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Abstract
Background: The strength of selective constraints operating on amino acid sites of proteins has a multifactorial nature. In fact,
amino acid sites within proteins coevolve due to their functional and/or structural relationships. Different methods have been
developed that attempt to account for the evolutionary dependencies between amino acid sites. Researchers have invested a
significant effort to increase the sensitivity of such methods. However, the difficulty in disentangling functional co-dependencies
from historical covariation has fuelled the scepticism over their power to detect biologically meaningful results. In addition, the
biological parameters connecting linear sequence evolution to structure evolution remain elusive. For these reasons, most of
the evolutionary studies aimed at identifying functional dependencies among protein domains have focused on the structural
properties of proteins rather than on the information extracted from linear multiple sequence alignments (MSA). Non-
parametric methods to detect coevolution have been reported to be especially susceptible to produce false positive results
based on the properties of MSAs. However, no formal statistical analysis has been performed to definitively test the differential
effects of these properties on the sensitivity of such methods.

Results: Here we test the effect that variations on the MSA properties have over the sensitivity of non-parametric methods to
detect coevolution. We test the effect that the size of the MSA (number of sequences), mean pairwise amino acid distance per
site and the strength of the coevolution signal have on the ability of non-parametric methods to detect coevolution. Our results
indicate that all three factors have significant effects on the accuracy of non-parametric methods. Further, introducing statistical
filters improves the sensitivity and increases the statistical power of the methods to detect functional coevolution. Statistical
analysis of the physico-chemical properties of amino acid sites in the context of the protein structure reveals striking
dependencies among amino acid sites. Results indicate a covariation trend in the hydrophobicities and molecular weight
characteristics of amino acid sites when analysing a non-redundant set of 8000 protein structures. Using this biological
information as filter in coevolutionary analyses minimises the false positive rate of these methods. Application of these filters to
three different proteins with known functional domains supports the importance of using biological filters to detect coevolution.

Conclusion: Coevolutionary analyses using non-parametric methods have proved difficult and highly prone to provide spurious
results depending on the properties of MSAs and on the strength of coevolution between amino acid sites. The application of
statistical filters to the number of pairs detected as coevolving reduces significantly the number of artifactual results. Analysis of
the physico-chemical properties of amino acid sites in the protein structure context reveals their structure-dependent
covariation. The application of this known biological information to the analysis of covariation greatly enhances the functional
coevolutionary signal and removes historical covariation. Simultaneous use of statistical and biological data is instrumental in the
detection of functional amino acid sites dependencies and compensatory changes at the protein level.
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Background
There has been great interest in understanding the role of
amino acid covariation in protein evolution and function.
The importance of covariation goes beyond the linear
contribution of amino acid coevolution to explain the sta-
bility of protein folds. In fact not only conservation of
amino acid positions may be important for maintaining
protein folds but also the correlated variation of pairs of
amino acid residues around these folds may have an
important role in maintaining their stability [1]. Covaria-
tion may therefore reflect functional and/or structural
constraints. Many parametric and non-parametric meth-
ods have been developed for such purpose (i.e., [2-12]).
Methods based on the information theory are among the
most used ones. These methods measure the reduction in
uncertainty in particular amino acid sites (entropy)
achieved by considering the site's mutual information
(MI) with additional sites. This measure accounts for the
predictability of the composition of one amino acid col-
umn when the composition of another amino acid site is
known. However, the sensitivity of most of these methods
has been always halted by the fact that true positive coev-
olutionary relationships between amino acid sites are
swamped in a background of stochastic amino acid cov-
ariation. Consequently, studies using methods slightly
different in their mathematical parameterisation have
been dramatically affected by the properties of MSAs (i.e.,
Number of sequences in the alignment, mean pairwise
sequence amino acid distances, etc.). In addition to the
problems of stochastic covariation between amino acid
sites, no single pair of sites is unrelated in MSAs due to
their historical (phylogenetic) dependencies [6,7,13].
Finally, the coevolutionary relationships are due to many
different links between amino acid sites including coevo-
lution due to structural, functional or physical interac-
tions [14].

Many authors have devised mathematically transformed
models based on the mutual information of two amino
acid sites to highlight true functional coevolutionary rela-
tionships between them. Some of these methods included
a correction of MI values by the degree of amino acid var-
iability at the amino acid sites [15], using the phylogenetic
information to remove phylogenetic coevolution
[6,7,16], limiting the size of groups of coevolving amino
acid sites [13] or quantitatively normalising the MI value
by the content of information at the sites under test [17].
Even though most of these methods have improved the
sensitivity to detect functional/structural relationships
between coevolving amino acids, a realistic method
accounting for some of the most obvious biological prop-
erties of amino acid sites is as yet to be performed. For
instance, most of the methods developed use qualitative
approaches to remove the phylogenetic coevolutionary
signal [i.e., [12,7]]. A formal or statistical method is then

needed to conduct a more rigorous approach of removing
the undesired historical coevolution.

Introducing some biological parameters, such as the phys-
ico-chemical properties of amino acid sites may dramati-
cally increase the sensitivity of mutual-information based
methods to detect coevolution. Furthermore, these bio-
logical-information based methods may improve our
ability in detecting compensatory mutations. This is due
to the fact that compensatory mutations usually occur
proximal in the protein structure and they are produced to
maintain internal volumes, preserve salt bridges, or retain
optimal hydrogen bonding. In summary, information-
based coevolutionary analyses introducing biological
information may indirectly aid at identifying pairs of
three-dimensionally proximal residues. Few attempts
have been made to relate coevolving pairs in a MSA to bio-
logical information in order to shed light on the structural
and functional reasons of such coevolution [2,6,7,18,19].
These reports however, did not use this biological infor-
mation as a filter for the coevolutionary analyses but
rather as a criterion adopted a posteriori to performing the
method to detect functionally important coevolving pairs.
Also, no general approach was conducted to determine
the relationships between such parameters and their bio-
logical meaning. Because of the growing interest in detect-
ing molecular coevolution to infer biologically
meaningful selective constraints, measuring the accuracy
of such methods when varying the MSAs properties
becomes crucial.

In this work we first examine the evolutionary and statis-
tical behaviours of some of the properties of amino acid
sites in proteins. Then we introduce this information in
the coevolutionary analysis and test its effect on the sensi-
tivity of MI-based methods. Because of the large amount
of data examined in this study, we implemented these MI
methods in in-house software (available from the corre-
sponding author on request). We then examined the effect
of MSAs with different properties. Finally, we apply our
improved procedure to detect coevolution to several well-
studied proteins, whose functional domains are known
and examine the ability of the method to detect important
functional sites.

Results
Filtering by the parsimony information criterion removes 
most of the stochastic coevolution
One of the pre-requisites to consider a site as valid for our
analyses was when it presented enough information as to
remove the effects of the phylogenetic asymmetry on the
data. For example, if one particular sequence were signifi-
cantly distant from the root of the tree when compared to
other sequences, then its effect on the amount of evolu-
tionary information over the data would be more signifi-
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cant before any correction was applied. To account for the
asymmetric contribution of sequences to the coevolution-
ary analysis we used a parsimony criterion to filter down
the number of pairs of sites considered in the analysis. A
site was considered parsimony informative if the number
of amino acid states at that site was greater than two and
if each state is present in at least two sequences (see Mate-
rial and Methods for details and Figure 1). This approach
has previously been shown to reduce the false discovery
rate [18]. We first tested the effect of filtering by parsi-
mony in MI values at different coevolutionary strengths,
differently populated MSAs and at various amino acid dis-
tances. One of the most important results obtained in this
analysis was that the percentage of positive values (PPV;
see Material and Methods for description) increases from
a maximum value of approximately 20% in a previous
work where no filter was applied [7] to a maximum value
of 82% when using 20 sequences, and 80% when using 50
and 100 sequences (Figure 2). This important increase in
PPV value suggests that amino acid distances per site are

an important factor to take into account when performing
this kind of approaches as previously suggested [17]. The
sensitivity values for this non-parametric method are also
of the same order than that yielded by other parametric
methods shown to be highly sensitive [7]. A univariate
analysis of variance shows significant effects of the
number of sequences (F2 = 37.912; P < 0.001); mean pair-
wise amino acid substitutions per site (F4 = 150.266; P <
0.001); and strength of coevolution (F2 = 118.282; P <
0.001) on the PPV values. The pairwise factors' interac-
tions and the interaction between the three factors also
showed significant effects on the PPV values. Inspection of
the mean PPV values in MSAs with different sizes did not
show a clear tendency when varying the number of
sequences (Figure 2a to 2c). This result may be due to the
fact that introducing the parsimony filter makes the MI
based method more robust to variations in the MSAs sizes
due to a lower effect of the stochastic and phylogenetic
covariations. Increasing the pairwise divergence levels or
the strength of coevolution increased the mean PPV val-

