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Abstract— Maintenance for wind turbines, particularly off-
shore turbines, presents a significant cost component to wind
farm operators. The main bearing, which supports the low-
speed shaft, is one of the major wind turbine system com-
ponents. Since maintenance is confined to suitable weather
windows, which are unpredictable, there is a need for decision
support tools to ensure that maintenance is carried out in
a timely way, but also at minimum cost and with minimum
turbine downtime. This paper presents a methodology for the
estimation of the remaining useful life (RUL) of the main
bearing for a commercial wind turbine. A residual model is
used to highlight potentially faulty behaviour, which is then
post processed to provide a suitable signal for extrapolation
using particle filters. The RUL is then effectively specified as
a probability distribution which narrows as the failure point
is approached, providing an estimate of RUL and a confidence
measure. Our results suggest that RULs beyond 30 days can
be reasonably estimated.

I. INTRODUCTION

Over the past decade, the deployed wind generating ca-
pacity worldwide has increased rapidly. By the end of 2010,
wind generating capacity reached approximately 196,630
MW [1]. In addition, the size and generating capacity of
individual wind turbines also continues to increase, with
turbines of capacity >5MW becoming standard in offshore
wind farms. Over time, the constantly changing loads im-
parted by changing wind speeds and directions, as well as
asymmetric loading due to the large vertical span of the
turbine rotors, generate significant stresses on turbine blades,
which is transferred to the transmission system. For offshore
wind farms, studies have suggested that maintenance costs
are about 20 to 25% of the total income generated, and that a
considerable percentage of these costs are due to unexpected
equipment failure, which require corrective maintenance [2].

With the clear imperative to minimise maintenance costs
and maximise availability, condition monitoring for wind tur-
bines is an area of widespread research activity. Researchers
and practitioners have been investigating condition monitor-
ing solutions for many of the different components on wind
turbines, using a wide variety of different approaches. A
number of publications are available which provide a review
of the different techniques and approaches which have been
investigated [3], [4], [5].

Wind turbines contain multiple rotating components, in-
cluding the main shaft, multi-stage gearbox, and generator.
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As a result, vibration monitoring has been investigated for
application to wind turbine condition monitoring and fault
diagnostics [6], [7], with wavelet methods having widespread
application due to their inherent ability to provide time-
frequency resolution. This is important due to the variable-
speed operation of wind turbines [8], [9]. Acoustic emissions
(AE) analysis, designed to detect the stress waves generated
by the rubbing of rotating components, has also been pro-
posed for wind turbine condition monitoring [10], since the
relatively low-speed operations for wind turbines can place
limitations on vibration monitoring.

To address cracking and delamination in large (usually
composite) wind turbine blades, electrical strain gauges,
located at different stress points, have been used to monitor
peak strains. The objective is to identify locations where
structural damage may have occurred. More recently, fibre
optic strain gauges have been employed [5], [11].

Wind turbine power curve analysis provides an indicator
of overall wind turbine health [12]. Given the current wind
conditions and air density, differences between the expected
power output, as estimated by the power curve, and the actual
power output are identified. The difference, which is often
called the power residual, can be used to indicate overall
blade condition [13], and gearbox faults [12].

In most modern wind turbines, supervisory control and
data acquisition (SCADA) systems are now common. Some
more recent SCADA systems also monitor overall vibration
levels within critical components [14]. One of the primary
drivers for using SCADA data for condition monitoring is
that the data collection and sensor networks are already in
place, which makes such approaches significantly cheaper.
In contrast, comprehensive vibration monitoring and AE
approaches require high-frequency data which might be
sampled at up to 20 kHz. The costs of the required sensor
network and the data collection, storage, and processing
capabilities required to analyse and extract relevant features
from the high-bandwidth raw vibration signals are signifi-
cant. Furthermore, due to the high-bandwidth data required
for advanced vibration monitoring, all significant signal
processing and feature extraction must be performed locally
at each turbine, with the extracted features and measurements
then transmitted to a central location for further analysis and
decision making [6]. As a result, the cost per turbine of
installing such a system is often significant. SCADA data is
also used to develop models which describe the fault-free be-
haviour of different turbine components. Differences between
the estimated behaviour and observed behaviour can then be
used to identify the presence of potential fault conditions.
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A number of authors have considered such approaches for
gearbox and generator components [15], [14].

This paper uses SCADA data to perform condition moni-
toring of the main bearing of a commercial wind turbine.
A residual, based on a model of ‘normal’ main bearing
temperature (MBT) behaviour, is evaluated, further processed
and extrapolated into the future, using particle filters, to give
an estimate of remaining useful life (RUL). While related
studies, based on residual analysis, have been performed
elsewhere on gearbox bearing temperature [14], [15] and
generator [16], the main turbine bearing has received little
attention. In addition, our method, based on particle filtering
(and inspired by successful application elsewhere [17]) also
provides statistical RUL estimation, not previously seen in
the wind turbine industry.

