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Abstract—We introduce an attack against encrypted web
traffic passing over the first hop – between client and Tor gateway
– of the Tor network. The attack makes use only of packet timing
information on the uplink and so is impervious to packet padding
defences. In addition, we show that the attack is robust against the
randomised routing used in Tor. We demonstrate the effectiveness
of the attack at identifying the web sites being visited by a Tor
user, achieving mean success rates of 68%. As well as being of
interest in its own right, this timing-only attack serves to highlight
deficiencies in existing defences and so to areas where it would be
beneficial for Tor and VPN designers to focus further attention.

I. INTRODUCTION

In this paper we consider an attacker of the type illustrated

in Figure 1. The attacker can detect the time of packets

traversing the first hop encrypted tunnel between the client

and the Tor network, but has no other information about

the clients activity. The attacker’s objective is to use this

information to guess, with high probability of success, the

web sites which the client visits. What is distinctive about

the attack considered here is that attacker relies solely on

packet timestamp information whereas previously reported

attacks against encrypted web traffic have mainly made use of

observations of packet size and/or packet count information.

This attack directly targets one of the primary objectives of

the Tor network, namely to ensure unlinkability between users

and the servers which they visit. In contrast to correlation-

based attacks, which seek to correlate packet timings across

hops of the Tor network and require a strong adversary with a

broad view of the network spanning many hops, our attack

requires only access to the first network hop and so can

potentially be employed by a considerably weaker adversary.

Our interest in timing-only attacks against the first hop is

twofold. Firstly, packet padding is a relatively straightforward

defence against attacks that rely primarily on packet size.

Secondly, alternative attacks based on packet counting [2],

[3] are insensitive to packet padding defences but require

partitioning of a packet stream into individual web fetches

in order for the number of packets associated with each web

fetch to be determined, which may be highly challenging in

practice on links where there are no clear pauses between

web fetches. In contrast, packet timing-based attacks are not

only largely unaffected by packet padding defences but also

do not rely upon partitioning of the packet stream. Hence,

they are potentially a practically important class of attack

against Tor (and indeed other VPNs). While some work

has been carried out using inter-arrival time information to

classify the application (HTTP, IMAP etc) [6], to the best
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Fig. 1: Schematic illustrating attacker of the type considered.

A client machine is connected to the Internet via Tor. The

attacker can detect the time when packets traverse the first

hop encrypted tunnel, but has no other information.

of our knowledge there is no previous work reporting the

use of timing information alone to construct a successful

classification attack against encrypted web traffic.

The main contributions of this paper as as follows: (i) we

describe an attack against encrypted web traffic that uses

packet timing information alone, (ii) we demonstrate that

this attack is effective against clients using the Tor network,

achieving mean success rates of 68%, (iii) we also demonstrate

that the attack is effective against traffic streams i.e. back to

back web page fetches where the packet boundaries between

fetches are unknown.

A. Related Work

The general topic of traffic analysis has been the subject of

much interest, and a large body of literature exists. Some of

the earliest work specifically focussed on attacks and defences

for encrypted web traffic appears to be that of Hintz [5], which

considers the SafeWeb encrypting proxy. In this setup (i) web

page fetches occur sequentially with the start and end of each

web page fetch known, and for each packet (ii) the client-

side port number, (iii) the direction (incoming/outgoing) and

(iv) the size is observed. A web page signature is constructed

consisting of the aggregate bytes received on each port (cal-

culated by summing packet sizes), effectively corresponding

to the number and size of each object within the web page.

In [12] it is similarly assumed that the number and size of

the objects in a web page can be observed and using this

information a classification success rate of 75% is reported.

Subsequently, Bissias et al [1] considered an encrypted

tunnel setup where (i) web page fetches occur sequentially

with the start and end of each web page fetch known, and for

each packet (ii) the size, (iii) the direction (incoming/outgoing)

and (iv) the time (and so also the packet ordering) is observed.

The sequence of packet inter-arrival times and packet sizes

from a web page fetch is used to create a profile for each

web page in a target set and the cross correlation between an

observed traffic sequence and the stored profiles is then used
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as a measure of similarity. A classification accuracy of 23%

is observed when using a set of 100 web pages, rising to 40%

when restricted to a smaller set of web pages.

