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Abstract 
Opportunistic Networks (OppNets) are an extension to the classical Mobile Ad hoc Networks 

(MANETs) where the network is not dependent on any infrastructure (e.g. Access Points or 

centralized administrative nodes). OppNets can be more flexible than MANETs because an end 

to end path does not exist and much longer delays can be expected. Whereas a Rogue Access 

Point is typically immobile in the legacy infrastructure based networks and can have considerable 

impact on the overall connectivity, the research question in this project evaluates how the pattern 

and mobility of a rogue nodes impact the dependability and overall "Average Latency" in an 

Opportunistic Network Environment. We have simulated a subset of the mathematical modeling 

performed in a previous publication in this regard. 

Ad hoc networks are very challenging to model due to their mobility and intricate routing 

schemes. We strategically started our research by exploring the evolution of Opportunistic 

networks, and then implemented the rogue behavior by utilizing The ONE (Opportunistic 

Network Environment, by Nokia Research Centre) simulator to carry out our research over rogue 

behavior. The ONE simulator is an open source simulator developed in Java, simulating the layer 

3 of the OSI model. The Rogue behavior is implemented in the simulator to observe the effect of 

rogue nodes. Finally we extracted the desired dataset to measure the latency by carefully 

simulating the intended behavior, keeping rest of the parameters (e.g. Node Movement Models, 

Signal Range and Strength, Point of Interest (POI) etc) unchanged. Our results are encouraging, 

and coincide with the average latency deterioration patterns as modeled by the previous 

researchers, with a few exceptions. The practical implementation of plug-in in ONE simulator has 

shown that only a very high degree of rogue nodes impact the latency, making OppNets more 

resilient and less vulnerable to malicious attacks. 
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1 Introduction 

Mobile nodes in Opportunistic Networks (OppNets) transmit and receive useful messages in a 

'Store and Forward' architecture [1]. OppNets are an extension to classical Mobile Ad hoc 

Networks (MANETs) where the network is not dependent on any infrastructure (e.g. Access 

Points or centralized administrative nodes). The connectivity can also be intermittent and 

episodic, similar to the Delay Tolerant Networks (DTN). They are typically referred to as suitable 

for, and deployable in 'Challenged Networking Conditions' owing to their inherent resilience with 

respect to a path-less communication model, flexibility of internetworking between discrete 

technologies and critical dependence of nodes mobility and cooperation. An interesting as well as 

a highly challenging feature of these networks is, that an end to end path from source to 

destination may not necessarily exist at any point in time. Path management in MANETs is an 

expensive task to maintain over the period of time in a dynamic network topology. Nodes may 

enter or leave without any permanent association with the network, therefore the mobility is an 

inherent feature, which leads to creating or breaking of existing paths. OppNets offer their useful 

operating model to get rid of this constraint. 

Each node in an OppNet is crucial for providing end to end delivery of useful messages. This 

leads to very important and critical concerns of reliability, security and privacy of the content: 

The data may or may not be encrypted and can be potentially seen by the intermediaries. Routing 

is already a big challenge for these networks [2], therefore the notion of altruism  and cooperation 

is expected from the contributing nodes. This project will first investigate and explore OppNets 

with respect to their evolution, routing schemes and key research areas with the help of past 

publications and related work. This was also needed to build the required knowledge of domain 

with respect to key terminologies, protocols and tools available for the research and development. 

The contributing nodes struggle to probe, and search for every available 'opportunity' (hence 

called 'Opportunistic' Networks) in order to deliver the messages, which can potentially bring 

them closer to the destination. However, the notion of 'rogue' (or selfish) behavior can also exist 

(as explained in Section 3 later) just like it can exist in the infrastructure based networks. In this 

project we will analyze, compare and contrast the impact of rogue nodes in the network against 

the normal networking conditions. Whereas a rogue Access Point is immobile,  the research 

question in this project will address on how the pattern of a rogue nodes impacts the overall 

"average latency" in an OppNet environment. Although delays are expected in OppNets, but the 

existence of added malicious entities can further hamper the performance of network. Also it is 

important to mention here, that though the primary focus in OppNets is to maximize the 

transmission of data, very few papers have published the impact, that rogue mobile nodes can 

have on further latency in the network. 

