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ABSTRACT: Hydrodynamic models are important for the design, simulation and control of wave energy
converters (WECs). Linear hydrodynamic models have formed the basis for this and have been well verified
and validated over operating conditions for which small amplitude assumptions apply. At larger amplitudes a
number of nonlinear effects may appear. One of these effects is due to the changing bouyancy force as the body
moves in and out of the water. In this paper we look at identifying a nonlinear static block to be added the linear
hydrodynamic model to account for this effect. The parameters for this nonlinear block are identified from WEC
experiments simulated in a numerical wave tank (NWT). The parameters for the linear hydrodynamic model are
also identified from NWT experiments. Here we explore the use of a discrete time linear hydrodynamic model
which is well suited to the identification procedure.

1 INTRODUCTION

Hydrodynamic models are important for the design,
simulation and control of WECs. Linear hydrody-
namic models have formed the basis for this and have
been well verified and validated over operating con-
ditions for which small amplitude assumptions apply.
At larger amplitudes a number of nonlinear effects
may appear. Computational fluid dynamics (CFD) can
provide a fully nonlinear simulation, however at a
great computational expense. We seek to combine the
fidelity of the CFD simulations with the usability of
a parametric model, by identifying parametric hydro-
dynamic models from CFD generated data.

This approach has previously been utilised to iden-
tify representative linear parametric hydrodynamic
models (Davidson et al. 2013) (Armesto et al. 2014).
The next step is to identify a nonlinear paramet-
ric hydrodynamic model. Bhinder et al. (2011) used
CFD outputs to identify a parameter value for an
additional nonlinear term, representing the viscous
forces, to be added to a linear hydrodynamic model.
Including the nonlinearity, due to the time varying
wetted body surface, into a hydrodynmamic model,
has been investigated by integrating the pressure
over the instantaneous wetted surface of the body at
each time step, to calculate nonlinear Froude-Krylov
forces (Gilloteaux et al. 2008)(Babarit and Laporte-
Weywada 2009)(Guérinel et al. 2011). Zurkinden
et al. (2014) included nonlinearity into their hydrody-
namic model, by representing the hydrostatic restor-
ing force with a cubic polynomial, identified from ex-
perimental data.

In this paper we investigate including nonlinear ef-
fects onto the linear hydrodynamic model by adding a
nonlinear static block. We identify the parameters of
the linear model and the nonlinear static block from
NWT experiments. Additionally we explore the use
of a discrete time linear model which is well suited
towards the system identification problem.

The paper is laid out as follows; in Section 2 the
structure of the proposed linear and nonlinear mod-
els are outlined. Section 3 then details the NWT ex-
periments used to produce the system identification
data. Section 4 describes the process of identifying
the model parameters from the NWT generated data.
An illustrative example demonstrating these methods
is then given in Section 5 and the results of the differ-
ent models compared.

2 MODEL STRUCTURES

The structure of the models is based on the superpo-
sition of input forces to the body. This is depicted
in Figure 1. For the case of a WEC we consider
three external forces; the excitation force from the
wave, fE(t), the force from the power-take off (PTO),
fPTO(t), and the force from the mooring, fM(t). The
sum of these three forces is considered the input to the
body, fIN(t). We then seek a model that predicts the
body’s motion, y(t), in response to this input force.

A model structure which has strong appeal is a lin-
ear model, which is described in Section 2.1. How-
ever, for many operating conditions there may be non-
linear dynamics which can’t be captured by the linear
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Figure 1: Model structure accounting for excitation, PTO and
mooring forces.

model. We then seek to extend the region the linear
model description is valid through the addition of a
static nonlinear block, described in Section 2.2.

2.1 Linear hydrodynamic models

A description and comparison of the different hy-
drodynamic modelling methods for the dynamic
response of marine structures can be found in
(Taghipour et al. 2008). At the heart of these mod-
elling methods is the Cummins equation (Cummins
1962), which considers the total force from the fluid
being decomposed into three independent pieces; the
excitation force, fE(t), the radiation force. fRA(t),
and the restoring force, fRE(t). Following this ap-
proach, the model structure in Figure 1 also consid-
ers the decomposition of the excitation force from the
total fluid force.