Most later work has adopted essentially the same model as

[1], making use of packet direction and size information and

assuming that the packet stream has already been partitioned

into individual web page fetches. In [8], [4] Bayes classifiers

based on the direction and size of packets are considered

while in [11] an SVM classifier is proposed. In [9] classifi-

cation based on direction and size of packets is studied using

Levenshtein distance as the similarity metric, in [10] using

a Gaussian Bag-of-Words approach and in [13] using KNN

classification. In [2] using a SVM approach a classification

accuracy of over 80% is reported for both SSH and Tor

traffic and the defences considered were generally found to be

ineffective. Similarly, [3] considers Bayes and SVM classifiers

and finds that a range of proposed defences are ineffective.

II. ANATOMY OF A WEB PAGE FETCH

When traffic is carried over an encrypted tunnel the packet

source/destination addresses/ports and the payload are hidden.

We also assume here that the tunnel pads the packets to be of

equal size, so that packet size information is also concealed,

and that the start and end of an individual web fetch may also

be concealed e.g. when the web fetch is embedded in a larger

traffic stream. An attacker sniffing traffic on the encrypted tun-

nel is therefore able only to observe the direction and timing of

packets though the tunnel, i.e. to observe a sequence of pairs

{(tk, dk)}, k = 1, 2, · · · where tk is the time at which the k’th
packet is observed and dk ∈ {−1, 1} indicates whether the

packet is travelling in the uplink/downlink direction. Since it

will be sufficient to mount an effective attack, we will assume

a weaker attacker that can only observe the timestamps {tk},
k ∈ Kup := {κ ∈ {1, 2, · · · } : dκ = −1} of uplink traffic .

Figure 2 plots the timestamps {tk} of the uplink packets sent
during the course of fetching five different health-related web

pages (see below for details of the measurement setup). The x-
axis indicates the packet number k within the stream and the y-
axis the corresponding timestamp tk in seconds. It can be seen

that these timestamp traces are distinctly different for each web

site, and it is this observation that motivates interest in whether

timing analysis may by itself (without additional information

such as packet size, uplink/downlink packet ordering etc) be

sufficient to successfully de-anomymise encrypted web traffic.

To gain insight into the differences between the packet

timestamp sequences in Figure 2 and, importantly, whether

they are genuinely related to characteristics of each web page

rather than to other factors, it is helpful to consider the process

of fetching a web page in more detail. To fetch a web page

the client browser starts by opening a TCP connection with

the server indicated by the URL and issues an HTTP GET or

POST request to which the server then replies. As the client

parses the server response it issues additional GET/POST

requests to fetch embedded objects (images, css, scripts etc).

These additional requests may be to different servers from the

original request (e.g. when the object to be fetched is an advert

or is hosted in a separate content-delivery network), in which
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Fig. 2: Time traces of uplink traffic from 5 different Irish

healthcare websites are shown. It can be seen that the website

time traces exhibit distinct patterns. The traces are shifted

vertically to avoid overlap and facilitate comparison.

case the client opens a TCP connection to each new server

in order to issue the requests. Fetching of these objects may

in turn trigger the fetching of further objects. We make the

following more detailed observations:

1) Connection to third-party servers. Fetching an object

located on a third-party server requires the opening of a

new TCP connection to that server, over which the HTTP

request is then sent. The TCP connection handshake

introduces a delay (of at least one RTT) and since the

pattern of these delays is related to the web page content

it can potentially assist in identifying the web page.

2) Pipelining of requests. Multiple objects located on the

same server lead to several GET/POST requests being

sent to that server, one after another. Due to the dynamics

of TCP congestion control, this burst of back-to-back

requests can affect the timing of the response packets

in a predictable manner that once again can potentially

assist in identifying the web page.

3) Asynchronous requests. Dynamic content, e.g. pre-

fetching via AJAX, can lead to update requests to a server

with large inter-arrival times that can potentially act as a

web page signature.

