
1

Reinforcement Learning for Online Control and Optimisation
James J. Govindhasamy†, Seán F. McLoone††, George W. Irwin†

John J. French†††, Richard P. Doyle†††

Abstract

An intelligent controller has the ability to analyse an unknown situation and to respond to it accordingly.

Approximate dynamic programming, or reinforcement learning as it is more commonly known, in the form

of Adaptive Critic Designs (ACDs), falls into this category [56]. ACDs offer an interesting alternative for

adaptive control and optimisation of highly nonlinear industrial processes. In this chapter, the action

dependent adaptive critic (ADAC) [47] is used and a suitable second-order training algorithm is presented

to ensure fast convergence and stability. The performance of the training algorithm is first compared in

simulation for the control of an inverted pendulum. The ADAC scheme is then applied to the control of an

aluminium subtrate disk grinding process where the learning is based on actual industrial historical data.

Results here indicate that the ADAC controller can control the unloading thickness variation of the process

to achieve a 33% reduction in rejects.

1.0 Introduction

Current control methodologies can generally be divided into model-based and model-free. The first

contains conventional controllers, the second so-called intelligent controllers [38,4,5]. Conventional control

designs involve constructing dynamic models of the target system and the use of mathematical techniques

to derive the required control law. Therefore, when a mathematical model is difficult to obtain, either due to

complexity or to the numerous uncertainties inherent in the system, conventional techniques are less

useful. Intelligent control may offer a useful alternative in this situation.

An intelligent system learns from experience. As such, intelligent systems are adaptive. However, adaptive

systems are not necessarily intelligent. Key features of adaptive control systems are that they

†Intelligent Systems and Control
Research Group,

Queen’s University Belfast,
Belfast BT9 5AH, N. Ireland, UK.

†††Seagate Technology Media Ltd.,
99 Dowland Road,

Aghanloo Industrial Estate
Limavady BT49 OHR, N. Ireland, UK.

††Dept. of Electronic Engineering
National University of Ireland Maynooth,

Maynooth, Co. Kildare, Ireland.

2

• continuously identify the current state of the system

• compare the current performance to the desired one and decide whether a change is necessary to

achieve the desired performance;

• modify or update the system parameters to drive the control system to an optimum performance.

These three principles, identification, decision, and modification, are inherent in any adaptive system. A

learning system on the other hand is said to be intelligent because it improves its control strategy based on

past experience or performance. In other words, an adaptive systems regards the current state as novel

(i.e. localisation), whereas a learning system correlates experience gained at previous plant operating

regions with the current state and modifies its behaviour accordingly [19] for a more long term effect.

There are many examples in industrial control where conventional automatic control systems (e.g. self

tuning controllers) are not yet sufficiently advanced to cater for nonlinear dynamics across different

operating regions or to predict the effects of current controller changes in the longer term. This is certainly

true of very large, highly interconnected and complex systems. In these situations an intelligent approach

for evaluating possible control alternatives, can be of value. One such framework, called the Adaptive Critic

Design, was proposed by Werbos [55,56]. The design of nonlinear optimal neurocontrollers using this ACD

paradigm, is currently attracting much renewed interest in the academic community.

However, closer examination of the current literature suggests that, a number of restrictive assumptions

have had to be introduced which run counter to the original ADC concept. Wu [61,62], Chan [8], Zeng et al.

[64] and Riedmiller [42] all assumed a priori knowledge of the plant in selecting the control action. Ernst et

al. [12], Park [36,37], Venayagamoorty et al. [51,52,53], Iyer and Wunsch [25], Radhakant and Balakrishan

[41], Sofge and White [46,57] trained their neurocontrollers offline using a plant model. While Hoskin and

Himmelblau [21] successfully implemented an online model-free Adaptive Heuristic Critic (AHC) [1,2], the

control employed was constrained to be of bang-bang form.

AHC and Q-learning, variants of the Adaptive Critic Designs, will be discussed in Chapter 10 in the context

of multi-agent control within an internet environment. In this chapter, the model-free, action dependent

adaptive critic (ADAC) design of Si and Wang [47] is extended to produce a fully online neurocontroller

3

without the necessity to store plant data during a successful run. In particular, the potential limitations of Si

and Wang’s stochastic backpropagation training approach, in terms of poor convergence and parameter

shadowing [32] are avoided. This is done by introducing a second order training algorithm, based on the

recursive Levenberg-Marquardt (RLM) [34,35] approach. This training algorithm incorporates the temporal

difference (TD) strategy [48,49], and is hence designated TD-RLM.

The performance of our new ADAC scheme for reinforcement learning is validated using simulation results

from an “inverted pendulum” (pole-balancing) control task. This is often used as an example of the

inherently unstable, multiple-output, dynamic systems present in many balancing situations, like a two-

legged walking robot or the aiming of a rocket thruster. It has also been widely used to demonstrate many

modern and classical control engineering techniques.

Finally, results from a collaboration with Seagate Technology Ltd. on data from an actual industrial grinding

process used in the manufacture of disk-drive platters suggest that the ADAC can achieve a 33% reduction

in rejects compared to a proprietary controller, one of the first reported industrial applications of this

emerging technology.

The chapter is organised as follows. Section 2 gives a detailed description of the ADAC framework and its

neural network implementation. The training algorithm for the neural implementation is then compared in

simulation on the control of an inverted pendulum in Section 3. Section 4 introduces the industrial grinding

process case study and presents results on the application of ADACs to identification and control of the

process. Conclusions appear in section 5.

4

2.0 Action Dependent Adaptive Critics

Figure 2-1 Schematic of the Action Dependent Adaptive Critic scheme

The algorithm used to illustrate the features of the Action Dependent Adaptive Critic (ADAC) shown in

Figure 2-1, is based on Si and Wang [47] and belongs to the approximate dynamic programming family.

Such methods were first introduced and formalised by Werbos [55][56]. It is useful to summarise how this

method came to be used.

The fundamental solution to sequential optimisation problems relies on Bellman’s Principle of Optimality

[7]:... an optimal trajectory has the property that no matter how the intermediate point is reached, the rest of

the trajectory must coincide with an optimal trajectory as calculated with the intermediate point as the

starting point. This principle is applied in reinforcement learning by devising a “primary” reinforcement

function or reward, r(k), that incorporates a control objective for a particular scenario in one or more

measurable variables. A secondary utility is then formed, which incorporates the desired control objective

through time. This is called the Bellman Equation and is expressed as

(2.1)

where γ is a discount factor (0 < γ < 1), which determines the importance of the present reward as opposed

to future ones. The reinforcement, r(k), is binary with r(k) = 0 when the event is successful (the objective is

met) and r(k) = -1 when failure occurs (when the objective is not met). The purpose of dynamic

programming is then to choose a sequence of control actions to maximise J(k), which is also called the

γCriticCriticCriticCritic
NetworkNetworkNetworkNetwork

ActionActionActionAction
NetworkNetworkNetworkNetwork PlantPlantPlantPlant

u(k)XXXX (k)

-

(r(k), External reinforcement)

+Ĵ k() Ĵ k 1–() r k()–

J k() γir k i+()
i 0=

∞

∑=

5

cost-to-go. Unfortunately, such an optimisation is not feasible computationally due to the backward

numerical solution process needed which requires future information for real problems. There is thus a

need for a more tractable approximation method which uses the Bellman Recursion equation for the cost-

to-go,

(2.2)

Werbos proposed a variety of methods for estimating J(k) using artificial neural networks as function

approximators. These methods are called Adaptive Critics Designs (ACDs). This term is generally applied

to any module that provides learning reinforcement to a second, Action Network module (i.e. a controller)

[55].

The standard classification of these ACDs is based on the critic's inputs and outputs. In Heuristic Dynamic

Programming (HDP) for example, the critic’s output is an estimate of the value of J(k) while in Dual

Heuristic Programming (DHP) the critic’s output is an estimate of the derivative of J(k) with respect to the

states. Globalised dual heuristic programming (GDHP), approximates both J(k) and its derivatives by

adaptation of the critic network. In the action dependent versions of HDP and DHP, the critic’s inputs are

augmented with the controller’s output (action), hence the names ADHDP, ADDHP and ADGDHP. The

reader is referred to [55,56] for more details of the characteristics and uses of these different methods.

Only the ADHDP is discussed here as Si and Wang’s [47] approach is closely related to this method.

