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Abstract

In this paper we consider graph-coloring problems, an important sub-
set of general constraint satisfaction problems that arise in wireless re-
source allocation. We constructively establish the existence of fully decen-
tralized learning-based algorithms that are able to find a proper coloring
even in the presence of strong sensing restrictions, in particular sensing
asymmetry of the type encountered when hidden terminals are present.
Our main analytic contribution is to establish sufficient conditions on the
sensing behaviour to ensure that the solvers find satisfying assignments
with probability one. These conditions take the form of connectivity re-
quirements on the induced sensing graph. These requirements are mild,
and we demonstrate that they are commonly satisfied in wireless allocation
tasks. We argue that our results are of considerable practical importance
in view of the prevalence of both communication and sensing restrictions
in wireless resource allocation problems. The class of algorithms analysed
here requires no message-passing whatsoever between wireless devices,
and we show that they continue to perform well even when devices are
only able to carry out constrained sensing of the surrounding radio envi-
ronment.

1 Introduction

Many fundamental wireless network allocation tasks can be formulated as con-
straint satisfaction problems, including channel and sub-carrier allocation [1],
TDMA scheduling [2, 3], scrambling code allocation [4], network coding [1] and
so on. Importantly, these tasks must often be solved while respecting strong
communication constraints due, for example, to the range over which devices
can communicate being smaller than the range over which they interfere or
otherwise interact. Recently, fully decentralised Communication-Free Learning
(CFL) algorithms have been proposed for solving general constraint satisfac-
tion problems without the need for message-passing [1]. These CFL algorithms
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exploit local sensing to infer satisfaction/dissatisfaction of constraints, thereby
avoiding the need for message-passing and use stochastic learning to converge to
a satisfying assignment with probability one. Convergence of these CFL algo-
rithms to a satisfying assignment is, however, only guaranteed when all devices
participating in a constraint are able to sense the satisfaction/dissatisfaction of
the constraint. This sensing requirement is violated in a number of important
practical problems, for example in wireless networks with hidden terminals. The
main contribution of the present paper is a new analysis of CFL-like algorithms
which establishes that much weaker requirements on sensing are sufficient to
guarantee convergence to a solution. The analysis of stochastic learning algo-
rithms is challenging, and part of the technical contribution is the development
of novel analysis tools. We present a number of examples demonstrating the
efficacy of CFL-like algorithms when subject to strong sensing as well as com-
munication constraints, and explore the impact of sensing constraints on the
rate of convergence.

A Constraint Satisfaction Problem (CSP) consists of N variables, ~x :=
(x1, . . . , xN ), and M clauses, i.e. {0, 1}-valued functions, (φ1(~x), . . . , φM (~x)).
An assignment ~x is a solution if all clauses simultaneously evaluate to 1. In
problems derived from network applications, each constrained variable xi is of-
ten associated to a physically distinct device, such as an access point or a base-
station. For example,consider a collection of WLANs operating in an unlicensed
radio band. Each WLAN can choose one of several channels to operate on and
the WLANs require to jointly select channels so as to avoid excessive interfer-
ence between the WLANs. We can formulate this task as a CSP by letting xi

be the channel selected by WLAN i ∈ {1, . . . , N} and defining M = N(N−1)/2
clauses, one for each pair of WLANs which evaluates to one if the WLANs are
non-interfering, or are out of interference range, and evaluates to zero other-
wise. Communication between the devices is impeded by multiple factors: the
interference range of a typical wireless device is considerably larger than its com-
munication range, and thus WLANs can interfere but may be unable to commu-
nicate; WLANs can have different administrative domains that would prevent
communication even via a wired backhaul and even if a proper knowledge of
the physical location of the different WLANs was known. Consequently, the
selection of the variables xi in a distributed manner (allowing message passing)
is inadmissible, mandating a fully decentralized channel-selection algorithm.

A practical CSP solver for this task can only rely on each WLAN being able
to measure whether or not its current choice of channel is subject to excessive
interference. Importantly, observe that this sensing need not be symmetric. The
scenario in Figure 1 illustrates this feature: here transmissions on link A − B
interfere with transmissions on link G−H , but not vice versa i. e. transmitter
A acts as a hidden terminal affecting link G −H . Such asymmetry in sensing
is ubiquitous in networks with hidden terminals. The analysis in [1] requires
that all links sharing a channel are able to sense whether any one or more of
the links is experiencing excessive interference and so dissatisfied, and therefore
is not applicable to networks with hidden terminals.

In the present paper our aim is to address this deficiency. We focus on graph-
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Figure 1: (a) Illustrating a wireless network with asymmetric sensing due to hidden
terminals. The shaded areas indicate the interference created by transmitters A and
G. Transmissions by A prevent H receiving transmissions by G. However, the con-
verse is not true i.e. transmissions by G do not prevent B from successfully receiving
transmissions by A. Link A−B can therefore be satisfied while G−H is dissatisfied.
Similarly for the other links shown. Associating each edge with a vertex yields graph
(b) corresponding to (a) for which a proper coloring is sought. Sensing restrictions
then yield the induced oriented graph (c), as explained in Section 4.1.
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coloring problems, a subset of general CSPs, and constructively establish the
existence of decentralized learning-based solvers that are able to find satisfying
assignments even in the presence of sensing asymmetry. We establish sufficient
conditions on the sensing behaviour to ensure that the solvers find satisfying
assignments with probability one. We demonstrate that these conditions are
commonly satisfied in wireless allocation tasks and explore the impact of sensing
constraints on the speed which a satisfying assignment is found.

Even if in certain settings a limited amount of communication between the
devices may be possible, for example by overhearing traffic from some of the
interferers, this information is topology dependent and cannot be assumed dur-
ing the design of the algorithm. The opportunistic exploitation of such partial
information is left for future work.

2 Related Work

The graph coloring problem has been the subject of a vast literature, from
cellular networks (e.g. [5]), wireless LANs (e.g. [5, 6, 7, 8, 9] and references
therein) and graph theory (e.g. [10, 11, 12, 13]). Almost all previous work has
been concerned either with centralised schemes or with distributed schemes that
employ extensive message-passing. Centralised and message-passing schemes
have many inherent advantages. In certain situations, however, these systems
may not be applicable. For example, differing administrative domains may be
present in a network of WLANs.

