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Abstract

An intelligent controller has the ability to analyse an unknown situation and to respond to it accordingly. 

Approximate dynamic programming, or reinforcement learning as it is more commonly known, in the form 

of Adaptive Critic Designs (ACDs), falls into this category [56]. ACDs offer an interesting alternative for 

adaptive control and optimisation of highly nonlinear industrial processes. In this chapter, the action 

dependent adaptive critic (ADAC) [47] is used and a suitable second-order training algorithm is presented 

to ensure fast convergence and stability. The performance of the training algorithm is first compared in 

simulation for the control of an inverted pendulum. The ADAC scheme is then applied to the control of an 

aluminium subtrate disk grinding process where the learning is based on actual industrial historical data. 

Results here indicate that the ADAC controller can control the unloading thickness variation of the process 

to achieve a 33% reduction in rejects.

1.0  Introduction

Current control methodologies can generally be divided into model-based and model-free. The first 

contains conventional controllers, the second so-called intelligent controllers [38,4,5]. Conventional control 

designs involve constructing dynamic models of the target system and the use of mathematical techniques 

to derive the required control law. Therefore, when a mathematical model is difficult to obtain, either due to 

complexity or to the numerous uncertainties inherent in the system, conventional techniques are less 

useful. Intelligent control may offer a useful alternative in this situation.

An intelligent system learns from experience. As such, intelligent systems are adaptive. However, adaptive 

systems are not necessarily intelligent. Key features of adaptive control systems are that they
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• continuously identify the current state of the system

• compare the current performance to the desired one and decide whether a change is necessary to 

achieve the desired performance; 

• modify or update the system parameters to drive the control system to an optimum performance. 

These three principles, identification, decision, and modification, are inherent in any adaptive system. A 

learning system on the other hand is said to be intelligent because it improves its control strategy based on 

past experience or performance. In other words, an adaptive systems regards the current state as novel 

(i.e. localisation), whereas a learning system correlates experience gained at previous plant operating 

regions with the current state and modifies its behaviour accordingly [19] for a more long term effect.

There are many examples in industrial control where conventional automatic control systems (e.g. self 

tuning controllers) are not yet sufficiently advanced to cater for nonlinear dynamics across different 

operating regions or to predict the effects of current controller changes in the longer term. This is certainly 

true of very large, highly interconnected and complex systems. In these situations an intelligent approach 

for evaluating possible control alternatives, can be of value. One such framework, called the Adaptive Critic 

Design, was proposed by Werbos [55,56]. The design of nonlinear optimal neurocontrollers using this ACD 

paradigm, is currently attracting much renewed interest in the academic community.

However, closer examination of the current literature suggests that, a number of restrictive assumptions 

have had to be introduced which run counter to the original ADC concept. Wu [61,62], Chan [8], Zeng et al.

[64] and Riedmiller [42] all assumed a priori knowledge of the plant in selecting the control action. Ernst et 

al. [12], Park [36,37], Venayagamoorty et al. [51,52,53], Iyer and Wunsch [25], Radhakant and Balakrishan 

[41], Sofge and White [46,57] trained their neurocontrollers offline using a plant model. While Hoskin and 

Himmelblau [21] successfully implemented an online model-free Adaptive Heuristic Critic (AHC) [1,2], the 

control employed was constrained to be of bang-bang form. 

AHC and Q-learning, variants of the Adaptive Critic Designs, will be discussed in Chapter 10 in the context 

of multi-agent control within an internet environment. In this chapter, the model-free, action dependent 

adaptive critic (ADAC) design of Si and Wang [47] is extended to produce a fully online neurocontroller 
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without the necessity to store plant data during a successful run. In particular, the potential limitations of Si 

and Wang’s stochastic backpropagation training approach, in terms of poor convergence and parameter 

shadowing [32] are avoided. This is done by introducing a second order training algorithm, based on the 

recursive Levenberg-Marquardt (RLM) [34,35] approach. This training algorithm incorporates the temporal 

difference (TD) strategy [48,49], and is hence designated TD-RLM.

The performance of our new ADAC scheme for reinforcement learning is validated using simulation results 

from an “inverted pendulum” (pole-balancing) control task. This is often used as an example of the 

inherently unstable, multiple-output, dynamic systems present in many balancing situations, like a two-

legged walking robot or the aiming of a rocket thruster. It has also been widely used to demonstrate many 

modern and classical control engineering techniques.

Finally, results from a collaboration with Seagate Technology Ltd. on data from an actual industrial grinding 

process used in the manufacture of disk-drive platters suggest that the ADAC can achieve a 33% reduction 

in rejects compared to a proprietary controller, one of the first reported industrial applications of this 

emerging technology.

The chapter is organised as follows. Section 2 gives a detailed description of the ADAC framework and its 

neural network implementation. The training algorithm for the neural implementation is then compared in 

simulation on the control of an inverted pendulum in Section 3. Section 4 introduces the industrial grinding 

process case study and presents results on the application of ADACs to identification and control of the 

process. Conclusions appear in section 5.