Identification of pairs of parsimony-informative coevolving amino acid sitesFigure 1
Identification of pairs of parsimony-informative coevolving amino acid sites. The figure represents a multiple 
sequences alignments with the phylogenetic relationships of its constituent sequences. The phylogenetic tree is asymmetric due 
to the accelerated rates of evolution of one of the sequences (long branch). As a result, most of the evolutionary signal (amino 
acid variability) in the multiple protein sequence alignment (right hand) is due to amino acid differences at sites contributed by 
the accelerated sequence. Parsimony-informative coevolving sites (those sites showing at least two different amino acid states 
with each one represented by at least one sequence of the alignment) are shown, and the variability in their states is colour 
coded. Non-parsimony informative coevolving sites are also highlighted as example of phylogenetic coevolution.
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ues (especially when comparing PPV values in MSAs with
10% coevolution to those with 20% and 25% coevolu-
tion) (Figure 2a to 2c).

Comparison of coevolution data corresponding to the lev-
els of 20% and 25% coevolution presented however no
significant differences for both sets (F1 = 0.732; P =
0.392). The interaction between the level of coevolution
(20% and 25%) and the variation of pairwise divergence
levels also showed no effect on the detection of true coev-

olution (F2 = 1.061; P = 0.374). Neither the interaction
between these three factors showed any significant varia-
bility levels in PPV (F8 = 1.279; P = 0.250). However, pair-
wise distance as well as number of sequences still showed
significant effects on the variance of PPV, with increasing
pairwise distance being the only factor explaining a signif-
icant increase in PPV. Regarding the sensitivity (SN) of the
method when filtering by parsimonious variability per
site, all three factors (number of sequences, strength of
coevolution and pairwise divergence levels) as well as all

Testing the effect of different parameters in the percentage of positive values (PPV, plots a to c) and sensitivity (SN, plots d to f) of Mutual Information Criterion based methods to detect coevolution when parsimony filtering is appliedFigure 2
Testing the effect of different parameters in the percentage of positive values (PPV, plots a to c) and sensitivity 
(SN, plots d to f) of Mutual Information Criterion based methods to detect coevolution when parsimony filter-
ing is applied. We tested the effect on PPV and SN of variations in the size of the multiple sequences alignment (MSAs, with 
the sizes ranging between 20 and 100 sequences), mean pairwise amino acid distance (with distances ranging between 0.1 and 
2 amino acid substitutions per site) and strength of coevolution (the level of coevolution ranged between a minimum of 10% 
and a maximum of 25%). Coevolution levels indicate the distribution of patterns of coevolution at a particular pairs of amino 
acid sites. For example levels of 10% indicate that 10% of sequences at that particular pair of sites in the multiple sequence 
alignment correlate in one amino acid state pattern whereas the 90% remaining correlate in a different state. The strongest lev-
els of coevolution (those showing highest MI values) will be presented by those pairs of sites showing 25% of coevolution 
strength.
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possible combination of factors influenced the variance of
SN. In fact, univariate analyses showed significant effect of
the size of the MSA (F2 = 105.99; P < 0.001), amino acid
substitutions per site (F4 = 223.775; P < 0.001) and
strength of coevolution (F2 = 89.214; P < 0.001) on SN.
The tendency of SN with variations of each of the factors
was however different (Figure 2d to 2f). Even though an
increase of the number of sequences from 20 to 50 influ-
enced the SN and PPV values, further increasing to 100
sequences in the MSA did not show any directional influ-
ence in SN as it remained within the same range of values
(Figure 2d to 2f). When distances were greater than 0.1
amino acid substitutions per site SN tended to increase
with increasing coevolutionary signal and increasing pair-
wise amino acid distances (Figure 2d to 2f). As before, the
effect was more pronounced when the signal of coevolu-
tion increased from 10% to 20% or to 25% coevolution.
In fact, significant differences were observed between the
dataset belonging to the 10% of coevolution level and
that belonging to the 20% coevolution level (F1 =
130.339; P < 0.001). No differences were found however
between the 20% and 25% datasets (F1 = 1.126; P =
0.289). Our results indicate that strong signals of coevolu-
tion ameliorate the effect of the number of sequences and
pairwise amino acid distances. This was especially notori-
ous in the case of pairwise distance factor because its inter-
action with coevolution level factor shows no significant
variability in SN (F4 = 0.963; P = 0.427). Finally, at high
number of sequences, a direct relationship exists between
the level of coevolution and the PPV values. For instance
the mean PPV value increased when we increased the
strength of coevolution from 10% to 20% in MSAs com-
prising 100 sequences (F1 = 42.325; P < 0.001). This
increase is also significant when coevolution increases
from 20% to 25% (F1 = 4.124; P = 0.043). We obtained
the same results when we tested the effect of the strength
of coevolution on SN. Also, there was no proportionality
at low number of sequences between the level of coevolu-
tion and the PPV and SN values (an increase in the coev-
olution level does not imply a proportional increase in
PPV or SN values).

Biological filtering increases the robustness of the 
sensitivity of coevolution analyses
One of the main purposes of coevolutionary analyses is to
highlight covariation produced by biologically meaning-
ful relationships between sites. Two of such important
biological properties influencing the distribution of sites
in the protein structure are the hydrophobicity and the
molecular weight of the corresponding amino acids. We
tested the relationships between amino acid sites in a set
of 8,000 proteins whose structures were available in the
National Center for Biotechnology Information (NCBI)
based on these two factors. We then tested whether the
correlation in these factors depends on the proximity of

the pair of amino acid sites in the protein structure. To test
this hypothesis, we measured the Euclidean atomic dis-
tance between all pairs of amino acids within a protein
and categorised these distances into the following classes
(6 Å, 9 Å, 12 Å, 15 Å, 18 Å, 21 Å, and more than 21 Å).
This classification includes amino acids that are in physi-
cal contact in the structure (those which maximum dis-
tance is of 6 Å), those that interact through an
intermediate amino acid (amino acids which distance
ranges between 6 and 9 Å) and so on and so forth. We
finally, obtained the average correlation values for the
hydrophobicity and Molecular weight variability for each
category (see Methods for details) and we analysed the
variation in the correlation coefficients. For each protein
structure we used a minimum of 10 protein sequences iso-
lated from phylogenetically related eukaryotic species.
The analysis of the 8000 protein structures showed a
strong negative correlation between atomic amino acid
distance and covariation at these parameters (For molecu-
lar weight: ρspearman = -0.964, P << 0.001; for hydrophobic-
ity: ρspearman = -0.750, P < 0.05). These results clearly show
that correlation between amino acid sites using these
amino acid properties would be useful to identify proxim-
ity between sites and hence may aid in identifying the
source of amino acid covariation (for example, distin-
guish between long-range distance covariation from struc-
tural covariation or compensatory covariation). When
testing the effect of hydrophobicity and molecular weight
compared to parsimony filtering criterion in simulated
MSA data, we found that introducing biological informa-
tion increases the mean PPV and SN compared to parsi-
mony filtering (Figure 3). The mean PPV increases
significantly when we compare hydrophobicity to parsi-
mony (t8981 = 38.474; P < 0.001) and when we compare
molecular weight to parsimony (Mw) (t8981 = 41.491; P <
0.001) (Figure 3a). SN also increases significantly in both
comparisons (t8981 = 42.076; P < 0.001 and t8981 = 47.952;
P < 0.001, for the comparison of parsimony to hydropho-
bicity and to molecular weight, respectively) (Figure 3b).