2.1.1 Cummins equation
Cummins’ equation is based on Newton’s second law
of motion, that the product of the mass,M , and accel-
eration, ÿ(t), is equal to the sum of the forces:

Mÿ(t) = fRA(t) + fRE(t) + fIN(t). (1)

By considering the hydrodynamic radiation of a
body, with zero forward speed, in an ideal fluid,
(Cummins 1962) showed that the radiation forces can
be expressed as:

fRA(t) = −m∞ÿ(t)−
∫ t

−∞
hRA(t− τ)ẏ(τ)dτ (2)

where the infinite frequency added mass, m∞, and
the reduced radiation impedence impulse response
function,hRA(t), depend on the body geometry.

The restoring force is due to the mismatch be-
tween the gravity and bouyancy forces when the body
moves away from equilibrium. For linear hydrody-
namic models the restoring force is represented as a
linear spring, fRE(t)=−Ky(t).

This leads to the Cummins equation:

(M +m∞)ÿ(t)+

∫ t

−∞
hRA(t− τ)ẏ(τ)dτ+Ky(t)= fIN(t)

(3)

Traditionally the parameter values for the Cum-
mins equation have been identified using the bound-
ary element method (BEM) and are subject to the

linearising assumptions of that method. Identifying
the parameters from nonlinear NWT experiments has
been shown to develop representative linear models
(Davidson et al. 2013) (Armesto et al. 2014), however
the parameter identification turns out to be a noncon-
vex optimisation problem with a high computational
requirement and no guarantee of obtaining a global
minimum.

An alternative approach explored in this paper is
to abandon the Cummins equation and adopt a struc-
ture more suited to the system identification problem.
System identification involves identifying the param-
eters of a model, from measured data of the system
response to different excitation signals. Owing to the
discrete time nature of sampled data measured from
experiments, the majority of system identification
techniques are based on discrete time models (Ljung
1999). A simple linear discrete time model, the au-
toregressive model with exogenous input (ARX), is
investigated in this paper.

2.1.2 ARX model
An ARX model is a very well known type of model
for representing a system’s next output based on a lin-
ear combination of its past outputs and inputs. The
ARX model for the system represented by the block
B, in Figure 1, with an input, fIN(t), and output, y(t),
is:

y(t) +
na∑
i=1

aiy(t− i) =
nb∑
i=1

bifIN(t− i) (4)

Unlike the Cummin’s equation, which is derived
under consideration of physical laws, the ARX model
is a black box. A black box model simply reproduces
the experimental output data, given the same stimulus,
but the internal model structure bears no resemblance
to the physical world.

2.2 Nonlinear models

A way to introduce a nonlinearity in the relationship
between the input fIN(t) and the output y(t) of the
model, is utilising a nonlinear static block. Here we
look at introducing this static block in two ways; via
the well known Hammerstein structure, as detailed in
Section 2.2.1, and by using a feedback block oriented
model, Section 2.2.2.

2.2.1 Hammerstein model
The Hammerstein model consists of the cascade con-
nection of a nonlinear static block followed by a lin-
ear dynamic block (see Figure 2). The equation that
describes the input-output relationship for a Hammer-
stein model is (Pearson & Pottmann 2000):

y(t) +
na∑
i=1

aiy(t− i) =
nb∑
i=1

bir(fIN(t− i)), (5)

where, r() is a nonlinear static function.
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Figure 3: Block diagram representation of Cummins equation

In the Hammerstein model, the static relationship
between input and output is given by the product
of the static function, r(), and the steady-state gain
of the ARX model, DCgain. Therefore the charac-
terization of the two blocks is not unique, any pair
(DCgain/α , αr) will produce the same input and out-
put (Bai 2003). To remove this ambiguity the DCgain
is set equal to one, which allows the steady-state
gain for the entire Hammerstein model to be solely
represented by the nonlinear static function. In this
case, r(fIN(t)) will represent the static relationship
between input force and output body position. The
physical interpretation of r(fIN(t)), is therefore the
inverse of the restoring force, fRE(t), in the Cummins
equation, which is the static relationship between in-
put body position and output restoring force. The non-
linear static function, r(), can therefore be identified
separately from the linear dynamic block from knowl-
edge of the restoring force as a function of body po-
sition. In this way the Hammerstein model black-box
structure is given a shade of ’grey’ by considering of
the physical meaning of the nonlinear static function.