An exception is the work of Kauffmann et al. [14, 15], which proposes a dis-
tributed simulated annealing algorithm for joint channel selection and associa-
tion control in 802.11 WLANs. However, heuristics are used to both terminate
the algorithm and to restart it if the network topology changes. Network-wide
stopping/restarting in a distributed context can be challenging without some
form of message-passing.

In the field of graph theory, Dousse [10], Hedetniemi et al. [12], Johansson
[13] address the problem of graph coloring, when the amount of colors available
is large (typically ∆ + 1) and allowing some form of message passing in an
undirected graph. The only exception is in [11], where a sort of directionality of
the graph is considered: the distributed nodes can make a choice in a hierarchical
manner, i. e. when i → j, node i may keep its choice even if j has same color,
but this is made possible assuming the existence of this hierarchy is known and
that there is still a bidirectional channel available for communication.

This work builds upon the works of the early work of Clifford and Leith [16],
then refined and extended by Leith et al. [17], Duffy et al. [1]; they present a
fully decentralised CFL, proven to solve a large class of problems that include
graph coloring, but without sensing restrictions.
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3 Preliminaries

We will now introduce the problem, using similar notation to [1] but extended
to encompass sensing restrictions.

3.1 Coloring Problems (CPs)

Let G = (V,M) denote an undirected graph with set of vertices V = {1, . . . , N}
and set of edgesM := {(i, j) : i, j ∈ V, i↔ j}, where i↔ j denotes the existence
of a pair of directed edges i→ j, i← j joining vertices i, j ∈ V . Note that with
this notation the edges in set M are directed, since this will prove convenient
later when considering oriented subgraphs of G. However, since graph G is
undirected we have (i, j) ∈ M ⇐⇒ (j, i) ∈ M.

A coloring problem (CP) on graph G with D ∈ N colors is defined as follows.
Let xi ∈ D denote the color of vertex i, where D = {1, . . . , D} is the set of
available colors, and ~x denote the vector (x1, . . . , xN ). Define clause Φm : DN 7→
{0, 1} for each edge m = (i, j) ∈M with:

Φm(~x) = Φm(xi, xj) =

{

1 if xi 6= xj

0 otherwise
.

We say clause Φm(~x) is satisfied if Φm(~x) = 1. An assignment ~x is said to be
satisfying if for all clauses m ∈M we have Φm(~x) = 1. That is

~x is a satisfying assignment iff min
m∈M

Φm(~x) = 1. (1)

Equivalently, ~x is a satisfying assignment if and only if xi 6= xj for all edges
(i, j) ∈ M i.e. if i ↔ j. A satisfying assignment for a coloring problem is also
called a proper coloring.

Definition 1 (Chromatic Number). The chromatic number χ(G) of graph G is
the smallest number of colors such that at least one proper coloring of G exists.
That is, we require the number of colors D in our palette to be greater or equal
than χ(G) for a satisfying assignment to exist.

3.2 Decentralized CP Solvers

Definition 2 (CP solver). Given a CP, a CP solver realizes a sequence of vectors
{~x(t)} such that for any CP that has a satisfying assignment

(D1) for all t sufficiently large ~x(t) = ~x for some satisfying assignment ~x;

(D2) if t′ is the first entry in the sequence {~x(t)} such that ~x(t′) is a satisfying
assignment, then ~x(t) = ~x(t′) for all t > t′.

In order to give criteria for classification of decentralized CP solvers, we
re-write the LHS of Equation (1) to focus on the satisfaction of each variable

~x is a satisfying assignment iff min
i∈V

min
m∈Mi

Φm(~x) = 1. (2)
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whereMi consists of all edges inM that contain vertex i, i. e.

Mi = {(j, i) : (j, i) ∈ M} .

Note that we adopt the convention of including edges inMi which are incoming
to vertex i, but since (i, j) ∈M ⇐⇒ (j, i) ∈M then

⋃

i∈V Mi =M.
A decentralized CP solver is equivalent to a parallel solver, where each vari-

able xi runs independently an instance of the solver, having only the information
on whether all of the clauses that xi participates in are satisfied or at least one
clause is unsatisfied. The solver located at variable xi must make its decisions
only relying on this information.

Definition 3 (Decentralized CP solver). A decentralized CP solver is a CP
solver that for each variable xi, must select its next value based only on the
evaluation of

min
m∈Mi

Φm(~x). (3)

That is, the decision is made without knowing

(D3) the assignment of xj for j 6= i.

(D4) the set of clauses that any variable, including itself, participates in, Mj

for j ∈ V .

(D5) the clauses Φm for m ∈M.

4 Coloring Problems With Sensing Restrictions

4.1 Decentralised Solvers

Sensing restrictions mean, for example, that a hidden terminal is unable to sense
whether or not its transmissions are causing excessive interference to the set of
receivers for which it is hidden. In other words, variable xi can only evaluate
minm∈Ci

Φm(~x) rather than minm∈Mi
Φm(~x), where Ci ⊆ Mi (where equality

holds only if sensing restrictions are absent).

Definition 4 (Decentralized CP Solver With Sensing Restrictions). A Decen-
tralised CP solver where (3) is replaced with the restriction that for each variable
xi, must select its next value based only on an evaluation of

(D6) min
m∈Ci

Φm(~x), where information set Ci ⊆Mi is a subset of edges incoming

to node i and we adopt the convention that min
m∈∅

Φm(~x) = 1.

Note that despite the sensing restrictions we still require the solver to satisfy
(D1) and find a satisfying assignment, i. e. for all t sufficiently large ~x(t) = ~x
with mini∈V minm∈Mi

Φm(~x) = 1.
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It is important to note that an assignment ~xmay ensure minm∈Ci
Φm(~x) = 1,

i ∈ V but might have minm∈Mi
Φm(~x) = 0 for one or more variables and so

need not be satisfying in the absence of sensing restrictions i. e. it may not be
a proper coloring. We therefore require the following sensing condition in order
to satisfy (D1):

Lemma 1. Let C := ∪i∈V Ci. Suppose that for each pair of edges i↔ j inM, at
least one directed edge appears in at least one information set Ci for some vertex
i i. e. (i, j) ∈ M =⇒ (i, j) or (j, i) ∈ C. Then an assignment ~x is satisfying
with sensing restrictions iff it is satisfying in the absence of sensing restrictions.
That is, mini∈V minm∈Ci

Φm(~x) = 1 ⇐⇒ mini∈V minm∈Mi
Φm(~x) = 1.

