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Road  markings  are  used  to  provide guidance  and instruction to road  users  for  safe  and comfortable  driving.

Enabling rapid, cost-effective  and  comprehensive  approaches  to the maintenance  of  route networks  can

be greatly  improved  with detailed  information  about location,  dimension  and  condition of  road  markings.

Mobile Laser  Scanning  (MLS) systems  provide  new opportunities  in  terms  of  collecting  and processing  this

information. Laser scanning systems enable  multiple  attributes  of  the illuminated target  to  be recorded

including intensity  data. The  recorded  intensity  data  can  be used  to distinguish  the road  markings  from

other road  surface  elements  due  to their  higher  retro-reflective  property.  In  this  paper,  we  present  an

automated algorithm  for extracting  road  markings  from  MLS  data. We  describe  a robust and  automated

way of  applying  a  range dependent  thresholding  function  to the  intensity  values  to  extract  road  markings.

We make  novel  use of  binary  morphological  operations  and  generic  knowledge  of  the  dimensions  of  road

markings to  complete  their  shapes and remove other  road surface  elements  introduced  through  the  use

of thresholding. We  present  a  detailed  analysis  of  the  most  applicable  values  required for the  input

parameters involved in  our  algorithm.  We  tested  our  algorithm  on  different road  sections  consisting of

multiple distinct  types  of  road  markings. The successful  extraction  of  these road  markings  demonstrates

the effectiveness  of  our  algorithm.

©  2014 Elsevier  B.V.  All rights reserved.

1. Introduction

Road user safety may  be affected by existence and condition of

safety interventions along the route corridor. A  well designed and

maintained route corridor assists in driver safety as well as in the

efficient use of overall network in terms of route navigation (ETSC,

1997). Road markings play an important role in reducing accident

frequency and severity as they provide guidance and instruction to

the road users for safe and comfortable driving. They are intended

to direct traffic by indicating the direction of travel, warn road

users about specific obstacles or  hazards and define the territo-

rial  limit for traffic flows (Gatti et al., 2007). Road markings are

retro-reflective surfaces having an ability to reflect most of the

incident light back to its originating source. These markings retain

their visibility criteria in day  and night. Road markings may  dete-

riorate due to intensive use  or  suffer from reduced visibility due to

many factors such as occlusions that arise from vegetation growth.

Road markings are required to be located, measured, classified and

recorded in a timely, cost effective manner in order to schedule

maintenance and ensure maximum safety conditions for road users

(Kumar, 2012).

∗ Corresponding author. Tel.: +353 17086180.

Various safety schemes and standards such as the Road Safety

Audit  (RSA), Road Safety Inspection (RSI) and Network Safety

Management (NSM) are implemented to qualitatively estimate

potential road safety issues along the route corridor. The aim of

these road safety assessment methodologies is  to identify the ele-

ments of the road that may  present a safety concern and explore

the  various opportunities to eliminate identified safety concerns

(ETSC, 1997).  The information collected through these surveys is

sometimes incomplete and insufficient for qualitative estimation

of  potential road safety issues. It can  also be time consuming

and expensive to conduct these inspections on a large scale. A

recent research call highlighted the requirement for common eval-

uation tools and implementation strategies in carrying out these

inspections and assessing risk along route corridors (Pecharda

et al., 2009). One research project European Road Safety Inspec-

tion  (EuRSI) demonstrated that terrestrial Mobile Mapping Systems

(MMS)  could be used to collect physical route corridor information

for rapid safety analysis (McCarthy and McElhinney, 2010).

Mobile mapping refers to a  methodology of collecting geospa-

tial  data using mapping and navigation sensors that are mounted

rigidly onboard a  mobile platform (Schwarz and El-sheimy, 2007;

Barber et al., 2008). Multi sensor integrated mapping technology

has enabled rapid and cost effective acquisition of georeferenced

information about road network environments (Li and  Chapman,

http://dx.doi.org/10.1016/j.jag.2014.03.023
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2008). Their initial development was primarily driven by advances

in  digital cameras and navigation technologies. Later, laser scanning

systems were integrated with MMSs  which facilitated more accu-

rate and dense collection of  3D point cloud data. The applicability of

mobile laser scanning (MLS) systems continues to prove their worth

in route corridor mapping due to their rapid, continuous and cost

effective 3D data acquisition capability. MLS  systems usually record

the intensity data which can be used to distinguish road markings

that  produce high reflectivity due to their retro-reflective property.