2.2.2 Feedback block-oriented model
The Cummins equation (Equation 3) can be graphi-
cally represented by Figure 3, and then further com-
pacted into Figure 4 that represents a Lur’e model
structure, which is characterised by a negative feed-
back (Pearson & Pottmann 2000). In this negative
feedback configuration, the nonlinear static block,
g(y(t)), relates the body position to the negative of
the restoring force (−fRE(t)). The nonlinear static
function, g(), can therefore be identified separately
from the linear dynamic block from knowledge of the
restoring force as a function of body position.
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Figure 4: Block diagram of the feedback block-oriented model

3 NUMERICAL WAVE TANK

A NWT is a generic name of numerical simula-
tors for nonlinear free surface waves, hydrodynamic
forces and floating body motions (Tanizawa 2000).
The NWT in this paper uses CFD as the basis for its
numerical simulations.

3.1 CFD

The dynamics of fluids is governed by the transfer
of mass, momentum and heat. These three processes
are described by the Navier-Stokes equations, a set of
partial differential equations derived in the early nine-
teenth century, which form the basis for the analysis
of fluid dynamics. In general, these equations have
no known analytical solution, however, they may be
treated numerically to obtain a solution using CFD.

To solve the Navier-Stokes equations, the continu-
ous partial differential equations are discretised into a
system of linear algebraic equations, which can then
be solved by computer. That is, the continuum is bro-
ken up into finite temporal and spatial portions to
transform a calculus problem into an algebraic prob-
lem. This is implemented spatially via the mesh with
different methods used to discretise the spatial vol-
umes such as: finite volume, finite difference and fi-
nite element. The problem is then also discretised
temporally using timesteps.

CFD treats the fluid-structure interaction problem,
using the scheme outlined in Figure 5. First, the
Navier-Stokes equations are solved for the fluid pres-
sure and velocity throughout the domain. The fluid
pressure is then integrated over the body’s surface,
to give the hydrodynamic force on the body. The re-
sulting body motion, due to the hydrodynamic force,
is calculated using Newton’s laws. The body and the
fluid are iterated forward to the next time step and the
process is repeated. This is a highly computationally
costly way to simulate hydrodynamics. The paramet-
ric models described in Section 2, could perform a
simulation orders of magnitude faster. The goal there-
fore, is to only use the computationally expensive
CFD simulations once, for a series of NWT experi-
ments to provide information to identify the parame-
ters of Section 2’s models. These parametric models
can then be used for device simulation.
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3.2 NWT System Identification Experiments

The models in Section 2 contain two different types
of blocks: the linear dynamic block and the nonlin-
ear static block. This section details the two differ-
ent NWT experiments, used to identify these two dif-
ferent types of blocks. The NWT Dynamic Experi-
ment is used to identify the linear dynamic block and
the nonlinear static block is identified from the NWT
Restoring Force Experiment.

NWT Dynamic Experiment: The dynamic experi-
ment involves exciting the body with an input force
and measuring the resulting motion. In particular,
the PTO force is used to excite the body (fIN(t) =
fPTO(t)), because it offers the flexibility of provid-
ing any desired signal. Two vectors, containing the
sampled input PTO force, {fIN(t)}, and the resulting
body displacement, {yd(t)}, are produced by this ex-
periment for the model identification.

NWT Restoring Force Experiment: This experi-
ment is used to identify the static relationship between
the body displacement and the hydrostatic restoring
force. The body is displaced through its full range
of motion and the resulting hydrostatic force on the
body is measured. Two vectors, containing the sam-
pled body displacement, {yr(t)}, and the hydrostatic
restoring force, {fRE(t)}, are produced by this exper-
iment for the model identification.