Proof. Suppose mini∈V minm∈Ci
Φm(~x) = 1. That is, Φm(~x) = 1 ∀m ∈ C. By

definition, Φ(i,j)(~x) = Φ(j,i)(~x) and since (i, j) ∈ M =⇒ (i, j) or (j, i) ∈ C
the result follows. Conversely, suppose mini∈V minm∈Mi

Φm(~x) = 1. Since
Ci ⊆Mi, the result immediately follows.

It will be useful to consider oriented partial graph G′ = (V, C) induced by
the information set {C1, . . . , CN}. This graph has the same set V of vertices as
graph G for which a proper coloring is sought, but the edges are now defined
by the set of ordered pairs (i, j) ∈ C if (i, j) ∈ Cj. We say i → j if there is a
directed edge from i to j, and i 6→ j if there is no edge from i to j. For example,
Figure 1(c) gives the graph G′ corresponding to Figure 1(b). Here, the directed
edge from A − B to G −H indicates that while G −H can sense whether the
edge between A−B and G−H is satisfied or not, A−B cannot.

4.2 Examples

Before proceeding, we briefly demonstrate that several important resource al-
location tasks in wireless networks fall within our framework of graph coloring
with sensing restrictions.

4.2.1 Channel Allocation With Hidden Terminals

Consider a network of N wireless links i = 1, . . . , N , each consisting of a trans-
mitter Ti and a receiver Ri. Let Pi denote the transmit power of Ti and γij
denote the path loss between the transmitter Ti of link i and the receiver Rj

of link j. The received power at Ri from Tj is therefore γjiPj . Each link can
select one from a set D = {1, . . . , D} of available channels to use. Link i would
like to select a channel in such a way that the signal power impinging on the
receiver Ri from other links sharing the same channel is less than a specified
threshold Qi – Qi may, for example, be selected to ensure that the SINR at Ri

is above a target threshold. Each link i can sense that another link j is sharing
the same channel when the received power γjiPj ≥ Qj (this might correspond
to the minimum interference power that causes decoding errors on the link or
to the carrier-sense threshold in 802.11).
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To formulate this as a coloring problem, let D = {1, . . . , D} be the palette
of available colors. Associate variable xi with wireless link i, i ∈ {1, . . . , N},
with the value of xi ∈ D corresponding to the channel selected by link i. Define
graph G = (V,M) with V := {1, . . . , N} and set of edgesM. Add edge (j, i) to
M whenever the received power γjiPj from link j at link i is above threshold Qi

when both links select the same channel, i 6= j, i, j ∈ {1, . . . , N}. Importantly,
whenever an edge (j, i) is in M we also add edge (i, j) to M, so that G is an
undirected graph. A proper coloring of graph G corresponds to a satisfactory
channel allocation i. e. γjiPj > Qi, for all i ∈ {1, . . . , N} and all j such that
xj = xi and j ∈ {1, . . . , N}.

Now define graph G′ = (V, C) with edge (j, i) ∈ C when the received power
γjiPj from link j at link i is above threshold Qi when both links select the same
channel. Note that, unlike for graph G, we do not also add edge (i, j) to C
unless γijPi > Qj when both links select the same channel. Observe that the
edges in graph G′ embody the sensing abilities of links, and in general C 6=M
and so G′ 6= G.

Note that we can readily generalise this formulation to include, for example,
the selection of multiple channels/sub-carriers by each link and to allow multiple
transmitters and receivers in a link (which might then correspond to a WLAN).

4.2.2 Decentralised TDMA Scheduling With Hidden Terminals

When using a time division access scheme, wireless networks need to have a
schedule for accessing the channel. This schedule can be decided in a central-
ized manner, but it is possible to require a decentralized way of solving the
problem. The classical CSMA/CA approach to decentralized scheduling does
not yield convergence to a single schedule and leads to continual collisions. Re-
cently, there has been interest in decentralized approaches for finding collision-
free schedules [3]. Consider a wireless network with N links, i = 1, . . . , N .
Time is slotted and partitioned into periodic schedules on length T ≥ N slots.
The transmitter on each link would like to select a slot that is different from the
choice made by other transmitters if their collisions would collide (transmissions
in the same slot need not collide when, for example, the two transmitters are
located sufficiently far apart). A link is able to sense whether its transmission
in a slot was successful or not.

To formulate this as a coloring problem, let D = {1, . . . , D} be the set of
available time slots in the periodic schedule. Associate variable xi with link i,
i ∈ {1, . . . , N}, with the value of xi ∈ D corresponding to the slot selected by
the transmitter of link i. Define graph G = (V,M) with V := {1, . . . , N} and
set of edgesM. Add edge (j, i) toM whenever simultaneous transmissions by
the transmitters of links i and j would lead to failure of the transmission by i.
Whenever an edge (j, i) is in M, also add edge (i, j) toM. A proper coloring
of graph G corresponds to a non-colliding schedule.

Define graph G′ = (V, C) with edge (j, i) ∈ C when simultaneous transmis-
sions by the transmitters of links i and j would lead to failure of the transmission
by j. Unlike for graph G, we do not also add edge (i, j) to C unless simultaneous
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transmissions by transmitters i and j would lead to failure of the transmission
by j. Once again, the edges in graph G′ embody the sensing abilities of links
and in general C 6=M.

5 Solving Coloring Problems With Sensing Re-

strictions

5.1 Algorithm

Consider the stochastic learning algorithm, introduced by Clifford and Leith
[16], described in Algorithm 1 with the only difference here of envisaging sensing
restrictions. An instance of this algorithm is run in parallel for every variable.

Algorithm 1

1: Initialize pi,j = 1/D, j ∈ {1, . . . , D}.
2: loop
3: Realize a random variable, selecting xi = j with probability pi,j .
4: Evaluate minm∈Ci

Φm(~x), returning satisfied if its value is 1, and unsat-
isfied otherwise.

5: Update: If satisfied,

pi,j =

{

1 if j = xi

0 otherwise.

If unsatisfied,

pi,j =

{

(1− b)pi,j + a/(D − 1 + a/b) if j = xi

(1− b)pi,j + b/(D − 1 + a/b) otherwise,

where a, b ∈ (0, 1] are design parameters.
6: end loop

Each instance of the algorithm maintains a vector pi,j , j ∈ D, that represents
the probability of choosing color j at next iteration. If satisfied, it will choose
the same color with probability one. Otherwise, the probability mass will be
partially moved from color j to the other colors [1].