The PPV values generated in the coevolution analyses fil-
tered by the correlated hydrophobicity of the pairs of
amino acid sites were influenced by all three factors: size
of MSAs, mean pairwise distance and level of coevolution.
However, simultaneous variation of the coevolution lev-
els and size of MSAs or mean amino acid pairwise distance
showed no effect on the amount of true positive values
detected, with high coevolution levels compensating for
variations in the MSA size (F4 = 0.186; P = 0.946) or mean
pairwise amino acid distance (F8 = 0.880; P = 0.533). The
combination of the three factors did not have significant
effect on the PPV values generated (F16 = 0.962; P =
0.496).
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In examining the tendency of PPV at different coevolu-
tionary levels, MSAs sizes and mean pairwise amino acid
distance, PPV values increased with increasing amino acid
distances (F4 = 13.726; P < 0.001) (Figure 4a to 4c). SN
values in contrast decreased with increasing pairwise
amino acid distances (Figure 4d to 4f). Variation in the
size of the MSA had no effect on the SN values (F2 = 1.721;
P = 0.179). Molecular weight also increased significantly
the PPV and SN of the method to detect coevolution (Fig-
ure 5). Even though all three factors have significant
effects on the PPV values, at high pairwise amino acid dis-
tances, PPV values are indistinguishable when using dif-
ferent coevolution levels (F2 = 0.092; P = 0.912) (Figure 5a
to 5c). On the other hand, the PPV values increases with

increasing MSAs sizes (F2 = 92.807; P < 0.001) and
increasing mean pairwise distances (F4 = 815.347; P <
0.001). In the case of SN values, these were highly affected
by all three parameters, although the number of
sequences had little effect on the SN outcome (Figure 5d
to 5f).

Filtered coevolution analyses identify functional sites in 
the proteins GroEL, Hsp90 and Env
To test the performance of the method in detecting func-
tionally important sites (see for example functional sites
reported for GroEL in Table 1) or sites surrounding func-
tional domains we used a MSA for the heat-shock proteins
GroEL and Hsp90 and the envelope protein env from
HIV-1. We were interested in pairs of amino acid sites that
are either functionally important themselves or that are
alternatively surrounding important functional domains
(less than 8 Å distant from functionally important sites
that have been described in other works, see Material and
Methods for details). In the protein GroEL we identified
866 pairs of amino acid sites with significant MI values.
Parsimony filtering reduced the number of pairs to 110
including sites organised into 6 groups of coevolution
(Table 2). Group G1 was the largest coevolution group
and comprised 14 amino acid sites, each one of them coe-
volving with the rest of the sites in the group. Out of the
14 amino acid sites detected in the first group, 3 amino
acids (D11, V94, C458) were located in the equatorial
domains, 3 amino acids (K171, E172, I379) in the inter-
mediate domain and 8 amino acids (E191, A251, V254,
A293, G306, E354, Q366, V369) in the apical domain
(Figure 6a). Here, all amino acid numbers refer to the
amino acid position in the reference GroEL sequence from
the bacterium Escherichia coli K12. Although linearly scat-
tered, these sites were concentrated in the three-dimen-
sional structure of GroEL around three main functional
domains (Figure 6a). Two amino acid sites were sur-
rounding (less than 8 Å distant) the ATP binding region,
one amino acid site (D11) could not be assigned to any
functional category or was not proximal to any functional
domain in the three-dimensional structure and the rest of
amino acid sites (11 out of the 14) were enveloping the
substrate/GroES binding domain (Figure 6a). In addition,
we measured the atomic distances between any pair of
proximal amino acids within group 1. This measurement
was done assuming that effects of amino acid changes
would be transmitted from one amino acid to another
with which would coevolve following the shortest amino
acid pathway. The shortest distances between any pair of
coevolving amino acids within group 1 had as average
7.45 Å and ranged between 1.33 Å and 10.9 Å, indicating
very short distances between coevolving amino acids. Five
other groups (G2 to G6) each with a single pair of coe-
volving amino acid sites were also detected, with only G2
and G3 including a single amino acid (E354) present in

Test of the improvement of the percentage of positive values (PPV) detected and sensitivity (SN) when we add filters to the detection of coevolutionFigure 3
Test of the improvement of the percentage of posi-
tive values (PPV) detected and sensitivity (SN) when 
we add filters to the detection of coevolution. The X-
axis represents the different filters (1 = parsimony, 2 = 
hydrophobicity and 3 = molecular weight). Y-axis represents 
PPV (a) or SN (b). The comparison of each filter against fil-
tering by parsimony was always significant (* indicates P < 
0.01).
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both groups and proximal to functional regions (Table 2).
All these groups, except group G4, presented very large
atomic distances between the coevolving amino acids (all
greater than 40 Å).

Application of the filter of hydrophobicity reduced the
number of groups from 6 to 3 groups, including G1 to G3
(Figure 6b). Interestingly, All these groups included sites
proximal to functionally important regions, although G2
and G3 only included one out of the two amino acid sites
to be proximal (less than 8 Å distance) to functional
regions.

Finally, Only G1 was detected when we applied the filter
of correlation in the variance of the molecular weight or
molecular weight and hydrophobicity between the coe-
volving amino acid sites (Figure 6c). Once again, only the
group sharing the greatest number of functionally/struc-
turally important sites was identified. In conclusion, the
results show that application of variation in the biological
properties of coevolving amino acids a priori identified
removes most of the non-biologically relevant pairs of sig-
nificant coevolving amino acids.

In the case of Hsp90 and env proteins' analyses we have
not used an illustrative figure for the sake of synthesis and

Testing the effect of different parameters in the percentage of positive values (PPV, plots a to c) and sensitivity (SN, plots d to f) of Mutual Information Criterion based methods to detect coevolution when filtering by the correlation in hydrophobicity is appliedFigure 4
Testing the effect of different parameters in the percentage of positive values (PPV, plots a to c) and sensitivity 
(SN, plots d to f) of Mutual Information Criterion based methods to detect coevolution when filtering by the 
correlation in hydrophobicity is applied. We tested the effect on PPV and SN of variations in the size of the multiple 
sequences alignment (MSAs, with the sizes ranging between 20 and 100 sequences), mean pairwise amino acid distance (with 
distances ranging between 0.1 and 2 amino acid substitutions per site) and strength of coevolution (the level of coevolution 
ranged between a minimum of 10% and a maximum of 25%).
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because the structure for env protein was lacking. Hsp90
comprises 4 main functional domains, including the ATP-
binding domain (going from amino acid site 1 to 236),
the flexible charged linker (between amino acid sites 237
and 271), the catalytic middle domain (between amino
acids 272 and 617) and the C-terminal domain (between
amino acids 618 and 732) involved in dimerisation [20].
We identified 1645 pairs (0.61% of all the possible pairs
of sites) of amino acid sites with significant MI values at a
significant level of 0.001 in Hsp90. Application of the par-
simony filter reduced the number of pairs to 13 pairs of
amino acid sites organised into 13 groups (G1 to G13) of
coevolution (Table 3). Many of these groups (G2, G3, G6
and G7) included amino acid sites (E244 in G2 and G3;
V260 in G6) located in the charged linker domain

involved in client protein binding or surrounding sites
important for client protein binding (A287 in G7, that is
around P320) [20]. Other amino acid sites were located in
or three-dimensionally close to Hsp90 dimerisation
domains (for example the coevolving sites L641 and
P684) [20]. Here, all amino acid numbers refer to the
amino acid position in the reference Hsp90 sequence
from Saccharomyces cervisiae. Group G4 included 2 amino
acid sites (V260 and A287) that are close to the amphip-
athic loop involved in the protein client binding region
[20]. Group G1 includes one amino acid in the charge
linker domain (E244). Groups G8, G10, G11 and G12
include amino acids close in the sequence and in the 3D
structure to the dimerization domains (T688 in G8, N673
in G10, G555 in G11 and K541 in G12) and one amino

Testing the effect of different parameters in the percentage of positive values (PPV, plots a to c) and sensitivity (SN, plots d to f) of Mutual Information Criterion based methods to detect coevolution when filtering by the correlation in molecular weight is appliedFigure 5
Testing the effect of different parameters in the percentage of positive values (PPV, plots a to c) and sensitivity 
(SN, plots d to f) of Mutual Information Criterion based methods to detect coevolution when filtering by the 
correlation in molecular weight is applied. We tested the effect on PPV and SN of variations in the size of the multiple 
sequences alignment (MSAs, with the sizes ranging between 20 and 100 sequences), mean pairwise amino acid distance (with 
distances ranging between 0.1 and 2 amino acid substitutions per site) and strength of coevolution (the level of coevolution 
ranged between a minimum of 10% and a maximum of 25%).
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acid around L450-F492 that is surrounding the dimeriza-
tion region. The two coevolving amino acids of G9 (A477
and D499) were three-dimensionally proximal to each
other and to the dimerization domain as well. Application
of the filter of hydrophobicity reduced the number of
groups from the 13 groups identified under parsimony fil-
tering to 7 groups, including G3, G4, G5, G7, G8, G9 and
G12. Interestingly, all these groups included sites proxi-
mal to functionally important regions, except G5. Finally,
groups G4, G5, G7, G8, G9, G10, G11, and G13 were
detected when we applied the filter of correlation in the
variances of molecular weights, with all the groups except
G5 and G13 being involved or close to the dimerization
domains or to the client protein binding domain.

