FPGA Realization of GDFT-FB Based Channelizers

Fangzhou Wu, Alvaro Palomo-Navarro, Rudi Villing

Department of Electronic Engineering
National University of Ireland Maynooth
Maynooth, Ireland
fwu, apalomo, rudi.villing@eeng.nuim.ie

Abstract—Efficient channelization in flexible, reconfigurable
communications systems is an ongoing challenge. Our previous
work has shown that designs based on the DFT modulated Filter
Bank (DFT-FB) and its extension, the Generalized DFT
modulated Filter Bank (GDFT-FB) appear to have good
computational efficiency and to simplify filter bank design. In
this work we examine the design and implementation of the
fundamental DFT-FB and GDFT-FB on an FPGA in both
critically sampled and oversampled variants. Solutions to various
design issues are presented and the FPGA resource usage
associated with a concrete example is presented.

Keywords— GDFT, filterbank, oversampled, FPGA

I. INTRODUCTION

In modern communication systems flexibility,
reconfigurability, and support for dynamic spectrum allocation
techniques continue to gain importance. Support for these can
be facilitated by reconfigurable radio and software defined
radio (SDR) systems. A key element of these systems is the
receiver channelizer which is responsible for extracting
independent channels from the received signal through
bandpass filtering and down-conversion, prior to subsequent
baseband processing of each independent channel. This is
particularly challenging in a base station, where the received
wideband uplink signal will contain the transmissions from
many independent mobile stations and stringent filtering is
required to avoid adjacent channel interference.

A number of channelizer architectures have been proposed
in the literature to efficiently implement this stringent filtering
including Frequency Response Masking (FRM) non-uniform
channelizers [1], the FRM based Coffiecient Decimation-based
Filter Bank (CDFB) [2] the Tree Quadrature-Mirror Filter
(TQMF) Bank [3] and DFT modulated Filter Bank (DFT-FB)
channelizers [4]. In our previous work [5] we specifically
investigated efficient uniform and non-uniform channelizers
based on the DFT-FB and its more general extension, the
generalized DFT modulated Filter Bank (GDFT-FB). We
subsequently developed even more efficient variations on these
[6] but all variations still used the DFT-FB or GDFT-FB as
their foundation.

Therefore, the work in this paper is focused on efficient
implementation of the fundamental DFT-FB and GDFT-FB in
reconfigurable hardware, specifically a Field Programmable
Gate Array (FPGA), using multi-rate digital signal processing
techniques. In addition to reconfigurability, the primary benefit
of an FPGA channelizer implementation is that it should be

able to extract a large number of channels simultaneously due
to the parallel processing capabilities of the architecture. This
work is complementary to research describing the FPGA
implementation of other filter bank or channelizer architectures
such as the CDFB [2].

In order to facilitate rapid system development and reap the
benefits of well tested and optimized FPGA blocks, this work
focuses on implementing DFT-FB and GDFT-FB channelizers
using reusable FPGA building blocks known as IP (Intellectual
Property) cores. In exchange for flexibility and reusability,
these IP cores impose certain constraints, which initially appear
to prevent their reuse in the GDFT-FB in particular. Therefore
one of the objectives of this work is to examine solutions that
allow the IP cores to be used and minimize the requirement for
additional developments.

In addition, there are three potential problems that this work
seeks to address. First, although DFT-FB implementations on
an FPGA have been described in the literature (see for example
[7]) it does not appear that there has been much work done
with FPGA implementations of the GDFT-FB, particularly for
channelizer applications. Second, there appears to have been
little or no work examining oversampled FPGA
implementations of GDFT-FB based channelizers. Although
FPGA implementations of the oversampled DFT-FB have been
reported (see for example [8]) these have not used IP cores. In
general, oversampled channelizers make it easier to use filters
to recover the entire channel bandwidth (or even exceed it
slightly) without introducing aliasing distortion (as will be
explored in more detail in Section II). Finally, our previous
work indicated that filter orders for DFT-FB/GDFT-FB filters
could be rather high so we wanted to investigate FPGA
resource usage for a concrete channelizer example.