Algorithm 1 contains design parameters a, b ∈ (0, 1). In the examples in this
paper we select a = 1, b = 0.1, and do not optimise these values to particular
settings.

In order to be a decentralised CP solver with sensing restrictions, Algo-
rithm 1 must satisfy conditions (D1) − (D6). We can see immediately that
Algorithm 1 satisfies (D2)− (D6).

(D3)-(D6) By construction, the only information used by the algorithm is
minm∈Ci

Φm(~x) in Step 4 and thus it satisfies the criteria (D3), (D4), (D5) and
(D6).
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(D2) Algorithm 1 also satisfies the (D2) criterion that it sticks with a solution
from the first time one is found. To see this, note that the effect of Step 5 is
that if a variable experiences success in all clauses Φ that it participates in it
continues to select the same value with probability 1. Thus if all variables are
simultaneously satisfied in all clauses, i. e. if minm∈Ci

Φm(~x), then the same
assignment will be reselected indefinitely with probability 1.

It remains to verify satisfaction of (D1), i. e. convergence of the algorithm to a
satisfying assignment, which is the subject of the next section.

5.2 Convergence Analysis

Recall the following definition:

Definition 5 (Strongly Connected Graph). A path of length q in oriented
graph G′ = (V, C) is a sequence µ = (u1, u2, . . . , uq) of edges in C such that the
terminal endpoint of edge ui is the initial endpoint of edge ui+1 for all i < q.
Oriented graph G′ = (V, C) is strongly connected if it contains a path starting
in x and ending in y, for each pair of distinct vertices x 6= y ∈ V .

We now state our main analytic result:

Theorem 1. Consider any satisfiable coloring problem with graph G = (V,M)
and information sets {C1, . . . , CN}. Suppose:

(A) At least one half of each undirected edge i↔ j inM appears in at least one
information set Ci for some vertex i, i. e. (i, j) ∈ M =⇒ (i, j) or (j, i) ∈
C;

(B) The induced graph G′ = (V, C) is strongly connected.

Then with probability greater than 1 − ǫ ∈ (0, 1), the number of iterations for
Algorithm 1 to find a satisfying assignment is less than

(N3) exp(N4 log(γ−1)) log(ǫ−1) where γ =
min(a, b)

D − 1 + a/b
.

Proof. See Appendix.

As Theorem 1 covers any arbitrary CP that admits a solution, for any given
instance these bounds are likely to be loose. They do, however, allow us to
conclude the following corollary proving that if a solution exists, Algorithm 1
will almost surely find it:

Corollary 1. For any coloring problem that admits a proper coloring and that
fulfills conditions (A) and (B), Algorithm 1 will find a proper coloring in almost
surely finite time.

Intuitively, we expect that sensing restrictions may increase the time it takes
to find a satisfying assignment. When Ci = Mi, i ∈ V (perfect sensing) then
C =M and our analysis yields the following bound on the convergence rate:
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Figure 2: Example of a graphG with two strongly connected components ({A,B,C,D}
and {E,F,G}) which are sparsely interconnected. The chromatic number χ(G) of
graph G is 4, the chromatic numbers of the connected components are 3 and 2 respec-
tively.

Corollary 2. When Ci =Mi∀i ∈ V , with probability greater than 1−ǫ ∈ (0, 1),
the number of iterations for Algorithm 1 to find a satisfying assignment is less
than

(N) exp(
N(N + 1)

2
log(γ−1)) log(ǫ−1).

Proof. See Appendix.

That is, our upper bound on convergence rate is improved from N4 to N2

with perfect sensing. This corresponds to the bound found in [1] for generic DCS
problems, but it is looser than the refined bound found there for graph coloring
problems. However, it is important to stress that this observation comes with
the caveat that, as already noted, we believe both of these bounds are extremely
loose. Hence, we revisit this question below using numerical simulations, which
yield tight measurements of convergence rate.

5.3 Relaxing Strong Connectivity Requirement

The requirement in Theorem 1 for the sensing graph G′ to be strongly connected
can be relaxed in a number of ways. If graph G is not connected, we only have
to ask for strong connectivity separately for the induced graph corresponding
to each connected component. More generally, we can extend our analysis to
situations where graphG consists of a number of strongly connected components
with sufficiently sparse interconnections between these components.

To help gain insight, consider the example graphG shown in Figure 2. Graph
G consists of two strongly connected components, {A,B,C,D} and {E,F,G},
with two directed edges between them. Subgraph {A,B,C,D} has no incoming
edges and can be colored on its own (i. e. without reference to the rest of graph
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G). Component {E,F,G} has two incoming edges. Observe that these can be
thought of as, in the worst case, reducing by two the number of colors available
in our palette D when coloring {E,F,G}. Now, D contains at least χ(G) = 4
colors (since we assume coloring of graph G is feasible) while subgraph {E,F,G}
is colorable using only two colors. Hence, regardless of the colors of vertices C
and D on the two incoming edges, sufficient colors are always available to color
subgraph {E,F,G}. We formalize these observations in the following theorem.

Definition 6 (Subgraph of G′ generated by Vk). The subgraph of graph G′ =
(V, C) generated by Vk is the graph (Vk, {(i, j) : i, j ∈ Vk, (i, j) ∈ C}). That
is, the graph with Vk as its vertex set and with all the arcs in G′ that have
both their endpoints in Vk. With a slight abuse of notation, we will identify the
subgraph with the vertex set Vk that generates it.

Definition 7 (In-degree of a subgraph). The in-degree of the subgraph graph
G′ = (V, C) generated by Vk, denoted by deg(Vk), is the number of vertices
j ∈ V \ Vk that have at least one edge (i, j) ∈ C, j ∈ Vk ending in Vk.

Theorem 2. Let V =
⋃p

k=1 Vk, Vi

⋂

Vj = ∅ be a partition of the vertex set
V of oriented graph G′ = (V, C) such that (i) the subgraph generated by Vk,
k ∈ {1, . . . , p} is strongly connected and (ii) the subgraph generated by the union
∪k∈SVk of any subset S ⊂ {1, . . . , p} is not strongly connected. That is, directed
edges may exist between strongly connected components, but their union is not
strongly connected. Let D be the number of colors available in our palette D and
let χ(Vk) be the chromatic number of the (undirected) subgraph of G = (V,M)
generated by Vk. Suppose that

χ(Vk) ≤ D − deg(Vk), k = 1, . . . , p (4)

Then for any coloring problem that admits a proper coloring and that fulfills
condition (B) of Theorem 1, Algorithm 1 will find a proper coloring in almost
surely finite time.