4

2.0  Action Dependent Adaptive Critics

Figure 2-1 Schematic of the Action Dependent Adaptive Critic scheme

The algorithm used to illustrate the features of the Action Dependent Adaptive Critic (ADAC) shown in 

Figure 2-1, is based on Si and Wang [47] and belongs to the approximate dynamic programming family. 

Such methods were first introduced and formalised by Werbos [55][56]. It is useful to summarise how this 

method came to be used.

The fundamental solution to sequential optimisation problems relies on Bellman’s Principle of Optimality 

[7]:... an optimal trajectory has the property that no matter how the intermediate point is reached, the rest of 

the trajectory must coincide with an optimal trajectory as calculated with the intermediate point as the 

starting point. This principle is applied in reinforcement learning by devising a “primary” reinforcement 

function or reward, r(k), that incorporates a control objective for a particular scenario in one or more 

measurable variables. A secondary utility is then formed, which incorporates the desired control objective 

through time. This is called the Bellman Equation and is expressed as

(2.1)   

where γ is a discount factor (0 < γ < 1), which determines the importance of the present reward as opposed 

to future ones. The reinforcement, r(k), is binary with r(k) = 0 when the event is successful (the objective is 

met) and r(k) = -1 when failure occurs (when the objective is not met). The purpose of dynamic 

programming is then to choose a sequence of control actions to maximise J(k), which is also called the 
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cost-to-go. Unfortunately, such an optimisation is not feasible computationally due to the backward 

numerical solution process needed which requires future information for real problems. There is thus a 

need for a more tractable approximation method which uses the Bellman Recursion equation for the cost-

to-go,

(2.2)   

Werbos proposed a variety of methods for estimating J(k) using artificial neural networks as function 

approximators. These methods are called Adaptive Critics Designs (ACDs). This term is generally applied 

to any module that provides learning reinforcement to a second, Action Network module (i.e. a controller) 

[55]. 

The standard classification of these ACDs is based on the critic's inputs and outputs. In Heuristic Dynamic 

Programming (HDP) for example, the critic’s output is an estimate of the value of J(k) while in Dual 

Heuristic Programming (DHP) the critic’s output is an estimate of the derivative of J(k) with respect to the 

states. Globalised dual heuristic programming (GDHP), approximates both J(k) and its derivatives by 

adaptation of the critic network. In the action dependent versions of HDP and DHP, the critic’s inputs are 

augmented with the controller’s output (action), hence the names ADHDP, ADDHP and ADGDHP. The 

reader is referred to [55,56] for more details of the characteristics and uses of these different methods. 

Only the ADHDP is discussed here as Si and Wang’s [47] approach is closely related to this method. 

For illustration, suppose a discrete nonlinear, time-varying system is defined as,

(2.3)   

where  represents the state vector and  denotes the control action. The cost function is 

represented by 

(2.4)   

where r is the reinforcement signal and γ is a discount factor (0 < γ < 1). The objective is to choose the 

control action, u(i), i=k, k+1 ,..., so that the cost J defined in Eq. 2.4 is minimised. However, in Eq. 2.2, the 
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future value of the cost J(k+1) is required which is not known a priori. In the ACDs, an adaptive critic 

network is used to produce the required estimate of J(k+1).

The adaptive critic network is trained to minimise the following error measured over time,

(2.5)   

, the output of the critic network, is given by

(2.6)   

where Wc are the parameters of the critic network. Here the reinforcement signal indicates the 

performance of the overall system, i.e. failure = -1, or success = 0. When Ec(k) = 0 for all k, Eq. 2.5 can be 

simplified to

(2.7)   

which is the same as Eq. 2.4. However, this approach to training would require a plant model to predict 

x(k+1) and consequently the cost-to-go, , as shown in Figure 2-2 below.

Figure 2-2 Conventional ADHDP [55,56]

At this point it is worth mentioning that, in adaptive critic designs, there are two partial derivative terms 

 and  in the backpropagation path from the Bellman equation. When adaptive critic designs 

were implemented without a model network, the second partial derivative term was simply ignored. This 

can be detrimental as demonstrated in [39], [40], and [54]. In previous implementations such as DHP and 

GDHP, a model network was employed to take into account the term .
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Si and Wang [47] proposed a method which resolved the dilemma of either ignoring the  term, 

leading to poor learning accuracy, or including an additional system model network and hence more 

computation. These authors modified the Bellman Recursion in Eq. 2.2 so that, instead of approximating 

J(k), the Critic Network would approximate J(k+1). This is done by defining the future accumulated reward-

to-go at time t, as

(2.8)   

and using the Critic Network to provide Q(k) as an estimate of J(k+1) i.e. Q(k) = J(k+1), as shown in Figure 

2-3 below.

Figure 2-3 Comparison of the conventional ADHDP and Si and Wang’s ADAC

In their method, the Critic Network is trained by storing the estimated cost at k -1, . The current 

estimated cost , and the current reward, r(k), are then used to determine the temporal difference error 

(i.e. the error between two successive estimates of Q) as given by

(2.9)   

where

(2.10)   

is the recursive form of Eq. 2.8. Thus the cost for the Critic Network to be minimised during training is 

defined as

(2.11)   
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When Ec (k) = 0 for all k, Eq. 2.11 simplifies to 

(2.12)   

where . Comparing Eqs. 2.7 and 2.12, it can be seen that by minimising Ec(k), the Critic Network 

output then provides an estimate of J(k+1) in Eq. 2.4, i.e. the value of the cost function in the immediate 

future.