For illustration, suppose a discrete nonlinear, time-varying system is defined as,

(2.3)

where represents the state vector and denotes the control action. The cost function is

represented by

(2.4)

where r is the reinforcement signal and γ is a discount factor (0 < γ < 1). The objective is to choose the

control action, u(i), i=k, k+1 ,..., so that the cost J defined in Eq. 2.4 is minimised. However, in Eq. 2.2, the

J k() r k() γJ k 1+()+=

x k 1+() f x k() u k() k,,[]=

x ℜ
n

∈ u ℜ
m

∈

J x k()[] γ i k– r x i() u i(),[]
i k=

∞

∑=

6

future value of the cost J(k+1) is required which is not known a priori. In the ACDs, an adaptive critic

network is used to produce the required estimate of J(k+1).

The adaptive critic network is trained to minimise the following error measured over time,

(2.5)

, the output of the critic network, is given by

(2.6)

where Wc are the parameters of the critic network. Here the reinforcement signal indicates the

performance of the overall system, i.e. failure = -1, or success = 0. When Ec(k) = 0 for all k, Eq. 2.5 can be

simplified to

(2.7)

which is the same as Eq. 2.4. However, this approach to training would require a plant model to predict

x(k+1) and consequently the cost-to-go, , as shown in Figure 2-2 below.

Figure 2-2 Conventional ADHDP [55,56]

At this point it is worth mentioning that, in adaptive critic designs, there are two partial derivative terms

 and in the backpropagation path from the Bellman equation. When adaptive critic designs

were implemented without a model network, the second partial derivative term was simply ignored. This

can be detrimental as demonstrated in [39], [40], and [54]. In previous implementations such as DHP and

GDHP, a model network was employed to take into account the term .

Ec k() Ĵ k() r k() γĴ k 1+()––[]
2

k
∑=

Ĵ k()

Ĵ k() Ĵ x k() u k() Wc, ,[]=

Ĵ k() r k() γĴ k 1+()+=

r k() γ r k 1+() γĴ k 2+()+[]+=
…=

γ i k– r i()
i k=

∞

∑=

Ĵ k 1+()

u (k)x (k) Critic
Network

Action
Network Plant Model

x (k +1)
Ĵ k 1+()

Ĵ k()∂
Wc k()∂
----------------- Ĵ k 1+()∂

Wc k()∂

Ĵ k 1+()∂
Wc k()∂

7

Si and Wang [47] proposed a method which resolved the dilemma of either ignoring the term,

leading to poor learning accuracy, or including an additional system model network and hence more

computation. These authors modified the Bellman Recursion in Eq. 2.2 so that, instead of approximating

J(k), the Critic Network would approximate J(k+1). This is done by defining the future accumulated reward-

to-go at time t, as

(2.8)

and using the Critic Network to provide Q(k) as an estimate of J(k+1) i.e. Q(k) = J(k+1), as shown in Figure

2-3 below.

Figure 2-3 Comparison of the conventional ADHDP and Si and Wang’s ADAC

In their method, the Critic Network is trained by storing the estimated cost at k -1, . The current

estimated cost , and the current reward, r(k), are then used to determine the temporal difference error

(i.e. the error between two successive estimates of Q) as given by

(2.9)

where

(2.10)

is the recursive form of Eq. 2.8. Thus the cost for the Critic Network to be minimised during training is

defined as

(2.11)

Ĵ k 1+()∂
Wc k()∂

Q k() r k 1+() γr k 2+() …+ +=

u (k)x (k) Critic
Network

Action
Network Plant Model

x (k +1)
Ĵ k 1+()

Conventional ADHDP [55,56]

u (k)x (k) Critic
Network

Action
Network Q k()

Si and Wang’s ADAC [47]

Q k 1–()

Q k()

ec t() Q k 1–() r k()– γQ k()–=

Q k 1–() r k() γQ k()+=

Ec k() Q k 1–() r k() γQ k()––[]2

t
∑=

8

When Ec (k) = 0 for all k, Eq. 2.11 simplifies to

(2.12)

where . Comparing Eqs. 2.7 and 2.12, it can be seen that by minimising Ec(k), the Critic Network

output then provides an estimate of J(k+1) in Eq. 2.4, i.e. the value of the cost function in the immediate

future.

Training can either be performed “backward-in-time” or “forward-in-time” [29]. In the case of backward-in-

time training, the target output of the Critic Network at time t, is computed from the previous network output,

 using Eq. 2.10, that is:

(2.13)

Thus the network is trained to realise the mapping

Critic: (2.14)

The arrangement is as shown in Figure 2-4.

Figure 2-4 Illustration of the “backward-in-time” mapping

Q k 1–() r k() γQ k()+=
r k() γ r k 1+() γQ k 1+()+[]+=
…=

γ i k– 1– r i()
i k 1+=

∞

∑=

Q ∞() 0=

Q k 1–()

Q k() 1
γ
--- Q k 1–() r k()–[]=

x k() u k(),{ } 1
γ
---→ Q k 1–() r k()–[]

Critic
Network

(at time t)

Critic’s Target

u (k)
x (k) -

+
Q k()

u (k-1)
x (k-1) Q k 1–()

r (k)

Critic
Network

(at time t-1)

1 γ⁄

-
+

Q k 1–()

Q k()

Q k 1+()
r k 1+()r k()

9

In the alternative forward-in-time approach at k - 1, the Critic Network is trained to produce the output

 and the output at time t is used to generate the required target output, that is: . Here

the Critic Network realises the mapping

Critic: (2.15)

and, is the network output. The forward in time arrangement is depicted in Figure 2-5.

Figure 2-5 Illustration of the “forward-in-time” mapping

The Action Network is trained after the Critic Network, with the objective of maximising the critic output,

. This strategy indirectly enables the Action Network to produce favourable control actions and zero

reward i.e. r(k) = 0. Thus, the target output from the Action Network for training purposes can be equated to

zero, so that the Critic Network’s output is as close to zero as possible. The mapping desired from the

Action Network is given by

Action: (2.16)

The training of the Action Network requires that it be connected to the Critic Network so that the target

mapping in Eq. 2.16, then refers to the output of the whole network as shown in Figure 2-6.

Having defined the network mappings and cost functions, stochastic gradient based training algorithms can

be used to train the networks. In Si and Wang’s original ADAC design [47] networks were trained using a

temporal difference error based stochastic backpropagation algorithm (TD-SBP). This is a first order

Q k 1–() r k() γQ k()+

x k 1–() u k 1–(),{ } r→ k() γQ k()+

Q k 1–()

Q k 1–()

Q k()

Q k 1+()
r k 1+()r k()

Critic
Network

(at time t)

Critic’s Target

u (k-1)
x (k-1) -

+

Q k()
u (k)
x (k)

Q k 1–()

r (k)

Critic
Network

(at time t-1)

γ

+
+

Q k()

x k(){ } Q k() 0={ }→

10

gradient descent method and therefore subject to poor convergence and parameter shadowing problems

[32]. Here second-order training, in form of a recursive implementation of the Levenberg-Marquardt [34,35]

algorithm (TD-RLM), is introduced to address these deficiencies and compared with Si and Wang’s original

TD-SBP approach. In each case the Critic and Action networks are implemented as Multilayer Perceptron

neural networks.

Figure 2-6 The Action and Critic Network in an ADAC implementation

2.1 First-Order Training Algorithm: Temporal Difference Stochastic Backpropagation (TD-SBP)

The output of the Critic Network is and its prediction error is given by

(2.17)

Thus, the objective function to be minimised is the instantaneous estimate of the mean-squared prediction

error

(2.18)

Σ

II II nn nn
pp pp uu uu

tt tt ss ss

The Critic NetworkThe Critic NetworkThe Critic NetworkThe Critic Network

Σ

The Action NetworkThe Action NetworkThe Action NetworkThe Action Network

Q k()

x1

x2

xi

u(k)

Q k()

ec k() γQ k() Q k 1–() r k()–[]–=

Ec k() 1
2
---ec

2 k()=

11

For a multilayer perceptron Critic Network (Figure 2-7), the output is calculated in a feedforward manner as

follows:

(2.19)

(2.20)

where x is the input vector, is the input to hidden layer (or nonlinear) weights, g is the input to the

hidden layer nodes and y is the output of the hidden layer nodes. Note the index Ni+1 is to include u(k) (i.e.

), the output of the Action Network as shown in Figure 2-7. Finally, the output, , is

calculated as

(2.21)

where is the linear (or hidden to output layer) weights vector.