3.3 OpenFOAM

The NWT is implemented using the opensource CFD
software OpenFOAM. OpenFOAM has been used
to simulate coastal processes (Jacobsen et al. 2012)
(Higuera et al. 2013), WEC operation (Palm et al.
2013) (Schmitt et al. 2012), (Iturrioz et al. 2013)
and extreme events (Vyzikas et al. 2013). It has been
used in NWT applications for hydrodynamic parame-
ter identication (Bonfiglio et al. 2011) (Armesto et al.
2014). Numerous reports and theses are available on
the development of a NWT in OpenFOAM (Afshar
2010), (Lambert 2012) and (Cathelain 2013).

The present NWT uses the waveFOAM solver,
which was created by Jacobsen et al. (2012) to sim-
ulate coastal processes. waveFOAM is an extension
of the interFOAM solver, that allows the creation and

absorption of waves and currents.
The body motion is simulated by coupling the sixD-

oFRigidBodyDisplacement solver with waveFOAM’s
dynamic mesh solver, waveDyMFOAM. Inside the
sixDoFRigidBodyDisplacement solver are two useful
features: the constraints and restraints functions. The
constraints function allows the body to be constrained
to only move in designated degrees of freedom. The
restraints function allows spring and damper forces to
be applied to the body. Palm et al. (2013) modified the
restraints function, to couple the solver with a model
for mooring forces on a floating body. Here, we fol-
low a similar approach and make modifications to the
restraints function to apply a PTO force to the body.

The forces function calculates the hydrodynamic
force on the body, by integrating the fluid pressure
over the body’s surface. The sixDoFRigidBodyDis-
placement solver then sums this hydrodynamic force
with any user defined constraints and/or restraints
forces, and calculates the resulting body motion. The
NWT Restoring Force Experiment uses the forces
function to calculate the hydrostatic restoring force.

3.3.1 Mesh
The mesh is a very important part of the calculation.
Poor meshes lead to poor results. There exists a trade-
off between number of cells and computation time.
The present NWT is meshed using blockMesh and
consists of a central block with a high density of cu-
bic mesh cells. The snappyHexMesh utility is then
used to import any body geometry into this central
region by removing and refining the mesh cells. snap-
pyHexMesh also allows the mesh around the body to
be refined to ensure small enough cell sizes to cap-
tures relevant viscous effects and that guidelines such
as y-plus values at boundary layers are obeyed.

The domain is split vertically into three regions:
water, interface and air. The interface region spans
the area where the free surface may appear during the
simulation and is set with a high mesh density of uni-
form vertical cell length. The air region has a low cell
density and the length of the cells increase with dis-
tance from the interface upwards to the atmosphere
boundary. The water region has moderate mesh den-
sity and the length of its cells are gradually increased
from the interface down to the tank floor. Horizon-
tally the mesh stretches away from the central block,
matching the high density in the central region and
then growing larger with distance towards the tank
wall to reduce the overall amount of cells needed.

4 MODEL IDENTIFICATION

This section outlines the parameter identification pro-
cedure for the models discussed in Section 2. It is
important to note, that both the ARX block and the
nonlinear static block, are linear with respect to the
parameters. Therefore, the parameters for these mod-



els can be identified using linear regression and least
squares.

4.1 Linear regression and least squares

Let’s consider a model with an output, ẑ, that is a lin-
ear combination of p independent variables, xi:
ẑ = θ1x1 + · · ·+ θpxp (6)

where the coefficients, θi, are the unknown parame-
ters (Nelles 2001).

It will be assumed that, i = 1..N data samples,
{z(i)}, have been measured. The error at each sam-
ple is ε(i) = z(i)− ẑ(i). In matrix form:
ε = z− ẑ = z−Xθ (7)

where:
ε = [ε(1) ε(2) ... ε(N)]

T
, (8)

z = [z(1) z(2) ... z(N)]
T
, (9)

ẑ = [ẑ(1) ẑ(2) ... ẑ(N)]
T
, (10)

X =


x1(1) x2(1) ... xp(1)
x1(2) x2(2) ... xp(2)

...
... . . . ...

x1(N) x2(N) ... xp(N)

 , (11)

θ = [θ1 θ2 ... θp]
T
. (12)

It’s well known that the estimated parameters that
minimize the least squares error are:
θ̂ = argmin

θ
(εTε) = (XTX)−1XTz. (13)

If the parameters have also to satisfy the linear equal-
ity constraints Aθ = d, the estimated parameters are:
θ̂c = θ̂−H−1AT (AH−1AT )−1(Aθ̂− d), (14)

where H = XTX, and θ̂ is calculated via Equation 13
(Nelles 2001).