II. AVAILABLE DATA AND PRE-PROCESSING

For this study, data from a large wind-farm was made
available. For each turbine, the complete history of sensor
information and turbine status information, for a period of
11-months, was available. The onboard SCADA system for
each turbine records 10-minute averages of each monitored
sensor variable. In addition, the maximum, minimum, and
standard deviation of each of these sensor values, over each
10-minute period, is also recorded by the SCADA system. In
addition to the values of the onboard sensors, status informa-
tion, such as generator start and stop times, are also recorded
by the SCADA system. Within the available data, just two
turbines exhibited main bearing failure characteristics, which
is the main reason that this paper represents a feasibility
study rather than a comprehensive treatment.

A. Input variable selection

The objective here is to select a set of variables which
maximise the diagnostic capabilities of the MBT residual
emanating from the model built on normal operation and
driven with the set of set of selected variables. While
there are many objective procedural methods to select a
set of explanatory variables, such as stepwise regression
[18], these methods (usually based on linear regression) use
modelling capability as an objective function. In our case,
we are interested in maximising the diagnostic capability,
so a broader approach to input variable selection was taken,
essentially relying on multiple trials of various combinations
of input variables, with diagnostic power as a criterion. This
approach results in the following selection:

• Main Shaft RPM. The heat generated in the main
bearing is, in general, a monotonic function of the main
shaft RPM.

• Hydraulic Brake Temperature. The turbine brake is
located on the high-speed shaft, which connects the
gearbox to the generator, and analysis has demonstrated
that, under fault-free conditions, the brake temperature
is closely correlated with the main bearing temperature.

• Hydraulic Brake Pressure. The average hydraulic
brake pressure over a ten-minute interval provides a
measure of the brake friction applied to the high-speed

shaft which, in turn, generates friction within the main
bearing, resulting in a response in the main bearing
temperature

• Blade Pitch Position. All modern turbines employ pitch
control to regulate rotor torque. With a constant main
shaft RPM, the load experienced by the main bearing
will be some function of the blade pitch position.

B. Ambient temperature compensation

Turbine sensor variables, and particularly temperature sen-
sor variables, are a function of both the current operating
conditions and the ambient temperature. Ideally, any corre-
lation with ambient temperature should be removed from
temperature measurements so that decision variables repre-
sent only the machine state, rather than ambient conditions.
We employ a method suggested by Wiggelinkhuizen et al
[19] which removes the linear relationship between main
bearing temperature and ambient temperature. The effect of
ambient temperature is highlighted at low rotational speeds,
so data corresponding to rotor RPM values on the interval
[0.1, 1] were used to determine the relationship. Fig.1 shows
the validity of a linear regression model. Fig.2 shows the

Fig. 1. Relationship between main bearing temperature and ambient
temperature, under low-load conditions

effect of ambient temperature decorrelation on a typical main
bearing temperature signal. The seasonal variation in ambient
temperature is clear, with the main bearing temperature
values are normalised, for confidentiality reasons.

III. RESIDUAL GENERATION AND FAULT DETECTION

In this section, we will develop a model of ‘normal’
operation for the main bearing of a turbine and use a signal
derived from the model residual to identify the occurrance
of a potential fault condition.

A. Modelling of normal operation

In previous similar studies [15], [14], multi-layer percep-
tron artificial neural networks have been widely employed for
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Fig. 2. Main bearing temperature: original signal and normalised for
ambient temperature signal

modelling the fault-free behaviour of turbine components. In
this study, a model of the form:

r̂(k) =

p∑
i=1

wiφi(U) (1)

is defined, where the φ( ) form of a set of radial basis
functions, with:

U = [r(k − 1) u1(k) u1(k − 1) u2(k) u3(k) u4(k)]
T (2)

where r̂(k) is the estimated main bearing temperature at time
k, r(k − 1) is the actual main bearing temperature at time
k − 1. The ui are defined as:
u1 : Main shaft RPM
u2 : Hydraulic brake temperature
u3 : Hydraulic brake pressure
u4 : Blade pitch position

Sparse Bayesian learning for the parameters (the wi) was
considered for a number of reasons:

• Sparse Bayesian learning models have excellent gen-
eralisation capabilities on unseen data, due to the low
complexity representation (weights are driven to zero,
where appropriate). Furthermore, the outputs generated
by sparse Bayesian learning models are probabilistic,
providing variance estimates on the generated predic-
tions.

• Preliminary modelling studies demonstrated that it is
not possible to develop a single model which could be
used to describe fault-free behaviour across all turbines
in a wind farm, highlighting the need for individualised
‘normal’ behaviour models. Therefore, a significant
number of model need to be built and the fast marginal
likelihood maximisation approach developed by Tipping
et. al [20], provides extremely fast training.