The outline of the remainder of this paper is as follows.
Section II introduces the background mathematics and
architecture of the DFT-FB and GDFT-FB. Section III focuses
on the implementation of the critically sampled DFT-FB and
GDFT-FB uniform channelizers. Section IV extends this to
oversampled implementations. Section V evaluates the FPGA
resource usage associated with all implementations for a
concrete channelization specification. Finally, conclusions
bring the paper to a close.

II. BACKGROUND

In signal processing, an analysis filter bank is equivalent to
a set of parallel band-pass filters that divides a wideband input
signal into multiple sub-bands at different center frequencies.

978-1-4673-6974-9/15/$31.00 ©2015 IEEE

In contrast, a synthesis filter bank synthesizes a single
wideband output from multiple input sub-bands. For the
purpose of channelization in a communications receiver, it is
only the analysis filter bank that is relevant.

A modulated analysis filter bank implements the equivalent
of multiple parallel band-pass operations using a single low-
pass prototype filter and an efficient modulation operation that
can filter multiple sub-bands at once. In the context of
channelization these sub-bands are the desired narrow-band
output channels.

One of the simplest modulated filter banks is the DFT
modulated Filter Bank (DFT-FB). The prototype filter for a K
band filter-bank, H(z), is divided into K poly-phase
components, £, (z), as follows:

0 K-1
H(z)= Z h(n)z™" = ZZ—PE,,(ZK) (1)
=0

n=—oo p

Where

Ep(z)= Z h(nK + p)z" ©)

The K sub-band filters are obtained by complex modulation of
the prototype filter using the DFT algorithm [9]as:

K-1
H(2)=Y E,(zX)z"W?, p,k=0,.,K-1 3)
p=0

27/K
where W, =e’ "/

representation of a DFT-FB analysis bank suitable for use as a
uniform channelizer. (In typical implementations the Fast
Fourier Transform (FFT) is used instead of the DFT because of
its greater computational efficiency.)

. Figure 1 shows the block diagram

x(n)
»{0 0 Yo(n)
1 1 > i(n)
DFT
2 2)
I |
Bl !
a EK-I(ZL) K-1 K-1 Via(n)

Figure 1. DFT modulated filter-bank (DFT-FB)

In the figure L is the oversampling factor, and D is the
downsampling factor of the DFT-FB, defined as

L=K/D “4)

and the output sample rate of each sub-band, Fi, is related to
the input sample rate by

F; = Fs,[N / D (5)
Therefore, when L = 1 the DFT-FB is critically sampled

whereas when L > 1 the filter bank is oversampled. Moreover,
although the output of each filter, H(z) in (3), is theoretically

decimated after filtering, for efficiency this decimation
normally takes place before the filtering operation in a
polyphase decimated implementation. In this case the
polyphase components are also decimated by D so that instead
of E,(zX) we have E,(zK/P)=E,(z").

A critically sampled filter bank requires a prototype low-
pass filter whose filter pass and transition bands does not
exceed the decimated Nyquist frequency of the sub-band if
aliasing is to be minimized (see Figure 2a). These constraints
are relaxed in an oversampled filter bank since the sub-band
Nyquist frequency is now larger than the sub-band spacing

(F;,IN / K) and it is therefore possible to have sub-band filters

which overlap in terms of the input signal but whose images do
not overlap to cause aliasing after decimation (Figure 2b).
More details are available in [10].

a) ‘ ‘
| |
,,,,, | | [
/ \ / \
/ N \X \
/ / \
/ 1 \
/ S \
— N .
b) -Fs -Fs/2 0 Fs/2 Fs /
| |
,,,,, i i T
/ \ / \
/ \ | | / \
/ \ / \
/ \ | | / \
/ / \
U N ll e

Figure 2. The interaction of a filter with its images in the decimated sub-band
output a) exhibits aliasing when critically sampled due to overlapping images
whereas b) oversampling greatly reduces aliasing.