Regarding the env protein of HIV-1, we identified 651
pairs of amino acid sites with significant MI values at the
confidence level of 0.001. Application of the parsimony
criterion to filter coevolving pairs, reduced the number of
pairs to 10 pairs of amino acid sites organised into 3
groups of coevolution (Table 4). G1 involved 4 amino
acids (L21, S640, L641 and T723) L21 is allocated in the
protein gp120, while the rest of the amino acids of the
remaining groups are found in the gp41 protein. Position
L21 is surrounding the CD4 and gp41 binding sites, while
two out of the sites found in gp41 (S640 and L641) are

surrounding glycosylation site H564; we do not have rel-
evant biological information for the position T723. Here,
all amino acid numbers refer to the amino acid position
in the env HXB2 reference sequence. G2 include 3 amino
acids (L21, S640 and V833), with S640 and V833 being
located in gp41 close to the glycosylation site H564 and
T818, respectively. The last group of coevolution, G3,
included 3 amino acids (T232, S640 and L641), one
(T232) is located in the gp120 protein close to the glyco-
sylation site E267. Glycosilation consists on the covering
of the surface of the molecule by carbohydrates shielding
therefore the antigenic exposed sites of gp120 and ena-
bling the virus to escape the immune response of the host
[21-24]. The other 2 amino acids, as explained before,
belong to the gp41 protein and are surrounding gycosyla-
tion sites as well. Application of the filter of hydrophobic-
ity reduced the number of groups from 3 to 1 group (G2),
which in this case just include the pair L21 and V833.
Finally, the three groups were detected when we applied
the filter of correlation in the variance of the molecular
weight.

Discusion
Proteins evolve (fix amino acid mutations) under rules
governed by the different selective constraints imposed
over their constituent amino acids. The magnitude of

Table 2: Intra-molecular coevolution analysis in the heat-shock protein GroEL.

Group of coevolution Amino acid sitesa Mean H(X)b Mean H(Y)c Mean H(X, Y)d Mean MIe

G1 D11, V94, C458, K171, E172, I379, E191, A251, V254, 
A293, G306, E354, Q366, V369

0.223 0.238 0.244 0.217

G2 S154, E354 0.231 0.319 0.319 0.231
G3 A312, E354 0.324 0.319 0.439 0.204
G4 D334, A530 0.202 0.202 0.202 0.202
G5 V336, Q432 0.473 0.394 0.624 0.243
G6 M544, G545 0.231 0.231 0.231 0.231

a Amino acid sites included in each coevolution group. All sites within the same group coevolve between each other. Numbers indicate the position 
of the site taking as reference the sequence of the bacterium Escherichia coli K12.
b Measure of mean uncertainty for the first site of the coevolving pair.
c Measure of mean uncertainty for the second site of the coevolving pair.
d Measure of the mean joined uncertainty for the pairs of sites within each group
e Mutual Information mean value for all the possible coevolving pairs within the group.

Table 1: Amino acid sites in Escherichia coli detected to be important for the function of GroEL.

Amino acid site Function Description Literature

30–33, 51–53, 87–91, 150–151, 398, 414–416, 454, 478–481, 493, 495 ATP/ADP and Mg2+ binding residues (ATP/Mg-
B)

[48]

199, 201, 203–204, 234, 237, 259, 263–264 Substrate binding (SubB) [48]
230, 238, 241, 257, 260, 261, 265, 268, 270, 271 Substrate binding(SubB) [49]

234, 237, 238, 241, 242, 257, 261, 265, 270 GroES binding (ESB) [48]
241, 257, 261, 265, 270 GroES binding (ESB) [49]

4, 41–42, 58–59, 61, 63, 75–76, 80, 83, 178–179, 188, 196–197, 224–226, 252, 253, 
255, 257, 277, 283, 286, 303, 304, 308, 327, 328, 359, 361, 363, 364, 367, 368, 371, 

380, 386, 390, 393, 397, 404, 408, 523

Charged residues exposed to the central cavity 
in the cis ring, probably contacting substrates 

(CER)

[50]
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these constraints is a function of the relative contribution
of proteins to the biological fitness of individuals in the
population. Because different amino acids within a pro-
tein have different roles, they are usually under different
selective pressures depending upon their importance on
the protein's function or structure. This differential rela-
tionship of amino acid sites to the protein's function is
translated into different levels of within-protein amino
acid conservation. Amino acids that contribute equally to
the protein's function or structure should theoretically
correlate in their evolutionary rates. Unraveling correlated
evolution between amino acids is however generally
swamped in a background of historical coevolution that
makes difficult disentangling both types of covariation.

Despite that most of the functionally important sites are
generally restricted to change by selection, mutations
studies have shown that non-conserved amino acid sites
can be functionally important because of their contribu-
tion to maintain geometry-volume characteristics around
important sites, their compensatory effects of mutations
at important regions or their contribution to protein-pro-
tein interaction interfaces. We have previously shown that
indeed most of the significant coevolutionary relation-
ships can affect regions surrounding functionally impor-
tant domains [25]. This implies that coevolving sites
detected as not being proximal in the three-dimensional
structure in other studies [26] may be related through
their contribution to the structural/functional equilib-
rium of important regions in the protein. In such cases,
introducing statistical filters based on biological informa-

Example of the effect of biological filters in coevolution analyses. In this case study we have used the heat-shock protein GroEL, which functional domains are well characterisedFigure 6
Example of the effect of biological filters in coevolution analyses. In this case study we have used the heat-
shock protein GroEL, which functional domains are well characterised. The different domains (apical, intermediate 
and equatorial) are identified in the cartoon representing the linear GroEL sequence in red, green and yellow colours, respec-
tively. G1 to G6 blocks show the sites under coevolution belonging to each coevolution group as coloured bars. Sites belong-
ing to the same group of coevolution are shown in the crystal structure of one of the GroEL subunits (PDB accession number: 
1svt.pdb) and are coloured following the same pattern as in the blocks of the groups of coevolution.
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tion about the physico-chemical properties of the coe-
volving amino acids can significantly improve our ability
to detect functionally important regions as shown in this
study.

Our results based on simulated MSAs demonstrate that
the accuracy of MI based methods to detect coevolution
can improve by introducing statistical and biological fil-
ters a priori to the identification of coevolving amino acid
sites. Introducing statistical filters such as those proposed
previously [17] or using parsimony-informative amino
acid sites as we show in this study increases SN and PPV
values significantly. As we show, despite the introduction
of statistical filters to the analysis of coevolution, SN and
PPV still depend on the size of MSAs, mean pairwise diver-
gence levels and strength of the coevolution signal. All
these factors have intermingled effects and they should be
considered prior to any coevolution analysis. The effect of
the interaction of all three factors in PPV and SN is how-
ever complex and differs significantly with specific combi-

nations of values for these factors. Fares and Travers [7]
highlighted the significant effect of amino acid divergence
levels and size of the MSAs on the SN of the method. They
also showed that SN values of the MI based methods did
not go beyond 20% when no filters were introduced. Mar-
tin and colleagues demonstrated using simulated MSAs
that the contribution of background MI from finite col-
umn lengths is mitigated when MSAs comprise more than
150 sequences [17]. When analysing real protein
sequences, the number of sequences in MSAs is often lim-
ited to few sequences, which make the use of MI to detect
coevolution prohibitive given the large expected number
of false coevolutionary relationships. We show that, the
effect of the number of sequences on the variance of SN
and PPV is significant but that parsimony filtering crite-
rion employed in our coevolution analyses reduces the
number of FP, increasing hence the PPV. This procedure
ameliorates hence the problem of low statistical power of
MI coevolutionary analyses when the number of
sequences in the MSA is low. The effect of the number of

Table 4: Coevolution analysis in the env protein of the Human Immunodeficiency Type 1 virus HIV-1.