Three fault-free turbines were randomly selected from the
available data set. For each fault-free turbine, approximately

12,000 samples (from a total of 48,000), representing approx-
imately 3 months of data, were selected for model training.
Note that the data selected for training was taken from a
different three month period for each turbine, to verify the
insensitivity to ambient temperature. Each turbine model was
tested on the remaining previously unseen samples for each
turbine. Fig.3 shows the performance of the first fault-free
turbine model over a typical 20-day period of previously
unseen data. The distribution of the error signal for the

Fig. 3. Main bearing temperature estimation and generated residual signal
(fault-free turbine)

second turbine, for the complete 8-months of test data, is
plotted as a histogram in Fig.4. showing that the error is
zero-mean and Gaussian.

Fig. 4. Distribution of residual signal between estimated and actual main
bearing temperature (fault-free turbine)

B. Residual signal disaggregation

In order to maximise the utility of the residual for
diagnosis and prognosis, a modal analysis of MBT with
respect to rotor shaft speed is performed. Fig.5 shows the
joint distribution of main shaft RPM and the main bearing
temperature, identified using a kernel density estimator [21],
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Fig. 5. Joint distribution of main shaft RPM and the main bearing
temperature

Operating Region Low-Load Medium-Load High-Load
RPM Range 0.1 - 2 7 - 9 15 - 16

TABLE I
MAIN BEARING OPERATING MODES: RPM RANGE

and indicates a number of discrete operating modes, which
are documented in Table I.

It was found that a modified residual signal, consisting
of a low-pass filtered (with an effective time constant of
33 hours) version of the ‘Low-load’ residual, gave optimum
performance, in terms of the monotonicity and consistency of
the MBT residual, as the main bearing failure mode evolved.
A comparison of the filtered versions of the full residual, and
the residual disaggregated by ‘Low-load’ operation, is shown
in Fig.6.

Fig. 6. Filtered residual signal by turbine operating mode

C. Fault threshold specification

Finally, in order to signal the onset of a fault, a threshold
must now be placed on the filtered residual. For the low-load
data, the residual distribution has a standard deviation (σ)
of 0.0097. For a Gaussian distribution, the 99% confidence
limits are defined by approx. ± 3σ. Therefore, to provide a
sufficient separation between the expected limits of ‘normal’
fault-free operation, a value of 0.004 (> 4σ) was chosen to
define the threshold at which a fault condition is confirmed.

IV. PROGNOSTICS

Dynamic model-based approaches to prognostics are based
upon estimating of the current level of degradation (the
degradation state) and employing a model which describes
the future evolution of the degradation process. In recent
times, prognostic methods based upon recursive Bayesian fil-
tering techniques are increasingly being applied to prognostic
problems [22], [23], [24]. In particular, particle filtering pro-
vides a consistent framework to handle model non-linearities
and potentially non-Gaussian noise processes.

Particle filtering, also known as Sequential Monte Carlo
(SMC) methods [25], is a technique for implementing a
recursive Bayesian filter via Monte Carlo simulations. The
basic principle of particle filtering is to represent the poste-
rior state PDF by a set of random samples or “particles”,
each with an associated weight, and to compute estimates
based on these samples and weights {x(i)k , w

(i)
k }

Ns
i=1. A set of

particles are generated and recursively updated by a nonlinear
process model (3) (which describes the evolution of the
process under observation) and a measurement models (4),
given the set of measurements, z1:k = (z1, ..., zk), generated
from the process.

xk = fk(xk−1, ωk) ↔ p(xk|xk−1) (3)
zk = hk(xk, υk) ↔ p(zk|xk) (4)

A. Particle filters

The application of particle filtering for prognostic involves
two distinct stages,state estimation and long-term predic-
tions.

1) State estimation: In principle, the posterior state PDF
p(xk|zk) can be estimated recursively by performing two
sequential steps, prediction and update [26]. Given the proba-
bility distribution p(xk−1|z1:k−1) at time tk−1, the prediction
step uses the system model (3) to obtain the a priori state
PDF p(xk|z1:k−1), at time tk.

p(xk|z1:k−1) =

∫
p(xk|xk−1, z1:k−1) p(xk−1|z1:k−1)dxk−1

(5)
Following the prediction step, the update step incorporates
the latest measurement vector zk, the a priori state PDF
p(xk|z1:k−1) calculated in the prediction step, the likelihood
function p(zk|xk), and uses Bayes’ rule to estimate the a
posteriori state PDF p(xk|z1:k) [26] as:

p(xk|z1:k) =
p(zk|xk) p(zk|x1:k−1)

p(xk|x1:k−1)
(6)

1095



Using particle filtering, the actual a posteriori state PDF is
approximated as

p(xk|z1:k) ≈
Ns∑
i=1

w
(i)
k δ(x0:k − x(i)0:k) (7)

where δ is the dirac-delta function, and (7) describes a
discrete weighted approximation to the true a posteriori state
distribution p(xk|z1:k) [26]. The principle of importance
sampling [26] is used to update the particle weights are each
iteration, where the formula for updating the particle weights
is given by [26]

w
(i)
k = w

(i)
k−1

p(zk|xk)p(xk|xk−1)

q(xk|x0:k, z1:k)
(8)

where q(xk|x0:k, z1:k) is the importance density [26], of-
ten chosen as the a apriori PDF for the state, so that
q(xk|x0:k, z1:k) = p(xk|xk−1), which leads to a simplifi-
cation of the weight update formula [26].

