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Abstract
Using a mathematical procedure, we determine appropriate sampling rates for logging heart rate, at a variety of exercise
intensities. The mathematical procedure involves correlating exercise and heart rate data to determine a dynamical
mathematical model, from which the frequency response of the relationship between exercise intensity and heart rate can be
determined. The sampling rate is then straightforwardly deduced by making appropriate measurements on the frequency
response curve. We show how careful consideration needs to be given to the choice of dynamical model structure and the
work regimen, so that consistent and convincing conclusions can be drawn. We demonstrate that the dynamics of the work-
rate/heart-rate system are dependent on the nominal work/heart rate, but a 5-s sampling period, as used in many commercial
heart rate monitors, appears to be adequate, especially when some averaging is performed before logging.
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Introduction

Heart rate monitors with a recording facility are

widely available, with a common minimum sampling

interval of 5-s (Laukkanen & Virtanen, 1998; Polar,

2003). Such monitors are of considerable use

to athletes in guiding their training, principally to

ensure that the exercise intensity is appropriate to the

specific energy system being trained, as well as in

pacing for training and racing.

In this paper we attempt to determine a valid heart

rate sampling period for dynamical heart rate data

logging, given the paucity of literature justifying

the current adoption of a 5-s minimum interval.

While many studies have examined the steady-state

accuracy of heart rate monitors (Carroll, Godesn, &

Stone, 1991; Laukkanen & Virtanen, 1998;

MacFarlane, Fogarty, & Hopkins, 1989; Polar,

2003), few researchers have examined the dynamical

response of heart rate to changes in exercise intensity,

which might lead to the specification of a suitable

sampling period. One might speculate that this

question has been given some consideration by

developers of commercial heart rate monitors but,

where they exist, such studies are not available in the

public domain. Exceptionally, some heart rate

monitors can log at a shorter interval than 5-s

(e.g. the PolarTM Vantage), but generally memory

limitations preclude the use of this interval, except for

very short exercise bouts.

One of the applications of dynamical heart-rate

logging is the determination of ‘‘anaerobic thresh-

old’’ in athletes. Indeed, this is the motivation

(Ringwood, 1999) that prompted the research

reported in this paper, and has also been considered

in such a context by others. However, perhaps

critically, none have studied data from the work-

rate/heart-rate system at all exercise intensities. For

example, Yamamoto et al. (1988) have looked at

using a pseudo random binary sequence (PRBS)-like

excitation signal for work rate but have not ap-

proached ‘‘anaerobic threshold’’ at all during the

exercise protocol. Wigertz (1970) and Bakker,

Struikenkamp and De Vries (1980) used sinusoid

excitation of the work-rate/heart-rate system to

model the ventilation and heart rate response to

exercise. However, neither study stresses the entire

work-rate range, relying instead on a small portion of

the potential exercise range and thus leading to an

incomplete system description.

The important issues addressed by this paper are

as follows:

. A time domain technique is used to determine a

mathematical model for the relationship between

exercise intensity and heart rate, from which
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reliable frequency response (and consequently

sampling period) estimates may be obtained.

. Small-amplitude stimulii are used to assess the

dynamics of the work intensity/heart rate rela-

tionship at a number of levels to assess if the

dynamics are consistent at all exercise intensities.

. An assessment will be made as to the validity of

the 5-s sampling period currently adopted by

most commercial heart rate monitors.

Sampling period determination

from frequency response

The classical method for determination of the mini-

mum sampling period of a signal is provided by the

Nyquist-Shannon Theorem (NST) (Nyquist, 1928;

Shannon, 1949), which specifies the minimum

(Nyquist) sampling frequency as:

foðHzÞ � 2BðHzÞ ð1Þ

where B is the bandwidth of the signal. The band-

width of a signal specifies that point in frequency

above which all spectral components lie below a

defined amplitude. Equation (1) can also be written

in terms of angular frequency, o (rads � s71), where

oo ¼ 2pfo. In some cases, for example where a signal

is irregularly sampled (Vaidyanathan, 2001), the

condition in (1) can be relaxed a little and this may

have some relevance in the case of heart rate, where

measurements of heart rate are available at each heart

beat (measuring the previous interval). However, in

commercial heart rate monitors these samples are

subsequently aggregated and stored on a fixed time

interval (e.g. 5 s). Therefore, such latitude does not

apply in this case.