Proof. The main idea is that if a strongly connected component Vk requires less
colors than D to be colored, and if the number of edges entering in Vk is small
enough, as shown in Equation (4) and in Figure 2, then Vk can be colored by
Algorithm 1 even if some vertices j 6∈ Vk are not reachable by any i ∈ Vk, with
i ← j. The original coloring problem is satisfiable by hypothesis, so we have
at least χ(G) available colors D in our palette. We need to consider two cases.
Case 1: deg(Vk) = 0. Since χ(Vk) ≤ χ(G) (since Vk is a subgraph of G), at
least one proper coloring of subgraph Vk exists and we can use Theorem 1 to
establish that Algorithm 1 will almost surely find a proper coloring. Case 2:
deg(Vk) > 0. The incoming edges reduce by at most deg(Vk) the choice of the
colors available for subgraph Vk. Hence, provided χ(Vk) ≤ D−deg(Vk) then we
can apply Theorem 1 to subgraph Vk in isolation from the rest of graph G to
establish that Algorithm 1 will almost surely find a proper coloring.
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6 Performance on Random Graphs

The upper bound in Theorem 1 is a worst case bound, and in addition we believe
that it may not be tight. Hence, it is important to also evaluate the performance
of Algorithm 1 using numerical measurements. In this section we present mea-
surements for a class of random graphs that are based on an idealised model
of wireless network interference. These graphs have been widely studied [10]
and provide a method for technology-neutral evaluation. In Section 7 we evalu-
ate performance in a technology specific manner using graphs derived from the
WiGLE database of 802.11 hot spot locations.

6.1 Random Graph Model

We use realizations drawn from the Directed Boolean Model (DBM) described
in [10]. The vertices of the graph are drawn from a Poisson point process in
[0, 1]2 with intensity λ (with appropriate re-scaling to a required area – in the
examples here we rescale to an area of 100m2). In the original undirected
Boolean model (also known as the blob model [see 18, Section 10.5]), each
vertex is the center of a closed ball of random radius. The radii of the balls are
independently and identically distributed. The (undirected) connectivity graph
is obtained by adding an edge between all pairs of points whose balls overlap,
i. e. B(y) ∩ B(z) 6= ∅, where B(y), B(z) denote the balls centered on vertices
y, z respectively. To obtain a directed graph, following [10] we slightly change
the above rule and put a directed edge between y and z if z ∈ B(y) and an edge
between z and y if y ∈ B(z). This modified model is referred to as the Directed
Boolean Model (DBM).

In our measurements the radii are chosen uniformly at random from the
finite set of the coverage areas corresponding to transmitting powers in the
range 12− 20 dBm, with steps of 2 dBm, and a specified detection threshold R.
We use the 3GPP path loss model for indoor environments [19], based on the
Okumura-Hata log-distance model

PLdB(d) = 43.3 · log10 d+ 11.5 + 20 · log10 f

where d is the distance in meters and f is the frequency in GHz. In the examples
here we select fixed frequency f = 2.412GHz. For detection threshold R in dB
and transmit power P in dB, the coverage radius is then given by

d : PLdB(d) + P ≥ R

Figures 2 and 4 show examples of graph generated using this model.
We focus in the most challenging cases by selecting the numberD of available

colors equal to the minimum feasible value χ(G).

6.2 Meeting Connectivity Requirements

Theorems 1 and 2 place connectivity requirements on the induced sensing graph
G′ in order to ensure that Algorithm 1 converges to a satisfying assignment.
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Figure 3: Fraction of DBM graphs nodes satisfying connectivity requirements of The-
orem 2 versus the detection threshold. Additionally, the fraction of nodes correctly
colored by Algorithm 1 for detection threshold of −25 dBm is shown.

We begin by evaluating the fraction of random graphs in the Directed Boolean
Model that meet these requirements. Figure 3 plots this fraction for a range of
detection thresholds R and vertex densities λ. It can be seen that for detection
thresholds below −15 dBm greater than 96% of graphs satisfy the connectivity
requirements. Figure 4 shows some examples of some DBM graphs correspond-
ing to a −25 dBm threshold. Observe that they consist of a number of connected
components and so the relaxed connectivity conditions provided by Theorems 2
are of considerable importance here. Note also that modern wireless devices
typically have a noise floor of less than −70dBm and so −25dBm is conserva-
tive.

Moreover, Figure 3 shows the measured fraction of vertices for which Algo-
rithm 1 successfully found a satisfying assignment for a detection threshold of
−25dBm. It can be seen that greater than 99.9% of vertices are successfully
colored by the algorithm. For λ = 0.5 and detection threshold of −15 dBm,
0.04% of the vertices that does not fulfill the conditions of Theorem 2 are still
correctly colored by Algorithm 1. This small gap can be explained with the fact
that the conditions of Theorem 2 are sufficient, but not necessary for conver-
gence: some topologies can lead to convergence for their particular structure or
because of a fortunate initial condition (see Figure 4 for some examples).

14



0

1

0

0

1

1

1

1

1

1
1

1

0

0

(a) (b)

Figure 4: Example DBM graphs. The nodes labeled with 1 are the one that satisfy
the connectivity conditions of Theorem 2

6.3 Convergence Rate

Figure 5 shows the measured distribution of convergence time for Algorithm 1
versus the detection threshold used for sensing. For a threshold of −25 dBm,
the mean convergence time is less than 2000 iterations. When the required
threshold is increased to −15dBm, the mean convergence time decreases to less
than 1000 iterations. These measurements are for a link density of λ = 0.5,
corresponding to on average 50 wireless links in an area of 100m2. Recall that
we selected the number D of available colors equal to the minimum feasible
χ(G), thereby focussing on the most challenging situations. For larger numbers
of colors it can be verified that the convergence time decreases exponentially in
the number of colors above χ(G).

The comparison of the bounds given by Theorem 1 with the case without
sensing restrictions given by Corollary 2 suggests that sensing restrictions lead
to an increase in the convergence time. This is indeed the case, as shown in
Figure 6, where the convergence rate of Algorithm 1 is shown with and without
sensing restrictions for DBM graphs with λ = 0.5 and detection threshold of
−15dBm. However for DMB graphs it can be seen that this increase is small.