Training can either be performed “backward-in-time” or “forward-in-time” [29]. In the case of backward-in-

time training, the target output of the Critic Network at time t, is computed from the previous network output, 

 using Eq. 2.10, that is:

(2.13)   

Thus the network is trained to realise the mapping

Critic: (2.14)   

The arrangement is as shown in Figure 2-4. 

Figure 2-4 Illustration of the “backward-in-time” mapping
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In the alternative forward-in-time approach at k - 1, the Critic Network is trained to produce the output 

 and the output at time t is used to generate the required target output, that is: . Here 

the Critic Network realises the mapping

Critic: (2.15)   

and,  is the network output. The forward in time arrangement is depicted in Figure 2-5.

Figure 2-5 Illustration of the “forward-in-time” mapping

The Action Network is trained after the Critic Network, with the objective of maximising the critic output,

. This strategy indirectly enables the Action Network to produce favourable control actions and zero 

reward i.e. r(k) = 0. Thus, the target output from the Action Network for training purposes can be equated to 

zero, so that the Critic Network’s output is as close to zero as possible. The mapping desired from the 

Action Network is given by

Action: (2.16)   

The training of the Action Network requires that it be connected to the Critic Network so that the target 

mapping in Eq. 2.16, then refers to the output of the whole network as shown in Figure 2-6.

Having defined the network mappings and cost functions, stochastic gradient based training algorithms can 

be used to train the networks. In Si and Wang’s original ADAC design [47] networks were trained using a 

temporal difference error based stochastic backpropagation algorithm (TD-SBP). This is a first order 
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gradient descent method and therefore subject to poor convergence and parameter shadowing problems 

[32]. Here second-order training, in form of a recursive implementation of the Levenberg-Marquardt [34,35] 

algorithm (TD-RLM), is introduced to address these deficiencies and compared with Si and Wang’s original 

TD-SBP approach. In each case the Critic and Action networks are implemented as Multilayer Perceptron 

neural networks.

Figure 2-6 The Action and Critic Network in an ADAC implementation

2.1  First-Order Training Algorithm: Temporal Difference Stochastic Backpropagation (TD-SBP)

The output of the Critic Network is  and its prediction error is given by

(2.17)   
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For a multilayer perceptron Critic Network (Figure 2-7), the output is calculated in a feedforward manner as 

follows:

(2.19)   

(2.20)   

where x is the input vector,  is the input to hidden layer (or nonlinear) weights, g is the input to the 

hidden layer nodes and y is the output of the hidden layer nodes. Note the index Ni+1 is to include u(k) (i.e.

), the output of the Action Network as shown in Figure 2-7. Finally, the output, , is 

calculated as

(2.21)   

where  is the linear (or hidden to output layer) weights vector.

Figure 2-7 Critic Network with the process states and control action, u(k) from the Action Network as inputs

The weights-update rule for the Critic Network is based on a combination of gradient descent weight 

adaptation and temporal-difference (TD) learning [48,49]. The linear weights, , are updated as:
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(2.23)   

The nonlinear weights, , are correspondingly updated as:

(2.24)   

and,

(2.25)   

In both cases, βc > 0 is the learning rate which decreases with time. 

The prediction error for the Action Network update is

(2.26)   

where the instantaneous estimate of the objective function to be minimised is given by

(2.27)   

Figure 2-8 Action Network topology receiving the process states 
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The output of the Action Network shown in Figure 2-8, is calculated in a feedforward manner and is 

expressed as

(2.28)   

where f is the input to the hidden layer nodes,  is the input to hidden layer weights, and x is the input 

vector. For the MLP architecture, the output is given by

(2.29)   

where is the linear weights vector and z is the output layer input function given as

(2.30)   
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(2.31)   
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2.2  Second-order Training Algorithms

The reason for considering second order training methods, is that the original action dependent adaptive 

critic (ADAC) algorithm by Si et al. [47] used TD-SBP, which is known to have poor convergence properties 

[50]. In addition, it is susceptible to parameter shadowing when used on-line. This occurs when the network 

parameters continually adapt so that the network output tracks the desired output instead of converging to 

the desired model weights, w* [32]. It is therefore logical to develop a more robust and stable training 

algorithm based on existing second order recursive schemes.