Group of coevolution Amino acid sitesa Mean H(X)b Mean H(Y)c Mean H(X, Y)d Mean MIe

G1 L21, S640, L641, T723 0.5560 0.5527 0.8858 0.2228
G2 L21, S640, V833 0.5391 0.5510 0.8858 0.1926
G3 T232, S640, L641 0.5930 0.6066 0.8858 0.2385

a Amino acid sites included in each coevolution group. All sites within the same group coevolve between each other. Numbers indicate the position 
of the site taking as reference the sequence of Saccharomyces cerevisae.
b Measure of mean uncertainty for the first site of the coevolving pair.
c Measure of mean uncertainty for the second site of the coevolving pair.
d Measure of the mean joined uncertainty for the pairs of sites within each group
e Mutual Information mean value for all the possible coevolving pairs within the group.

Table 3: Coevolution analysis in the heat-shock protein 90.

Group of coevolution Amino acid sitesa Mean H(X)b Mean H(Y)c Mean H(X, Y)d Mean MIe

G1 E244, T458 0.4617 0.3993 0.6336 0.2275
G2 E244, K541 0.4617 0.5573 0.7610 0.2581
G3 E244, Q578 0.4617 0.3602 0.5588 0.2631
G4 V260, A287 0.3247 0.3585 0.4589 0.2243
G5 V260, I520 0.3247 0.3038 0.3605 0.2680
G6 V260, N673 0.3247 0.3220 0.4138 0.2328
G7 A287, K541 0.3585 0.5573 0.6573 0.2585
G8 L450, T688 0.5628 0.4966 0.8183 0.2411
G9 A477, D499 0.3524 0.2251 0.3524 0.2251
G10 A477, N673 0.3524 0.3220 0.4489 0.2256
G11 P482, G555 0.3452 0.4028 0.5027 0.2453
G12 F492, K541 0.3942 0.5573 0.7139 0.2376
G13 I520, G555 0.3038 0.4028 0.4768 0.2298

a Amino acid sites included in each coevolution group. All sites within the same group coevolve between each other. Numbers indicate the position 
of the site taking as reference the sequence of Saccharomyces cerevisae.
b Measure of mean uncertainty for the first site of the coevolving pair.
c Measure of mean uncertainty for the second site of the coevolving pair.
d Measure of the mean joined uncertainty for the pairs of sites within each group
e Mutual Information mean value for all the possible coevolving pairs within the group.
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sequences in MSAs becomes less important when the
strength of coevolution increases. This is especially noto-
rious when switching from MSAs comprising 50
sequences to those with 100 sequences. These results sup-
port the fact that introducing stringent filters will increase
the ability of avoiding FP in the coevolutionary analyses
even when the MSA sizes are limited. Furthermore, MSAs
presenting high number of sequences (for example 100
sequences) present proportional increase of PPV and SN
when the coevolution level increases. This means that our
ability to classify sites with high MI values and their dis-
tinction from those with lower MI values is more feasible
when the number of sequences is high. Consequently,
these results suggest that the separation between the dif-
ferent types of coevolution may be more approachable in
large MSA.

Parsimony criterion has been previously used successfully
to identify pairs of coevolving residues involved in the
interaction between two proteins [18]. Adding hydropho-
bicity and molecular weight as a priori filters for MI values
we obtained significantly greater MI values compared to
parsimony filtering. In addition, the size of the MSA did
not have significant effects on PPV and SN. Moreover,
increasing the level of coevolution did not involve a sig-
nificant increase in PPV or SN when divergence levels
were high. Although this approximation is similar to that
performed previously [6], their approach was uniquely
based on the a posteriori qualitative use of the biological
properties of amino acids to decide whether a coevolu-
tionary pair was important biologically. Our approach
however, considers the correlation in the hydrophobicity
and/or molecular weight of coevolving amino acid sites a
priori to statistically determine their biological signifi-
cance.

In summary, taking into account this study for a given
protein we can theoretically interpolate the values for the
size of MSAs and mean pairwise amino acid distance and
know at which level of coevolution we will be able to
identify real coevolving pairs. Application of our method
using the different filters to identify coevolving amino
acid sites within the heat-shock proteins GroEL and
Hsp90 and the envelope protein env of HIV-1 clearly
show the usefulness of these biological filters to identify
functionally important amino acid regions. This approach
was performed previously using a parametric method to
detect coevolution [7] and applying it to the Hsp70-Hop-
Hsp90 system [25] providing great sensitivity to detect
functionally important regions. In this study we show that
these filters are very useful to ameliorate the limitations of
non-parametric methods to detect functional coevolution
as well.

Conclusion
The main conclusion derived from this study is that
appropriate statistical as well as biological filters intro-
duced in coevolutionary analyses can substantially reduce
the false discovery rate. The number of sequences, mean
pairwise divergence levels and the strength of coevolution
between amino acid sites in MSAs are strong parameters
affecting the ability of non-parametric methods to detect
coevolution. As additional parameters affecting the accu-
racy of coevolution methods based on the mutual infor-
mation criterion are the asymmetric phylogenies and the
lack of biological filters. The high correlation in the
hydrophobicities and molecular weights of closely
located amino acid sites in the protein structure is testa-
ment to the importance of the biological information in
these kinds of analyses. Introduction of these amino acid
properties as biological filters in MI based methods
appears to equalise their sensitivity to a similar range of
values determined by previous simulation studies of other
parametric and highly sensitive methods [7].

Methods
Mutual Information content
The mutual information content (MI) is a measure of our
ability to predict the amino acid composition of a second
amino acid site (j) based on the known amino acid com-
position of the putative coevolving site (i). To achieve this
objective, the Shannon's entropy (H) is estimated for each
of the sites considered. The entropy H(X) for a discrete
random variable X (in this case the amino acid site), with
each letter (amino acid) having a probability distribution
(Observed frequency of an amino acid) p(X)N = {p(x1),
p(x2),....., p(xN)} and being the sum of probabilities equal
to 1, can be estimated as:

The logarithm permits scaling H(X) so as to have H(X) =
1 when there is no uncertainty about the amino acid site
composition. The mutual information is then measured
taking into account the information (lack of uncertainty)
for two amino acid sites (X and Y) and is calculated as:

MI(X, Y) = H(X) + H(Y) - H(X, Y) (2)

H(X, Y) is the joint entropy of two random variables (here
two amino acids in the multiple sequence alignment) at
amino acid sites i and j and is calculated as:
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Here N and K are the different elements that amino acid
sites i and j could contain, respectively.

MI is a value that ranges between 0, when amino acid sites
i and j evolve independently from each other, and a posi-
tive value that is proportional to the amount of evolution-
ary dependency between these sites.

Filtering pairs of coevolving amino acid sites
To remove the stochastic coevolutionary signal some
authors have weighted the MI value by using the amount
of mutual information contained on the amino acid sites
under consideration [17]. Other authors have partially
accounted for the phylogenetic covariation by predefining
in a qualitative way the size of groups of coevolution [13].

We have introduced two filters different from those intro-
duced by these authors. The first filter is based on selecting
pairs of coevolving amino acid sites that are parsimony
informative (for example, select those amino acid sites
that show at least two different amino acid each one
repeated at least twice at that amino acid site in any two
sequences of the MSA). Figure 1 shows an example of
when an amino acid site would be considered parsimony-
informative or not. Notice that the phylogenetic relation-
ships are never accounted for in the identification of coe-
volving sites since the approach is purely based on the
amount of patterned information present at two particu-
lar amino acid sites. Although this filter is less quantita-
tively sensitive than that proposed by Martin and
colleagues [17] nonetheless it presents the advantage of
making the detection of true positive coevolving sites less
subjected to the background amino acid site variability
(for example, the detection of coevolving sites does not
depend on the mean level of amino acid site variability).
Moreover, coevolutionary analyses are less error prone
when we have asymmetric phylogenies. For example,
when one branch in the tree is significantly longer than
the remaining branches this branch will contain most of
the evolutionary signal (this would be regarded as phylo-
genetic coevolution; Figure 1).