A DFT-FB channelizer can only filter an even-stacked set
of uniformly spaced filters as shown in Figure 3a. An even
stacked filter bank has one channel centred at DC and one
(typically unusable) channel that is centred and split in two at
the wideband input signal Nyquist frequency.

a)

Ho(z)
Hiaz) K1) ‘ HG@) (s
- AmK 2mK 2mK 41K T W

b)

vV Iy

Hii(2) ¢ H
Hea) _’i '/(Zl\#/ ﬁ(z)l _Hi(9)
4

L N / [[, N /
-0 (K2-)mwK 3mK -mK mwK 3mK (KR-)mK T W
Figure 3. a) Even stacked channels, b) odd stacked channels

The Generalized DFT-FB (GDFT-FB) is an extension of
the DFT-FB that offers more flexible channel stacking and
phase shifts. In particular the GDFT-FB supports odd-stacked
channels as shown in Figure 3b. The effect of the odd-stack
design is that the wideband input spectrum is rotated right by
half of one sub-band bandwidth. This eliminates the half sub-
bands from either end of the even stacked design and may be
more useful than the even stacked design in some cases.

The GDFT-FB achieves the phase shift and channel
stacking flexibility by implementing the sub-band filters as:

K-1
H, (@) =W 3 By ()2 W 6

where
E)(z5)=E, (WP)m e (7)

and D is the decimation factor, n, is a possible phase shift
which can be applied to filter bank outputs (usually n, = 0) and
ky determines the even or odd stacking of the filter bands

(k, =0 for even stacked and k, =1 for odd stacked). The

GDFT-FB block diagram is shown in Figure 4. The frequency
shift term in the figure does not appear in (6) which only
describes the input signal band pass filtering—the frequency
shift is responsible for shifting the sub-band output from being
centered at F, /2 to being centred at DC.

.

x(n) L e P
0: l'> Yo(1)
W km g KD
[K
I 'l> '|> yi(n)
| DFT I WK'(ZH%)’H; WK_](“"D
V(1)

|z'

= gL K=o

“(K-1+k, -kynD
WK(V 7“)'11; W™

Y
-

|
=y ' I
|

Polyphase decimation FIR Phase shift
Figure 4. GDFT modulated filter bank (GDFT-FB)

Comparing the GDFT-FB and DFT-FB it is clear that the
DFT-FB is just a special case of the GDFT-FB where &, and n,
are both equal to 0 [11]. When n, is zero (as it is when the
filter-bank is used to implement a channelizer) the phase shift
term simplifies to multiplication by 1. Unfortunately the

Frequency shift

complex modulation terms in the definition of E; (ZK) mean

that the polyphase components of the prototype filter now have
complex rather than real coefficients. In general it is clear that
the flexibility of the GDFT-FB results in some additional
complexity and computation relative to the DFT-FB.

III. FPGA IMPLEMENTATION OF CRITICALLY SAMPLED
DFT-FB AND GDFT-FB CHANNELIZERS

This section develops critically sampled FPGA channelizer
implementations on the Xilinx family of FPGAs using the ISE
(Integrated Software Environment) tool suite and the library of
reusable IP cores, providing solutions where is necessary to IP
core limitations.

A. Wordlength Consideration

In this implementation, the input samples have 16-bit signed
in-phase and quadrature parts, the coefficients are also in 16-
bit signed representation. This allows us to make efficient use
of the embedded DSP Blocks on the FPGA. The architecture
allows for 16-bit coefficients with a scale value. The scale

value must be computed in advance by the user, but is simply
a case of finding the maximum dynamic range for each sub-
band filter and scaling by a power of 2.

B. Basic DFT-FB Channelizer Implementation

As is typical when implementing communications systems,
the complex input signal is not processed directly in complex
form in the FPGA but must instead be divided into its in-phase
(I) component, corresponding to the real part of the signal, and
quadrature (Q) component, corresponding to the imaginary part
of the signal, before input to the FPGA channelizer.