4.2 ARX model identification

Performing the NWT Dynamic Experiment (see Sec-
tion 3.2), the signals {fIN(t)} and {yd(t)} for i =
1...N , are generated, and they can be utilised as input
and output for the identification of the ARX model.
Because the system that we are trying to replicate with
our model is causal, we impose na > nb for the ARX.
Therefore, the first na values of the output data are
utilised as initial conditions, and the first possible pre-
dicted output is for t = na + 1. In this case Equations
9, 11 and 12 become:
z = [yd(na + 1) yd(na + 2) ... yd(N)]

T
, (15)

X=


yd(na) ... yd(1) fIN(na) ... fIN(na−nb+1)
yd(na+1) ... yd(2) fIN(na+1) ... fIN(na−nb+2)

... . . . ...
... . . . ...

yd(N−1) ... yd(N−na) fIN(N−1) ... fIN(N−nb)

 ,
(16)

θ̂arx = [a1 a2 ... ana b1 b2 ... bnb ]
T
. (17)

The estimated parameters are given from Equation 13.

4.3 Hammerstein model identification

The first step is to identify the nonlinear static
block. The nonlinear static function can be approxi-
mated with a linear combination of basis functions,
in this way it is possible to apply the linear re-
gression for the identification. For simplicity, the se-
lected basis functions in this paper are polynomials
{x0, x1, x2, ..., xnc}. Therefore, the relationship be-
tween the input and the output of the nonlinear static
block is:
ŝ(t) = c1fIN(t) + c2f

2
IN(t) + ...+ cncf

nc
IN(t) (18)

where, c0 = 0, is imposed (applying a null force the
displacement has to be zero). In static conditions,
s(t) = y(t) and fIN(t) = −fRE(t), therefore Equa-
tion 18 becomes:

ŷ(t) =
nc∑
k=1

ck(−fRE(t))k (19)

The NWT Restoring Force Experiment (see Section
3.2) generates the signals {fRE(t)} and {yr(t)}, that
can be utilised as input and output for the identifica-
tion of the nonlinear static block. In this case, Equa-
tion 6 becomes Equation 19 and Equations 9, 11 and
12 become:
z = [yr(1) yr(2) ... yr(N)]

T
, (20)

X=


[−fRE(1)]1 [−fRE(1)]2 ...[−fRE(1)]nc

[−fRE(2)]1 [−fRE(2)]2 ...[−fRE(2)]nc

...
... . . . ...

[−fRE(N)]1 [−fRE(N)]2...[−fRE(N)]nc

 , (21)

θ̂Hc = [c1 c2 ... cnc ]
T
. (22)

The estimated parameters are given from Equation 13.
In the second step, the ARX block is identified

utilising the signals {fIN(t)} and {yd(t)}, gener-
ated with the NWT Dynamic Experiment. Now that
θHc is known, it is possible to calculate the output
{s(t)} of the nonlinear static block using Equation
18. In this way, both the input and the output of
the ARX is known, and it is therefore possible to
identify the ARX parameters θHarx, under the con-
straint that the DC gain of the ARX is equal to one:
DCgain = (

∑nb

i=1 bi)/(1 +
∑na

i=1 ai) = 1, that corre-
sponds to an equality constraints on the parameters
A = [−1,−1, ...,−1,1,1, ...1] and d = 1. In this case
Equations 9, 11 and 12 become:
z = [yd(na + 1) yd(na + 2) ... yd(N)]

T (23)

X=


yd(na) ... yd(1) s(na) ... s(na − nb)
yd(na+1) ... yd(2) s(na+1) ... s(na−nb+1)

... . . . ...
... . . . ...

yd(N−1) ... yd(N−na) s(N−1) ... s(N−nb)


(24)

θ̂Harx = [a1 a2 ... ana b1 b2 ... bnb ]
T (25)

The estimated parameters are given from Equation 14.