2) Long Term Predictions: Assuming that the current set
of particles and weights {x(i)k , w

(i)
k }

Ns
i=1 are a good represen-

tation of the system state at time tk, then the predicted state
PDF at time tk+p can be approximated by using the law of
total probabilities [22], whereby

p̂(x̂k+p|x̂k:k+p−1) ≈
Ns∑
i=1

w
(i)
k+p−1 p̂(x̂

(i)
k+p|x̂

(i)
k+p−1) (9)

Once the projected path for each particle, x̂(i)k+p, has been
generated, and the time at which each particle enters the
hazard zone (which defines an upper Hub and lower Hlb

bound range of values of the degradation state, at which
time the system is considered to have reached the end of its
serviceable life) has been identified, this information is then
combined with the weight of each particle w(i)

k to generate
a RUL PDF for the system. The RUL PDF can be computed
as:

pttf (k + p) =

Ns∑
i=1

Pr(Failure|X = x̂
(i)
k+p, Hlb, Hub) .w

(i)
k+p

(10)
where pttf (k + p) is the probability of equipment failure at
time tk+p. The overall system RUL PDF is then approxi-
mated by the sum of the individual failure probabilities at
each future time instant.

B. Multiple model particle filters

Two major sources of uncertainty in applying particle
filtering to prognostics are model uncertainty (errors in model
used to describe evolution of degradation process) and future
load uncertainty . To address these challenges, a multiple
model particle filtering approach is proposed [27] (Due to
space limitations, a very brief description of the method is
presented).

Using the available historical failure example, a set of
candidate models, designed to approximate the potential
behaviour of future failure examples, are first generated.
Particle filtering, as described in Section IV-A, is then applied

for each candidate model. Initially, each candidate model is
assigned equal weighting. Then, as a fault evolves, the plausi-
bility that each candidate model is descriptive of the observed
behaviour of the fault indicator is recursively estimated, and
the weight of each candidate model is then updated to reflect
how well each model describes the observed behaviour. The
final RUL PDF is then generated as the weighted sum of the
individual RUL PDFs generated by each candidate model.

C. Degradation process model

From previous experience [17], a useful model to describe
the evolution of the main bearing degradation process, as
described by the fault indicator signal, is:

xk = xk−1 +α1exp

[
−α2/tk
t2k

]
+α3 exp [α4 tk] +ωk (11)

where xk represents the degradation state at time tk, the αi

values represent model parameters which can be tuned to fit
the model to describe specific behaviour, and ωk is a zero-
mean Gaussian distribution representing the process noise
term. The model was tuned to the available historical failure
example, and from this a set of candidate approximating
models were generated. The behaviour described by each
of the generated candidate models is illustrated in Figure 7.

D. Application example

With just two turbines in the available data set with ter-
minal faults, there is limited scope to validate our approach.
Figure 7 illustrates the evolution of the RUL PDF for a
single historical main bearing failure example. Note that, as
the fault continues to evolve, the RUL PDF becomes more
accurate and precise, as the behaviour of the degradation
process evolves.

We note that the estimated parameters for the model in
(1) are particular to each turbine and the variance of wk

in (11) provides a means to address uncertainty in future
predictions. The more uncertain we are in the model, the
greater the variance of wk which has the effect of spreading
out the predictions.

V. CONCLUSIONS

This paper presents a prognostic framework for the main
bearing on commercial wind turbines using standard SCADA
data, utilising a main bearing temperature model for residual
generation. Since the residual models are local to each
turbine, and the fault detection threshold is set well outside
the ‘normal’ residual distribution, we can be reasonably con-
fident that the fault detection threshold is robust. However,
with the limited number of failure examples available in this
study, the exact specification of the failure point or ‘hazard
zone’ is more uncertain and requires further data to be robust.
However, the prognostic engine employed provides useful
and timely information to maintenance personnel; strong
indication of failure is given with a 30 day lead time and the
given probability density function gives an easy to interpret
measure of confidence in the RUL estimate.
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Fig. 7. Evolution of the RUL PDF for the main bearing of Turbine B and
the multiple model projections from the prediction origin
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