One additional filter that may improve the detection of
functional coevolution between amino acid sites is that
based on biological parameters. What are the relevant bio-
logical parameters is not clear and previous studies have
only conducted few qualitative (non-statistical) attempts
to use such filters. Among the different physico-chemical
characteristics (for example, amino acid volume, geome-
try, molecular weight and hydrophobicity), molecular
weight and hydrophobicity are the most important
parameters in explaining functional links between coe-
volving amino acids. In general, hydrophobic amino acids
will be placed in the core of the protein or in the inter-sub-
unit interfaces in a solvent-free environment. In spite of

the expected improvement of sensitivity to detect coevolu-
tion when biological information is used, methods have
usually ignored this information due to the number and
complex dependencies among biological properties. In
theory the probability for a pair of coevolving sites to be
correlated also in these two parameters is very low unless
they are located in a protein region with similar hydropa-
thy. We may however find that proximal amino acid sites
in the protein structure may be correlated in their hydro-
phobicities or molecular weight to maintain the volume-
geometry characteristics of local protein structures, affect-
ing therefore the stability of the full protein structure. Cor-
relations in the inter-species variation of amino acids
molecular weights at neighbouring sites may uncover
compensatory relationships between sequences. This kind
of approximation has however the drawback of ignoring
long-range distant functionally related and coevolving
amino acid sites. Its conservative character would on the
other hand decrease the rate of false positives.

To examine these dependencies we first tested whether
amino acid sites are correlated in their hydrophobicities
or molecular weight characteristics based on their three-
dimensional locations in the protein structure. For such
purpose, we downloaded from NCBI a dataset comprising
45,000 protein structures. We then removed redundant
structures and ended with a non-redundant set of 8000
protein structures. We built a MSA for each data protein
structure comprising the most similar (A maximum of
40% sequence divergence) protein sequences isolated
from eukaryotic organisms. Orthologous sequences were
identified using BLASTP program and taking sequences
showing mutual best hits and a low probability (P < 10-6).
We then examined the correlation in the hydrophobicities
and molecular weights for each protein structure looking
at all the possible pairs of amino acid sites in each struc-
ture and using the following procedure:

For each amino acid site we estimated the pairwise differ-
ence in hydrophobicity or molecular weight comparing

two particular species. We called this quantity . 

is then the estimated variation in hydrophobicity in the
comparison between sequences (species) i and j at a par-
ticular amino acid site (A) of the MSA and is calculated as.

In this work, correlation in hydrophobicity (ρHy) or
molecular weight (ρMW) between a pair of amino acid
sites was measured as follows:

ĤYij ĤYij

ĤY HY HYij i j= − (4)
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Here  is the estimated variation in hydrophobicity in

the comparison between sequences i and j as shown in
equation (4).

This calculation was repeated for all the possible pairwise

comparisons in column site A. Each value  is then

subtracted from the mean pairwise sequence variability
value for the hydrophobicity of amino acid site A. The
same procedure is followed for the amino acid site B in
the MSA. Both values are then multiplied and the product
summed for the total number of pairwise sequence com-
parisons T, with T hence being:

Here, N stands for the total number of sequences in the
MSA. The correlation in the variability of the molecular
weight is calculated in the same way and as follows:

Simulation of intra-molecular coevolution
Testing the sensitivity of methods to detect coevolution,
using MSA of real proteins is tedious due to the lack of
knowledge regarding intra-molecular amino acid site evo-
lutionary and functional interactions. Forcing coevolu-
tion between known pairs of sites in simulated MSAs built
on the bases of the evolutionary and physico-chemical
properties of real proteins allows a better understanding
of the power of methods designed for such purpose.
Building MSA under realistic models of evolution is how-
ever anything but straightforward since models usually
oversimplify real evolutionary processes. These limita-
tions oblige researchers to test specific and explicit
hypotheses individually and independently from others.
In other words, the effect of the different factors has to be
tested individually to simplify the problem discerning the
main factors affecting the sensitivity of the methods.

We tested the effects of three main factors in the sensitivity
to detect coevolution: i) when the strength of coevolution
between two amino acid sites varies; ii) under a range of
realistic mean pairwise sequence amino acid distances in
MSAs; and iii) under different MSA sizes. Although the
relationships between the amount of coevolution and MI
values is clear, the linearity between MI and the sensitivity
of the method when the coevolutionary relationships
between sites changes has not been tested before. We
tested this relationship using simulated MSAs presenting
different coevolutionary strengths. We also examined and
tested when the coevolutionary relationship between a
pair of amino acids is sufficiently strong as to overcome
the effect of background noise or limited MSA size on the
sensitivity of the method to detect coevolution.

In order to compare the performance of our method with
previous parametric and non-parametric approaches, we
used the simulation procedure for divergence levels and
number of sequences previously used [2,7]. The sensitivity
of this method was then comparable on average to that of
the non-parametric methods of Korber et al. [3], Tillier
and Lui's method [13] and to that of the parametric meth-
ods of Fares and Travers [7] and Pollock et al. [2]. To test
the effect that the amount of coevolution has on separat-
ing real coevolution from stochastic covariation, we
forced the coevolution between five amino acid sites, and
with each site presenting coevolution with all the other
four. We simulated MSAs using a model similar to that
devised by Pollock et al. [2] as to avoid biasing the sensi-
tivity of our method to detect true coevolving pairs due to
the method employed in the simulations (avoiding then
the circularity in our approach). In one dataset we forced
a pattern of 10% coevolution, which means that 10% of
sequences at that site had a particular pair of amino acids,
other 10% had a different pair, and then the remaining
80% contained two pairs of sites divided in 40% for one
pair and 40% for the other pair (see Figure 7 for details).
The other dataset contained columns showing 20% coev-
olution and the last dataset contained amino acid site
pairs showing 25% coevolution. These dataset presented
hence examples showing qualitatively weak coevolution
(10%), medium coevolution (20%) and maximum
(strong) coevolution (25%). Regarding mean pairwise
amino acid distances, these ranged between 0.1 and 2
amino acid substitutions per site. Finally, the number of
sequences in the MSA varied between 20 sequences and
100 sequences. In total we therefore simulated 3 (10%,
20% and 25% coevolution) × 3 (20, 50 and 100
sequences per MSA) × 5 (0.1, 0.2, 0.5, 1, 2 amino acid sub-
stitutions per site and tree) MSA datasets, with each one
containing 100 simulated MSAs replicates. In total hence
we simulated 4500 MSAs to study these three effects on
the sensitivity of the method to detect coevolution. We
performed all the simulations assuming a symmetric
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binary tree and with amino acid sites equally represented
in frequency.

We used the program Evolver from the PAML package ver-
sion 3.15 [27] to conduct all the primary simulations. The
method of simulation used is the same as that previously
published [7]. Briefly, an ancestral sequence of 200 amino
acids in length was generated using the amino acid com-
position corresponding to the equilibrium residue fre-
quencies in naturally occurring proteins [28]. We then
evolved the ancestral sequence using a Markov chain
Monte Carlo simulation along a bifurcated and symmetri-
cal phylogenetic tree showing the divergence levels
explained above. Simultaneously to this simulation we
randomly chosen 10 pairs of amino acid positions and

forced them to coevolve under the different coevolution-
ary strengths explained above.

For each one of the dataset above, we analysed the per-
formance of the method when we filter by the parsimony-
informative criterion. To show the improvement of the
method to disentangle real coevolution from stochastic
coevolution using biological information we also con-
ducted the above simulations but forcing coevolving sites
to correlate in their hydrophobicity or molecular weight.
The number of total simulations hence was of 4500 × 3
(Figure 1). Finally, we tested the robustness of the method
by measuring the effect of the different factors on the sen-
sitivity (SN) as well as on the percentage of positive values
(PPV) calculated as:

SN
TP

TP FN
=

+
(8)

Representation of the different types of coevolution strengthsFigure 7
Representation of the different types of coevolution strengths. In this example we represent a phylogeny of 20 related 
sequences the amino acid states at each sequence is represented by one of the four different symbols, circles, star, sqaure and 
triangle. Coevolution in the simulation data set was set at three different strengths: 10% with 10 of the sequences (2 
sequences) sharing the same amino acid state (circle for example), a different 10% of sequences was sharing another pattern or 
amino acid state (triangles), 40% another state (star) and the remaining 40% sharing the final state (square). The same rationale 
applied to the case of 20% as well as 25% coevolution strengths. These levels of coevolution arer considered low (yielding low 
Mutual Information values, the case of 10%), medium (greater MI values, 20%) and strong coevolution (the greatest possible MI 
values, 25%).