4.4 Feedback block-oriented model identification

The first step is to identify the nonlinear static block.
The nonlinear static function, g() can be identified
following the same procedure as for the Hammer-
stein model, utilising the NWT Restoring Force Ex-
periment data {fRE(t)} and {yr(t)}. Here the non-
linear static block takes the body displacement as in-
put and outputs the negative of the restoring force:
−fRE(t) = g(y(t)). Therefore Equations 9, 11 and 12
become:
z = [−fRE(1) −fRE(2) ... −fRE(N)]

T
, (26)

X=


[yr(1)]

1 [yr(1)]
2 ...[yr(1)]

nc

[yr(2)]
1 [yr(2)]

2 ...[yr(2)]
nc

...
... . . . ...

[yr(N)]1 [yr(N)]2...[yr(N)]nc

 , (27)

θ̂Fc = [c1 c2 ... cnc ]
T
. (28)

The estimated parameters are given from Equation 13.
In the second step, the ARX block is identified

utilising the signals, {fIN(t)} and {yd(t)}, from the
NWT Dynamic Experiment. Now that θFc is known,
it is possible to calculate the output of the nonlinear
static block, {g(yd(t))}, and then the input of the for-
ward block: {u(t)} = {fIN(t)} − {g(yd(t))}. In this
way both input, {u(t)}, and output, {yd(t)}, of the
ARX are known, and it is possible to identify the
ARX parameters, θFarx, with the procedure explained
in Section 4.2.

5 AN ILLUSTRATIVE EXAMPLE

In this section we implement the methods described
in Sections 2 - 4, to model the heave motion of a
test device. The geometry of the test device is a ver-
tical cone, which has strong known nonlinearities in
its restoring force, and is thus chosen to illustrate the
different model types’ capabilities of handling this ef-
fect.

The cone has a diameter and height of 1m and is
orientated with its axis aligned vertically, with the
base above the tip. The cone’s mass density is 50%
of water, resulting in a submerged draft of 0.8m. The
motion will be constrained to heave only.

In this illustrative example we consider the case
where the body is subjected to a relatively low fre-
quency (0.125Hz) sinusoidal input PTO force. The
frequency of this experiment was intentionally cho-
sen low, to emphasize the static nonlinearity of the
restoring force, by reducing other possible velocity
dependent nonlinearities. Additionally to focus on the
contribution of the nonlinear restoring force, a lami-
nar CFD simulation is run in this experiment, to elim-
inate any possible nonlinear effects from turbulence.
The body is also initially displaced 30cm above its
equilibrium, allowing its free decay oscillation to be
superimposed with the response to the PTO force.

Figure 6: Heave motion predictions by the NWT simulation and
two linear hydrodynamic models. The input is a sine of ampli-
tude 240N and frequency 0.125 Hz.

The results for the linear ARX model are shown in
Section 5.1, and the results from the nonlinear Ham-
merstein and feedback-block orientated models are
shown in Section 5.2.

5.1 ARX model

This section compares the results of the linear ARX
model against the NWT simulation and also against
a linear hydrodynamic model based on the Cum-
mins equations, the Cummins BEM model. The Cum-
mins BEM model’s radiation parameter values are
identified using the toolbox by Perez & Fossen
(2009), taking as input frequency domain hydrody-
namic co-efficients, calculated using the BEM soft-
ware WAMIT. Its linear restoring force parameter, K,
is identified as the product of the water density, ρ, the
gravitational constant, g, and the cone’s free surface
cross-sectional area at equilibrium, S, i.e. K = ρgS.