Xilinx provides an FFT IP core which can be used in the
DFT-FB and GDFT-FB. They also provide an FIR compiler IP
core whose polyphase decimation mode efficiently implements
the filtering operation required for the DFT-FB (see left hand
side of Figure 1). In this mode the delay chain and decimation
operations are implemented using a commutator [12].

The FIR compiler IP core only generates filters which
implement a real filter operation (that is, the prototype filter
coefficients must be real). Nevertheless it does apply this real
filter identically to two inputs which are normally the I and Q
components of a signal to be filtered. Therefore the IP core
directly supports real filtering of a complex signal (which has
been separated into its [and Q components).

Finally it is worth noting that both the FIR compiler and
FFT IP cores use time division multiplexed serial inputs and
outputs rather than the notional parallel paths suggested by
Figure 1 and Figure 4. Putting all this together we find that the
FIR compiler and FFT IP cores facilitate the straightforward
implementation of a DFT-FB channelizer capable of extracting
8-1024 channels as shown in Figure 5.

I
)i
[e] " FFT N
CORE
— b R
0 0

FIR Compiler
Figure 5. DFT-FB implementation using FIR compiler and FFT IP cores

C. GDFT-FB Channelizer Implementation
1) Complex modulation of prototype filter coefficients

Equation (7) indicates the coefficients of the (real) prototype
filter are subject to complex modulation for the GDFT-FB.
This modulation is applied offline at design time so that the
modulated coefficients (separated into their I and Q parts) are
supplied to the FIR compiler IP cores. To see how this is done,
first consider the time domain equivalent of (7) without any
interpolation

o o
e[’J (n)=ep (n)ej’(kome Tk ®)
where

e,(n)=h(nK +p), p=0,..,K-1)

In the case of a critically sampled GDFT-FB, where D =K
and k, =1 then (8) reduces to

e, (n)=e,(n)e"e ™" (10)

The modulation of coefficients is applied to each polyphase
component independently. Thereafter the modulated
component coefficients are interpolated and reassembled as

indicated by (1), substituting £ (ZK) forE, (ZK) , to form the

appropriate arrangement of prototype filter coefficients. These
coefficients are then divided into their I and Q parts for use
with the complex filter implementation to be discussed next.

2) Complex filter implementation using FIR compiler

The GDFT-FB is not as straightforward to implement as the
DFT-FB when the parameter k, is non-zero [10]. (We will not
examine cases where the parameter 7, is non-zero in this work
since it is not required for channelizer design.) When £k is non-
zero then the coefficients of the prototype filter are subject to
complex modulation (see (7)) yielding complex filter
coefficients which the FIR compiler IP core does not support.
A complex FIR may be implemented by cross-coupling two
real FIRs [13] and this approach may be used with the FIR
compiler IP core as shown in Figure 6.

Hiz) ‘—

FIR Compiler /

Ho(z) b—

T ¢
Ho(z) ®

FIR Compiler Q

Complex FIR

Figure 6. Complex FIR implemented using cross-coupled FIR compiler IP
core

To see how this cross-coupled approach works it is useful
to consider the minimal case: multiplication of a single input
sample, x=yx, +x,j with a single filter coefficient,

h=h,+h_j, which yields
xh:(x,.hl. —thq)+(xl.hq +thl.)j (11)

3) Frequency shift state machine

From Figure 4 it is clear that the output of the DFT is
followed by two separate complex multiplications. One of
these, the phase shift operation, reduces to multiplication by 1
(that is no operation required) when #n, is zero. The frequency

shift operation, W, FonD , shifts the output of each channel as

-1 2”(k011D)

W =e K neN (12)

When k, =1 and K = D (as is the case when L = 1 in a
critically sampled filter bank) then this reduces to

—kgnD e—j/m _ 1’
WI(= =
_1’

where 7 is the output sample number. This has the effect of
shifting the sub-band output by half the output sampling rate so
that it is centred at DC and it can be efficiently implemented
using a simple state machine which either passes the output
through unchanged (for even numbered samples) or negates the
output (for odd numbered samples). Since the FFT outputs 1
sample from each output sub-band sequentially, the state
machine changes state only after K samples have been output
from the FFT.