As with the SBP in the previous section, the second order recursive training schemes investigated here 

also seek to minimise a squared-error cost function, E(k). Using the single data point available at the kth

sample instant, an instantaneous estimate of E(k) is derived as

(2.35)   

where e(k) is defined as

 and (2.36)   

for the Critic and Action networks respectively. The use of the Levenberg-Marquardt algorithm here is 

motivated by the fact that it is often the best algorithm for offline training of neural networks. Hence the 

recursive version of this algorithm might be expected to yield similar performance benefits when training 

ADACs. There have been numerous studies demonstrating the superiority of second-order recursive 

estimation algorithms, such as recursive least squares (RLS), to first order algorithms, such as least mean 

squares (LMS), for linear-in-the-parameter models ([13, 26, 30, 63]). These algorithms can also be applied 

to the identification of nonlinear-in-the-parameter models as shown in [9], [10] and [11]. This is illustrated as 

follows. Assume that the predicted output at time k, for either of the Critic Network and Action Network, is 

represented by

(2.37)   

where a(.) is the nonlinear mapping function produced by the MLP, while w and x are the parameters (i.e. 

weights) and state (i.e. input) vector respectively. As in the linear-in-parameter technique, the nonlinear 
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estimation requires the gradient vector  to be derived, that is

(2.38)   

where

(2.39)   

The Gauss-Newton Hessian, R(k), matrix approximation can be estimated recursively at each iteration by

(2.40)   

where  is called the forgetting factor and controls the rate at which R(k) adapts to new inputs. It is usually 

set to . The weight update is then given by

(2.41)   

where e(k) is the temporal difference error, either ec(k) for the Critic Network or ea(k) for the Action Network 
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, (2.42)   

is used to compute the inverse of R(k). This leads to the following weight update procedure, referred to as 

the recursive prediction error (RPE) algorithm ([9],[10]):
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The matrix P(k) ( ) here can be interpreted as the covariance matrix of the weight estimate w(k). If 

the input signals to the plant are not well excited, the covariance matrix P(k) tends to become large, a 

phenomenon known as covariance wind-up ([9],[10]). A constant trace adjustment is usually applied to the 

covariance matrix, as suggested by Salgado et. al [44], to overcome this problem. Thus

(2.46)   

and  is a positive scalar normally set to value of one [1]. 

Ljung and Söderström [31], suggested that by using a time varying forgetting factor, , rather than a 

fixed value with  at the beginning, P(k) convergences faster from its initial value and  as 

 will provide stability. This is achieved by using the following update rule for :

(2.47)   

where  is a scalar (<1) which determines the rate of convergence of  to 1. According to Gunnarson 

([17],[18]), the recursive Levenberg-Marquardt (RLM) algorithm is simply the regularised form of the 

recursive prediction error (RPE) method. Thus, RLM is obtained by incorporating a regularisation term in 

the Hessian update expressed in equation 2.40, giving

(2.48)   

Unfortunately, its now impractical to directly apply the matrix inversion lemma. Ngia et al. [34,35] proposed 

adding the regularisation term  to one diagonal element of R(k) at a time as a solution to this problem. 

This corresponds to rewriting Equation 2.48 as

(2.49)   

where  is an zeroes matrix, except with one of its diagonal elements set to one. The diagonal 

element zii set equal to 1 changes from iteration to iteration as determined by the following expressions,

R k( ) 1–=

P k( ) τ
trace P k( )[ ]
--------------------------------P k( )= τ 0>

τ

α k( )

α k( ) 1< α k( ) 1→

k ∞→ α t( )

α k( ) αα k 1–( ) 1 α–( )+=

α α k( )

R k( ) α k( )R k 1–( ) 1 α k( )–[ ] ∇ψ w k( )[ ]∇ψT w k( )[ ]( ) ρINw
+

 
 
 

+=

ρ

R k( ) α k( )R k 1–( ) 1 α k( )–[ ] ∇ψ w k( )[ ]∇ψT w k( )[ ]( ) ρZNw
+

 
 
 

+=

ZNw
Nw Nw×
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 when  and (2.50)   

 otherwise (2.51)   

With this modification, equation 2.49 can be rewritten as

(2.52)   

where  is a Nw x 2 matrix with the first column containing  and the second column 

consisting of a Nw x 1 zero vector with one element set to 1 in accordance with 2.50 and 2.51 above, that 

is.

 and (2.53)   

The matrix inversion lemma can now be applied to equation 2.52 which leads to the recursive Levenberg-

Marquardt (RLM) formulation [34].

(2.54)   

 with  (2.55)   

(2.56)   

 is now a  matrix, which is much more cost effective to invert than the  matrix that arises 

when the matrix inversion lemma is applied to equation 2.48. 

The overall training procedure for the ADAC is summarised in Figure 2-9. Training begins with the weights 

being initialised randomly before each run. At time k, the Action Network and Critic Network both receive 

the input state vector, x(k). The Action Network outputs a control action, u(k), to the plant. At the same time 

the Critic Network outputs Q(k) and it is stored. At time k+1, both the Action and Critic network receives the 

next state vector, x(k+1) and produces, their corresponding outputs - u(k+1) and Q(k+1) respectively. The 

reward r(k+1) is obtained based on the outcome of the control action, i.e.  when it is a success or 

zii 1= i k mod Nw( ) 1+= k Nw>

zii 0=

R k( ) α k( )R k 1–( ) 1 α k( )–[ ] Ω k( )Λ k( ) 1– ΩT k( )[ ]+=

Ω k( ) ∇ψ w k( )[ ]

ΩT k( ) ∇ψ w k( )[ ]
0 … 1 … 0

=

position k mod Nw( ) 1+=

Λ k( ) 1– 1 0
0 ρ

=

S k( ) α k( )Λ k( ) ΩT k( )P k 1–( )Ω k( )+=

P k( ) 1
α k( )
------------ P k 1–( ) P k 1–( )Ω k( )S 1– k( )ΩT k( )P k 1–( )–[ ]= P k( ) 1

trace P k( )[ ]
--------------------------------P k( )=

w k 1+( ) w k( ) P k( ) ∇ψ w k( )[ ]( )e k( )+=
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 when it is a failure. The Critic Network weights are updated once this reward value is obtained. 