On Figure 6, are heave motion predictions by the
NWT simulation and the two linear hydrodynamic
models, when the sinusoidal input PTO force has a
relatively small amplitude (240N). The output con-
tains two parts, the transient due to the initial con-
dition and the steady state response to the harmonic
input. It can be seen that, although the three predic-
tions handle the transient part at the start slightly dif-
ferently, they converge to the same result for the re-
sponse to the input force. For these small amplitude
conditions the linear models are shown here to work
well.

A second simulation is then performed of the exact
same experiment, except the amplitude of the PTO is
increased by a factor of four, to 960N (Figure 7). Here
we can see that the resulting body motions are much
larger and that the performance of the three models di-
verge. The fully nonlinear NWT simulation exhibits
an assymmetrical output, with respect to the equi-
librium position, in response to the sinusoidal input,
owing to the fact that the cone’s geometry makes it
harder to push into the water than out. It is not pos-
sible for the linear models to replicate this nonlinear
behaviour.



Figure 7: Same scenario as Figure 6 but with a four time larger
PTO force applied (960N).

(a)

(b)

(c)

Figure 8: Results from the NWT Restoring Force Experiment

5.2 The nonlinear models

The linear models performed well compared to the
NWT simulation for the small amplitude conditions,
but were unable to handle to larger amplitude con-
ditions in Figure 7. Here we examine the nonlinear
models’ ability to handle these conditions. First the
result of the NWT Restoring Force Experiment and
the identification of the nonlinear static blocks is pre-
sented, and then the nonlinear models performance
for the large amplitude conditions is shown.

The results from the NWT Restoring Force Exper-
iment are shown in Figure 8. Figure 8-(a) shows the
motion of the body, starting from the fully submerged
position and slowly moving out of the water. Figure
8-(b) shows the hydrostatic force on the body dur-
ing this motion. Figure 8-(c) then plots the hydrostatic
force as a function of position, showing the nonlinear
nature of this relationship.

The hydrostatic force versus displacement relation-
ship, obtained in Figure 8-(c), is then transformed
to give r(fIN(t)) for the Hammerstein model and
g(y(t)) for the feedback block oriented model, shown
in Figure 9. Also in Figure 9 is the nonlinear static
functions’ fit to the NWT data. The order for the poly-
nomial is chosen as the smallest value which leads to
a mean squared error (MSE) of less than 3%, that in
our opinion is a good compromise between parsimony
and accuracy. From Figure 10, a 7th order polynomial
is selected.

The results of the nonlinear models compared to the
NWT simulation is shown in Figure 11. Here it can be
seen that the nonlinear models outperform their lin-

(a) (b)

Figure 9: (a) Nonlinear static function r(fIN (t))) of the Ham-
merstein model. (b) Nonlinear static function g(y(t)) of the feed-
back model.
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Figure 10: The fitting error for varying polynomial order

ear counterparts’ performance for the same case in
Figure 7. The nonlinear models are able to replicate
the assymetrical steady state response, and better able
to reproduce the transient oscillations, particularly the
Feedback block-oriented model which does very well.

A further comparison between the linear ARX
model and the two nonlinear models is displayed in
Figure 12, which plots the fit percentage between the
NWT data and the models, for varying model or-
der naand nb. Figure 12 shows the Feedback block-
oriented model is best able to fit the NWT data, the
Hammerstein was second best and the ARX has the
poorest performance.

Figure 11: Heave motion predictions by the NWT simulation
and the two nonlinear hydrodynamic models for the case with
the large amplitude PTO force
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Figure 12: The model fit percentages for varying model order of
the linear dynamic block for the ARX, Hammerstein and Feed-
back block-oriented models

6 CONCLUSION

An ARX model is shown as a simple but effective
possible linear hydrodynamic model, offering the ad-
vantage of a convex optimisation for parameters that
can be easily solved. Nonlinear dynamics are inves-
tigated by including a nonlinear static block, either
in series or in a feedback loop with the linear ARX
model. By consideration of the physical meaning
of the input/output relationship, the nonlinear static
block should model the relationship between the hy-
drostatic restoring force and the body position. The
nonlinear static block is parameterised using a linear
combination of basis functions, which can then also
be easily identified from NWT experiments designed
to produce a matrix of hydrostatic force versus body
displacement values.
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