Knowledge of the location, dimension and condition of road mark-

ings can be useful for road safety, route network maintenance and

driver assistance systems. In  Kumar et al. (2013),  we presented an

automated algorithm for extracting road edges from MLS data. The

automated road edge extraction algorithm is applied to estimate

road boundaries from LiDAR data. The output road boundaries are

then used to identify the LiDAR points that belong to the road sur-

face. Knowledge of the road surface area facilitates a  more efficient

and accurate extraction of road markings. In this paper, we will

present an automated algorithm for extracting road markings from

MLS  data. The algorithm is based on applying a  range dependent

thresholding function to the intensity values to extract road mark-

ings  from MLS  data. In Section 2,  we review various approaches

developed for extracting road markings from LiDAR data. In Sec-

tion 3, we present a stepwise description of our automated road

marking extraction algorithm. In Section 4, we present our analy-

sis  to find the most applicable values of  input parameters required

to  automate the road marking extraction algorithm. In  Section 5,

we test our algorithm on various road sections, demonstrating the

successful extraction of different types of road markings. We  dis-

cuss the results following validation of the road marking extraction

process in Section 6. Finally, we conclude the paper in Section 7.

2.  Literature review

MLS  systems enable the acquisition of an accurately georeferen-

ced set of dense LiDAR point cloud data. Because of  the fundamental

structure and intrinsic properties of LiDAR data, it enables more

efficient and accurate road feature extraction approaches to be

explored. Apart from facilitating the collection of 3D  positional

information, laser scanning systems record a number of attributes

including intensity, pulse width, range and multiple echo which

can  be used for reliable and precise extraction of different spa-

tial objects. The pulse width from the laser scanning system refers

to  a recorded time difference between half maximum amplitudes

of  the pulse (Kumar, 2012).  The  pulse width attribute can be

used to classify terrain objects as its  values vary with the sur-

face roughness (Lin and Mills, 2010).  The  methods developed for

segmenting LiDAR data are mostly based on the identification of

planar or smooth surfaces and the classification of point cloud

data based on its attributes (Vosselman, 2009).  In a related area,

several methods have been developed over the past decade for

extracting urban building features from LiDAR data (Hammoudi

et  al., 2009; Rutzinger et al., 2009; Kabolizade et al., 2010; Haala

and Kada, 2010). Other approaches have been based on extract-

ing  road and its environment from LiDAR data. Clode et al. (2004)

and Hu et al. (2004) segmented Airborne Laser Scanning (ALS)

data  into road and non-road based on elevation and intensity

attributes, while Samadzadegan et al. (2009) used first echo, last

echo, range and intensity attributes to classify the ALS points into

road objects. Mumtaz and Mooney (2009) used ALS elevation and

intensity attributes to extract spatial information about buildings,

trees, roads, poles and wires in the route corridor environment. Lam

et  al. (2010) extracted roads through fitting a  plane to 3D terrestrial

mobile point cloud data and then used the extracted information

to distinguish lamp posts, power line posts and power lines by

employing context based constraints. Pu et al. (2011) segmented

MLS  data into traffic signs, poles, barriers, trees and building walls

based on spatial characteristics of point cloud segments like size,

shape, orientation and topological relationships. Similarly, Zhou

and  Vosselman (2012) used elevation attribute, while McElhinney

et  al. (2010) and Kumar et al. (2013) employed elevation, intensity

and  pulse width attributes to extract road edges in multiple route

corridor environment from MLS  data.

LiDAR data provides an intensity attribute which depends upon

the range, incidence angle of  the laser beam and  surface charac-

teristics. The intensity values are required to be normalised with

respect to these factors prior to the threshold implementation or

the use of  a range dependent threshold approach is  recommended

for segmentation or feature extraction (Vosselman, 2009).  Most

of  the approaches used for normalising their values are based on

using models and data driven methods (Pfeifer et al., 2008; Jutzi

and Gross, 2009; Oh, 2010) while other approaches are based on

using external reference targets of known reflectivity behaviour

(Kaasalainen et al., 2009; Vain et al., 2009).  The intensity attribute

can  be used to distinguish road markings from the road surface. Pre-

cise extraction of road markings from LiDAR data has drawn limited

attention from the research community. Jaakkola et al. (2008) esti-

mated road markings by first performing a  radiometric correction

of  the LiDAR intensity data using a second order curve fitting func-

tion. Finally, road markings were estimated by applying a  threshold

and morphological filtering methods. Toth et al. (2007, 2008) used

road markings as ground control for assessing the positioning qual-

ity of  ALS data. The search window for finding the road markings in

the LiDAR data was reduced by making use  of the Global Position-

ing System (GPS) survey data collected over the pavement. The road

markings were extracted by thresholding the LiDAR intensity val-

ues. Later, extracted road markings were compared with the GPS

survey data to assess the quality of the LiDAR points. Vosselman

(2009) described the use of a range dependent thresholding for

extracting  road markings from MLS  data. The thresholded road

marking points were grouped using connected component anal-

ysis and then full outlinings of the road markings were obtained

by fitting predefined shapes to the grouped segments. Chen et al.