We also analyzed in Section 7.1 the impact of the number of available colors
on the convergence time.

7 Case Study: Manhattan WiFi Hots Spots

From the online databaseWiGLE [20] we obtained the locations of WiFi wireless
Access Points (APs) in an approximately 150m2 area at the junction of 5th
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Figure 5: Measured convergence rate of Algorithm 1 for DBM graphs using a number
of available colors equal to the chromatic number χ of the graph for three different
detection thresholds. The density is λ = 0.5.
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Avenue and 59th Street in Manhattan1. This space contains 81 APs utilizing
the IEEE 802.11 wireless standard. We model radio path loss with distance
as dα, where d is the distance in meters and α = 4.3 is the path loss exponent
(consistent with the 3GPP indoor propagation model [19]), and the AP transmit
powers are selected uniformly at random in the range 12− 20 dBm, with steps
of 2 dBm. The aim of each AP is to select its radio channel in such a way as to
ensure that it is sufficiently different from nearby WLANs. This can be written
as a coloring problem with N = 81 APs and N variables xi corresponding to
the channel of AP i, i = 1, . . . , N . As per the 802.11 standard [21] and FCC
regulations, each AP can select from one of 11 radio channels in the 2.4GHz
band and so the xi, i = 1, 2, . . . , N take values in D = {1, 2, . . . , 11}. To
avoid excessive interference each AP requires that the received signal strength
from other APs sharing the same channel is attenuated by at least −60dB.
When all APs use the maximum transmit power of 18 dBm allowed by the
802.11 standard, this requirement is met when the received power is less than
−45dBm and ensures that the SINR is greater than 20 dB (sufficient to sustain
a data rate of 54Mbps when the connection is line of sight and channel noise is
Gaussian [22]).

The APs do not belong to a single administrative domain and so a decen-
tralised solver is required. The presence of hidden terminals means that the
solver must find a satisfying solution while subject to sensing asymmetry.

The connectivity requirement of Theorem 2 was observed to be satisfied
> 99% of examples, see Figure 8.

1The extracted (x,y,z) coordinate data used is available online at
www.hamilton.ie/net/xyz.txt
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Figure 9: Measured convergence rate of Algorithm 1 for Manhattan WiFi hot spots
using a number of available colors equal to the chromatic number χ of the graph.
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7.1 Convergence Time

Algorithm 1 was observed to converge in less than 1000 iterations in all examples.
Figure 9 shows the measured distribution of convergence time for Algorithm 1
versus the detection threshold used for sensing. For a threshold of −45 dBm,
corresponding to the target requirement noted above, the mean convergence
time is less than 34 iterations. In a prototype lab set-up we have shown that an
update interval of less than 10 seconds is feasible on current 802.11 hardware.
Thus the mean time to convergence is under 6 minutes, which is a reasonable
time-frame for practical purposes. When the required threshold is increased to
−30dBm, the mean convergence time decreases to less than 6 iterations i. e.
under 1 minute when each iteration takes 10 seconds.

To examine the impact of the number of available colors we compare, in
Figures 9 and 10, the convergence time when the number of colors is equal to χ
and χ+2 respectively. For a detection threshold of −60 dBm, adding two colors
reduces the mean convergence time of almost 10 times.

8 Conclusions

In this paper we focus on graph-coloring problems, a subset of general CSPs.
We constructively establish the existence of decentralized learning-based solvers
that are able to find satisfying assignments even in the presence of sensing re-
strictions, in particular sensing asymmetry of the type encountered when hidden
terminals are present. Our main analytic contribution is to establish sufficient
conditions on the sensing behaviour to ensure that the solvers find satisfying as-
signments with probability one. These conditions take the form of connectivity
requirements on the induced sensing graph. These requirements are mild, and
we demonstrate that they are commonly satisfied in wireless allocation tasks.
We explore the impact of sensing constraints on the speed which a satisfying
assignment is found, showing the increase in convergence time is not significant
in common scenarios.

Our results are of considerable practical importance in view of the prevalence
of both communication and sensing restrictions in wireless resource allocation
problems. The class of algorithms analysed here requires no message-passing
whatsoever between wireless devices, and we show that they continue to perform
well even when devices are only able to carry out constrained sensing of the
surrounding radio environment.

Future work includes the extension of our analysis to general decentralised
constraint satisfaction problems and more refined results for specific classes of
graphs.

Appendix: Proofs

We will exhibit a lower bound for the probability of a sequence of events that
ultimately lead to an increase in the number of properly colored vertices. Such
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a sequence can be quite complicated in cases where a node i is unsatisfied by a
node j such that i 6→ j (asymmetric sensing), because in this case it is necessary
to propagate the dissatisfaction to j via another path, and do so in a way that
allows us to restore the original color of the other vertices.

Consider graph G′ = (V, C). Let

A =
⋃

{~x : Φm(~x) = 1 for all m ∈ C} ,

denote the set of assignments which are absorbing for Algorithm 1 and

B =
⋃

{~x : xi 6= xj for all i↔ j},

the set of proper colorings, with A ⊇ B. Under condition (A) of Theorem 1,
A = B and all absorbing assignments are also satisfying. When the coloring
problem is feasible then A 6= ∅ (at least one satisfying assignment exists). Let
a ∈ A be a target satisfying assignment. We will refer to the assignment at
time step t as ~x(t). Let F~x(t) denote the set of vertices that have their target
color, i. e. F~x(t) = {i : i ∈ V, xi(t) = ai}. Furthermore, let U~x(t) denote the set
of unsatisfied vertices, i. e. U~x(t) = {i : i, j ∈ V, xj(t) = xi(t), j → i}, where
i → j and j ← i denote the existence of an oriented edge (i, j) ∈ C. Define
γ = min(a, b)/(D − 1 + a/b).

Lemma 2. If a vertex is unsatisfied, when using Algorithm 1 the probability
that the vertex chooses any color j at the next step is greater than or equal to
γ.

Proof. This follows from step 5 of Algorithm 1.