4) Final design

Figure 6 Figure 7 shows the FPGA implementation block
diagram of the theoretical GDFT-FB design shown in Figure 4
incorporating each of the steps described above. Because the
GDFT-FB is a general design it could be used to implement
both even-stacked and odd-stacked channelizers. Nevertheless,
the DFT-FB is the more efficient design for even stacked
designs since it does not require the complex FIR or the output
mixer state machine.

n even
forneN (13)

n odd

1 1
— Frequency —»

FIR FFT Shlfth.
> > Statemachine

0 o

Figure 7. FPGA implementation of the GDFT-FB

Y
Y

Complex

IV. FPGA IMPLEMENTATION OF OVERSAMPLED DFT-FB AND
GDFT-FB CHANNELIZERS

A. High Level Design

In general the high level design of the oversampled DFT-
FB and GDFT-FB is very similar to the critically sampled
designs shown in Figure 1 and Figure 4. In particular the
overall structure shown in these figures does not change.

Nevertheless, there are two significant changes required.
First, since L=K/D>1 in the oversampled case, the
decimation factor no longer matches the number of channels
and the implementation of both the real FIR (in the DFT-FB)
and complex FIR (in the GDFT-FB) must be replaced with an
oversampled version as described in the following section.
Second, for similar reasons the output frequency shift state
machine design must be modified since there are more states to
implement for an oversampled design.

B. Oversampled Polyphase Decimation FIR

The FIR compiler IP core implements the polyphase
decimation structure using a commutator. The decimation
factor in this structure must, by definition of how a commutator
works, match the number of polyphase branches. However, for
an oversampled filter bank, the decimation factor must be less
than the number of branches. The question then, is how to
implement an oversampled polyphase decimation FIR when

only critically sampled polyphase decimation FIR blocks are
available?

Consider a filter bank where L = 2. Expanding (1) we get
H(z)=E, (zK) + Z_IE1 (zK) +...+ Z_(K_I)EIG1 (zK) (14)
which can be re-written as
K/2-1)

H(z):EO(zK)+z_1E1 (ZK)+...+Z_(Exp-y (ZK)

1K |:EK/2 (ZK) +27 By (ZK) w0 (ZK)}

In general, the polyphase decomposition of the DFT-FB
prototype filter in (15) can be re-written as

(15)

= (16)
L-1

= ZilDHFIRi (Z)
i=0

where
D-1
H g (Z) = szpEpﬂ‘D (ZK) i=0,1,.,L-1 (17)
p=0

The benefit of this decomposition is that each H F,Ri(z)

now contains just D polyphase branches so that it may easily
be decimated by D using a commutator making it compatible
with FIR compiler IP cores. The same decomposition can be
applied to the GDFT-FB prototype filter by substituting

E)., (") for E,. (") in(16).

The overall solution, therefore, is that the oversampled
polyphase decimated FIR is implemented using L, the
oversampling factor, number of polyphase decimation FIR
blocks (real or complex as needed by the DFT-FB or GDFT-
FB respectively). The sub-prototype filter supplied to each of
these FIR blocks is assembled from a subset of the interpolated
polyphase components of the overall prototype filter in
accordance with (17).

Furthermore, since each of the FIR blocks executes in a
parallel and produces outputs simultaneously, it is necessary to
add an FIR selector state machine which implements the time
division multiplexing of FIR block outputs onto the single I
and Q input to the FFT IP core. Specifically, to implement the
DFT-FB or GDFT-FB correctly the oversampled FIR outputs
from branch 0 to branch K of the overall polyphase
decomposition must be supplied to the FFT sequentially. First
the D samples from 0 to D-1 are selected from FIR;, then D
samples from D to 2D-1 are selected from FIR,, and so on,
until the final D samples from (L-1) D to LD-1 are selected
from FIR at which point the sequence begins again.

Since the outputs of all FIR blocks are produced
simultaneously it is necessary to add a FIFO to the outputs of
each FIR block so that samples can be stored until they are
selected for output from the overall oversampled FIR.