Figure 2-7 Critic Network with the process states and control action, u(k) from the Action Network as inputs

The weights-update rule for the Critic Network is based on a combination of gradient descent weight

adaptation and temporal-difference (TD) learning [48,49]. The linear weights, , are updated as:

(2.22)

where

gj k() wcij
NL k()xi k()

i 1=

Ni 1+

∑=

yj k() 1 e
gj k()–

–

1 e
gj k()–

+
------------------------=

wc
NL

xNi i+ u k()= Q k()

Q k() wcj
L k()yj k()

j 1=

Nh

∑=

wc
L

wcij
NL

wcj
L

Q k()
Σ

II II nn nn
pp pp uu uu

tt tt ss ss

x1

x2

xi

y j

u(k)

wc
L

wcj
L k 1+() wcj

L k() wcj
L k()∆+=

12

(2.23)

The nonlinear weights, , are correspondingly updated as:

(2.24)

and,

(2.25)

In both cases, βc > 0 is the learning rate which decreases with time.

The prediction error for the Action Network update is

(2.26)

where the instantaneous estimate of the objective function to be minimised is given by

(2.27)

Figure 2-8 Action Network topology receiving the process states

wcj
L k()∆ βc– k()

Ec k()∂

wcj
L k()∂

--------------------=

βc– k()
Ec k()∂
Q k()∂
----------------- Q k()∂

wcj
L k()∂

--------------------⋅=

wc
NL

wcij
NL k 1+() wcij

NL k() wcij
NL k()∆+=

wcij
NL k()∆ βc– k()

Ec k()∂

wcij
NL k()∂

-----------------------=

β– c k()
Ec k()∂
Q k()∂
----------------- Q k()∂

yj k()∂

yj k()∂
gj k()∂

gj k()∂

wcij
NL k()∂

-----------------------⋅ ⋅ ⋅=

ea k() Q k()=

Ea k() 1
2
---ea

2 k()=

II II nn nn
pp pp uu uu

tt tt ss ss

Σ

x1

x2

xn

zjwaij
NL

waj
L

u(k)

13

The output of the Action Network shown in Figure 2-8, is calculated in a feedforward manner and is

expressed as

(2.28)

where f is the input to the hidden layer nodes, is the input to hidden layer weights, and x is the input

vector. For the MLP architecture, the output is given by

(2.29)

where is the linear weights vector and z is the output layer input function given as

(2.30)

The weight-update rule for the Action Network is again based on gradient-descent adaptation. The linear

weights, , adaptation rule is

(2.31)

where,

(2.32)

while the nonlinear weights, are adapted according to:

(2.33)

and,

(2.34)

Again βa > 0 is a learning rate which decreases with time.

fj k() waij
NL k()xi k()

i 1=

Ni

∑=

wa
NL

u k() waj
L k()zj k()

j 1=

Nh

∑=

wa
L

zj k() 1 e
fj k()–

–

1 e
fj k()–

+
-----------------------=

wa
L

waj
L k 1+() waj

L k() waj
L k()∆+=

waj
L k()∆ βa– k()

Ea k()∂

waj
L k()∂

--------------------=

β– a k()
Ea k()∂
Q k()∂
----------------- Q k()∂

u k()∂
--------------- u k()∂

waj
L k()∂

--------------------⋅ ⋅=

wa
NL

waij
NL k 1+() waij

NL k() waij
NL k()∆+=

waij
NL k()∆ βa– k()

Ec k()∂

waij
NL k()∂

-----------------------=

β– a k()
Ec k()∂
Q k()∂
----------------- Q k()∂

u k()∂
--------------- u k()∂

zj k()∂

zj k()∂
fj k()∂

fj k()∂

waij
NL k()∂

-----------------------⋅ ⋅ ⋅ ⋅=

14

2.2 Second-order Training Algorithms

The reason for considering second order training methods, is that the original action dependent adaptive

critic (ADAC) algorithm by Si et al. [47] used TD-SBP, which is known to have poor convergence properties

[50]. In addition, it is susceptible to parameter shadowing when used on-line. This occurs when the network

parameters continually adapt so that the network output tracks the desired output instead of converging to

the desired model weights, w* [32]. It is therefore logical to develop a more robust and stable training

algorithm based on existing second order recursive schemes.

As with the SBP in the previous section, the second order recursive training schemes investigated here

also seek to minimise a squared-error cost function, E(k). Using the single data point available at the kth

sample instant, an instantaneous estimate of E(k) is derived as

(2.35)

where e(k) is defined as

 and (2.36)

for the Critic and Action networks respectively. The use of the Levenberg-Marquardt algorithm here is

motivated by the fact that it is often the best algorithm for offline training of neural networks. Hence the

recursive version of this algorithm might be expected to yield similar performance benefits when training

ADACs. There have been numerous studies demonstrating the superiority of second-order recursive

estimation algorithms, such as recursive least squares (RLS), to first order algorithms, such as least mean

squares (LMS), for linear-in-the-parameter models ([13, 26, 30, 63]). These algorithms can also be applied

to the identification of nonlinear-in-the-parameter models as shown in [9], [10] and [11]. This is illustrated as

follows. Assume that the predicted output at time k, for either of the Critic Network and Action Network, is

represented by

(2.37)

where a(.) is the nonlinear mapping function produced by the MLP, while w and x are the parameters (i.e.

weights) and state (i.e. input) vector respectively. As in the linear-in-parameter technique, the nonlinear

E k() 1
2
---e=

2
k()

ec k() γQ k() Q k 1–() r k()–[]–= ea k() Q k()=

ŷ k() a w k() x k(),[]=

15

estimation requires the gradient vector to be derived, that is

(2.38)

where

(2.39)

The Gauss-Newton Hessian, R(k), matrix approximation can be estimated recursively at each iteration by

(2.40)

where is called the forgetting factor and controls the rate at which R(k) adapts to new inputs. It is usually

set to . The weight update is then given by

(2.41)

where e(k) is the temporal difference error, either ec(k) for the Critic Network or ea(k) for the Action Network

(Eq. 2.36). This recursive formulation is rarely used directly due to the computational complexity of

the inverse calculation which has to be performed at each iteration [34]. Instead the matrix inversion

lemma,

, (2.42)

is used to compute the inverse of R(k). This leads to the following weight update procedure, referred to as

the recursive prediction error (RPE) algorithm ([9],[10]):

(2.43)

(2.44)

(2.45)

∇ψ w k()[]

∇ψ w k()[] ∂
∂w
-------a w k() x k(),[]=

∇ψ wcj
L k()[]

Ec k()∂
Q k()∂
----------------- Q k()∂

wcj
L k()∂

--------------------⋅=

∇ψ wcij
NL k()[]

Ec k()∂
Q k()∂
----------------- Q k()∂

yj k()∂

yj k()∂
gj k()∂

gj k()∂

wcij
NL k()∂

-----------------------⋅ ⋅ ⋅=

∇ψ waj
L k()[]

Ea k()∂
Q k()∂
----------------- Q k()∂

u k()∂
--------------- u k()∂

waj
L k()∂

--------------------⋅ ⋅=

∇ψ waij
NL k()[]

Ec k()∂
Q k()∂
----------------- Q k()∂

u k()∂
--------------- u k()∂

zj k()∂

zj k()∂
fj k()∂

fj k()∂

waij
NL k()∂

-----------------------⋅ ⋅ ⋅ ⋅=

R k() α k()R k 1–() 1 α k()–[] ∇ψ w k()[]∇ψT w k()[]()+=

α

0.975 α 1.0< <

w k 1+() w k() R k() 1– ∇ψ w k()[]()e k()+=

O Nw
3()

A BC+() 1– A 1– A 1– B 1 CA 1– B+()
1–
CA 1––=

P k() 1
α
--- P k 1–() P k 1–() ∇ψ w k()[]()S 1– k() ∇ψT w k()[]()P k 1–()–[]=

S k() α k() ∇ψT w k()[]()P k 1–() ∇ψ w k()[]()+=

w k 1+() w k() P k() ∇ψ w k()[]()e k()+=

16

The matrix P(k) () here can be interpreted as the covariance matrix of the weight estimate w(k). If

the input signals to the plant are not well excited, the covariance matrix P(k) tends to become large, a

phenomenon known as covariance wind-up ([9],[10]). A constant trace adjustment is usually applied to the

covariance matrix, as suggested by Salgado et. al [44], to overcome this problem. Thus

(2.46)

and is a positive scalar normally set to value of one [1].