Lemma 3. Given any satisfiable CP and an information set {C1, . . . , CN} with
starting unsatisfied assignment ~x(0) ∈ DN , ~x(0) 6∈ A such that F~x(0) 6⊇ U~x(0),

Algorithm 1 will reach an assignment ~x(t̃) such that F~x(t̃) ) F~x(0) and F~x(t̃) ⊇

U~x(t̃) in t̃ ≤ |F~x(t̃)| − |F~x(1)| ≤ N steps with probability greater than

γ

|F
~x(t̃)

|
∑

k=|F
~x(0)|

k

< γN(N+1)/2

In other words, all vertices that had their target color in ~x(0) will still have it
in ~x(t̃), and all unsatisfied vertices in ~x(t̃) will have their target color.

Proof. At the first step we consider the event that changes the assignment to

xi(1) =

{

ai if i ∈ U~x(0),

xi(0) otherwise.
(5)

This event is feasible since Algorithm 1 ensures that all satisfied vertices will
remain unchanged and each unsatisfied vertex may change its color. The prob-
ability that this event happens is greater than γ|U~x(0)|. After this step we have
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F~x(1) = F~x(0) ∪ U~x(0). Now, the set of unsatisfied variables U~x(1) could have
changed. If U~x(1) ⊆ F~x(1), we have finished, otherwise we consider again the
event that changes the assignment similarly to equation (5), i. e. at generic step
t we have

xi(t) =

{

ai if i ∈ U~x(t−1),

xi(t− 1) otherwise.

The probability of this happening is greater than γ|U~x(t−1)|, and it can be lower
bounded by γ|F~x(t)| because F~x(t) = F~x(t−1) ∪ U~x(t−1). Since while U~x(t−1) 6⊆
F~x(t−1) we have F~x(t) is a strictly growing set, and we have a finite number

of vertices N , a finite time t̃ ≤ N exists after which we will necessarily have
U~x(t̃) ⊆ F~x(t̃). The worst case in regards to the number of steps is when at each
step, only one new vertex is added to Fx(t), giving us the bound for the number
of steps of |Fx(t̃)| − |Fx(1)|.

Lemma 4. Consider any satisfiable CP and an information set {C1, . . . , CN}
with induced graph G′ = (V, C) and color xi(t) ∈ D associated with each vertex
i ∈ V at time t. Let A ⊂ D|V | denote the set of satisfying assignments. Suppose
|V | > 1, ~x(0) 6∈ A (the initial choice of colors is not a satisfying assignment) and
graphG′ is strongly connected. Let a ∈ A be an arbitrary satisfying assignment.
If F~x(0) ⊇ U~x(0), there exists a pair of vertices k, j with same color such that
j → k and k 6→ j, with k ∈ U~x(0) and j 6∈ U~x(0), j 6∈ F~x(0); in other words, a
vertex k exists that is unsatisfied by a satisfied vertex j that doesn’t have final
color, and the minimum path length between k and j is greater than 1.

Proof. Consider any unsatisfied vertex k ∈ U~x(0). At least one such vertex exists
because ~x(0) 6∈ A. The hypothesis F~x(0) ⊇ U~x(0) ensures xk(0) = ak. Since k
is unsatisfied, there exists a node j such that j → k and xj(0) = xk(0), and
xj(0) 6= aj , because xk(0) = ak, xj(0) = xk(0) = ak and since k ↔ j in G, we
must have aj 6= ak. The hypothesis F~x(0) ⊇ U~x(0) also ensures that j is satisfied,
because if it was unsatisfied it should have its final color because F~x(0) ⊇ U~x(0)

and this would contradict the property just proved that xj(0) = aj . Since j is
satisfied and it has same color than k, we have k 6→ j.

Definition 8 (1-rotation). A 1-rotation is an operator P acting on vector ~s =
(s1, s2, . . . , sm), m > 1, such that P (~s)i = si+1, i = {1, 2, . . . ,m − 1} and
P (~s)m = s1. Repeating a 1-rotation m times yields the identity operation, i. e.
Pm(~s) = ~s.

Lemma 5. Consider any satisfiable CP and an information set {C1, . . . , CN}
and induced graph G′ = (V, C) and color xi(t) ∈ D associated with each ver-
tex i ∈ V at time t. Suppose there exists a cycle p1 → p2 → · · · → pm →
pm+1 → p1 ⊆ G′, m > 1, with xpm+1(0) = xp1(0) at time t = 0. Let
~s(0) = (xp1 (0), xp2(0), . . . , xpm

(0)). With probability greater than γNm, af-
ter m time steps Algorithm 1 will realize a 1-rotation of the vector ~s(0), i. e.
~s(m) = P (~s(0)) = (xp2(0), xp3 (0), . . . , xpm

(0), xp1(0)), while leaving the colors
of all other vertices unchanged.
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Proof. Observe that at time t = 0 vertex p1 is unsatisfied since xpm+1(0) =
xp1(0) and pm+1 → p1. Consider the event that at time t = 1

xp1(1) = xp2(0)

xp2(1) = xp2(0)

...

xpm
(1) = xpm

(0)

and the colors of all other vertices remain unchanged. This event is feasible since
Algorithm 1 ensures that all satisfied vertices will remain unchanged and each
unsatisfied vertex may choose any color from set D with probability at least γ.
From the latter, the event described occurs with probability greater than γN .
Observing that vertex p2 is now unsatisfied since xp1 (1) = xp2(0) = xp2(1) and
p1 → p2, suppose that at time t = 2

xp1(2) = xp1(1) = xp2(0)

xp2(2) = xp3(1) = xp3(0)

xp3(2) = xp3(1)

...

xpm
(2) = xpm

(1).

Again this event is feasible and occurs with probability greater than γN . After
m such steps we have ~s(m) = P (~s(0)) as claimed, and this sequence of events
will occur with probability greater than γNm.

Lemma 6. Consider any satisfiable CP and an information set {C1, . . . , CN}
with induced graph G′ = (V, C) and color xi(t) ∈ D associated with each vertex
i ∈ V at time t. Let A ⊂ D|V | denote the set of satisfying assignment. Suppose
~x(0) 6∈ A (the initial choice of colors is not a satisfying assignment) and graph
G′ is strongly connected. Let d ∈ D be an arbitrary color. Let k ∈ V be an
unsatisfied vertex and let j be a vertex such that j → k, xj(0) = xk(0) (at least
one such vertex exists since k is unsatisfied). With probability greater than

γN3

, in t̃ < N2 steps Algorithm 1 will choose ~x(t̃), such that xi(t̃) = xi(0) ∀i ∈
{i : i ∈ V, i 6= j} and xj(t̃) = d.