For sampling a system, such as the system relating

heart rate to exercise intensity, the bandwidth, B, is

determined in relation to the system frequency

response, as depicted in Figure 1. The key idea here

is that the frequency response represents (concep-

tually, at least) what would happen if the system were

excited with a signal, u(t), containing (uniform

quantities of) all frequency components, as suggested

by U( f ). The output spectrum, Y( f ), would then

show the spectral properties of the system under this

maximal case. A sampling period determined for

this output signal, y(t), would then be appropriate

for this system. The input and output signals, u(t)

and y(t), represent exercise intensity and heart rate

respectively.

To determine the frequency response of the

system, two approaches are possible: (1) a signal

with a flat spectrum (as shown in Figure 1) is input to

the system; or (2) individual sinusoids are input to

‘‘build up’’ a picture of the frequency response.

Only two signals have the flat spectrum required in

the first possibility above: an impulse and white noise.

An impulse, having infinite amplitude and negligible

width, is physically unrealizable, while white noise

demands continuous instantaneous changes in input

signal and would be unrealistic in terms of a required

exercise intensity profile. Possibility (2) above essen-

tially allows the frequency response to be built up

from samples of the spectrum at the individual

sinusoidal frequencies. However, this requires a large

number (410) of individual sinusoidal tests, with

athletes required to follow an exact sinusoidal profile,

Figure 1. Bandwidth measures for signals and system.
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which is impractical, in terms both of difficulty and

duration.

A useful signal, which has an approximately flat

spectrum, is the pseudo random binary sequence

(PRBS). This has recently been adopted by phy-

siologists as optimal in providing maximum process

information, while minimizing the duration of required

experiments (Guild, Austin, Navakatikyan, Ringwood,

& Malpas, 2001), is well known as a suitable excitation

for a variety of data-based modelling approaches

(Ljung, 1999) and has been used before in heart rate

excitation (Yamamoto et al., 1988).

In general, the frequency response of a system can

be evaluated using an excitation with a non-flat

spectrum, from:

Gð joÞ ¼ jGð joÞjffGð joÞ ¼ Yð joÞ
Uð joÞ ð2Þ

where U( jo) and Y( jo) represent the complex

Fourier transforms of input and output signals

respectively. A superior method, using similar mea-

sures, to evaluate the frequency response is provided

by:

ĜðjoÞ ¼ Pxy

Pxx
ð3Þ

where Pxy is the cross-spectral density of the system

input and output and Pxx is the spectral density of

the system input signal. An attempt was made to

determine the frequency response (and hence a

suitable sampling period) for a number of athletes

using this method, but no cut-off frequency was

apparent and the bandwidth is indeterminate (see

McCarthy, 2005 for details).

This is due to the following issues:

. natural heart rate variability (Capurro, Diambra,

& Malta, 2003; Tulppo, Makikallio, Takala,

Seppanen, & Huikuri, 1996);

. measurement noise; and

. inaccuracies in interpolating heart rate and work

intensity on to a regular sampling period.

All of the above issues are related to the time domain

heart rate and work intensity signals. The direct spec-

tral method of (3) makes no attempt to deal with these

issues and significant distortion of the estimated

frequency response occurs. The method outlined in

the following section tries to deal with these issues

directly.

Frequency response estimation via time

domain modelling

In this section, a method for evaluating the frequency

response by first creating a time domain, data-based

model will be outlined, from which reliable band-

width measures may be obtained.