4) Connection closing. When a web page fetch is com-

pleted, the associated TCP connections are closed. A

FIN/FINACK/ACK exchange closes each connection and

this burst of packets can have quite distinctive timing

which allows it to be identified. Since the number of

connections is related to the number of distinct locations

where objects in the web page are stored, it changes

between web pages.

Our aim is to use timing features such as these, which vary

depending upon the web page fetched, to create a timing

signature which allows us to identify which web page is being

fetched based on timing data only.

III. COMPARING SEQUENCES OF PACKET TIMESTAMPS

Suppose we have two sequences of packet timestamps t :=
{ti}, i = 1, 2, · · · , n and t′ := {t′j}, j = 1, 2, · · · ,m. Note
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that the sequence lengths n and m are not assumed to be the

same. To proceed we need to define an appropriate measure

of the distance between such sequences.

A. Derivative Dynamic Time Warping

Our interest is in a measure of the distance between packet

sequences which is insensitive to the types of distortion intro-

duced by the Tor network, so that the distance between packet

streams t and t′ associated with fetches of the same web page

at different times is measured as being small, and ideally the

distance between fetches of different web pages is measured

to be large. To this end we use a variant of Dynamic Time

Warping (DTW) [7]. DTW aims to be insensitive to differences

between sequences which are due to stretching/compressing of

time and so can be expected to at least partly accommodate

the effects of changes in routing (Tor randomly reroutes traffic

periodically to make linking attacks harder) and in download

rate, queueing delay etc (which can be expected to change not

only under re-routing but also due to changes over time in the

traffic sharing a path).

We define a warping path p to be a sequence of pairs,

{(pik, p
j
k)}, k = 1, 2, · · · , l with (pik, p

j
k) ∈ V := {1, · · · , n}×

{1, · · · ,m} satisfying boundary conditions pi1 = 1 = pj1,
pil = n, pjl = m and step-wise constraints (pik+1, p

j
k+1) ∈

V
pi
k
,p

j

k

:= {(u, v) : u ∈ {pik, p
i
k + 1} ∩ {1, . . . , n}, v ∈

{pjk, p
j
k+1}∩{1, . . . , n}}, k = 1, · · · , l−1. That is, a warping

path maps points from one timestamp sequence to another

such that the start and end points of the sequences match (due

to the boundary conditions) and the points are monotonically

increasing (due to the step-wise constraints). This is illustrated

schematically in Figure 3, where the two timestamp sequences

to be compared are indicated to the left and above the matrix

and the bold line indicates an example warping path.

Let P l
mn ⊂ V l denote the set of all warping paths of

length l associated with two timestamp sequences of length

n and m respectively, and let Ct,t′(·) : P l
mn → R be a

cost function so that Ct,t′(p) is the cost of warping path

p ∈ P l
mn. Our interest is in the minimum cost warping path,

p∗(t, t′) ∈ argminp∈P l
mn

Ct,t′(p). In DTW the cost function

has the separable form Ct,t′(p) =
∑l

k=1 ct,t′(p
i
k, p

j
k) where

ct,t′ : V → R, in which case optimal path p∗(t, t′) be

efficiently found using the backward recursion,

(pik, p
j
k) ∈ arg min

(pi,pj)∈Vk

Ck+1 + ct,t′(p
i, pj) (1)

Ck = Ck+1 + ct,t′(p
i
k, p

j
k) (2)

where Vk = (pi, pj) ∈ {(u, v) : (pik+1, p
j
k+1) ∈ Vu,v}, k =

l − 1, l − 2, · · · and initial condition Cl = ct,t′(n,m). When

there is more than one optimal solution at step (1), we select

(pik, p
j
k) uniformly at random from amongst them.