The resulting implementation of the
polyphase decimation FIR is shown by Figure 8.

oversampled

—_FIFO _—»|
FIR 0 FIFQ I,

-
o T
|
|
|
|
|
|
|

!
Q

——_Fro — b

IR 0,
: Selector
I State-
| machine
|
|
|

FIR L-1 i) 0,

Figure 8. Oversampled polyphase decimation FIR implemented using real or
complex critically sampled polyphase decimation FIR blocks

In the case of the DFT-FB, each of the FIR blocks in the
oversampled FIR implements a real filter and therefore can be
implemented using the FIR compiler directly. Consequently,
the oversampled DFT-DB requires L FIR compiler IP cores. As
for the critically sampled case, the GDFT-FB will require
complex filters and therefore each FIR block must implement a
complex filter. This means that the GDFT-DB requires 2L FIR
compiler IP cores.

C. Oversampled Frequency Shift State Machine

As was the case for the critically sampled GDFT-FB, the
final frequency shift can be implemented using a state machine,
albeit one with more states. The number of states depends on

the oversampling factor, L =K /D . Substituting k, =% and
K = LD into (12) yields

WP =gmimiL e N (18)
In the case that L = 2 this reduces to just four unique values

—J n=4m

-1 n=4m+1
neN,meN (19)
J n=4m+2

1 n=4m+3

and therefore the frequency shift can be replaced by a state
machine with 4 states. All 4 of these multiplications can be
implemented without any multipliers since the operations
amount to passing through, negating, or swapping the I and Q
components.

Similar state machines can be derived for larger
interpolation factors but it is worth noting that multipliers will
be required in this case.

V. EVALUATION

A. Equipment and Materials

In order to evaluate the FPGA designs described in this
paper it was necessary to construct working implementations.
These were developed on the Xilinx Virtex-6 FPGA
prototyping board. The Xilinx Virtex-6 XC6VLX240T has
over 240,000 gates, 768 DSP48 slices, and 416 block RAMs.
Every DSP48 contains a 25%18 multiplier, an adder, and an
accumulator. Block RAMs are 36 Kb in size and can also be
used as two independent 18 Kb blocks [14]. Xilinx ISE
Foundation Series tools and IP cores (FIR compiler and FFT)
were used.

B. Test and Results

A 16-channel channelizer was implemented using each of
the four different designs examined in this paper, namely the
critically sampled DFT-FB and GDFT-FB, and the
oversampled DFT-FB and GDFT-FB. In all cases the correct
operation of the channelizer was validated and the resource
usage for the design was examined so that the scalability of the
design to larger numbers of channels could be understood.

The wideband input signal was digitized at 2
megasamples/second with a resolution of 16 bits per sample.
The channel spacing in the wideband input signal was 125 kHz.
A length 512 low pass prototype filter was designed such that
the pass band end frequency was 57.5 kHz and stop band start
frequency was 67.5 kHz. Each of the sub-band filters in the
filter bank therefore overlapped its adjacent sub-band filters by
approximately 28 kHz on both sides.

The FPGA was operating with a 600 MHz clock and
therefore had 300 clock cycles on average to process each input
sample. An FPGA is organized into slices and each slice has
some lookup table (LUT) resources (used to implement
predefined logic) and register resources (usually used to
maintain state and synchronize input/output). Block RAM will
be used to store data and be embedded throughout the FPGA,
for example filter coefficients. All the multiplications and
additions were implemented by DSP48s for maximum
performance. Therefore the usage of the block RAM and
DSP48 resources are the most important to evaluate.

Table 1 Resource usage comparison of 3 different designs

Slice Slice DSP48s Block
Register LUT RAMs
Critically sampled, Even stack 1125 819 5 4
Oversampled x2, even stack 1445 1503 7 6
Critically sampled, odd stack 1551 1175 7 6
Oversampled x2, odd stack 2121 2123 15 6
Available 301440 150720 768 416

Table 1 shows the resource usage for each of the four
channelizer designs. Although the resources used depend on
factors such as input signal sample rate, the number of channels,
K, and the specifications of the prototype filter, the results
suggest that the upper bound capacity of the Virtex-6 would be
most constrained by the availability of DSP48 resources. In
future work we intend to examine this upper bound capacity in

more detail and to explore the relationship between various
parameters of the filter bank design and the number of
resources consumed.