Time domain modelling

The focus here is to produce a mathematical model

that relates the heart rate time-series to the measured

exercise intensity. In general, this model has been

found to be non-linear (Ringwood, 1999), but to

determine an analytical frequency response measure

(in the following section), a linear formulation must be

used. However, so as not to compromise the validity of

a linear model, a number of linear models will be

determined at various operating levels of heart rate/

exercise intensity. This has been shown to be a valid

approach in data-based modelling (Takagi & Sugeno,

1985) and has its origins in local linearization of

non-linear systems about operating points (Athens,

Dertouzos, Spann, & Mason, 1974). In this research, a

number of operating points will be examined, about

which variations in exercise intensity will be induced.

This provides an information-rich input signal, which

will allow the determination of a mathematical system

model from measurements of the system input and

output signal. Such a practice, entitled system identifi-

cation, is a well-established practice in dynamical

modelling and control circles (Ljung, 1999).

In linear dynamical modelling, a set of discrete-

time data, sampled at regular intervals separated in

time by the sampling period, T, is used to determine

the parameters of a linear model of the form:

ykþ a1yk�1 þ a2yk�2 þ � � � þ anyk�n ¼ bouk�d

þ b1uk�d�1 þ � � � þ bmuk�d�m þ ek

ð4Þ

where m� n, with u and y representing the input/

output data respectively. ek can represent an unmea-

surable disturbance on the output, or measurement

noise. Equation (4) can be written in the following

form, which separates out the measurements from the

parameters as:

yk ¼ � a1yk�1 � a2yk�2 � � � � � anyk�n þ bouk�d

þ b1uk�d�1 þ � � � þ bmuk�d�m þ ek ð5Þ

yðkÞ¼½�yk�1 �yk�2 ��� �yk�n uk�d uk�d�1 ... uk�d�m�

�

a1

a2

..

.

an

bd

bdþ1

..

.

bdþm

2
6666666666666664

3
7777777777777775

þek ð6Þ
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¼f�þ ek ð7Þ

Let’s now suppose that an output/input data set

(y1, . . . ,yN)/(u1, . . . ,uN) is now available. Equation

(7) can now be expanded to incorporate all these

data as:

Yk ¼ F �þ E ð8Þ
where

E¼

e1

e2

���
eN�n

2
6664

3
7775; Y¼

ynþ1

ynþ2

���
yN

2
6664

3
7775;

F¼

yn

ynþ1

..

.

yN�1

yn�1 ��� y1 un�dþ1 un�d ���
yn ��� y2 un�dþ2 un�dþ1 ���
..
.
��� ..

. ..
. ..

.
���

yN�2 ��� yN�n uN�d uN�d�1 ���

un�d�mþ1

un�d�mþ2

..

.

uN�d�m

2
66664

3
77775

ð9Þ

E now represents the error in using the same

parameter set with each set of data, termed the

‘‘equation error’’, as well as measurement noise and

output disturbances. Equation (8) represents a set of

linear equations that need to be solved for Y. A

common solution to this set of overdetermined

equations is provided by minimizing the sum of

squares of errors (ET E) (Ljung & Glad, 1994) as:

�̂ ¼ ðFTFÞ�1FT Y ð10Þ

Several other methods are also available for system

identification, using a variety of model forms,

performance criteria, and optimization techniques

(Ljung, 1999). That measurement noise and other

disturbances, represented by E in (8), are minimized

is a major feature of the approach to frequency

response determination adopted in this paper. This is

in contrast to the method outlined in equation (2),

where disturbances and noise are allowed to directly

affect the spectral estimates.

One outstanding issue to be addressed is the

determination of the model structure, via choice of

the parameters n, m, and d in (4). Usually, they are

determined by calculating the performance (e.g. in a

least squares sense) of various model structures on

the input/output data. However, some care needs to

be taken, since higher-order models will generally fit

the data progressively better. Usually, this means that

the model is starting to fit the noise in the data, as well

as the underlying dynamics. This can be countered

by examining, for the purpose of structure determi-

nation, the performance of each model on a data set

different from that which determined the model

parameters (sometimes termed a ‘‘validation’’ set).