Ljung and Söderström [31], suggested that by using a time varying forgetting factor, , rather than a

fixed value with at the beginning, P(k) convergences faster from its initial value and as

 will provide stability. This is achieved by using the following update rule for :

(2.47)

where is a scalar (<1) which determines the rate of convergence of to 1. According to Gunnarson

([17],[18]), the recursive Levenberg-Marquardt (RLM) algorithm is simply the regularised form of the

recursive prediction error (RPE) method. Thus, RLM is obtained by incorporating a regularisation term in

the Hessian update expressed in equation 2.40, giving

(2.48)

Unfortunately, its now impractical to directly apply the matrix inversion lemma. Ngia et al. [34,35] proposed

adding the regularisation term to one diagonal element of R(k) at a time as a solution to this problem.

This corresponds to rewriting Equation 2.48 as

(2.49)

where is an zeroes matrix, except with one of its diagonal elements set to one. The diagonal

element zii set equal to 1 changes from iteration to iteration as determined by the following expressions,

R k() 1–=

P k() τ
trace P k()[]
--------------------------------P k()= τ 0>

τ

α k()

α k() 1< α k() 1→

k ∞→ α t()

α k() αα k 1–() 1 α–()+=

α α k()

R k() α k()R k 1–() 1 α k()–[] ∇ψ w k()[]∇ψT w k()[]() ρINw
+

+=

ρ

R k() α k()R k 1–() 1 α k()–[] ∇ψ w k()[]∇ψT w k()[]() ρZNw
+

+=

ZNw
Nw Nw×

17

 when and (2.50)

 otherwise (2.51)

With this modification, equation 2.49 can be rewritten as

(2.52)

where is a Nw x 2 matrix with the first column containing and the second column

consisting of a Nw x 1 zero vector with one element set to 1 in accordance with 2.50 and 2.51 above, that

is.

 and (2.53)

The matrix inversion lemma can now be applied to equation 2.52 which leads to the recursive Levenberg-

Marquardt (RLM) formulation [34].

(2.54)

 with (2.55)

(2.56)

 is now a matrix, which is much more cost effective to invert than the matrix that arises

when the matrix inversion lemma is applied to equation 2.48.

The overall training procedure for the ADAC is summarised in Figure 2-9. Training begins with the weights

being initialised randomly before each run. At time k, the Action Network and Critic Network both receive

the input state vector, x(k). The Action Network outputs a control action, u(k), to the plant. At the same time

the Critic Network outputs Q(k) and it is stored. At time k+1, both the Action and Critic network receives the

next state vector, x(k+1) and produces, their corresponding outputs - u(k+1) and Q(k+1) respectively. The

reward r(k+1) is obtained based on the outcome of the control action, i.e. when it is a success or

zii 1= i k mod Nw() 1+= k Nw>

zii 0=

R k() α k()R k 1–() 1 α k()–[] Ω k()Λ k() 1– ΩT k()[]+=

Ω k() ∇ψ w k()[]

ΩT k() ∇ψ w k()[]
0 … 1 … 0

=

position k mod Nw() 1+=

Λ k() 1– 1 0
0 ρ

=

S k() α k()Λ k() ΩT k()P k 1–()Ω k()+=

P k() 1
α k()
------------ P k 1–() P k 1–()Ω k()S 1– k()ΩT k()P k 1–()–[]= P k() 1

trace P k()[]
--------------------------------P k()=

w k 1+() w k() P k() ∇ψ w k()[]()e k()+=

S k() 2 2× Nw Nw×

r 0=

18

 when it is a failure. The Critic Network weights are updated once this reward value is obtained.

Then the Action Network weights are updated. Once the updates are done, the cycle is repeated until the

stopping criteria has been met.

In the next section the proposed TD-RLM algorithm will be evaluated in simulation on the well known

inverted pendulum case study and its performance compared to the TD-SBP algorithm used by Si and

Wang [47].

r 1–=

Action Dependent Adaptive Critic Training Summary

Figure 2-9 Summary of the Action Dependent Adaptive Critic Algorithm

 1. At the start of every run initialise all network weights to random values in the range [-

1.0,1.0].

 2. At time t, retrieve the state vector, x(k), from the process or plant being controlled.

 3. Generate a control action, u(k) and apply it to the plant.

 4. Generate and store the Critic Network output (to be used as “ ” to

calculate the cost function).

 5. Retrieve the new state vector, x(k+1), from plant and generate the next control action,

u(k+1).

 6. Generate the next Critic Network’s output .

 7. Calculate the external reinforcement, r(k+1) resulting from the control action.

 8. Adjust the learning rates, βc and βa.

 9. Adjust the Critic Network and the Action Network weights using Eq. 2.22 - 2.34 for TD-

SBP, or using Eq. 2.54 - 2.56 for TD-RLM

 10. Repeat from Step 3 until the stopping criteria has been met.

Q k() Q k 1–()

Q k 1+()

19

3.0 Inverted Pendulum

Figure 3-1 The inverted pendulum system

The inverted pendulum or pole-balancing task is representative of the inherently unstable, multiple-output,

dynamic systems present in many balancing situations, like two-legged walking robots and the aiming of a

rocket thruster and is frequently used as a benchmark for modern and classical control-engineering

techniques. The inverted pendulum problem, depicted in Figure 3-1, has historical importance for

reinforcement learning as it was one of the first successful applications of an algorithm based on model-

free action policy estimation, as described in 1983 by Barto et al. in their pioneering paper [6]. Systems that

learn to control inverted pendulums were first developed over thirty years ago by Michie and Chambers

[33] and have been the subject of much research since then. See for example [1], [2], [3],[11], [15],

[16],[20], [22], [45], [47],[58] and [59].

Control-engineering techniques involve detailed analyses of the system to be controlled. When the lack of

knowledge about a task precludes such analyses, a control system must adapt as information is gained

through experience with the task. To investigate the use of learning methods for such cases, it is assumed

that very little is known about the inverted pendulum system, including its dynamics. The system is viewed

as a black box generating as output the system's state and accepts as input a control action.

The inverted pendulum task considered here involves balancing a pole hinged to the top of a wheeled cart

that travels along a track, as shown in Figure 3-1. The control objective is to apply a sequence of right and

left forces of fixed magnitude to the cart so that the pole balances and the cart does not hit the end of the

x = 0

x

F

θ

20

track (for this simulation a -10N and 10N correspond to the left and right forces respectively). A zero

magnitude force is not permitted. The state of the cart-pole system has to be remain outside certain regions

of the state space to be considered successfully controlled. There is no unique solution and any state

space trajectory that does not pass through these regions is considered acceptable. The only information

provided regarding the control goal is the reinforcement signal, r(k), which signals a failure when either the

pole falls outside +12o or the cart hits the bounds of the track at + 2.4 m.

The cart-pole simulation model used in this study is defined by the equations

(3.1)

(3.2)

(3.3)

This includes all the nonlinearities and reactive forces of the physical system such as friction. The system

is constrained to move within the vertical plane. Here and are the horizontal position of the cart

and the angle of the pole, respectively and

This set of nonlinear differential equations, was solved numerically using fourth-order Runge-Kutta in the

simulation and sampled every 0.02 seconds to produce four discrete state variables defined as follows:

l, the length of the pole = 0.5m

m, the mass of the pole = 0.1kg

mc, the mass of the pole and cart = 1.1kg

F, the magnitude of the force = +10N

g, the acceleration due to gravity = 9.8 ms-2

µc, friction of cart on track coefficient = 5 x 10-4

µp, friction of pole on cart coefficient = 2 x 10-6

θ·· t()

g θ t() θ t()
F– t() mlθ· 2 t() θ t() µc x· t()[]sgn+sin+

mc m+

µpθ
· t()
ml

----------------–cos–sin

l 4
3
--- m θ t()2cos

mc m+
---------------------------–

---=

x·· t()
F t() ml θ· 2 t() θ t() θ·· t() θ t()cos–sin[] µc x· t()[]sgn–+

mc m+
--=

x()sgn
1 if x 0>,

0 if x, 0=
1– if x 0>,

=

x t() θ t()

21

 = the horizontal position of the cart, relative to the track, in metres,
= the horizontal velocity of the cart, in metres/second,
= the angle between the pole and vertical, in degrees, clockwise being positive,

= the angular velocity of the pole, in degrees/second.

3.1 Inverted Pendulum Control Results

The ADAC used to implement the inverted pendulum controller is illustrated in Figure 3-2. Both the Action

and Critic networks were implemented as single hidden layer MLP neural networks. Each network had 6

neurons in their hidden layer. Thus the Action network was a 4-6-1 MLP architecture and the Critic Network

was a 5-6-1 architecture.