(2009) developed a  method for extracting lane markings from the

MLS  data. The road surface was detected by discarding the non-road

points based on the standard deviation values of LiDAR elevation

attribute and then candidate lane marking points were localised by

applying a  threshold to the intensity values of road surface points.

The lane markings were clustered by applying the Hough trans-

form to 2D binary image generated from candidate points and were

further refined using trajectory and  geometry check constraints.

Smadja et al. (2010) developed an algorithm for extracting roads

from MLS data based on the detection of slope break points cou-

pled with the RANdom SAmple Consensus (RANSAC) algorithm. The

estimated road information was used to extract road markings by

applying a  threshold approach to the LiDAR intensity data. Butler

(2011) developed an automated approach to extract road mark-

ings from MLS  system. The road marking points were extracted by

thresholding the LiDAR intensity attribute and then output points

were filtered based on  their neighbourhood within a specified

threshold distance. The road marking points were clustered and

convex hulls were fitted to them. Yang et al. (2012) described an

automated approach for extracting road markings from MLS  data.

In  their approach, 2D image was generated from LiDAR point cloud

data and then road markings were filtered by applying threshold

to the LiDAR intensity and elevation values. Finally, the outlines

of  road markings were extracted based on priori knowledge of  the

shapes and arrangement of the road markings.

The majority of methods developed for extracting road markings

are based on applying a  threshold to the LiDAR intensity values.

The  development of a  robust threshold approach will provide a
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Fig. 1. Road marking extraction algorithm.

more precise extraction of road markings. The factors that affect

the values of intensity attribute are required to be addressed prior

to  their use for road markings extraction. A  threshold applied to

the intensity values often introduces some of the other road sur-

face elements, which needs to be removed. A  priori knowledge of

the  road boundaries and its  surface will facilitate a  more efficient

extraction of road markings. In the next section, we present our

automated road marking extraction algorithm.

3. Algorithm

In Kumar et al. (2013),  we presented an automated algorithm

for  extracting road edges from MLS  data. We input n number of

30  m × 10 m × 5 m LiDAR and n  number of 10 m navigation data

sections in the road edge extraction algorithm. The dimensions

of  input data sections were selected based on empirical tests

as  they impact the process efficiency in terms of computational

cost (Kumar, 2012; Kumar et  al., 2013).  The algorithm outputs

road boundary which is used to identify the LiDAR points that

belong to the road surface. We apply our automated road mak-

ing extraction algorithm to the estimated road surface LiDAR

points which facilitates a more efficient and accurate extrac-

tion of road markings. Our automated road marking extraction

algorithm is based on the assumption that the intensity val-

ues  of the laser returns from the road markings are higher than

those from other road surface elements. We expect to extract

these road markings by applying a  range dependent thresholding

to  the intensity values. We  convert the LiDAR intensity and range

attributes into 2D raster surfaces which allow us to apply mor-

phological operations to them. A workflow of the road marking

extraction algorithm is shown in Fig. 1. In  the following sections,

we  describe the various processing steps involved in our algorithm.

3.1.  Road surface estimation

We input the LiDAR data and the road boundary estimated using

our automated road edge extraction algorithm. In Step 1 of our

road marking extraction algorithm, we  use the road boundary to

identify the LiDAR points that belong to the road surface. A road

boundary is  laid over the LiDAR data such that the points outside

the road boundary are removed, while the inner points are retained

to estimate the road surface.

3.2. 2D raster surface generation

We use LiDAR intensity and range attributes in our algorithm

to  extract the road markings. In  Step 2 of our algorithm, we  gen-

erate 2D intensity and range raster surfaces from the LiDAR data

using  a cell size, c parameter. An optimal value of c parameter is

selected based on a detailed analysis provided in Section 4.1. The

value of each cell in the raster surface is estimated as the average of

the intensity and range values of the LiDAR points that fall within



128 P. Kumar et al.  / International Journal of Applied Earth Observation and Geoinformation 32 (2014) 125–137

Fig. 2.  Navigation data is  used to  select a range value to apply multiple threshold values to  the intensity raster surface.

the 2D boundary of the cell. The intensity and range raster surface

values are normalised with respect to their global minimum and

maximum, and converted into an 8-bit data type. This will allow

for  the use of one set of values for all road sections.