A common choice of element-wise cost is the Euclidean

norm ct,t′(p
i, pj) = (tpi − t′

pj )2. However, to improve ro-

bustness to noise on the timestamp values (in addition to

misalignment of their indices), following [7] we instead use

the following element-wise cost

ct,t′(p
i, pj) = (Dt(p

i)−Dt′(p
j))2 (3)

n

m

j

i
1

1

Fig. 3: Illustrating a warping path. The dashed lines indicate

the warping window.

where Dt(i) =
(ti−t

i−
)+(t

i+
−t

i−
)

2 , i− = max{i − 1, 1} and

i+ = min{i + 1, |t|}. Observe that Dt(i) is akin to the

derivative of sequence t at index i. Further, we constrain

the warping path to remain within windowing distance w
of the diagonal (i.e. within the dashed lines indicated on

Figure 3) by setting C(p) = +∞ for paths p ∈ P l
mn for

which |pik − pjk| > max{wmin{n,m}, |m − n|} for any

k ∈ {1, · · · , l}.
Figure 4b illustrates the alignment of points between two

sequences obtained using this approach and for comparison

Figure 4a shows the corresponding result when using Eu-

clidean cost. The figure shows the warping paths on the right-

hand side and an alternative visualisation of the mapping

between points in the sequences on the left-hand side. Observe

that when Euclidean cost is used the warping path tends to

assign many points on one curve to a single point on the

other curve. In comparison, use of the derivative distance tends

to mitigate this effect and select a warping path with fewer

horizontal and vertical sections.

B. F -Distance Measure

Given two timestamp sequences, the warping path is a

mapping between them. With reference to Figure 3, sections of

the warping path which lie parallel to the diagonal correspond

to intervals over which the two sequences are well matched.

Sections of the warping path that are parallel to the x- or y-

axes correspond to intervals over which the two sequences are

poorly matched. This suggests using the fraction of the overall

warping path which is parallel to the x- or y-axes as a distance

measure, which we refer to as the F -distance.

In more detail, let p = {(pik, p
j
k)}, k = 1, · · · , l be a

derivative DTW warping path relating timestamp sequences

t and t′, obtained as described in the previous section. We

partition the warping path into a sequence of subpaths within

each of which either pik or pjk remain constant and we count

the subpaths which are longer than one. For example, for

the setup shown in Figure 5 there are five subpaths: (1, 1);
(2, 2), (2, 3); (3, 4), (4, 4), (5, 4); (6, 5); (7, 6). Two of these

subpaths consist of more than one pair of points, namely
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Fig. 4: Example DTW alignment and warping paths between

two sequences vs cost function ct,t′ used, window w = 0.1.
In this example the length l of the warping path is 73 when a

Euclidean cost is used and 54 with the derivative cost.
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Fig. 5: Illustrating method for calculating the F -distance

between two timestamp sequences.

(2, 2), (2, 3) and (3, 4), (4, 4), (5, 4), and these correspond,

respectively, to the vertical section and the horizontal section

on the corresponding warping path shown in Figure 5b.

Formally, define κ1 := 0 < κ2 < · · · < κr−1 < κr := l
such that for each s = 1, · · · , r − 1 (i) either pik1

= pik2

∀k1, k2 ∈ {κs + 1, · · · , κs+1} or pjk1
= pjk2

∀k1, k2 ∈
{κs + 1, · · · , κs+1} and (ii) either κs+1 = l or condition

(i) is violated for some k1, k2 ∈ {κs, · · · , κs+1 + 1} i.e.

each subsequence is maximal. Note that pik 6= pjk for all

k = 1, · · · , l (due to warping path step-wise constraints) and

so in condition (i) it is not possible for both pik and pjk to be

constant. We are now is a position to define the F -distance

measure between timestamp sequences t and t′, namely:

φ(t, t′) :=

∑r−1
s=1(κs+1 − (κs + 1)

n+m
(4)

where κs, s = 1, · · · , r are the constant subsequences in

minimal warping path p∗(t, t′). It can be seen that φ(p) takes
values in interval [0, 1], and is 0 when sequences t and t′ are

identical (in which case the warping path p lies on the diagonal

in Figure 3). For the example in Figure 5 the F -distance φ(p)
is (2 + 3)/13 = 0.385.