10% 25%20%
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Here TP, FP and FN stand for the percentage of true posi-
tives (percentage of times where we detect real pairs under
coevolution), false positives and false negatives, respec-
tively. TP refer to those pairs of amino acid sites that were
forced to coevolve in the simulated data and that were
detected when applying the coevolutionary analyses. We
are aware of the circularity that simulations may intro-
duce, however we have assumed that functional sites coe-
volve in their physico-chemical properties and that this
coevolution is diluted by the stochastic noise generated
throughout the evolution of proteins. In our simulations
we have followed exactly this assumption introducing
noise and testing the performance of the method to iden-
tify the real coevolutionary signal.

Analysis of real data
Simulated MSAs have the disadvantage of under-repre-
senting biological information and being also "well
behaved" regarding the effect of a particular factor in the
analysis. We hence used a MSA for the heat-shock protein
GroEL (Table including accession numbers and name of
species is in Additional file 1). The ATPase molecular
chaperone GroEL is found specifically in bacteria and the
organelles of eukaryotic cells [29]. The multimeric protein
GroEL folds 10% to 15% of slow-folding proteins, which
are mostly aggregation-prone [30,31]. Each GroEL subu-
nit is organized in three domains, including the apical,
equatorial and intermediate [32,33]. Several functionally
important intra-domain regions in GroEL have been pre-
viously identified (Table 1). Here we test if coevolution
among sites is crucial for the functional and structural sta-
bility of GroEL. We used groEL gene sequences isolated
from a diverse range of gamma-proteobacteria. The range
of bacteria was selected in a way that allowed us testing
the effect of accelerated rates of evolution on the ability of
the method to detect functional coevolution. For such
purpose, we selected free-living bacteria as well as endo-
symbiotic bacteria of the aphid insect Buchnera aphidicola.
The effective population sizes of this endosymbiotic bac-
terium are subjected to strong bottlenecks during the
transmission between generations. In addition, they
present vertical transmission and no recombination,
which ensures a high rate of slightly deleterious mutations
being fixed due to genetic drift [34,35]. GroEL performs a
good example to examine coevolution because the evolu-
tionary rate is among the slowest of the endosymbiotic
proteins and yet is faster than its free-living bacterium
homologue. Bacteria used for this study and the accession
numbers of their GroEL and GroES sequences are col-
lected in Table 1 of supplementary information.

In the coevolutionary analyses we followed the approach
recently published to detect functionally or structurally
important domains [25]. In this study we focused on coe-
volving pairs previously detected as functionally impor-
tant but also in those pairs three-dimensionally proximal
to functionally important domains. The rationale behind
this is that GroEL is a highly conserved molecule and most
of the sites involved in ATP binding or GroES and sub-
strates binding are very conserved as to be detected by
conventional coevolutionary analyses. In these cases,
pairs of amino acid sites do mainly coevolve to maintain
the structural characteristics around important functional
regions and consequently to maintain the conformational
and functional stability of the domain [36]. Even though
circular, the opposite reasoning can be used for a primary
detection of functionally/structurally important protein
sites or domains. We therefore used this rationale to test
whether identifying coevolving pairs of sites could allow
us to identify known functionally important domains due
to their three-dimensional proximity. For example, when
a residue was involved in inter-protein coevolution we
examined whether functionally important sites nearby
any of the coevolving amino acid regions (less than 8 Å
distance from the functionally important region) was pre-
viously reported. If that was the case, we supported the
usefulness of the method to detect functional domains.
Consequently, this approach could be also valid for iden-
tifying functionally important sites that show very low
evolutionary rate and that would therefore be completely
ignored by standard coevolutionary analyses. We have
also used additional real cases of proteins which domains
are well characterised, including the env protein of the
Human Immunodeficiency Virus HIV-1 group M subtypes
and the Heat-shock protein 90 (Hsp90). These proteins
show different divergent levels and their functional
domains are well characterised and are therefore highly
suitable for the purpose of this work. The sequences used
for env gene of HIV-1 and for Hsp90 and their accession
numbers are shown in Tables 2 and 3 of Supplementary
Information, respectively.

Hsp90 is an ATPase molecular chaperone that assists the
conformational maturation of molecules involved in sig-
nal transduction and cell cycle regulation [37-41]. The
function of Hsp90 depends largely on its dimerisation
and several domains can be identified in the Hsp90 linear
sequence (supplemental Table 1 in [7]). The fundamental
function of Hsp90 relies on the complex intra-molecular
interaction between the different domains, which are
poorly understood. The env gene of HIV-1 is the gene
yielding the functionally important proteins gp120 and
gp41 that are involved in host cell recognition, binding
and entry [42-44]. The coordinated function of gp120 and
gp41 is translated into a complex evolutionary patterns
observed in the env gene (i.e. [45,46]) and even more

PPV
TP

TP FP
=

+
(9)
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complex coevolutionary patterns [25,47]. Here we apply
the improved method to detect coevolutionary patterns in
the env gene of the HIV-1 subtype.

Authors' contributions
MAF has conceived the study, designed the computational
and statistical analyses, conducted the statistical analyses,
written the corresponding software and written the man-
uscript. FMC has run the coevolutionary analyses in the
simulated data and in the real proteins and implemented
part of the computational code and SO has conducted
some of the analyses and partially funded the study.

Additional material

Acknowledgements
This work was supported by Science Foundation Ireland to M.A.F. S.O. and 
F.M.C. are supported by Marie Curie FP6 actions. We would like to thank 
David McNally for his assistance with Figure 6 of this manuscript. We are 
very grateful to reviewers who have contributed significantly to the 
improvement of this manuscript.

References
1. Galitsky B: Revealing the set of mutually correlated positions

for the protein families of immunoglobulin fold.  In Silico Biol
2003, 3(3):241-264.

2. Pollock DD, Taylor WR, Goldman N: Coevolving protein resi-
dues: maximum likelihood identification and relationship to
structure.  J Mol Biol 1999, 287(1):187-198.

3. Korber BT, Farber RM, Wolpert DH, Lapedes AS: Covariation of
mutations in the V3 loop of human immunodeficiency virus
type 1 envelope protein: an information theoretic analysis.
Proc Natl Acad Sci USA 1993, 90(15):7176-7180.

4. Chelvanayagam G, Eggenschwiler A, Knecht L, Gonnet GH, Benner
SA: An analysis of simultaneous variation in protein struc-
tures.  Protein Eng 1997, 10(4):307-316.

5. Pollock DD, Taylor WR: Effectiveness of correlation analysis in
identifying protein residues under going correlated evolu-
tion.  Protein Eng 1997, 10(6):647-657.

6. Atchley WR, Wollenberg KR, Fitch WM, Terhalle W, Dress AW:
Correlations among amino acid sites in bHLH protein
domains: an information theoretic analysis.  Mol Biol Evol 2000,
17(1):164-178.

7. Fares MA, Travers SA: A novel method for detecting intramo-
lecular coevolution: adding a further dimension to selective
constraints analyses.  Genetics 2006, 173(1):9-23.

8. Tuff P, Darlu P: Exploring a phylogenetic approach for the
detection of correlated substitutions in proteins.  Mol Biol Evol
2000, 17(11):1753-1759.

9. Afonnikov DA, Oshchepkov DY, Kolchanov NA: Detection of con-
served physico-chemical characteristics of proteins by ana-
lyzing clusters of positions with co-ordinated substitutions.
Bioinformatics 2001, 17(11):1035-1046.

10. Pritchard L, Bladon P, J MOM, M JD: Evaluation of a novel method
for the identification of coevolving protein residues.  Protein
Eng 2001, 14(8):549-555.

11. Wang ZO, Pollock DD: Context dependence and coevolution
among amino acid residues in proteins.  Methods Enzymol 2005,
395:779-790.

12. Shapiro B, Rambaut A, Pybus OG, Holmes EC: A phylogenetic
method for detecting positive epistasis in gene sequences
and its application to RNA virus evolution.  Mol Biol Evol 2006,
23(9):1724-1730.