3.3. Range dependent thresholding

Road markings are generally more reflective than the road sur-

face. This results in the intensity values of the laser returns from the

road  markings being higher than the background surface. However,

apart from the reflectivity of the illuminated surface, there are two

other factors affecting the intensity values, the range and the inci-

dence angle of the laser beam. These factors need to be addressed in

any algorithm extracting road markings. In Step 4 of our algorithm,

we  apply range dependent thresholding to the intensity raster sur-

face. We  use the navigation data to select a  range value that is  used

to  apply multiple threshold values. In most MLS  systems, the laser

scanner is mounted on a mobile van at some horizontal and verti-

cal  inclined position in order to produce rich 3D information. Let us

suppose that a laser scanner is  mounted on the back of the mobile

van at a � inclination angle from both the horizontal and vertical

axes  of the vehicle. This inclined position modifies the initial scan-

ning point from directly below the scanner to the position, O, shown

in  Fig. 2. R is the range of a  laser beam from the navigation point N

to  the initial scanning point O. The transverse range from the point

N  to O′ is estimated as R  cos  �.  For each laser return, we replace

their range value with the new transverse range value using the

inclination angle �.  We  use the estimated transverse range value

R cos  �  to divide the intensity raster surface into different blocks

which allows us to threshold the intensity values based on their

range from the scanner.

We apply a different threshold value to each block of the inten-

sity raster surface to deal with the range and incidence angle factors

that  affect intensity values. The road surface is usually constructed

with a non-planar shape, shown in Fig. 3.  This surface is  engineered

to allow rain water to run off the road surface to reduce water

pooling which can damage the road surface over time. This type of

road surface might influence the incidence angle of the laser beam,

resulting in a change in intensity returns as the range increases. We

apply the threshold values TI1,  TI2, TI3 and  TI4 to data in the blocks

B1,  B2, B3 and B4,  respectively, to extract road markings. We select

a  single optimal value of threshold, TI empirically and use it to esti-

mate the values of TI1, TI2,  TI3 and TI4. A detailed analysis on the

selection of the range dependent threshold values is  provided in

Section 4.2.

3.4. Morphological operations

The extracted road markings from Step 3  may  be incomplete and

contain other road surface elements that are introduced through

the use of thresholding. To overcome this, we  make a novel use  of

binary morphological operations (Haralick and Shapiro, 1992) and

priori knowledge of  the dimensions of road markings in Step 4 of

our algorithm. Their implementation involves three processes. In

the first process, the thresholded raster surface is converted into

a  binary image and then we apply the dilation operation to the
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Fig. 3. Side view of the non-planar road surface.

binary image in which a  structuring element is placed over the cells

of  the image. The purpose of dilation is  to use the structuring ele-

ment to grow cells with a  value of 1  in order to fill in any holes.

A  structuring element consists of a  binary matrix that represents

the selected shape and size. Examples of structuring elements with

different shapes and sizes are shown in Fig. 4.  A  central element

of the matrix represents an origin and the elements with a value

of 1 describe a neighbourhood of the structuring element. The ori-

gin of the structuring element is positioned over each cell in the

binary raster surface to dilate that cell along the neighbourhood of

the  structuring element.

A linear shaped structuring element is used to dilate the cells

of  each road marking. We choose a  linear shape for the structuring

elements due to the general linear patterns of  road markings. The

linear shaped structuring element is used with a  �′ angle that is cal-

culated from the average heading of the mobile van along the road

section under investigation. This angle is used in order to dilate the

road markings along the longitudinal direction. A  process of calcu-

lating the �′ angle from the average heading angle of the mobile

van, �, is described in Fig. 5.  The � angle provides the direction of

the mobile van’s trajectory with respect to the north direction and

the �′ angle is measured in the anticlockwise direction from the

horizontal axis. If the value of � angle lies in between 0◦ and 90◦,

then the �′ angle is estimated as 90◦ −  � in the anticlockwise direc-

tion  as shown in Fig. 5(a). Similarly, the �′ angle can be estimated

for other possible values of the � angle as shown in Fig. 5(b)–(d).

The l, length of the linear shaped structuring element is selected

empirically. We use the same value in each road section, which

allows us to automate the morphological operation in our algo-

rithm. An example of the input binary image is  shown in Fig. 6(a).