This second data set will have different additive

noise, giving poorer model performance, if an

attempt is made to fit to the noise in the original

data. Another alternative is to use an ‘‘order-

weighted’’ performance measure, such as Akakie’s

information theoretic criterion (AIC) or minimum

description length (MDL) (Ljung, 1999), which

provide a performance penalty commensurate with

the complexity (e.g. number of parameters) of the

model. A manual determination is also possible by

looking at the incremental benefit of each increase in

model complexity. Model parsimony is assumed to

be achieved when further increases in complexity

(order of numerator and denominator) only result in

relatively minor improvements in model accuracy.

Frequency response calculation

Given that a parameter set (as in (10)) has been

determined for the chosen linear model (as in (4)), it

now remains to determine the frequency response of

this model, from which the bandwidth (and, hence,

the minimum heart rate sampling frequency) can be

determined. Neglecting ek in (4), since we are

focusing on the relationship between yk and uk, and

employing the z-transform, we get the discrete-time

transfer function, G(z), as:

GðzÞ ¼ Y ðzÞ
UðzÞ ¼

b0 þ b1z�1 þ � � � þ bmz�m

1þ a1z�1 þ � � � þ anz�n
z�d ð11Þ

where z71 represents the unit delay operator and d is

the number of steps of pure delay in the system.

Given (11), the frequency response may now be

easily evaluated as:

GðoÞ ¼ jGðoÞje jffGðoÞ ¼ GðzÞjz¼e joT ð12Þ

where o is frequency in rad � s71. In general, as

expressed in (12), G(o) is a complex quantity,

exhibiting both magnitude and phase properties. If

the system in (11) is in factored form, then:

GðoÞ ¼ ðe
joT � z1Þ � ðd joT � z2Þ:::::
ðe joT � p1Þ � ðe joT � p2Þ:::::

e joð�TdÞ ð13Þ

where zi and pj denote the zeros and poles of the

model respectively. In terms of using frequency

response to determine sampling period, we are

primarily interested in magnitude, which can be

easily evaluated, for different values of o, as:

GðoÞ ¼ jb0 þ b1z�1 þ � � � þ bmz�mj
j1þ a1z�1 þ � � � þ anz�nj

����
z¼e joT

ð14Þ
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Methods and experimental set-up

A cycle ergometer was set up as shown in Figure 2.

The ergometer enabled the participant to perform

the exercise test while stationary, enabling easy

connection of speed/work rate recording equipment

to the computer. The ergometer primarily uses wind

resistance to provide the load to simulate cycling

forces (Murphy, 1999). Cycling induces less motion

artefact into heart rate measurement than other

alternative candidate exercises, such as running,

since less upper body movement is involved. The

following measurements were made:

. Heart rate, via a PolarTM chest strap and Printed

Circuit Board Assembly (PCBA) receiver board

connected to a laptop computer.

. Rear wheel speed, via a conventional wheel

magnet and sensor, interfaced to the laptop

computer.

To assist the participant in keeping pace, a

conventional speed display was mounted on the

handlebar. Heart rate and speed were logged on a

laptop computer via a Personal Computer Memory

Card International Association (PCMCIA) card

connected to the heart rate and speed sensors. The

(uncoded) PolarTM chest strap transmits a short

burst of a 5-kHz signal when an ECG QRS complex

is electrically detected on the chest (Laukkanen &

Virtanen, 1998; Ruha, Sallinen, & Nissila, 1997),

which is subsequently received by the PCBA (Polar,

1997) and a corresponding signal forwarded to the

PCMCIA card in the computer. The accuracy of

commercial heart rate monitors, using electrical

detection of the QRS complex, is discussed in the

literature (see, for example, MacFarlane et al.,

1989). Speed (related to work intensity) is measured

by detecting a wheel magnet passing a magnetically -

sensitive sensor, which passes on pulse-like signals to

the PCMCIA card. A number of wheel magnets were

used for improved speed resolution.

Exercise protocol

To examine the dynamical relationship between

exercise intensity and heart rate at different operating

points, an exercise protocol was chosen which

applied individual stimuli at a small variety of

exercise intensities. In addition, the exercise stimulus

must have certain properties, if it is to be useful in

eliciting the complete dynamics at any operating

point:

. It must have broad frequency content, usually

assured by having a variety of rapid changes in

the signal (Ljung, 1999).