The simulation studies were based on 100 runs, each consisting of 10 trials, during which the Action

Network had to control the inverted pendulum within set boundaries. Here the external reinforcement

signal was defined as

(3.4)

The controller was considered to be successful if it managed to balance the inverted pendulum for 6 x 105

time steps of 0.02s each (i.e. for 3 hours 20 mins). If after 10 trials the controller still failed to control the

pendulum, that run was considered a failure and a new run was initiated with the pendulum states set to

zero and all the network weights initialised randomly. Figure 3-3 depicts the result of a typical successful

run of the ADAC controller.

x k()

x· k()
θ k()

θ· k()

r k()
1 If θ 12°> or ,– x 2.4m>
0 otherwise,

=

22

Figure 3-2 The ADAC control strategy for the inverted pendulum system

Figure 3-3 An example of a typical pendulum angle and cart position trajectory for a successful run using
TD-SPB and TD-RLM

Figure 3-3 clearly shows that the TD-RLM algorithm convergences almost immediately compared to the

ADAC which was trained using TD-SBP. Also note that the ADAC controller balances the pendulum, using

a force, of a fixed magnitude and alternating sign applied to the cart (see Figure 3-4). This bang-bang

control leads to the zig-zag oscillation observed in the graphs.

γ
+

-
Q k()

Action NetworkAction NetworkAction NetworkAction Network

Critic NetworkCritic NetworkCritic NetworkCritic Network

Inverted PendulumInverted PendulumInverted PendulumInverted Pendulum

x· k()
x k()

θ k()
θ· k()

u(k)

Q k 1–() r k()–

ec k()ea k()

0 50 100 150 200 250 300 350 400 450 500
-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

50 100 150 200 250 300 350 400 450 500

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

Time Steps

P
en

du
lu

m
 a

ng
le

, θ
o

Time Steps

C
ar

t P
os

iti
on

, x
m

TD-RLM

TD-SBP

TD-RLM

TD-SBP

23

Figure 3-4 Forces applied to the cart to balance the inverted pendulum between a sample interval

The performance of both training algorithms was measured in terms of the frequency of successful runs

and the average computational time for a successful run. The actual computational cost was also

considered as a function of Action and Critic network sizes, to get a better measure of overall performance,

in terms of the training efficiency.

Figure 3-5 shows that the TD-RLM training algorithm gave the best overall performance in terms of the

frequency of successful runs. It can also be seen, that the original TD-SBP algorithm by Si and Wang [47]

was quite poor in terms of the number of successful runs, being at times 50% lower than the alternative

second-order method.

Furthermore, as shown in Figure 3-6, the TD-SBP implementation also proved less efficient compared to

TD-RLM, in terms of average computation time per successful run, with the second order method being the

most consistent for different network sizes. The overall average computation time per successful run as the

ADAC network sizes varied from 2 to 10 hidden neurons was 459.75 secs for TD-SBP and 350.41 secs for

TD-RLM.

Figure 3-7 plots the time variations in the squared training error for the Critic Network obtained with each

algorithm. These illustrate the speed of convergence of the neurocontroller weights. Again, the zig-zag

oscillation is due to the nature of the bang-bang control strategy employed.

F

time k

F

time k+1

24

Figure 3-5 Variation in number of successful runs with the size of the ADAC Networks

Figure 3-6 Variation in averaged computation time per successful run with the size of the ADAC Networks

Further evidence of the superior convergence speed produced by second-order training is provided in

Figure 3-8. This shows the variation in the first component of the weight vector for the Action Network and

the Critic Network, and respectively, with each algorithm.

0

10

20

30

40

50

60

70

80

90

2 4 6 8 10

TD-RLM

TD-SBP

No. of Hidden Neurons

N
o.

 o
f S

uc
ce

ss
fu

l R
un

s

0

100

200

300

400

500

600

2 4 6 8 10

TD-RLM

TD-SBP

No. of Hidden Neurons

Ti
m

e
(s

ec
s)

wa1 1,
NL wc1 1,

NL

25

Figure 3-7 Comparison of the training cost Ec of the Critic Network obtained with TD-RLM and TD-SBP.

Figure 3-8 The trajectory of the first components of the weight vector of the Action Network, (left)
and of the Critic Network, (right) for (a) TD-RLM and (b) TD-SBP

5 10 15 20 25 30 35 40 45 50
0

0.002

0.004

0.006

0.008

0.01

0.012

Iterations

M
ag

ni
tu

de
TD-RLM

TD-SBP

5 10 15 20 25 30 35 40

0.2

0.25

0.3

0.35

0.4

5 10 15 20 25 30 35 40

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

5 10 15 20 25 30 35 40
0.497

0.4971

0.4972

5 10 15 20 25 30 35 40
0.3075

0.308

0.3085

0.309

0.3095

0.31

Iterations

M
ag

ni
tu

de

Iterations

M
ag

ni
tu

de

Iterations

M
ag

ni
tu

de

Iterations

M
ag

ni
tu

de

(a) RLM

(b) SBP

wa1 1,
NL

wa1 1,
NL

wc1 1,
NL

wc1 1,
NL

wa1 1,
NL

wc1 1,
NL

26

4.0 Ring Grinding Process

The second application is the ADAC modelling and control of an industrial ring grinding process used in the

manufacture of disk drive platters. Here, aluminium subtrate disks are ground in batches of twelve between

two grindstones, as shown in Figure 4-1 and 4-2. The stones can be moved apart to allow loading and

unloading of the disks using a pick-and-place unit. During operation the grindstones are rotated in opposite

directions with pressure applied to the upper one. This causes the subtrate disks between them to rotate,

thereby ensuring uniform grinding of their surfaces. The rate at which the disks are ground, called the

removal rate, is the critical variable. It varies depending on a number of parameters including stone wear,

exerted pressure, lubricant viscosity and coolant flow rate. The initial thickness of the disks also varies,

although the disks in any one batch are sorted to be approximately the same thickness. The thickness of

one disk from each batch is measured before the batch is ground. The system controller determines the

actual removal rate from the previous batch and estimates the current value of removal rate using a

proprietary control law. It predicts how much material has to be removed by subtracting the target

thickness from the input thickness and then calculates the necessary grinding duration for the current

batch.

When the grinding is completed, the selected disk is measured again. If it is within specification, then the

whole batch is passed. If the disk is too thick (above the upper specification limit), the disks are ground

again (i.e. reworked) but if the disk is too thin (below the lower specification limit), the batch is rejected.

When a grindstone is newly installed (i.e. replaced due to wear), the pressure is initially set to a low value

and then gradually increased to an upper limit to counteract the stone deterioration, which in turn increases

the removal rate. The removal rate subsequently decreases until a stage is reached where it is so low that

the grindstone has to be resurfaced which is done by slicing off the worn part of the grindstone. Once re-

installed the whole process is repeated.

Various process variables are logged for each grind cycle as part of the company’s own process

performance monitoring procedure. These include the current removal rate, the pressure between the

grindstones, and the cumulative cycle time. Cumulative cycle time is logged as it is an indication of wear

27

and aging of the grindstones, which in turn impacts on the removal rate. A summary of these variables and

the identifiers used for them in this chapter is provided in Table 4.1.

The grindstone data used in this investigation was detrended and normalised to lie within the interval [-1,1].

A sample of the data showing the typical variations found in all the variables is plotted in Figure 4-3.

Figure 4-1 Layout of the ring grinding process

Figure 4-2 The ring grinding process

Thickness MeasuringThickness MeasuringThickness MeasuringThickness Measuring
 Unit Unit Unit UnitGrinding StationsGrinding StationsGrinding StationsGrinding Stations

OperatorOperatorOperatorOperatorDisksDisksDisksDisks

Pick and Place Pick and Place Pick and Place Pick and Place
UnitUnitUnitUnit

Direction of motionDirection of motionDirection of motionDirection of motion

GrindstonesGrindstonesGrindstonesGrindstones
PressurePressurePressurePressure

DisksDisksDisksDisks

28

Table 4.1: Grinding Process Variables

Figure 4-3 Variables used in modelling the ring grinding process

The main aim here is to achieve accurate thickness control in order to minimise the number of out-of-

specification disks produced by the grinding process. This process optimisation can be achieved through

manipulation of the grind cycle time as illustrated in Figure 4-4. Neural network based direct inverse control

Variables Definition

Removal Rate, rr(k) Rate of material removal from a disk during
the grind cycle. Units are in microinch per min.