Proof. Since G′ is strongly connected, there exists a cycle k → · · · → j → k ⊆
G′. Let us relabel the m+1 > 1 vertices in the cycle using the ordering induced
by the cycle, i. e. p1 = k, pm+1 = j and so p1 → p2 → · · · → pm+1 → p1. Define
vector ~s(t) = (xp1 (t), . . . , xpm−1(t), xpm

(t)). We need to consider two cases. m =
1. In this case the cycle is p1 → p2 → p1. By assumption, xp2(0) = xp1 (0) and
so vertex p2 is unsatisfied since p1 → p2. It follows that, with probability at least
γN , after 1 time step Algorithm 1 will realize the event that vertex p2 selects
color d and the color of all other vertices remains unchanged. m > 1. Using
Lemma 5, with probability greater than γNm in m steps Algorithm 1 will realize
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a 1-rotation of the vector ~s(0) i. e. ~s(m) = (xp2(0), . . . , xpm
(0), xp1(0)) leaving

the colors of all other vertices unchanged. Observe that vertex j = pm+1 must
now be unsatisfied because xpm

(m) = xp1(0), xpm+1(m) = xpm+1(0) = xp1(0)
and pm → pm+1. Now consider the event at time m+1 where vertex pm+1 takes
the color of vertex p1 (and the color of all other vertices remains unchanged).
This event occurs with probability greater than γN . After m+ 1 steps we have
~s(m + 1) = (xp2(0), . . . , xpm

(0), xp1(0)) and xpm+1(m + 1) = xp2 (0), and this

event occurs with probability greater than γN(m+1). Applying again Lemma 5,
after a 1-rotation and changing the color of unsatisfied vertex pm+1 we have
~s(2m + 2) = (xp3 (0), . . . , xp1(0), xp2(0)) and xpm+1(2m + 2) = xp3(0). This

state is reached after 2(m + 1) steps with probability greater than γ2N(m+1).
Repeating, after m(m + 1) steps ~s(m2 + m) = (xp1 (0), . . . , xpm−1(0), xpm

(0))
and xpm+1(m

2 + m) = d (where at the very last step we select the color of
unsatisfied vertex pm+1 to equal d rather than the color of p1). This state is
reached after m(m + 1) steps with probability greater than γNm(m+1). Since

m ≤ N , m(m− 1) < N2 steps and γNm(m−1) > γN3

.

Lemma 7. Consider any satisfiable CP and an information set {C1, . . . , CN}
with induced graph G′ = (V, C) and color xi(t) ∈ D associated with each vertex
i ∈ V at time t. Let A ⊂ D|V | denote the set of satisfying assignments. Suppose
|V | > 1, ~x(0) 6∈ A (the initial choice of colors is not a satisfying assignment) and
graphG′ is strongly connected. Let a ∈ A be an arbitrary satisfying assignment.
If F~x(0) ⊇ U~x(0) with probability greater than γN3

, in t̃ ≤ N2 steps Algorithm 1

will reach an assignment ~x(t̃) such that F~x(t̃) ) F~x(0) and |F~x(t̃)| = |F~x(0)|+ 1;

Proof. Lemma 4 ensures a pair i, j exists such that xk(0) = ak, xk(0) ∈ U~x(0)

and xj(0) = xk(0). Lemma 6 ensures that, in less than N2 steps, with proba-

bility greater than γN3

, Algorithm 1 will reach an assignment in which vertex
j assumes color aj and the colors of all other vertices are unchanged.

Proof of Theorem 1. Consider Algorithm 1 starting from an assignment ~x(0).
Select an arbitrary valid solution a ∈ A. Since the CP is satisfiable, we have
that A 6= ∅. We will exhibit a sequence of events that, regardless of the initial
configuration, leads to a satisfying assignment with a probability for which
we find a lower bound. We consider the following sequence, divided in two
phases:

1: t← 0
2: repeat
3: if F~x(t) 6⊇ U~x(t) then

4: Phase 1 Applying Lemma 3, after t̃ ≤ N steps F~x(t+t̃) ⊇ U~x(t+t̃) and
F~x(t+t̃) ) F~x(t) (so |F~x(t+t̃)| ≥ |F~x(t)| + 1). This event happens with

probability greater than γN2

.
5: t← t+ t̃
6: end if
7: if U~x(t) 6= ∅ then
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8: Phase 2 We have F~x(t) ⊇ U~x(t). Applying Lemma 7, after t̃ < N2 steps
|F~x(t+t̃)| = |F~x(t)|+1. This event happens with probability greater than

γN3

.
9: t← t+ t̃

10: end if
11: until U~x(t) = ∅ .

This sequence is terminating, because the set F~x(t) is strictly increasing, and
when |F~x(t)| = N we necessarily have U~x(t) = ∅. Each vertex will be added to
F~x(t) only once, either by Phase 1 or Phase 2.

When a vertex is added by Phase 1, it will require at most N steps and occur
with probability at least γN(N+1)/2. When added by Phase 2, it will require
at most N2 steps and occur with probability at least γN3

. Since N ≤ N2 and
γN(N+1)/2 ≥ γN3

for N > 1, we can therefore upper bound the total number
of steps by N · N2 = N3 and lower bound the probability of the sequence by
(γN3

)N = γN4

.
Due to the Markovian nature of Algorithm 1 and the independence of the

probability of the above sequence on its initial conditions, if this sequence does
not occur in N3 iterations, it has the same probability of occurring in the next
N3 iterations. The probability of convergence in k · N3 steps is greater than
1− (1− γN4

)k. For 1− (1− γN4

)k ≥ 1− ǫ we require k ≤ log ǫ

log(1−γN4)
≤ − log ǫ

γN4 =

eN
4 log(γ−1) log(ǫ−1)

Proof of Corollary 2. After running Phase 1 in the proof of Theorem 1 for the
first time, we have F~x(t+t̃) ) F~x(t). If U~x(t) = ∅ we have finished without
running Phase 2. Otherwise we must run Phase 2. But in this case we have
from Lemma 4 that C 6=M (because there exists a pair of vertices i, j such that
j → k and k 6→ j), leading to a contradiction. So after Phase 1 U~x(t) = ∅ and
Phase 2 is never executed. The running time of Phase 1 is no greater than N

and occurs with probability at least γ
∑

N

k=1 k = γ(N+1)N/2.
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