. It must be of sufficient amplitude to provide a

measurable response in the heart rate signal.

This not only relates to the amplitude of the

exercise excitation, but also to the frequency

content (rate of transition).

. It must be of sufficiently low amplitude that the

deviation from the operating point does not

violate the assumption of local linearity, allow-

ing a linear model to be synthesized.

. It must be sufficiently long so that the averaging

effect of the data-based modelling algorithms

can be used to significantly reduce the effect of

measurement noise and other disturbances.

. It must be sufficiently short so that it can be

completed by the weakest individual.

. It must exercise, ideally, the complete range of

heart rate.

The chosen exercise protocol is as shown in Figure

3 and is deemed to be the best compromise in

fulfilling the objectives listed above. Note that a Tacx

Eco Power air-trainer was used, which gives a

resistance roughly proportional to speed cubed,

similar to real cycling. Some equivalence of the

relationship between speed and power (in watts) can

be had at low speed (i.e. 15 km � h71ffi 11 W).

Participants

To draw broad conclusions, healthy individuals of

varying athletic ability were recruited, who also

varied in size and age. From a poll of 10 full trials,

Figure 2. Experimental set-up. A/D, analog-to-digital conversion;

PCMCIA, Personal Computer Memory Card International

Association; HRM, heart rate monitor; PCBA, Printed Circuit

Board ‘‘A’’ Assembly of Polar (1997).
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five male participants (referred to as P1 to P5 in the

remainder of the paper) were selected, eliminating:

. recordings that contained a large proportion of

recording artefacts or logging malfunctions

(recall that each participant must undergo three

separate exercise sessions), and

. ECG traces containing significant irregularity

(e.g. peak splitting), making calculation of inter-

peak period very difficult.

Of the five participants finally selected, one was

sedentary, one was recreationally active, and three

were competitive athletes in non-cycling-related

aerobic sports. A medical questionnaire was admi-

nistered to all participants. All five participants were

competent cyclists. Table I outlines some of the

participants’ details.

Data pre-processing

Once the experimental data have been successfully

recorded, the stored data must be pre-processed

before modelling. The steps involved in this proces-

sing are as follows:

1. The heart rate and exercise intensity signals are

digitized traces of the PCBA and speedometer

signals respectively. The pulses in these traces,

which represent heart beats (ECG QRS com-

plexes) and wheel revolutions respectively, must

be detected and converted into beat-by-beat

heart rate and ‘‘per-wheel’’ revolution bicycle

speed.

2. Outliers in the recorded data sets (exercise

intensity and heart rate) were removed using

an adaptive threshold based on previous values

in the data set and manual/visual inspection of

exercise intensity and heart rate graphs.

3. In preparing the exercise intensity (input) and

heart rate (output) data for modelling, the raw

data sets for each participant were interpolated

to give values at equally spaced points in time,

since the models described using (11) require a

consistent sampling period. This was performed

by fitting cubic splines to the data (de Boor,

1978) and re-sampling at 1 Hz.

4. The interpolated data were then segmented into

low, medium, and high work rate sections, to

allow model structures to be developed for partici-

pants at each principal intensity of work rate.

5. Data for each intensity of work rate for each

participant were then de-trended (mean reduced

to zero) and then subdivided into training and

verification data, following standard system

identification procedures (Ljung, 1999) to first

train and then subsequently validate the models

under development.

Figure 3. Exercise protocol.

Table I. Participants’ details.

Participant Height (m) Body mass (kg) Age

P1 1.78 82 28

P2 1.85 95 40

P3 1.88 85 42

P4 1.73 86 24

P5 1.73 68 31
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Results

First, indicative results are shown that illustrate

the operation of the analysis technique, from data

logging to sampling period determination. Then, we

provide an overview of the results, from which

general conclusions can be drawn.

Sample single participant results

An exercise protocol similar to that in Figure 3 was

followed, with the levels and timing of the speed

adjustment communicated to the participant (P1) as

the test progressed. The actual speed profile achieved

and the resulting heart rate profile (following pre-

processing) are both shown in Figure 4.