The input binary image is  dilated using a  linear shaped structuring

element with l =  9  and �′ = 38.37◦ as shown in Fig. 6(b). The use of

dilation operation fills the holes and completes the shapes of road

markings in the input binary image.

In the second process, we group cells into objects in the dilated

image using connectivity. If a cell has a  value of 1  then it is  con-

nected to the cells whose values are 1 and are directly above, below,

left  or right of that cell. We  calculate the length and average width

values of each object in the dilated image. Objects whose length

and average width values are less than length threshold, TL and

width threshold, TW are considered as other road surface elements

and are removed from the image. An example of  road surface cells

removed from the dilated image is shown in Fig. 6(c).

In the third process, we  apply an erosion operation to the dilated

image in order to retain the original boundary shape of the road

markings. In an erosion operation, cells are removed from the road

marking cells using a structuring element. The linear shaped struc-

turing element used for dilation is also applied to erode the road

markings. An example of the dilated road markings eroded using

the  linear shaped structuring element with l =  9 and �′ =  38.37◦

angle is shown in Fig. 6(d). In this way, the combined use of morpho-

logical operations and priori knowledge of the dimensions of road

markings is able to complete their shapes and to remove other road

surface elements.

3.5. 3D road markings

In Step 5 of our algorithm, we  extract the 3D road markings using

the 2D output. The original 3D LiDAR points which are contained

within the 2D road marking cell boundaries are extracted. In  the

next  section, we present our analysis of the input parameters used

to automate our road marking extraction algorithm.

Fig. 4. Structuring elements: (a) diamond shaped with radius, r = 1, (b) linear shaped with length, l  = 3 and angle, �′ = 45◦ and (c) linear shaped with length, l =  5  and angle,

�′ = 90◦ .
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Fig. 5. Estimation of �′ angle of the linear shaped structuring element from the average heading angle of the mobile van, �, along the  road section that can  lie in between (a)

0◦ and 90◦ , (b) 90◦ and 180◦ ,  (c) 180◦ and 270◦ and (d) 270◦ and 360◦ .

4. Parameter analysis

Our road marking extraction algorithm requires two  input

parameters, the cell size value for converting the LiDAR data into

2D  raster surfaces and the range dependent threshold value. To

implement an automated algorithm, we need the most applica-

ble value for each of these. In the following sections, we will

detail our recommended values and show the effect of changing

these.

4.1. Optimal cell size parameter

We convert the LiDAR data into 2D raster surfaces as described in

Section 3.2.  Each cell in the raster surface has a physical dimension.

Fig. 6.  Morphological operation: (a) input binary image, (b) dilated image, (c) road surface cells removed and (d) eroded image.
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Fig. 7. Road markings extracted with (a) 0.01 m2,  (b) 0.04 m2,  (c) 0.06 m2, (d)  0.08 m2 and (e) 0.1 m2 cell  size in the  five test cases of the optimal cell size analysis.

The cell size influences the average intensity and range values of

the  cell which in turn affects the output result in terms of accuracy

and computational cost. Our road marking extraction algorithm

is primarily based on range dependent thresholding which is not

computationally expensive. Therefore, we considered accuracy as

the main criteria for cell size selection. To find its  optimal value,

we analysed the performance of our road marking extraction algo-

rithm in raster surfaces generated with different cell sizes. We

selected one 10 m section of rural road which contained broken

and  continuous line markings over its surface. To process this road

section, we used n = 1  number of 30 m ×  10 m × 5 m section of LiDAR

data and n = 1 number of 10 m section of navigation data. The data

were collected using the eXperimental Platform (XP-1) MMS  which

has  been designed and developed at National University of Ireland

Maynooth (Kumar et  al., 2010, 2011).

The automated road edge extraction algorithm was applied to

the selected road section to obtain output road boundary. We

then applied our automated road marking extraction algorithm by

considering five test cases in which raster surfaces were generated

from the LiDAR intensity and range attributes with different cell

sizes.  The parameters used in the algorithm in the five test cases

are shown in Table 1. The cell sizes were selected with decreasing

and  increasing values based on an  average point spacing of 0.08 m2

in the LiDAR points while the value of l parameter was chosen in

accordance with the respective cell size selected in each case. The

�′ angle was calculated as 90◦ −  � while the values of  TL and TW

were selected based on minimum possible 0.5 m length and 0.1 m

Table 1
The parameters used in the  five test  cases of the optimal cell size parameter analysis.