Then the Action Network weights are updated. Once the updates are done, the cycle is repeated until the 

stopping criteria has been met.

In the next section the proposed TD-RLM algorithm will be evaluated in simulation on the well known 

inverted pendulum case study and its performance compared to the TD-SBP algorithm used by Si and 

Wang [47].

r 1–=

Action Dependent Adaptive Critic Training Summary

Figure 2-9 Summary of the Action Dependent Adaptive Critic Algorithm

     1.  At the start of every run initialise all network weights to random values in the range [-

1.0,1.0].

     2.  At time t, retrieve the state vector, x(k), from the process or plant being controlled.

     3.  Generate a control action, u(k) and apply it to the plant.

     4.  Generate and store the Critic Network output (to be used as “ ” to

calculate the cost function).

     5.  Retrieve the new state vector, x(k+1), from plant and generate the next control action,

u(k+1).

     6.  Generate the next Critic Network’s output .

     7.  Calculate the external reinforcement, r(k+1) resulting from the control action.

     8.  Adjust the learning rates, βc and βa.

     9.  Adjust the Critic Network and the Action Network weights using Eq. 2.22 - 2.34 for TD-

SBP, or using Eq. 2.54 - 2.56 for TD-RLM

     10.  Repeat from Step 3 until the stopping criteria has been met.

Q k( ) Q k 1–( )

Q k 1+( )
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3.0  Inverted Pendulum

Figure 3-1 The inverted pendulum system

The inverted pendulum or pole-balancing task is representative of the inherently unstable, multiple-output, 

dynamic systems present in many balancing situations, like two-legged walking robots and the aiming of a 

rocket thruster and is frequently used as a benchmark for modern and classical control-engineering 

techniques. The inverted pendulum problem, depicted in Figure 3-1, has historical importance for 

reinforcement learning as it was one of the first successful applications of an algorithm based on model-

free action policy estimation, as described in 1983 by Barto et al. in their pioneering paper [6]. Systems that 

learn to control inverted pendulums were first developed over thirty years ago by Michie and Chambers 

[33] and have been the subject of much research since then. See for example [1], [2], [3],[11], [15], 

[16],[20], [22], [45], [47],[58] and [59].

Control-engineering techniques involve detailed analyses of the system to be controlled. When the lack of 

knowledge about a task precludes such analyses, a control system must adapt as information is gained 

through experience with the task. To investigate the use of learning methods for such cases, it is assumed 

that very little is known about the inverted pendulum system, including its dynamics. The system is viewed 

as a black box generating as output the system's state and accepts as input a control action.

The inverted pendulum task considered here involves balancing a pole hinged to the top of a wheeled cart 

that travels along a track, as shown in Figure 3-1. The control objective is to apply a sequence of right and 

left forces of fixed magnitude to the cart so that the pole balances and the cart does not hit the end of the 

x = 0

x

F

θ
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track (for this simulation a -10N and 10N correspond to the left and right forces respectively). A zero 

magnitude force is not permitted. The state of the cart-pole system has to be remain outside certain regions 

of the state space to be considered successfully controlled. There is no unique solution and any state 

space trajectory that does not pass through these regions is considered acceptable. The only information 

provided regarding the control goal is the reinforcement signal, r(k), which signals a failure when either the 

pole falls outside +12o or the cart hits the bounds of the track at + 2.4 m. 

The cart-pole simulation model used in this study is defined by the equations

(3.1)   

(3.2)   

(3.3)   

This includes all the nonlinearities and reactive forces of the physical system such as friction. The system 

is constrained to move within the vertical plane. Here  and  are the horizontal position of the cart 

and the angle of the pole, respectively and

This set of nonlinear differential equations, was solved numerically using fourth-order Runge-Kutta in the 

simulation and sampled every 0.02 seconds to produce four discrete state variables defined as follows:

l, the length of the pole = 0.5m

m, the mass of the pole = 0.1kg

mc, the mass of the pole and cart = 1.1kg

F, the magnitude of the force = +10N

g, the acceleration due to gravity = 9.8 ms-2

µc, friction of cart on track coefficient = 5 x 10-4

µp, friction of pole on cart coefficient = 2 x 10-6

θ·· t( )

g θ t( ) θ t( )
F– t( ) mlθ· 2 t( ) θ t( ) µc x· t( )[ ]sgn+sin+

mc m+
-------------------------------------------------------------------------------------------------

µpθ
· t( )
ml

----------------–cos–sin

l 4
3
--- m θ t( )2cos

mc m+
---------------------------–

-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------=

x·· t( )
F t( ) ml θ· 2 t( ) θ t( ) θ·· t( ) θ t( )cos–sin[ ] µc x· t( )[ ]sgn–+

mc m+
--------------------------------------------------------------------------------------------------------------------------------------=

x( )sgn
1 if x 0>,

0 if x, 0=
1– if x 0>,






=

x t( ) θ t( )
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 = the horizontal position of the cart, relative to the track, in metres,
= the horizontal velocity of the cart, in metres/second,
= the angle between the pole and vertical, in degrees, clockwise being positive, 

= the angular velocity of the pole, in degrees/second.