To perform a fair comparison of models, for

different participants and exercise intensities, a

consistent model structure was determined for all

models as n ¼ 2, m ¼ 1, and d ¼ 2. This was arrived

at by (a) calculating loss functions for all data

segments (different participants and intensities) as:

Jp;iðn;m; dÞ ¼
XKðp;iÞ

k¼1

ðy� ŷÞ2 ð15Þ

where p is the number of the participant, i is the

exercise intensity, and K(p, i) is the number of data

points available for each participant/intensity, with y

and ŷ the actual and modelled heart rate. The

Jp,i(m, n, d) may be combined (additively) to give a

single, representative, loss function over all the

data, as:

Jðn;m; dÞ ¼
X5

p¼1

X3

i¼1

Jp;iðn;m; dÞ ð16Þ

From this loss function, the structure was deter-

mined manually from experience, by looking for

transitions in order that gave especially good drops in

loss function, while penalizing higher orders (com-

plexity). The loss function, for variations in n and m,

is shown in Figure 5. The greatest loss reduction for

variation in n occurs from n¼ 1 to n¼ 2, highlighting

n¼ 2 as an obvious candidate, while m¼ 2 gives the

lowest loss for 1�m� 5. Both selections give an

acceptably low order (complexity).

As an example, the model determined for partici-

pant 1 at exercise intensity 1 (lowest) was:

GðzÞ ¼ 0:646z�2

1� 0:729z�1 � 0:035z�2
ð17Þ

For this case, the modelled and actual heart rate

signals are compared in Figure 6 for the medium

intensity (by way of example). The normalized

(log magnitude) frequency response for the system

in equation (17) is calculated according to the

procedure outlined in the section entitled ‘Frequency

response calculation’ and is plotted in Figure 7. The

plot shows that, for this example, the frequency

response drops by approximately 13 dB at 0.2 Hz,

indicating that the content of the heart rate signal is

significantly reduced above 0.2 Hz, indicating that a

sampling period of 5 s is appropriate.

Results overview

Table II shows the gain reduction (from 0 dB) for

the various participants and exercise intensities at

0.2 Hz (corresponding to a sampling period of 5 s).

A number of features are noteworthy. In particu-

lar, the standard deviation is large across different

intensities for the same participant, indicating that

there is a disparity in the dynamics at different

intensities. However, in contrast, standard deviations

are relatively small across different participants for

comparable intensities, which indicates good con-

sistency across participants. In general, there is a

Figure 4. Typical processed speed and heart rate recordings.
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significant drop (between 12.5 and 22 dB) in the

magnitude response (from 0 dB) at 0.2 Hz at all

exercise intensities, but most significantly so for the

medium (level 2) intensity. The magnitude response

is slowest to drop at the lowest (level 1) intensity.

Figure 8 shows the averaged frequency responses for

all three exercise intensities and the standard devia-

tions. There are clear differences in the dyna-

mics between exercise intensity and heart rate at

different exercise intensities/heart rates, with the

fastest dynamics (highest bandwidth) at the lowest

intensity.

Figure 5. Loss function for model order determination.

Figure 6. Modelled and actual heart rate comparison.
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Conclusions

The results clearly show that the speed of response in

heart rate depends on the nominal intensity at which

the exercise stimulus is applied. It appears that heart

rate is most responsive when the exercise intensity is

low, but the slowest rate of response is, in fact, at the

‘‘medium’’ intensity rather than the highest intensity.

The fact that the dynamics are different at different

exercise intensities has important connotations for

the use of models [such as Hammerstein and Wiener,

common in the physiology literature (Dempsey &

Westwick, 2004; Kawada et al., 2003)], which lump

any non-linearity into a static characteristic, with the

dynamics isolated in a single constant, linear transfer

function. Clearly, such mathematical models will not

provide an adequate representation of the variability

in dynamics with operating point.