The impact of rogue nodes will be measured by first simulating communication scenarios under a 

specific mobility pattern assuming no malicious behavior exists. The simulation will again 

performed with the same parameters, except that this time a portion of nodes will act as rogue 

nodes. 

We implement (and then simulate) the rogue behavior by utilizing The ONE simulator. The ONE 

(Opportunistic Network Environment) simulator is an open source simulator developed in Java 

simulating layer 3 of the OSI model. The rogue behavior will be customized in the simulator to 

observe the effect of malicious nodes. Finally we develop the desired dataset to measure the 



performance and QoS metrics by rigorously simulating the intended behavior, keeping rest of the 

parameters (e.g. node movement models, signal range and strength, Point of Interest (POI) etc) 

unchanged. Our results are based on comprehensive simulation of rogue behavior, and averaging 

the delays introduced on the basis of 100 seeds for each run. 

Although, ONE simulator is an open source platform developed by Nokia Research Centre 

(Finland), it has hundreds of interlinked APIs, import and export functionalities. It was built 

without any negative scenarios (e.g. routing via malicious nodes). It is comparatively a newer 

tool, research and development is primarily being done by peer and online collaboration (forums 

and emails) by self learning and experimenting. Simulations involving OppNets can be time 

consuming (being a 'delay' tolerant simulation), reason being (discussed in more detail in Section 

2.3 in their evolution) since these networks do not suffer from the overhead of path management 

and connection establishment at TCP layer [3], they need to wait for the possible opportunities to 

find the optimal intermediary for the message delivery to the end destination. Finding the 

intermediate 'routers' (the term is used interchangeably with nodes/hosts in the literature) depends 

on the underlying routing protocol, mobility model and most importantly the altruism of the 

neighbors.  Therefore simulation of scenarios requires careful analysis of input parameters and 

output dataset after every iteration. Sometimes it is also necessary to graphically monitor the 

movement and message logs even during the simulation, which motivated us that we chose ONE 

simulator for our project (Please refer to Section 6: Why ONE Simulator). The intent is to make 

the plug-in implemented as part of our implementation on Rogue Behavior as a potential addition 

to the research community of ONE. To the best of our knowledge, currently no plug-in or 

configurable parameter as an additional feature exists in the ONE simulator source files [4]. 

Although the researchers in [5] plot latency patterns on the basis of mathematical modeling and 

simulate in ONE, their source files or repositories are not available publically. 

There is not a huge amount of work done previously on rogue behavior in OppNets, as compared 

to the efforts on routing and forwarding techniques. It makes sense because the prime intention 

of OppNets was maximizing communication for areas or networking conditions which are 

considered challenged for even slighter connectivity due to geographical areas, infrastructure 

deficiencies and poor coverage of wireless media [1]. However, the notion of altruism cannot be 

completely ignored since the mobility and portability of mobile devices can give birth to 

opportunism and selfishness. 

 

A number of papers analyze the performance variations by mathematical modeling followed by 

simulation of key metrics like latency and delivery ratio. Majority of the researchers have used 

"Epidemic Routing [6] and Two hop Relay" [7] [5] routing protocols. We referred to two 

publications, one that analytically modeled the rogue behavior, and another performed the 

modeling as well as implemented the behavior in ONE simulator. While the Epidemic Routing 

Protocol is explained in much more detail in Section 4 (Epidemic Router). Two hop relay 

typically aims to reduce the number of transmissions during message forwarding. Both these 

protocols are multi-copy protocols but the essential difference between them is that in Two hop 

relay, only the source can infect the neighbors with the desired message. It also ensures that each 

time it encounters a node with no copy of the desired message, it forwards the message to it such 

that there are two copies of message available. The intermediaries are not allowed to infect other 

nodes with that very message, unless they are the intended destinations [8] [9].  Considering the 

scope of our project we only performed a subset of implementation and subsequent simulation as 



(Section 7: Methodology for further details) performed analytically in [10], but we also referred 

to [5] for our some help with respect to simulation in ONE. There is a good correlation between 

the simulation results presented in our project and the analytical results from these two papers. 