3.1  Inverted Pendulum Control Results

The ADAC used to implement the inverted pendulum controller is illustrated in Figure 3-2. Both the Action 

and Critic networks were implemented as single hidden layer MLP neural networks. Each network had 6 

neurons in their hidden layer. Thus the Action network was a 4-6-1 MLP architecture and the Critic Network 

was a 5-6-1 architecture.

The simulation studies were based on 100 runs, each consisting of 10 trials, during which the Action 

Network had to control the inverted pendulum within set boundaries. Here the external reinforcement 

signal was defined as

(3.4)   

The controller was considered to be successful if it managed to balance the inverted pendulum for 6 x 105

time steps of 0.02s each (i.e. for 3 hours 20 mins). If after 10 trials the controller still failed to control the 

pendulum, that run was considered a failure and a new run was initiated with the pendulum states set to 

zero and all the network weights initialised randomly. Figure 3-3 depicts the result of a typical successful 

run of the ADAC controller.

x k( )

x· k( )
θ k( )

θ· k( )

r k( )
1 If θ 12°> or ,– x 2.4m>
0 otherwise,




=
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Figure 3-2 The ADAC control strategy for the inverted pendulum system

Figure 3-3 An example of a typical pendulum angle and cart position trajectory for a successful run using 
TD-SPB and TD-RLM

Figure 3-3 clearly shows that the TD-RLM algorithm convergences almost immediately compared to the 

ADAC which was trained using TD-SBP. Also note that the ADAC controller balances the pendulum, using 

a force, of a fixed magnitude and alternating sign applied to the cart (see Figure 3-4). This bang-bang 

control leads to the zig-zag oscillation observed in the graphs.
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Figure 3-4 Forces applied to the cart to balance the inverted pendulum between a sample interval

The performance of both training algorithms was measured in terms of the frequency of successful runs 

and the average computational time for a successful run. The actual computational cost was also 

considered as a function of Action and Critic network sizes, to get a better measure of overall performance, 

in terms of the training efficiency.

Figure 3-5 shows that the TD-RLM training algorithm gave the best overall performance in terms of the 

frequency of successful runs. It can also be seen, that the original TD-SBP algorithm by Si and Wang [47] 

was quite poor in terms of the number of successful runs, being at times 50% lower than the alternative 

second-order method.

Furthermore, as shown in Figure 3-6, the TD-SBP implementation also proved less efficient compared to 

TD-RLM, in terms of average computation time per successful run, with the second order method being the 

most consistent for different network sizes. The overall average computation time per successful run as the 

ADAC network sizes varied from 2 to 10 hidden neurons was 459.75 secs for TD-SBP and 350.41 secs for 

TD-RLM. 

Figure 3-7 plots the time variations in the squared training error for the Critic Network obtained with each 

algorithm. These illustrate the speed of convergence of the neurocontroller weights. Again, the zig-zag 

oscillation is due to the nature of the bang-bang control strategy employed.

F

time k

F

time k+1
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Figure 3-5 Variation in number of successful runs with the size of the ADAC Networks

Figure 3-6 Variation in averaged computation time per successful run with the size of the ADAC Networks

Further evidence of the superior convergence speed produced by second-order training is provided in 

Figure 3-8. This shows the variation in the first component of the weight vector for the Action Network and 

the Critic Network,  and  respectively, with each algorithm.
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Figure 3-7 Comparison of the training cost Ec of the Critic Network obtained with TD-RLM and TD-SBP.

Figure 3-8 The trajectory of the first components of the weight vector of the Action Network,  (left) 
and of the Critic Network, (right) for (a) TD-RLM and (b) TD-SBP
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4.0  Ring Grinding Process

The second application is the ADAC modelling and control of an industrial ring grinding process used in the 

manufacture of disk drive platters. Here, aluminium subtrate disks are ground in batches of twelve between 

two grindstones, as shown in Figure 4-1 and 4-2. The stones can be moved apart to allow loading and 

unloading of the disks using a pick-and-place unit. During operation the grindstones are rotated in opposite 

directions with pressure applied to the upper one. This causes the subtrate disks between them to rotate, 

thereby ensuring uniform grinding of their surfaces. The rate at which the disks are ground, called the 

removal rate, is the critical variable. It varies depending on a number of parameters including stone wear, 

exerted pressure, lubricant viscosity and coolant flow rate. The initial thickness of the disks also varies, 

although the disks in any one batch are sorted to be approximately the same thickness. The thickness of 

one disk from each batch is measured before the batch is ground. The system controller determines the 

actual removal rate from the previous batch and estimates the current value of removal rate using a 

proprietary control law. It predicts how much material has to be removed by subtracting the target 

thickness from the input thickness and then calculates the necessary grinding duration for the current 

batch. 

