algorithm with fuzzy encoding
[15] was run for 5000 generations to obtain the weights and
biases of the NN model with six inputs:

Fig. 19 Variation in Gaussian centres and widths variation with number of GA generations for pH value

a Gaussian centres
b Gaussian widths

Fig. 20 Variation in Gaussian centres and widths with number of GA generations for base flow rate

a Gaussian centres
b Gaussian widths
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½q3ðkÞ; q3ðk � 1Þ; q3ðk � 2Þ; pĤH4mðk � 1Þ;
pĤH4mðk � 2Þ; pĤH4mðk � 3Þ� ð16Þ

and 20 hidden nodes. The total number of weight and bias
parameters in the NNmodel was 141 (120 between the input
and hidden layer and 21 between the hidden and output

layer). Figure 24a and 24b show typical network weight
convergence trends obtained with GA learning for a random
selection of these parameters. Figure 25 shows the parallel
model performance of the NN model on the test data set
which produced a mean-squared pH error of 0.0102. This
NN model was now used in place of the actual pH process to
train a LCN for the same setpoint trajectory as before.

Fig. 23 Plan view of LCN with random steps data for the pH
process Fig. 25 NN model output on test data

Fig. 21 Simple step trajectory of the LCN in the pH process study
case

Fig. 22 Random step trajectory followed by the LCN in the pH
process study

Fig. 24 Convergence of the NN model weight and bias
parameters over successive GA generations

a Hidden layer parameters
b Output layer parameters
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The GA strategy described earlier was again applied to
globally optimise the LCN parameters. Figure 26 shows the
good setpoint tracking obtained with the resulting LCN.
Note that, as before, the step durations have also been
adapted during training. Figures 27 and 28 illustrate the
variation of error function and fitness value with successive
generations respectively in this case. Again the GA selected
three local controllers for the pH process. Figure 29 shows
the titration curve obtained in this case with the highlighted
points indicating the data used for training. This confirms
that the training data selected here was also well spread

across the curve, capturing all the important features of the
nonlinearity. Figures 30 and 31 show the good setpoint
tracking produced with known and random demands
respectively. Figure 32 gives the corresponding plan-view
for the random step case, showing the centres of the local
controllers. This illustrates that the LCN generated a stable

Fig. 28 Variation in fitness value with number of generations

Fig. 29 Titration curve of a NN-model with trained data
of the LCN

Fig. 30 Simple step trajectory followed by the LCN for the
NN-model case

Fig. 31 Random step trajectory followed by the LCN for the NN-
model case

Fig. 27 Variation in the error function with number
of generations

Fig. 26 Setpoint tracking of trained LCN in NN-model case
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control action which spanned the entire operating space.
Figure 33 compares the centres of the local controllers
obtained using the pH process equations and the identified
neural model. This confirms that the GA correctly found
matching centres in both cases which is reassuring.
These results show the capacity of this new approach to

designing a LCN for an unknown plant. A NN model of the
unknown plant can be used directly to design a LCN in the
absence of much a priori knowledge.

6 Conclusion

A genetic learning approach to the construction of LCNs has
been proposed. The approach optimises the overall LCN
structure and the local PID controller parameters and easily
facilitates the inclusion of transparency and generalisation
constraints. A fuzzy coding is used to provide accuracy and
faster GA convergence in real parameter selection. Results
for a pH neutralisation process illustrates the potential
offered by GAs for constructing LCNs for nonlinear
processes. This approach simplifies the earlier approaches
where transparency and generalisation in the design of a

local linear controller was only possible with a priori
knowledge of plant characteristics. The new approach is
useful in simultaneously providing information on plant
operating regions as well as designing robust local linear
controllers for each region. Further, instead of requiring a
priori knowledge of the plant or its local model represen-
tation, a much easier modelling approach like neural
networks or fuzzy modelling can be utilised to construct a
LCN for the nonlinear plant.

Future work will include the application of this approach
to the design of a LCN for turbogenerator control [20] where
both the gain and dynamics vary significantly across the
operating space. A stability analysis of the global LCN on
the basis of [21] will also be considered.
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