Previous Removal Rate, rr(k-1) Removal rate from the previous grind cycle.

Cycle Time, c(k) Grind cycle time. Units are in seconds.

Cumulative Cycle Time, cct(k) Sum of all previous cycle times since the
grindstone was last resurfaced.

Pressure, p(k) Pressure between the grindstones. Units are
in p.s.i.

Loading Thickness, Thickness of the disk before the grinding pro-
cess begins. Units are in mil(s).

Unloading Thickness, Thickness of the disk after the completion of
the grinding process. Units are in mil(s).

Target Thickness, Desired thickness required for the each grind
cycle. Units are in mil(s).

Upper Control Limit, UCL(k) Upper control thickness limit specification.
Units are in mil(s).

Lower Control Limit, LCL(k) Lower control thickness limit specification.
Units are in mil(s).

TL k()

T k()

TSP k()

100 200 300 400 500 600
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Removal rateRemoval rateRemoval rateRemoval rate

Cumulative Cycle TimeCumulative Cycle TimeCumulative Cycle TimeCumulative Cycle Time PressurePressurePressurePressure

Cycle Number

Sc
al

ed
 V

al
ue

s

29

has been shown to provide an effective solution to this problem [14] and was therefore chosen as the basis

for the ADAC investigation. The ADAC framework was consider for two elements of the controller design,

namely developing a process model and fine-tuning the final controller. A process model is needed as this

forms the basis for the direct inverse controller implementation. The recommended model is one which

predicts the removal rate, for each grind cycle, on the basis of the current state of the process [14].

Figure 4-4 The ring grinding process block diagram

The existing proprietary controller was used as a reference for evaluating the performance of the model

and subsequent controller design. Since the proprietary controller was a model free implementation, it did

not generate an explicit removal rate prediction, . Rather, this was inferred from the generated cycle

time, c(k), as

(4.1)

where is the loading thickness and is the setpoint or target thickness. Note that the actual

removal rate, rr(k), was obtained by replacing by the measured unloading thickness, , in Eq.

4.1, that is

(4.2)

Figures 4-5 compares the predicted removal rate, , with the actual removal rate, rr(k), over the life of

a typical grindstone. The accuracy of the prediction is measured in terms of the percentage normalised

mean prediction error (MPE), defined as

(4.3)

where is the standard deviation of . In this case the MPE for the grindstone was 6.8%.

rr k()[] T k()
ProcessProcessProcessProcessc k()

p k() d k()

rr̂ k()

rr̂ k()
TL k() TSP k()–

c k()
--------------------------------------=

TL k() TSP k()

TSP k() T k()

rr k()
TL k() T k()–

c k()
--------------------------------=

rr̂ k()

MPE 1
n
--- rr k() rr̂ k()–

σ k()

j 1=

n

∑ 100%×=

σ k() rr k()

30

Figure 4-5 The removal rate prediction from the proprietary scheme

4.1 Model Development

The process model to be developed here predicts the grindstone removal rate and this is used to calculate

the cycle time for the grinding machine. Accurate prediction of removal rate will therefore lead to an

improved cycle time estimate for the grind process. In the ADAC framework, the Action Network is trained

to form the process model.

Based on previous experience [14], it was decided to incorporate error feedback to compensate for the

low-frequency offsets in the Action network prediction, in order to further enhance the accuracy of the

process model. This “predict-correct” technique uses past plant outputs and the corresponding model

predictions to generate a correction to the current estimate and successful applications have been

reported in Rovlak and Corlis [43], Willis et al. [60], Lightbody [28] and Irwin et al. [24]. The predict-correct

scheme is implemented as follows

(4.4)

A first order, predict-correct term was incorporated into the Action network predictor, as shown in Figure 4-

500 1000 1500 2000 2500
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

S
ca

le
d

Va
lu

es

Cycle Number

Actual
Proprietary

= 6.8081%

Proprietary’s MPE
for entire data set

rr̂∗ k()

rr̂∗ k() rr̂ k() 1
N
---- rr k j–() rr̂ k j–()–[]

j 1=

N

∑+=

31

6. The complete ADAC identification strategy is then as shown in Figure 4-7.

Figure 4-6 The augmented Action network prediction model for the grinding process (Model + PC)

Figure 4-7 Schematic of modelling strategy using the ADAC

For this study a nonlinear ARX modelling strategy was employed where the removal rate was estimated as

a function of previous removal rates, rr(k-1), rr(k-3) and rr(k-5), current pressure, p(k), and the current and

past cumulative cycle times, cct(k) and cct(k-1). Thus, the Action Network was trained to learn the unknown

mapping

zzzz-1-1-1-1
rr̂ k 1–()

++++

++++

++++

p(k)

zzzz-1-1-1-1

Action Action Action Action
NetworkNetworkNetworkNetwork
(Model)(Model)(Model)(Model)

rr̂ k() rr̂ k()∗
rr(k-n)

cct(k-m)
n = 1, 3 and 5
m = 0 and 1

External

ProcessProcessProcessProcess

Reinforcement,

γ

+-

+-

EvaluationEvaluationEvaluationEvaluation r(k)

Action NetworkAction NetworkAction NetworkAction Network
(Model + PC)(Model + PC)(Model + PC)(Model + PC)

Critic NetworkCritic NetworkCritic NetworkCritic Network

Q k() Q k 1–() r k()–

p(k) rr̂ k()

rr̂ k()∗

c(k)

ec k()ea k()

TD
L

TD
L

TD
L

TD
L

32

(4.5)

The goal was to minimise the absolute tracking error between the desired removal rate, rr(k), and the

predicted, rr*(k). The external reinforcement signal, r(k), for the ADAC model was chosen as

(4.6)

After experimenting with different architectures, the ADAC networks that were found to produce the

minimum MPE error used 5 hidden neurons (i.e a 6-5-1 MLP for the Action network and a 7-5-1 MLP for

the Critic network). Figure 4-8 compares the ADAC model obtained for the grindstone with the

corresponding proprietary model and clearly shows the benefit of nonlinear modelling using the ADAC

framework as the MPE has been reduced by 42% compared to the proprietary model.

Figure 4-8 The removal rate prediction from the ADAC scheme

4.2 Disk Thickness Control Results

The model identified previously was used to provide an accurate estimate of at each iteration to

produce the open-loop thickness controller depicted in Figure 4-9. In fact this is a direct inverse control

implementation, which can be seen as follows. First, note that the removal rate model can also be used to

generate a c(k)-to-T(k) forward process model, as shown in Figure 4-10. Lee and Shin [27] pointed out

rr̂ k() f rr k 1–() rr k 3–() rr k 5–() p k() cct k() cct k 1–(),, , , ,[]=

r k()
1, |Prediction Error| –
0 otherwise,

= > 5 x 10-4

500 1000 1500 2000 2500

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

S
ca

le
d

Va
lu

es

Cycle Number

Actual
ADAC

= 2.8438%

ADAC’s MPE
for entire data set

rr k()

33

that, this particular formulation allows the inverse plant model to be obtained without having to invert a ANN

model, as is usually the case with a neural-control scheme [23]. Thus, Figure 4-9 represents an exact

inverse of the forward process model and therefore a direct inverse controller. The final complete direct

inverse model control scheme is shown in Figure 4-11.

Figure 4-9 Open-loop control using the Action Network removal rate predictor

Figure 4-10 Forward process ADAC model

Figure 4-11 Open-loop inverse model control using the ADAC modelling method of the grinding process

XXXX

++++

invinvinvinv

Action Action Action Action
NetworkNetworkNetworkNetwork

(Model + PC)(Model + PC)(Model + PC)(Model + PC)

ĉ k()TSP k()

p(k)
rr̂ k()∗

rr(k-n)

cct(k-m)

n = 1, 3 and 5
m = 0 and 1TL k()

++++

XXXX

Action Action Action Action
NetworkNetworkNetworkNetwork

(Model + PC)(Model + PC)(Model + PC)(Model + PC)

T̂ k()
∆T̂ k()c(k)

p(k)
rr̂ k()∗

rr(k-n)

cct(k-m)

n = 1, 3 and 5
m = 0 and 1

TL k()

rr t()[]
ProcessProcessProcessProcessControllerControllerControllerController

p k() d k()

ĉ k()TSP k() T k()

34

The ADAC-model direct inverse controller can be applied to the process as a fixed parameter controller.