13. Tillier ER, Lui TW: Using multiple interdependency to separate
functional from phylogenetic correlations in protein align-
ments.  Bioinformatics 2003, 19(6):750-755.

14. Buck MJ, Atchley WR: Networks of coevolving sites in struc-
tural and functional domains of serpin proteins.  Mol Biol Evol
2005, 22(7):1627-1634.

15. Clarke ND: Covariation of residues in the homeodomain
sequence family.  Protein Sci 1995, 4(11):2269-2278.

16. Wollenberg KR, Atchley WR: Separation of phylogenetic and
functional associations in biological sequences by using the
parametric bootstrap.  Proc Natl Acad Sci USA 2000,
97(7):3288-3291.

17. Martin LC, Gloor GB, Dunn SD, Wahl LM: Using information the-
ory to search for co-evolving residues in proteins.  Bioinformat-
ics 2005, 21(22):4116-4124.

18. Codoner FM, Fares MA, Elena SF: Adaptive covariation between
the coat and movement proteins of prunus necrotic ringspot
virus.  J Virol 2006, 80(12):5833-5840.

19. Zhong J, Gastaminza P, Chung J, Stamataki Z, Isogawa M, Cheng G,
McKeating JA, Chisari FV: Per sistent hepatitis C virus infection
in vitro: coevolution of virus and host.  J Virol 2006,
80(22):11082-11093.

20. Pearl LH, Prodromou C: Structure and mechanism of the hsp90
molecular chaperone machinery.  Annu Rev Biochem 2006,
75:271-294.

21. Chen B, Vogan EM, Gong H, Skehel JJ, Wiley DC, Harrison SC:
Structure of an unliganded simian immunodeficiency virus
gp120 core.  Nature 2005, 433(7028):834-841.

22. Kwong PD, Wyatt R, Robinson J, Sweet RW, Sodroski J, Hendrickson
WA: Structure of an HIV gp120 envelope glycoprotein in
complex with the CD4 receptor and a neutralizing human
antibody.  Nature 1998, 393(6686):648-659.

23. Wyatt R, Kwong PD, Desjardins E, Sweet RW, Robinson J, Hendrick-
son WA, Sodroski JG: The antigenic structure of the HIV gp120
envelope glycoprotein.  Nature 1998, 393(6686):705-711.

24. Pantophlet R, Burton DR: GP120: target for neutralizing HIV-1
antibodies.  Annu Rev Immunol 2006, 24:739-769.

25. Travers SA, Fares MA: Functional coevolutionary networks of
the Hsp70-Hop-Hsp90 system revealed through computa-
tional analyses.  Mol Biol Evol 2007, 24(4):1032-1044.

26. Pritchard L, Dufton MJ: Do pr oteins learn to evolve? The Hop-
field network as a basis for the under standing of protein evo-
lution.  J Theor Biol 2000, 202(1):77-86.

27. Yang Z: PAML: a program package for phylogenetic analysis
by maximum likelihood.  Comput Appl Biosci 1997, 13(5):555-556.

28. Jones DT, Taylor WR, Thornton JM: The rapid generation of
mutation data matrices from protein sequences.  Comput Appl
Biosci 1992, 8(3):275-282.

29. Landry SJ, Zeilstra-Ryalls J, Fayet O, Georgopoulos C, Gierasch LM:
Characterization of a functionally important mobile domain
of GroES.  Nature 1993, 364(6434):255-258.

30. Deuerling E, Schulze-Specking A, Tomoyasu T, Mogk A, Bukau B:
Trigger factor and DnaK cooperate in folding of newly syn-
thesized proteins.  Nature 1999, 400(6745):693-696.

31. Thulasiraman V, Yang CF, Frydman J: In vivo newly translated
polypeptides are sequestered in a protected folding environ-
ment.  Embo J 1999, 18(1):85-95.

32. Braig K, Adams PD, Brunger AT: Conformational variability in
the refined structure of the chaperonin GroEL at 2.8 A res-
olution.  Nat Struct Biol 1995, 2(12):1083-1094.

33. Braig K, Otwinowski Z, Hegde R, Boisvert DC, Joachimiak A, Hor-
wich AL, Sigler PB: The crystal structure of the bacterial chap-
eronin GroEL at 2.8 A.  Nature 1994, 371(6498):578-586.

34. Moran NA: Accelerated evolution and Muller 's rachet in
endosymbiotic bacteria.  Proc Natl Acad Sci USA 1996,
93(7):2873-2878.

35. Herbeck JT, Funk DJ, Degnan PH, Wernegreen JJ: A conservative
test of genetic drift in the endosymbiotic bacterium Buchner

Additional file 1
Accession numbers for the protein sequences used in the analysis of co-evo-
lution in the real data set.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2148-8-106-S1.doc]
Page 17 of 18
(page number not for citation purposes)



BMC Evolutionary Biology 2008, 8:106 http://www.biomedcentral.com/1471-2148/8/106
Publish with BioMed Central   and  every 
scientist can read your work free of charge

"BioMed Central will be the most significant development for 
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central 

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

a: slightly deleterious mutations in the chaperonin groEL.
Genetics 2003, 165(4):1651-1660.

36. Gloor GB, Martin LC, Wahl LM, Dunn SD: Mutual information in
protein multiple sequence alignments reveals two classes of
coevolving positions.  Biochemistry 2005, 44(19):7156-7165.

37. Pratt WB: The hsp90-based chaperone system: involvement
in signal transduction from a variety of hormone and growth
factor receptors.  Proc Soc Exp Biol Med 1998, 217(4):420-434.

38. Buchner J: Hsp90 & Co. – a holding for folding.  Trends Biochem
Sci 1999, 24(4):136-141.

39. Caplan AJ: Hsp90's secrets unfold: new insights from struc-
tural and functional studies.  Trends Cell Biol 1999, 9(7):262-268.

40. Mayer MP, Bukau B: Hsp70 chaperone systems: diversity of cel-
lular functions and mechanism of action.  Biol Chem 1998,
379(3):261-268.

41. Mayer MP, Bukau B: Molecular chaperones: the busy life of
Hsp90.  Curr Biol 1999, 9(9):R322-325.

42. Deng H, Liu R, Ellmeier W, Choe S, Unutmaz D, Burkhart M, Di Mar-
zio P, Marmon S, Sutton RE, Hill CM, et al.: Identification of a
major co-receptor for primary isolates of HIV-1.  Nature 1996,
381(6584):661-666.

43. Dragic T, Litwin V, Allaway GP, Martin SR, Huang Y, Nagashima KA,
Cayanan C, Maddon PJ, Koup RA, Moore JP, et al.: HIV-1 entr y into
CD4+ cells is mediated by the chemokine receptor CC-CKR-
5.  Nature 1996, 381(6584):667-673.

44. Feng Y, Broder CC, Kennedy PE, Berger EA: HIV-1 entry cofactor:
functional cDNA cloning of a seven-transmembrane, G pro-
tein-coupled receptor.  Science 1996, 272(5263):872-877.

45. de Oliveira T, Salemi M, Gordon M, Vandamme AM, van Rensburg EJ,
Engelbrecht S, Coovadia HM, Cassol S: Mapping sites of positive
selection and amino acid diversification in the HIV genome:
an alternative approach to vaccine design?  Genetics 2004,
167(3):1047-1058.

46. Travers SA, O'Connell MJ, McCormack GP, McInerney JO: Evidence
for heterogeneous selective pressures in the evolution of the
env gene in different human immunodeficiency virus type 1
subtypes.  J Virol 2005, 79(3):1836-1841.

47. Poon AF, Lewis FI, Pond SL, Frost SD: Evolutionary Inter actions
between NLinked Glycosylation Sites in the HIV-1 Envelope.
PLoS Comput Biol 2007, 3(1):e11.

48. Fenton WA, Kashi Y, Furtak K, Horwich AL: Residues in chaper-
onin GroEL required for polypeptide binding and release.
Nature 1994, 371(6498):614-619.

49. Buckle AM, Zahn R, Fersht AR: A structural model for GroEL-
polypeptide recognition.  Proc Natl Acad Sci USA 1997,
94(8):3571-3575.

50. Brocchieri L, Karlin S: Conservation among HSP60 sequences
in relation to structure, function, and evolution.  Protein Sci
2000, 9(3):476-486.
Page 18 of 18
(page number not for citation purposes)