Test case c (m2) TI l �′ (◦) TL (m) TW (m)

1 0.01 70 51 24.23 1 0.1

2 0.04 70 13 24.23 1 0.1

3 0.06 70 9 24.23 1.02 0.1

4 0.08 70 7 24.23 1.04 0.1

5 0.1 70 5 24.23 0.9 0.1

width of the road markings used in the real world road environ-

ment (Transport, 2010).  The value of TI was modified as a  function

of  range and applied to four blocks of the intensity raster surface.

We  used a similar value of TW in each test case as the cells were not

dilated along the transverse direction. The road markings extracted

in the five test cases are shown in Fig. 7.

In order to carry out a comparative analysis, we calculated the

length and average width of the final extracted road markings in

the five cases. We considered four broken line markings named

as  D1, D2, D3 and D4  and one continuous line marking named as C,

shown in Fig. 7.  The calculated length, L and average width, W  values

are listed in Table 2.  We  found a standard length and width of  the

five road markings from the traffic signs manual (Transport, 2010).

We  compared the extracted L and W  values of the road markings

with the expected standard dimensions. For cell  sizes 0.08 m2 and

0.1 m2, the W values of  the road markings were generally found to

be more than their standard values. For the 0.06 m2 cell  size, the L

Table 2
Length and average width values of the extracted road markings in the five test cases of the optimal cell size analysis.

Road markings (standard L  × W) 0.01 m2 0.04 m2 0.06 m2 0.08 m2 0.1 m2

L W L W L  W L  W  L  W

D1 (2 m × 0.15 m)  1.75  m 0.12 m  1.68 m 0.12 m  1.68 m  0.12 m 1.68 m 0.16 m 1.70 m  0.13 m

D2 (2 m × 0.15 m)  1.84  m 0.07 m 1.84 m 0.07 m 1.80 m 0.08 m 1.84 m 0.08 m  1.80 m  0.07 m

D3  (2 m × 0.15 m)  1.71  m 0.002 m 1.80 m  0.10 m 1.80 m 0.13 m 1.84 m 0.17 m 1.80 m  0.20 m

D4  (2 m × 0.15 m)  1.78  m 0.002 m 1.80 m  0.08 m 1.80 m 0.14 m 1.84 m 0.18 m 1.80 m  0.16 m

C  (8.6 m × 0.15 m) 7.80 m 0.034  m 7.84 m 0.145 m 7.86 m  0.141 m 7.92 m 0.17 m 7.90 m  0.16 m
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Fig. 8. Range dependent thresholding applied to  the intensity raster surface in the road section with (a) narrower and (b) greater width.

and W values of the road markings were closest to their standard

values. Thus, we selected 0.06 m2 cell size as the most applicable

value to generate 2D intensity and range raster surfaces from the

LiDAR data.

4.2. Range dependent threshold parameter

After selecting the optimal cell size, the final parameter requir-

ing  selection is the range dependent threshold. The aim of this

analysis was to determine a method for automatically selecting

this threshold value irrespective of the road dimension. We  use

the navigation data to select the range value that is used to divide

the intensity raster surface into different blocks. In a  road section

with a narrower width, the intensity raster surface was  divided

into  four blocks, shown in Fig. 8(a). In a road section with a  greater

width, the intensity raster surface was divided into seven blocks,

shown in Fig. 8(b). We selected a  single threshold value TI =  70

empirically and modified it as a  function of  the range. We applied a

TI + ma threshold to each block of the intensity raster surface, where

a  = 10 and m represents a block number. We  applied the TI + ma −  nb

threshold to the blocks after the centre of the road, where b = 5 and

n = 1, 2, 4, 8, . . . representing an integer for the third, fourth, fifth,

sixth, etc. blocks, respectively. The threshold values applied before

the centre of the road were consecutively increased with the ma

term, as the road surface in those blocks begins to orient towards

the  laser scanner. The threshold values applied after the centre of

Table 3
The parameters used in the road marking extraction algorithm.

Parameter Value

c  0.06 m2

TI 70

l  9

TL 1.02 m

TW 0.1 m

the road were increased with the term ma and then decreased with

the nb term to account for the increased range and  the change in

surface orientation. The purpose of finding these variables was to

automate the process of applying the range dependent threshold-

ing to the intensity raster surface.

To demonstrate the importance of the empirically selected value

of  TI,  we applied its lower, optimal and higher value to the intensity

raster surface as 55, 70 and 90. Each value was  modified as a func-

tion of the range in accordance with the aforementioned formulae

and  used to extract the road markings, shown in Fig. 9(a)–(c). The

use of a lower threshold value led to the extraction of road mark-

ings with large areas of other road surface elements, while its higher

value removed those elements at the expense of  extracting all the

road markings. Thus, the selection of an optimal threshold value

is essential for the robust extraction of road markings. In the next

section, we test our automated road marking extraction algorithm

on  various road sections.