Alternatively it can be fine tuned on-line within an ADAC control framework, with the reinforcement signal

now defined in terms of control specifications, namely the upper and lower control limits (UCL and LCL) for

the unloading thicknesses of the disks. This gives

(4.7)

Figure 4-12 shows the unloading thickness prediction obtained with the resulting ADAC control strategy

while Table 4.2 provides a comparison with the fixed parameter ADAC model based controller and the

proprietary controller.

Figure 4-12 Unloading thickness prediction of the ADAC controller

It can be seen that the ADAC model direct inverse controller (ADAC-mod) and the online tuned ADAC

controller (ADAC-cont.) both outperform the proprietary scheme with the tuned ADAC controller yielding a

33.33% reduction in the number of rejects. Figures 4-13 compares the unloading thickness distribution of

Model Target
Thickness

Unloading
Thickness
Mean

Unloading
Thickness
Variance

Number of
Rejects

Proprietary

3075

3075.85 7.095 12

ADAC-mod. 3076.12 6.71 10

ADAC-cont. 3076.28 6.407 8

Table 4.2: Performance comparison between the actual and the ADAC schemes

r k()
1, UCL < ULT < LCL–
0 otherwise,

=

0 500 1000 1500 2000 2500
3020

3030

3040

3050

3060

3070

3080

3090

3100

3110

3120

Th
ic

kn
es

s
(µ

m
)

Samples

UCL

LCL

Target

35

the proprietary control scheme with that obtained from the ADAC controller and clearly show than tighter

thickness control was achieved with the ADAC control scheme.

Figure 4-13 Unloading thickness distribution plot of the ADAC method compared to the proprietary
scheme

5.0 Conclusions

This chapter extends the model-free action dependent adaptive critic (ADAC) of Si and Wang by

presenting a fully online, intelligent neurocontroller which avoids the necessity to store plant data during a

successful run. In particular, the potential limitations of their stochastic backpropagation training, in terms of

poor convergence and parameter shadowing, are avoided by introducing a modified version of recursive

Levenberg-Marquardt (RLM) called the temporal difference RLM (TD-RLM) algorithm. This was

demonstrated in a initial simulation study on inverted pendulum control.

The performance of the new ADAC scheme, for both identification and control, has been validated using

data from an actual industrial grinding process used in the manufacture of aluminium substrates for disk

drives. The results suggest that the ADAC can achieve a 33% reduction in rejects compared to a

proprietary controller. The authors believe that this is one of the first reported industrial applications of this

emerging technology.

UCLLCL

Scaled Values

Fr
eq

ue
nc

y
co

un
ts

 &
 P

ro
ba

bi
lit

y
di

st
.

ADAC

Proprietary

TSP

36

For identification the ADAC still requires the incorporation of the predict correct strategy to achieve

convergence and there are many parameters, such as the learning rates, which need to be tuned by trial-

and-error. These are both areas for further work. However, the ability of the ADAC to converge

satisfactorily from scratch far outweighs these limitations.

The control performance of the ADAC is most encouraging and clearly demonstrates the feasibility of

successfully using reinforcement learning for process control applications.

6.0 References

[1] Anderson, C. W., “Learning and problem solving with mulitlayer connectionist systems”, Doctoral
Dissertation, Department of Computer and Information Science, University of Massachusetts,
Amherst, MA, 1986.

[2] Anderson, C. W., “Strategy learning with multilayer connectionist representations”, Technical Report
TR87-507.3, GTE Laboratories, Wlatham, MA, 1987. Revision of the Fourth International Workshop
on Machine Learning, pp. 103-114, June, 1987.

[3] Anderson, C. W., “Learning to Control an Inverted Pendulum Using Neural Networks”, IEEE Control
Systems Magazine, Vol. 9, pp.31-37, April 1989.

[4] Antsaklis, P., “Final Report of task Force in Intelligent Control”, Technical Committee on Intelligent
Control, IEEE Control Systems Society, 1993.

[5] Antsaklis, P., “Intelligent Control”, in Encyclopedia of Electrical and Electronics Engineering, John
Wiley &Sons, Inc., 1997.

[6] Barto A. G., Sutton, R. S., Anderson, C. W., “Neuronlike elements that can solve difficult learning
control problems”, IEEE Transactions on System, Man and Cybernatics, Vol.13, pp. 835-846, 1983.

[7] Bellman, R. E., Dynamic Programming, Princeton University Press, 1957.

[8] Chan, K. H., Jiang, L., Tiloston, P., and Wu, Q. H., “Reinforcement Learning for the Control of Large-
Scale Power Systems”, Proceedings of 2nd International Symposium Engineering of Intelligent
Systems (EIS’2000), Paisley, UK, 2000.

[9] Chen S., Billings, S. A., and Grant, P. M., “Non-linear system Identification using Neural Networks”,
International Journal of Control, vol. 51, no. 6, pp. 1191-1214, 1990a.

[10] Chen, S., Cowan, C. F. N., Billings, S. A., and Grant P. M., “Parallel recursive prediction error
algorithm for training layered networks”, International Journal of Control, vol. 51, no. 6, pp. 1215 -
1228, 1990b.

[11] Connell, M., and Utgoff, P., “Learning to control a dynamic physical system”, in Proceedings AAAI-
87, Vol. 2, 456-460, American Association for Artificial Intelligence, Seattle, 1987.

[12] Ernst, D., Glavic, M., and Wehenkel, L., “Power system stability control: Reinforcement learning
framework”, accepted for publication in IEEE Transaction on Power Systems, 2003.

[13] Goodwin, G. C., and Paywe, R. L., “Dynamic System Identification: Experiment Design and Data
Analysis”, Academic Press, New York, 1977.

[14] Govindhasamy, J. J., McLoone, S. F., Irwin, G. W., Doyle, R. P., and French, J. J., “Neural Modelling,
Control And Optimisation Of An Industrial Grinding Process”, Accepted for publication in Control
Engineering Practice, 2003.

37

[15] Guez, A. and Selinsky, J., “A trainable neuromorphic controller”, Journal of Robotic System, Vol. 5,
No. 4, 363-388, 1988.

[16] Guez, A. and Selinsky, J., “A neuromorphic controller with a human teacher”, in IEEE International
Conference on Neural Networks, Vol. 2, 595-602, 1988.

[17] Gunnarsson, S., “On Covariance Modification and Regularization in Recursive Least Square
Identification”, 10th IFAC Symposium on System Identification, SYSID 94, pp. 661-666, 1994.

[18] Gunnarsson, S., “Combining Tracking and Regularization in Recursive Least Square Identification”,
Proceedings of the 35th IEEE Conference on Decision and Control, pp. 2551-2552, 1996.

[19] Gupta, M. M., and Rao, D. H., “Neuro-Control Systems: A Tutorial”, In Gupta, M. M., and Rao, D. H.
(Eds.), NeuroControl Systems: Theory and Application, IEEE Press, pp. 1 - 43, 1994.

[20] Handelman, D. and Lane, S., “Fast sensorimotor skill acquisition based on ruled-based training of
neural networks”, in Neural Networks in Robotics, Bekey, G. and Goldberg K., eds., Kluwer
Academic Publishers, Boston, 1991.

[21] Hoskins, J.C., and Himmelblau, D.M., “Process control via artificial neural networks and
reinforcement learning”, Computers & Chemical Engineering, vol. 16, no. 4, pp. 241-251, 1992.

[22] Hougen, D., “Use of an eligibility trace to self-organize output”, in Science of Artificial Neural
Networks II, Ruck, D. eds., SPIE 1966, 436-447, 1993.

[23] Hunt, K. J., Sbarbaro-Hofer, D., Zbikowski, R., and Gawthrop, P. J., “Neural Networks for Control
Systems - A Survey”, Automatica, Vol. 28, pp. 1083-1112, 1992.

[24] Irwin, G. W., O’Reilly, P., Ligthbody, G., Brown, M., and Swidenbank, E., “Electrical power and
chemical process applications”, In Neural network applications in control, Irwin, G. W., Warwick, K.
and Hunt, K. J., eds., IEE Control Engineering Series 53, The Institution of Electrical Engineers,
London, UK,1995.

[25] Iyer, M.S.; Wunsch, D.C., II, “Dynamic re-optimization of a fed-batch fermentor using adaptive critic
designs”, IEEE Transactions on Neural Networks, vol. 12, no. 6, pp. 1433-1444, 2001.