Recall that the frequency response between exer-

cise stimulus and heart rate represents the maximum

frequency content of the heart rate signal and can

therefore be used to determine an appropriate

sampling rate for the heart rate signal. In essence, the

heart rate signal should display no significant content

at frequencies above half the sampling period (i.e.

0.1 Hz), if the signal is to be faithfully represented by

its sampled version. This is clearly not the case here

(from Figure 8), but there is considerable reduction

in the spectrum after 0.01 Hz. Even if the content is

not zero at 0.1 Hz, the signal can be band-limited to

0.1 Hz by appropriate low-pass filtering or averaging,

which is a practice normally carried out in most

commercial heart rate monitors – that is, a 5-s

‘‘average’’ is normally calculated (see the Appendix

for some analysis of this). This ‘‘averaging’’, while

avoiding aliasing (or spectral distortion) will reduce

the frequency content of the heart rate signal and

preclude the signal from representing fast transitions

in heart rate. The main conclusion, however, is that a

5-s sampling period is, in general, adequate for heart

rate recording at all exercise intensities. This is not

only a useful result for practitioners recording heart

rate, during exercise and non-exercise (low-intensity)

regimens, but has important implications for then

Figure 7. Frequency response for participant P1 at low intensity.

Table II. Decibel drop in frequency responses at 0.2 Hz.

Exercise Intensity P1 P2 P3 P4 P5 Mean S

1 712.56 79.25 710.22 710.54 717.53 711.84 2.95

2 724.07 717.77 720.30 722.32 722.56 721.29 72.19

3 715.71 719.51 723.28 714.41 713.47 717.28 4.07

Mean 717.44 715.51 717.94 715.76 717.82 715.88

S 5.95 5.49 6.84 6.00 4.56 6.87

Sampling period determination for heart rate logging 9



development of methods for non-invasive measure-

ment of anaerobic threshold (Ringwood, 1999).

Given that the Nyquist-Shannon criterion is an

upper bound on the sampling period, the results

presented demonstrate that, if desired, a longer

sampling period (than 5 s) could be used with high

and medium exercise intensities. However, the extra

gain (20 s as opposed to 5 s) is not sufficient to

warrant the extra complexity of a variable sampling

period and most exercise regimens will need to pass

through the low-intensity phase in any case.

It should also be noted that the analysis in this

paper was carried out on (interpolated) data sampled

at 1 Hz. This is perfectly reasonable, since the

authentically reproduced frequency range (0 –

0.5 Hz) more than covers the frequency range of

interest (0 – 0.1 Hz).
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Appendix

An averaging operation, where n samples of a (heart

rate) signal are averaged over a 5-s period, may be

expressed as a Finite Impulse Response (FIR) filter

of the form:

vk ¼
1

n
ðxk þ xk�1 þ � � � þ xk�nþ1Þ¼

1

n

Xk

i¼k�nþ1

xi ð18Þ

where: v is the filter output, in the time domain; x is

the filter input, in the time domain; and DT,

the sampling period, is DT¼ 5/n, representing the

interval between heart beats.

Following averaging, the heart rate may be

resamplcd on a 5-s interval using:

VkDT5
¼ VnkDT ¼ vnk ð19Þ

where DT5 represents the 5-s interval. Figure 9

shows the frequency response of averaging filters,

as described in equation (18), for values of n of 5,

10, and 15, corresponding to heart rates of 60,

120, and 180 beats � min71 respectively. Since the

sampling period (between heart beats) varies with

number of beats in a 5-s period (i.e. nDT¼ 5), the

magnitude responses are almost perfectly consis-

tent, with the minor variation being due to the

change in filter order, n. If desired, the magnitude

of the sidelobes can be reduced with appropriate

windowing (Mitra & Kaiser, 1993), but since no

information is available on the proprietary proces-

sing schemes employed by commercial heart rate

monitor manufacturers, it is beyond the scope of

this paper to speculate as to which might be

employed. The sidelobes in Figure 8 result from

the rectangular window employed implicitly in

(18), where the resulting magnitude response is

of the form jsin( f )/f j.

Figure 9. Frequency response of averaging filters.
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