Fig. 9. Road markings extracted using the  (a) lower, (b) optimal and (c)  higher value of TI applied to  the intensity raster surface.
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Fig. 10. Digital image of (a) first, (b) second, (c)  third, (d) fourth, (e) fifth and (f) sixth road section (geographic locations: (a) 53◦34′28.07′′ N  7◦10′13.76′′ W,  (b) 53◦36′33.43′′ N

7◦5′46.96′′ W,  (c) 53◦34′50.546′′ N  7◦8′57.62′′ W, (d)  53◦39′19.225′′ N  7◦31′9.792′′ W,  (e) 53◦33′49.878′′ N 7◦21′24.148′′ W and (f) 53◦35′30.558′′ N 7◦22′28.428′′ W).

5. Experimentation

We  selected six sections of road to test our road marking extrac-

tion algorithm. These six sections covered 140 m of rural, urban

and national primary roads, which contained six distinct types of

road  markings to demonstrate the effectiveness of  our algorithm.

The processed data were collected with the XP-1 MMS  along these

road sections. The first 50 m section of rural road and second 50 m

section of urban road consisted of  broken and continuous line mark-

ings, shown in Fig. 10(a) and (b). The third 10 m section of rural road

consisted of word, broken and continuous line markings, fourth

10 m section of urban road consisted of zig-zag markings, fifth 10 m

section of national primary road consisted of hatch and broken

line markings while sixth 10 m  section of  national primary road

consisted of arrow and broken line markings as can be seen in

Fig. 10(c)–(f), respectively. To process each 50 m road section, we

used n = 6 number of 30 m × 10 m × 5  m sections of LiDAR data and

n  = 6 number of 10  m section of navigation data and  to process each

10 m road section, we used n  = 1 number of 30 m × 10 m × 5  m sec-

tions of LiDAR data and n  = 1 number of 10 m section of navigation

data.

We  applied our automated road marking extraction algorithm

to  each road section using parameters as shown in Table 3.  The �′

angle was calculated as 90◦ − � in each navigation section of the first

and  second road sections while 180◦ − � + 270◦ in each navigation

section of the third, fourth, fifth and sixth road sections. The value of

� angle in each navigation section of the road sections are shown in

Table 4. The original LiDAR data and extracted road markings of the

Table 5
Validation of extracted road marking test results.

Road markings Manual inspection Extracted result

Objects Points Objects Points

Continuous line 3 5280 3 5007

Broken line 71 8953 64 7718

Words  8 948 8 786

Zig-zag 3 1816 2 1299

Hatch 1 1077 1 1065

Arrow 2 1076 2 1060

Total  88 19150 80 16935

six road sections are shown in Figs. 11–13. In the next section, we

validate the road marking experimental results and discuss them.

6.  Results &  discussion

We validated the extracted road marking results through a

quantitative and qualitative assessment based on manual inspec-

tion. Our error assessment was focused on the number and shape

detection of the extracted road marking objects. We manually

counted a  number of road marking objects and a number of 3D

LiDAR points in each object as shown in Table 5.  We found 88 num-

ber  of road marking objects and 19150 number of road marking

points in the tested road sections. Our road marking extraction

algorithm was  able to correctly extract a  total of 80 road mark-

ings but failed to detect 8  road markings. Similarly, the algorithm

extracted 16935 number of road marking points while 7458 points

Table 4
Average heading angle, �, in each navigation section of the  six road sections.

Navigation section First road section Second road section Third road section Fourth road section Fifth road section Sixth road section

1 65.59◦ 51.90◦ 106.48◦ 137.07◦ 147.56◦ 153.65◦

2 65.77◦ 51.59◦

3 65.97◦ 51.62◦

4 66.24◦ 51.64◦

5 66.46◦ 51.34◦

6 66.85◦ 50.08◦
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Fig. 11. 3D (a) LiDAR data and (b) extracted broken and continuous line markings of the  50 m first  road section &  3D (a)  LiDAR data and (b) extracted broken and continuous

line markings of the 50 m second road section.

Fig. 12. 3D (a) LiDAR data and (b) extracted word, broken and continuous line markings of the  10 m third road section &  3D  (a) LiDAR data and (b) extracted zig-zag markings

of  the 10 m fourth road section.
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Fig. 13. 3D (a) LiDAR data and (b) extracted hatch and broken line markings of the  10 m fifth road section &  3D (a) LiDAR data and (b) extracted arrow and broken line

markings of the 10 m sixth road section.