IV. DE-ANONYMISING WEB FETCHES OVER TOR

In this section we present measurements of web page

queries carried out over Tor and evaluate the accuracy with

which the web page being fetched can be inferred using only

packet timing data. The dataset consists of 100 fetches of the

home pages of each of the top 20 Irish health and the top 20

Irish finance websites as ranked by www.alexa.com under its

Regional/Europe/Ireland category in September 2014, yielding

a total of 4000 individual web page fetches. The web pages

were fetched during September 2014. A watir-webdriver

script on Firefox 21.0 was used to perform the web page

fetches and tcpdump to record the timestamps and di-

rection (uplink/downlink) of all packets traversing the first

hop connecting the client to the network although only

packet timestamps on the uplink were actually used. The

watir-webdriver script configures Firefox 21.0 to use

the most recent Tor v0.2.4.23 plugin downloaded from the

Tor project repository.

A. Hardware/Software Setup

The client machine is a 3.00 GHz Core 2 Duo CPU with

2GB of RAM and running Ubuntu Linux 12.04 LTS precise.

The client is connected to the network over a gigabit ethernet

LAN and thence to a campus gateway server which also has

a gigabit connection to the Internet.

B. Classifying Measured Timestamp Sequences

We used the F -distance measure φ(·, ·) described in Section

III to compare measured uplink timestamp sequences, with

windowing parameter w = 0.1 unless otherwise stated. A K-

Nearest Neighbours approach was used for classification (use

of a naive Bayes classifier was also investigated, but theK-NN

classifier was found to consistently offer better performance).

In the K-NN classifier, for each web page i we sort the

measured timestamp sequences t′ ∈ Ti used for training in

ascending order of sum-distance
∑

t∈Ti
φ(t, t′) and select the

top 5 to use as exemplars to represent this web page. When

presented with a new timestamp sequence, its distance to the

exemplars for all of the training web pages is calculated and

these distances are sorted in ascending order. Classification is

then carried out by majority vote amongst the top K matches.

C. Randomised Routing

Tor uses randomised routing of traffic over its overlay

network in an attempt to make linking of network activity be-

tween source and destination more difficult. It can be expected

that rerouting will have a significant impact on the timestamp

sequence measured during a web fetch since changes in

path propagation have a direct impact on the time between

an outgoing request and receipt of the corresponding server

response, and also impact TCP dynamics since congestion

window growth slows with increasing RTT. Differences in loss

rate, queueing delay etc along different routes are also likely

to impact measured timestamp sequences.

The impact of Tor rerouting on measured RTT is illustrated

in Figure 6, which plots the mean and max delay between
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Fig. 6: Mean and max RTTs measured during 100 fetches

of the web page www.medicalcouncil.ie. Changes due to Tor

rerouting are evident. The max RTT in (b) is in fact the idle

time between when the last packet is received until the browser

is closed, hence why it is significantly larger than the mean

RTT plotted in (a).

0 200 400 600
Packet number

T
im

e
 (

s
)

 

 

Vanilla Firefox

Firefox over Tor

Fig. 7: Time traces of uplink traffic measured when fetching

www.medicalcouncil.ie . Measurements are shown when using

vanilla Firefox and when using Firefox with the Tor plugin.

sending of a TCP data packet and receipt of the corresponding

TCP ACK for repeated fetches of the same web page (although

this information is not available to an attacker, in our tests

it is of course available for validation purposes). Abrupt,

substantial changes in the mean RTT are evident, especially in

Figure 6b. These changes persist for a period of time as Tor

only performs rerouting periodically.

Figure 7 illustrates the impact of Tor on the packet times-

tamps measured during a web page fetch.

D. Classification Performance

For each of the 40 web pages studied, Figure 8 details the

measured classification accuracy using the K-NN approach.
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Fig. 8:K-Nearest Neighbours classification performance when

using Tor, no browser caching, K = 1.
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Fig. 9:K-Nearest Neighbours classification performance when

not using Tor, no browser caching, K = 1.

We use 10-fold cross validation, where the 100 samples of

each website are divided into 10 random subsets and for each

subset we use the remaining 90 samples as the training data

to find the exemplars and use the 10 samples in the subset

as the validation data. The rates for these 10 subsets for each

website are summarized and displayed in the figure. Each of

the boxes indicate the 25%, 50% and 75% quartiles and the

lines indicate the maximum and minimum values.