CONCLUSION

In this work, we have shown how to implement even and
odd stacked channelizers in critically sampled and oversampled
variants on an FPGA using reusable IP cores. Although the
GDFT-FB is more flexible than the DFT-FB since it supports
both even and odd stacked channels, its resource consumption
is higher than the DFT-FB, particularly in the oversampled
configuration. This does however ignore the fact that filter
design may be less stringent with oversampled designs than
with critically sampled designs because of the greatly reduced
aliasing problem. In general, if maximum spectrum utilization
is required (suggesting the odd stacked channels) and lack of
aliasing distortion is important, then the oversampled GDFT-
FB would be the preferred channelizer design.

REFERENCES

[1] R. Mahesh and A. P. Vinod, "Reconfigurable Low Area Complexity
Filter Bank Architecture Based on Frequency Response Masking for
Nonuniform Channelization in Software Radio Receivers," Aerospace
and Electronic Systems, IEEE Transactions on, vol. 47, pp. 1241-1255,
2011.

[2] S. Darak, A. Vinod, and E. K. Lai, "A Low Complexity Reconfigurable
Non-uniform Filter Bank for Channelization in Multi-standard Wireless
Communication Receivers," Journal of Signal Processing Systems, vol.
68, pp. 95-111, 2012/07/01 2012.

[3] T. C. Farrell and G. Prescott, "A low probability of intercept signal
detection receiver using quadrature mirror filter bank trees," in
Acoustics, Speech, and Signal Processing, 1996. ICASSP-96.
Conference Proceedings., 1996 IEEE International Conference on,
1996, pp. 1558-1561 vol. 3.

[4] H. Xiaohong, Z. Lin, W. Zhicheng, and F. Fang, "Implementation of
DEFT Filter Banks Based on FPGA," in Computer Distributed Control
and Intelligent Environmental —Monitoring (CDCIEM), 2012
International Conference on, 2012, pp. 369-372.

[5] A. Palomo, R. Villing, and R. Farrell, "Overlapped Polyphase DFT
Modulated Filter Banks Applied to TETRA/TEDS SDR Base Station
Channelization," presented at the RIA Colloquium on Communications
and Radio Science 2010, Dublin, Ireland, 2010.

[6] A. P. Navarro, R. Villing, and R. J. Farrell, "Practical Non-Uniform
Channelization for Multistandard Base Stations," ZTE Communications,
vol. 09, pp. 15-24, 2011.

[7] S. A. Fahmy and L. Doyle, "Reconfigurable polyphase filter bank
architecture for spectrum sensing," presented at the Proceedings of the
6th international conference on Reconfigurable Computing:
architectures, Tools and Applications, Bangkok, Thailand, 2010.

[8] P. L. De Leon, "On the Use of Filter Banks for Parallel Digital Signal
Processing."

[91 P. P. Vaidyanathan, Multirate systems and filter banks: Prentice-Hall,
Inc., 1993.

[10] R.E. Crochiere and L. R. Rabiner, Multirate Digital Signal Processing:
Prentice-Hall, 1983.

[11] A. P. Navarro, T. Keenan, R. Villing, and R. Farrell, "Non-uniform
channelization methods for next generation SDR PMR base stations,"
in Computers and Communications (ISCC), 2011 IEEE Symposium on,
2011, pp. 620-625.

[12] Xilinx, inc. "IP LogiCORE FIR Compiler v5.0 Product Specification."

[13] K. W. Martin, "Complex Signal Processing is Not Complex," [EEE
Transactions on Circuits and Systems I: Regular Papers, vol. 51, pp.
1823-1836, 2004.

[14] Xilinx, inc. "Virtex-6 Family Overview," ed, 2011.