Fig. 14. The road boundaries extracted using automated road edge extraction algorithm in the  (a) third, (b) fifth and (c) sixth road section are represented with red while

the navigation points are represented with yellow. (For interpretation of the  references to  color in this figure legend, the reader is  referred to  the web  version of the article.)

were missed. Thus, we were able to detect 90.91% of the road mark-

ing  objects and 88.43% of the road marking points. We identified 10

groups of LiDAR points which were incorrectly labelled as extracted

road markings on the basis of their length and width.

In  the first and second road sections, our algorithm was able to

extract the broken and continuous line markings. Some broken line

markings along the left side of both road sections were not detected

due to lower intensity values of the laser return from them. The

extracted markings in the first road section contained some surface

elements along the left edge, as seen in Fig. 11(a). This was pri-

marily due to the road boundaries extracted using our automated

road edge extraction algorithm which were extended incorrectly

into a grass and soil area. The road boundaries extracted in the first

50 m rural and the second 50 m urban road section can be referred

in  Kumar et al. (2013).  The LiDAR points belonging to grass and

soil surface in the first road section produced high intensity values

which were not removed by our road marking extraction algorithm

due to their large physical dimension. The broken markings that

were not detected along the right side of the second road section

were attributed to a  lower point density of the LiDAR data along

the right side. This was  due to the use of a  single laser scanner

in  the XP-1 system during the data acquisition process which led

to the acquisition of LiDAR data with a  lower point density along

the right side of the road section than along its  left side (Cahalane

et al., 2011, 2012). The use of more than one laser scanner or  a

double pass approach in which the vehicle is driven back and forth

on  the road can be employed to acquire uniform and dense point

cloud along both sides of  the road section (Kumar et al., 2013).

Our  automated road marking extraction algorithm will provide an

improved extraction of road markings using such LiDAR data.

In the third road section, the algorithm successfully extracted

the  majority of the word, broken and continuous line markings.

The extracted road markings contained some surface elements

along the right edge. This was due to the use of road boundaries,

extending incorrectly into grass and soil area at some points, as

shown in Fig. 14(a). Some of the extracted words along the right

side were incomplete which was due to a  lower LiDAR point

density along that side of  the road section. In the fourth road
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section, our algorithm was able to extract two zig-zag markings

but failed to detect the third one along the right side of the road

section. This was  again due to the lower point density of  the LiDAR

data  along the right side of the road section.

Our algorithm was able to extract the hatch and broken line

markings in the fifth road section. Surface elements present along

the  left side of the road section was due to the extracted road

boundaries extending incorrectly into a grass and soil area, as can

be seen in Fig. 14(b). In the sixth road section, the road marking

extraction algorithm was able to extract the arrow and broken line

markings. The broken line markings along the right side of the road

section were not extracted due to a  lower point density of the LiDAR

data along that side. Surface elements in the form of a  continuous

line along the left side of the road section was due to the extracted

road boundaries extending into the grass and soil area, as can be

seen in Fig. 14(c). In the next section, we conclude the research

work presented in this paper.

7. Conclusion

We presented an automated algorithm for extracting road mark-

ings from MLS  data. The presented algorithm is  based on the

assumption that the LiDAR intensity return values from the road

markings are higher than those from other road surface elements.

The successful extraction of distinct road markings from the multi-

ple tested road sections validates our automated algorithm. These

research findings could contribute to a more rapid, cost-effective

and comprehensive approach to the maintenance of road networks

and ensure maximum safety conditions for road users.

We  developed a  range dependent thresholding function to

extract the road markings from the intensity attribute. We select

a  single optimal threshold value and use it to automatically esti-

mate the multiple range dependent threshold values. The use of

proper normalised values of intensity attribute with respect to the

range and incidence angle of the laser beam will allow us to select

a  single and robust threshold value for extracting road markings.

This will remove the requirement of multiple range dependent

threshold values in our algorithm. We made novel use of priori

knowledge of the dimensions of road markings and binary mor-

phological operations in order to complete their shapes and to

remove other road surface elements introduced through the use of

thresholding. The morphological operations are applied using the

linear  shaped structuring elements. Further research is  required to

investigate alternative structuring elements which could be use-

ful in removing surface elements introduced through the use of

extracted road boundaries, extending incorrectly into the grass and

soil  area. The output of our road marking extraction algorithm is a

set of LiDAR points representing road marking objects. The shape,

dimension and position on the road of these objects can be exam-

ined to construct more effective algorithms that could recognise

and classify each road marking type.
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