The mean success rate is 67.7%. This compares with a

baseline success rate of 2.5% for a uniform random classifier

over 40 web sites and so is likely to represent a significant

compromise in privacy. It also compares favourable with the

54.6% rate reported by Panchenko et al in [11] against Tor

traffic using packet size and direction information.

For comparison, we also created a second dataset by repeat-

ing the 4000 web page fetches without use of the Tor plugin for

Firefox. Figure 9 details the results obtained. Overall, a mean

success rate of 93.0% was obtained. As might be expected, use

of the Tor network significantly reduces classification accuracy

compared to normal network use. The measured performance

without Tor for other parameter settings is also summarised in

Table I.

E. Finding a web page within a sequence of web requests

In the experiments presented so far we have assumed that

within the observed packet timestamp stream the boundaries
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Exemplars w
Web
Pages

K
1 3 5

Tor
3 0.2 40 67.67% 64.55% 63%
3 0.2 20 68% 64.7% 63.3%
3 0.1 20 68% 67.15% 64.55%

Ethernet
5 0.1 40 93.52% 93.87% 93.75%
3 0.1 40 93.03% 92.33% 91.85%
1 0.1 40 90.35% - -
3 0.1 20 93.75% 93.15% 92.65%

TABLE I: Summary of the measured success rate of the

timing-only attack.

between different web fetches are known. This is probably a

reasonable assumption on lightly loaded links where the link is

frequently idle between web fetches. However, not only might

this assumption be less appropriate on more heavily loaded

links but it also allows for a relatively straightforward means

of defence, namely insertion of dummy packets to obscure the

boundaries between web fetches. In this section we therefore

extend consideration to links where web fetches are carried out

in a back to back fashion such that the boundaries between

web fetches cannot be easily identified.

The basic idea is to sweep through a measured stream of

packet timestamps trying to match sections against the timing

signature of a web page of interest. This exploits the fact

that our timing-only attack does not fundamentally depend

on knowledge of the start/end times of the web fetch (unlike

approaches which use packet counts to classify web pages).

In more detail, to locate a target web page within a stream

of packet timestamps we first select three measured packet

timestamp sequences for that web page to act as exemplars (as

previously). Then, we sweep through the stream of timestamps

in steps of 10 packets, extract a section of the stream of

the same length as each exemplar and calculate the distance

between the section and the exemplar. After sweeping through

the full stream we select the location within the stream with

least distance from the exemplars as the likely location of the

target web page within the stream. While this process assumes

that the target web page is present within the packet stream,

we can extend this approach to decide whether the web page

is present by appropriately thresholding the distance (when

the measured least distance is above the threshold, the page

is judged to not be present in the stream) although we do not

include results on this here due to lack of space.

We constructed a test data set as follows. We selected a

subset of 5 web pages from those used previously. We then

selected 3 web pages uniformly at random from this set of

5, selected a permutation of these web pages uniformly at

random and proceeded to fetch the pages in that order over an

ethernet tunnel. We repeated this 100 times, so generating a

dataset consisting of 100 measured packet timestamp streams.

Using the classification approach described above we at-

tempted to identify the location within each packet stream of

one of the web pages (selected uniformly at random from the

set of 3 web pages present in each measured packet stream).

With this approach we achieved a success rate of 69% for

locating the target web page within each packet stream to

within a position error of ±65 packets. Given the limited

information being used, this is a remarkably high success rate

and indicates the power of the timing-only attack.

V. SUMMARY AND CONCLUSIONS

We introduce an attack against encrypted web traffic passing

over the first hop - of the Tor network. The attack makes

use only of packet timing information on the uplink and is

therefore impervious to packet padding defences. In addition,

we show that the attack is robust against the randomised

routing used in Tor. We demonstrate the effectiveness of the

attack at identifying the web sites being visited by a Tor user,

achieving mean success rates of 68%. In addition to being

of interest in its own right, this timing-only attack serves to

highlight deficiencies in existing defences and so to areas

where it would be beneficial for Tor and VPN designers to

focus further attention.
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