When the grinding is completed, the selected disk is measured again. If it is within specification, then the 

whole batch is passed. If the disk is too thick (above the upper specification limit), the disks are ground 

again (i.e. reworked) but if the disk is too thin (below the lower specification limit), the batch is rejected. 

When a grindstone is newly installed (i.e. replaced due to wear), the pressure is initially set to a low value 

and then gradually increased to an upper limit to counteract the stone deterioration, which in turn increases 

the removal rate. The removal rate subsequently decreases until a stage is reached where it is so low that 

the grindstone has to be resurfaced which is done by slicing off the worn part of the grindstone. Once re-

installed the whole process is repeated.

Various process variables are logged for each grind cycle as part of the company’s own process 

performance monitoring procedure. These include the current removal rate, the pressure between the 

grindstones, and the cumulative cycle time. Cumulative cycle time is logged as it is an indication of wear 
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and aging of the grindstones, which in turn impacts on the removal rate. A summary of these variables and 

the identifiers used for them in this chapter is provided in Table 4.1.

The grindstone data used in this investigation was detrended and normalised to lie within the interval [-1,1]. 

A sample of the data showing the typical variations found in all the variables is plotted in Figure 4-3.

Figure 4-1 Layout of the ring grinding process

Figure 4-2 The ring grinding process

Thickness MeasuringThickness MeasuringThickness MeasuringThickness Measuring
 Unit Unit Unit UnitGrinding StationsGrinding StationsGrinding StationsGrinding Stations

OperatorOperatorOperatorOperatorDisksDisksDisksDisks

Pick and Place Pick and Place Pick and Place Pick and Place 
UnitUnitUnitUnit

Direction of motionDirection of motionDirection of motionDirection of motion

GrindstonesGrindstonesGrindstonesGrindstones
PressurePressurePressurePressure

DisksDisksDisksDisks
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Table 4.1: Grinding Process Variables

Figure 4-3 Variables used in modelling the ring grinding process

The main aim here is to achieve accurate thickness control in order to minimise the number of out-of-

specification disks produced by the grinding process. This process optimisation can be achieved through 

manipulation of the grind cycle time as illustrated in Figure 4-4. Neural network based direct inverse control 

Variables Definition

Removal Rate, rr(k) Rate of material removal from a disk during
the grind cycle. Units are in microinch per min.

Previous Removal Rate, rr(k-1) Removal rate from the previous grind cycle.

Cycle Time, c(k) Grind cycle time. Units are in seconds.

Cumulative Cycle Time, cct(k) Sum of all previous cycle times since the
grindstone was last resurfaced.

Pressure, p(k) Pressure between the grindstones. Units are
in p.s.i.

Loading Thickness, Thickness of the disk before the grinding pro-
cess begins. Units are in mil(s).

Unloading Thickness, Thickness of the disk after the completion of
the grinding process. Units are in mil(s).

Target Thickness, Desired thickness required for the each grind
cycle. Units are in mil(s).

Upper Control Limit, UCL(k) Upper control thickness limit specification.
Units are in mil(s).

Lower Control Limit, LCL(k) Lower control thickness limit specification.
Units are in mil(s).
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has been shown to provide an effective solution to this problem [14] and was therefore chosen as the basis 

for the ADAC investigation. The ADAC framework was consider for two elements of the controller design, 

namely developing a process model and fine-tuning the final controller. A process model is needed as this 

forms the basis for the direct inverse controller implementation. The recommended model is one which 

predicts the removal rate, for each grind cycle, on the basis of the current state of the process [14].

Figure 4-4 The ring grinding process block diagram

The existing proprietary controller was used as a reference for evaluating the performance of the model 

and subsequent controller design. Since the proprietary controller was a model free implementation, it did 

not generate an explicit removal rate prediction, . Rather, this was inferred from the generated cycle 

time, c(k), as

(4.1)   

where  is the loading thickness and  is the setpoint or target thickness. Note that the actual 

removal rate, rr(k), was obtained by replacing  by the measured unloading thickness, , in Eq. 

4.1, that is

(4.2)   

Figures 4-5 compares the predicted removal rate, , with the actual removal rate, rr(k), over the life of 

a typical grindstone. The accuracy of the prediction is measured in terms of the percentage normalised 

mean prediction error (MPE), defined as

(4.3)   

where  is the standard deviation of . In this case the MPE for the grindstone was 6.8%.
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Figure 4-5 The removal rate prediction from the proprietary scheme

4.1  Model Development

The process model to be developed here predicts the grindstone removal rate and this is used to calculate 

the cycle time for the grinding machine. Accurate prediction of removal rate will therefore lead to an 

improved cycle time estimate for the grind process. In the ADAC framework, the Action Network is trained 

to form the process model.