[26] Johansson, R., “System Modelling Identification”, Prentice Hall Information and System Science
Series, New Jersey, 1993.

[27] Lee, C. W., and Shin, Y. C., “Intelligent Modelling and Control of Computer Hard Disk Grinding
Processes”, Proceedings of the 3rd International Conference on Intelligent Processing and
Manufacturing of Materials, pp. 829-838, 2001.

[28] Lightbody, G., “Identification and control using neural networks’, PhD dissertation, The Intelligent
Systems and Control Group, The Queen’s University of Belfast, Northern Ireland, UK, 1993.

[29] Liu, D., Xiong, X., and Zhang, Y., “Action-Dependant Adaptive Critic Designs”, Proc. of the INNS-
IEEE International Joint Conference on Neural Networks, pp. 990-995, July, 2001.

[30] Ljung, L., “System Identification: Theory for the user”, Prentice Halls, Englewood Cliffs, New Jersey,
1987.

[31] Ljung, L. and Söderström, T., “Theory and Practice of Recursive Identification”, MIT, Cambridge, MA,
1983.

[32] McLoone, S. F., “Neural Network Identification: A survey of gradient based methods”, IEE
Colloquium Optimization in Control: Methods and Applications, London, Digest 98/521, November
1998.

[33] Michie, D. and Chambers, R., “Boxes: An experiment in adaptive control”, in Machine Intelligence,
Dale, E. and Michie, D., eds., Oliver and Boyd, Edinburgh, 1968.

[34] Ngia, L. S. H., Sjöberg, J. and Viberg, M., “Adaptive Neural Networks Filter Using a Recursive
Levenberg-Marquardt Search Direction”, Proceedings of the 3rd Asilomar Conference on Signals,
System and Computers, pp. 697-701, November 1998.

[35] Ngia L.S.H. and Sjöberg J., “Efficient Training of Neural Nets for Nonlinear Adaptive Filtering using a
Recursive Levenberg- Marquardt Algorithm”, IEEE Transactions on Signal Processing, vol. 48, no.
7, pp. 1915-1926, July 2000.

38

[36] Park, J. W., Harley, R.G., and Venayagamoorthy, G.K., “Adaptive Critic Designs and their
Implementations on Different Neural Network Architectures”, Proceedings of the International Joint
Conference on Neural Networks, vol. 3, pp. 1879-1884, 2003.

[37] Park, J. W., Harley, R.G., and Venayagamoorthy, G.K., “Adaptive critic based optimal neurocontrol
for synchronous generator in power system using MLP/RBF neural networks”, Conference Record -
IAS Annual Meeting (IEEE Industry Applications Society), vol. 2, pp. 1447-1454, 2002.

[38] Passino, K., “Bridging the Gap Between Conventional and Intelligent Control”, IEEE CSM, pp. 12-
18, June, 1993.

[39] Prokhorov, D., Santiago, R., and D. Wunsch, “Adaptive Critic Designs: A Case Study For
Neurocontrol”, Neural Networks, vol. 8, no. 9, pp. 1367-1372, 1995.

[40] Prokhorov, D., and Wunsch, D., “Adaptive critic designs,” IEEE Transactions on Neural networks,
Vol. 8, pp. 997–1007, Sept. 1997.

[41] Radhakant, P., and Balakrishnan, S. N., “Proper orthogonal decomposition based optimal
neurocontrol synthesis of a chemical reactor process using approximate dynamic programming”,
Neural Network, vol. 16, pp. 719-728, 2003.

[42] Riedmiller, M., “Concepts and Facilities of a neural reinforcement learning control architecture for
technical process control”, Neural Computation and Application Journal, vol. 8, pp. 323-338,
Springer Verlag London, 1999.

[43] Rovnak, J. A. and Corlis, R., “Dynamic matrix based control of fossil power plants”, IEEE
Transactions on Energy Conversion, vol. 6, no. 2, pp. 320-326, 1991.

[44] Salgado, M. E., Goodwin, G. C., and Middleton, R. H., “Modified Least Squares Algorithm
Incorporating Exponential Resetting and Forgetting.”, International Journal of Control, vol. 47, no. 2,
pp. 477-491,1988.

[45] Sammut, C., “Experimental results from an evaluation of algorithms that learn to control dynamic
systems”, in Proceedings of the Fifth International Conference on Machine Learning, 437-443,
Morgan Kaufman, San Mateo, California, 1988.

[46] Sofge, D. A., and White D. A., “Neural network based process optimization and control”,
Proceedings of the IEEE Conference on Decision and Control, vol. 6, pp. 3270-3276, 1990.

[47] Si, J., and Wang, Y. T., “Online Learning Control by Association and Reinforcement”, IEEE
Transactions on Neural networks, Vol. 12, No. 2, pp. 264-276, March 2001.

[48] Sutton R. S., “Learning to Predict by the Method of Temporal Differences”, Machine Learning, Vol. 3,
pp. 9-44, 1988.

[49] Sutton R.S., “Implementation Details of the TD(λ) Procedure for the Case of Vector Predictions and
Backpropagation”, GTE Laboratories Technical Note TN87-509.1, Aug., 1989.

[50] Sutton, R.S., and Whitehead, S.D., “Online learning with random representations”, Proceedings of
the Tenth International Conference on Machine Learning, pp. 314-321, 1993.

[51] Venayagamoorthy, G.K., Harley, R.G., and Wunsch, D.C., “A nonlinear voltage controller with
derivative adaptive critics for multimachine power systems”, IEEE Power Industry Computer
Applications Conference, p 324-329, 2001.

[52] Venayagamoorthy, G.K., Harley, R.G., and Wunsch, D.C., “Excitation and turbine neurocontrol with
derivative adaptive critics of multiple generators on the power grid”, Proceedings of the International
Joint Conference on Neural Networks, vol. 2, pp. 984-989, 2001.

[53] Venayagamoorthy, G.K.; Harley, R.G.; Wunsch, D.C., “Comparison of heuristic dynamic
programming and dual heuristic programming adaptive critics for neurocontrol of a turbogenerator”,
IEEE Transactions on Neural Networks, vol. 13, no. 3, pp. 764 -773, 2002.

[54] Werbos, P. J., “Consistency of HDP Applied to a Simple Reinforcement Learning Problem”, Neural
Networks, vol. 3, no. 2, pp. 179-189, 1990.

[55] Werbos, P. J., “A Menu of Designs for Reinforcement Learning Over Time”, in Miller, W. T., Sutton,
R. S. and Werbos P. J. eds, Neural Networks for Control, MIT Press, Cambridge, MA, pp. 67 - 95,
1990.

39

[56] Werbos, P. J., “Approximate Dynamic Programming for Real-Time Control and Neural Modelling”, in
White, D. A. and Sofge, D. A. eds, Handbook of Intelligent Control: Neural, Fuzzy and Adaptive
Approaches, Van Nostrand Reinhold, New York, pp. 493 - 525, 1992.

[57] White, D. A., and Sofge, D. A., “Neural network based control for composite manufacturing”,
American Society of Mechanical Engineers, Materials Division (Publication) MD, Intelligent
Processing of Materials, vol. 21, pp. 89-97, 1990.

[58] Widrow, B., “The original adaptive neural net broom-balancer”, in International Symposium on
Circuits and Systems, 351-357, 1987.

[59] Widrow, B., Gupta, N. and Maitra, S., “Punish/Reward: Learning with a Critic in Adaptive Threshold
Systems”, IEEE Transactions on Systems, Man and Cybernatics, vol. 3, No. 5, pp. 445 - 465, 1973.

[60] Willis, M. J., Di Massimo, C. D., Montague, G. A., Tham, M. T., and Morris, A. J., “Artificial neural
networks in process engineering”, IEE Proceedings - Part D: Control Theory and Applications, Vol.
138, No. 3, pp. 256-266, 1991.

[61] Wu, Q. H., and Pugh, A. C., “Reinforcement learning control of unknown dynamic systems”,
Proceedings of the IEE, Part D: Control Theory and Applications, Vol. 140, pp. 313-322, 1993.

[62] Wu, Q. H., “Reinforcement learning control using interconnected learning automata”, International
Journal of Control, vol. 62 (1), pp. 1-16, 1995.

[63] Young, P.C., “Recursive Estimation and Time Series Analysis”, Springer-Verlag, Berlin, 1984.

[64] Zeng, X., Zhou, J., and Vasseur, C., “A strategy for controlling nonlinear systems using a learning
automaton”, Automatica, vol. 36, pp. 1517-1524, 2000.