Based on previous experience [14], it was decided to incorporate error feedback to compensate for the 

low-frequency offsets in the Action network prediction, in order to further enhance the accuracy of the 

process model. This “predict-correct” technique uses past plant outputs and the corresponding model 

predictions to generate a correction to the current estimate  and successful applications have been 

reported in Rovlak and Corlis [43], Willis et al. [60], Lightbody [28] and Irwin et al. [24]. The predict-correct 

scheme is implemented as follows

(4.4)   

A first order, predict-correct term was incorporated into the Action network predictor, as shown in Figure 4-

500 1000 1500 2000 2500
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

S
ca

le
d 

Va
lu

es

Cycle Number

Actual
Proprietary

= 6.8081%

Proprietary’s MPE 
for entire data set

rr̂∗ k( )

rr̂∗ k( ) rr̂ k( ) 1
N
---- rr k j–( ) rr̂ k j–( )–[ ]

j 1=

N

∑+=



31

6. The complete ADAC identification strategy is then as shown in Figure 4-7.

Figure 4-6 The augmented Action network prediction model for the grinding process (Model + PC)

Figure 4-7 Schematic of modelling strategy using the ADAC

For this study a nonlinear ARX modelling strategy was employed where the removal rate was estimated as 

a function of previous removal rates, rr(k-1), rr(k-3) and rr(k-5), current pressure, p(k), and the current and 

past cumulative cycle times, cct(k) and cct(k-1). Thus, the Action Network was trained to learn the unknown 
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(4.5)   

The goal was to minimise the absolute tracking error between the desired removal rate, rr(k), and the 

predicted, rr*(k). The external reinforcement signal, r(k), for the ADAC model was chosen as 

(4.6)   

After experimenting with different architectures, the ADAC networks that were found to produce the 

minimum MPE error used 5 hidden neurons (i.e a 6-5-1 MLP for the Action network and a 7-5-1 MLP for 

the Critic network). Figure 4-8 compares the ADAC model obtained for the grindstone with the 

corresponding proprietary model and clearly shows the benefit of nonlinear modelling using the ADAC 

framework as the MPE has been reduced by 42% compared to the proprietary model.

Figure 4-8 The removal rate prediction from the ADAC scheme

4.2  Disk Thickness Control Results

The model identified previously was used to provide an accurate estimate of  at each iteration to 

produce the open-loop thickness controller depicted in Figure 4-9. In fact this is a direct inverse control 

implementation, which can be seen as follows. First, note that the removal rate model can also be used to 

generate a c(k)-to-T(k) forward process model, as shown in Figure 4-10. Lee and Shin [27] pointed out 
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that, this particular formulation allows the inverse plant model to be obtained without having to invert a ANN 

model, as is usually the case with a neural-control scheme [23]. Thus, Figure 4-9 represents an exact 

inverse of the forward process model and therefore a direct inverse controller. The final complete direct 

inverse model control scheme is shown in Figure 4-11.

Figure 4-9 Open-loop control using the Action Network removal rate predictor

Figure 4-10 Forward process ADAC model

Figure 4-11 Open-loop inverse model control using the ADAC modelling method of the grinding process
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The ADAC-model direct inverse controller can be applied to the process as a fixed parameter controller. 

Alternatively it can be fine tuned on-line within an ADAC control framework, with the reinforcement signal 

now defined in terms of control specifications, namely the upper and lower control limits (UCL and LCL) for 

the unloading thicknesses of the disks. This gives

(4.7)   

Figure 4-12 shows the unloading thickness prediction obtained with the resulting ADAC control strategy 

while Table 4.2 provides a comparison with the fixed parameter ADAC model based controller and the 

proprietary controller.

Figure 4-12 Unloading thickness prediction of the ADAC controller

It can be seen that the ADAC model direct inverse controller (ADAC-mod) and the online tuned ADAC 

controller (ADAC-cont.) both outperform the proprietary scheme with the tuned ADAC controller yielding a 

33.33% reduction in the number of rejects. Figures 4-13 compares the unloading thickness distribution of 
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ADAC-mod. 3076.12 6.71 10
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the proprietary control scheme with that obtained from the ADAC controller and clearly show than tighter 

thickness control was achieved with the ADAC control scheme.

Figure 4-13 Unloading thickness distribution plot of the ADAC method compared to the proprietary 
scheme

5.0  Conclusions

This chapter extends the model-free action dependent adaptive critic (ADAC) of Si and Wang by 

presenting a fully online, intelligent neurocontroller which avoids the necessity to store plant data during a 

successful run. In particular, the potential limitations of their stochastic backpropagation training, in terms of 

poor convergence and parameter shadowing, are avoided by introducing a modified version of recursive 

Levenberg-Marquardt (RLM) called the temporal difference RLM (TD-RLM) algorithm. This was 

demonstrated in a initial simulation study on inverted pendulum control.

The performance of the new ADAC scheme, for both identification and control, has been validated using 

data from an actual industrial grinding process used in the manufacture of aluminium substrates for disk 

drives. The results suggest that the ADAC can achieve a 33% reduction in rejects compared to a 

proprietary controller. The authors believe that this is one of the first reported industrial applications of this 

emerging technology.
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For identification the ADAC still requires the incorporation of the predict correct strategy to achieve 

convergence and there are many parameters, such as the learning rates, which need to be tuned by trial-

and-error. These are both areas for further work. However, the ability of the ADAC to converge 

satisfactorily from scratch far outweighs these limitations.

The control performance of the ADAC is most encouraging and clearly demonstrates the feasibility of 

successfully using reinforcement learning for process control applications.
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