Some dissimilarities in the impact are also identified and discussed (Section 8: Results). 

 

  



2 Background and Motivation 

2.1 Infrastructure-based communication networks 

Two major classes of data and communication networks co-exist globally. In networking 

literature they are mostly referred to as: Infrastructure-based and Infrastructure-less (or ad hoc)  

networks. Communication Networks deployed on top of a fixed and proactively designed 

'infrastructure' are commonly known as Infrastructure-based networks. These are designed 

keeping in view the Quality of Service (QoS), security, reliability and availability requirements. 

Typically the design involves performing geographical surveys prior to the design and 

implementation of physical infrastructure. Some examples include Ethernet wired LAN, 802.11 

Access Point and GSM/UMTS/LTE based telecommunication networks. The network topology, 

capacity, bandwidth and related QoS parameter might differ in these distributed networks, but 

one thing is common: They are dependent on central nodes (or a set of pre-installed nodes) in 

order to carry out message transmission/Receiving. Network topology is pre-designed and fixed, 

and is not prone to any alterations during the routing and forwarding of messages. These 

networks have matured after being revolutionized and vivified by introducing newer protocols 

and underlying technologies. Security, though was an afterthought in infrastructure-based 

networks, modern cryptography schemes have made these networks less vulnerable to attacks 

(e.g. Fake Access Points, Packet Sniffing, Distributed Denial of Service (DDoS), Man in the 

Middle attacks etc). 

2.2 Infrastructure-less Networks 

With the inception of Wireless technologies, mobile devices started to gain more popularity 

worldwide than the desktop based end stations, the portability of these handheld devices 

leveraged by their multiple communication interfaces (e.g. Bluetooth IEEE 802.15,WLAN 

802.11 family, NFC and Infrared etc) have helped mobile communication getting rid of 

underlying infrastructure for traffic management and data relaying [11] [12]. When the mobile 

nodes communicate in an ad hoc manner without any dependence on any central entity (Central 

Access Point, Router etc), they form an 'Infrastructure-less' network [13]. In the 802.11 family of 

WLANs, they are also said to be operating in an 'Ad hoc mode'. This lead to the evolution of 

Mobile Ad hoc Networks (MANETs). 

There is no fixed network topology in MANETs. Routes are built on the fly and need to be 

maintained over the period of time, at the expense of  bandwidth. When a route is built, all the 

nodes in the current network need to be made aware by some handshaking mechanism. There are 

not pre-designated routing or relaying/gateway nodes in these networks [14]. Every node is a 

contributor to the overall performance and QoS parameters. Throughput, packet delivery ratio, 

packet losses, Round Trip Times, bandwidth and delivery delays keep fluctuating as the nodes 

move, leave or join the network in an ad hoc manner. The beauty of ad hoc network is, that the 

communication or message passing is no longer dependent on a single entity (e.g. an Access 

Point (AP) in an 802.11n configuration which acts a central unit for message passing, queue 

management, and bandwidth allocation etc). Even if a node goes down (i.e. disconnects from the 

network due to leaving, shutting down or connecting to another network) from an existing 

MANET, the routes are rebuilt dynamically via another feasible node. Although it results in 

more delays and bandwidth fluctuations, the connectivity is not hampered for all the valuable 

routes built in the past [13], unless one or more nodes involved in the route are altered. 



There are several disadvantages with MANETs because dynamic routes management via 

contributing nodes is a memory expensive process. MANET protocols like AODV (Ad hoc on 

demand distance routing vector) demand that route information has to be maintained across the 

network at any given point in time, keeping all nodes notified of the topology changes. This is 

done by frequent and periodic 'Hello' messages [14]. This can cost a significant increase in the 

administrative responsibilities of nodes. However, from a network designer perspective 

MANETs should add value to the usability of the overall network. Thus their configurations are 

usually done as part of Mesh networks and other places on requirements basis. For example, 

consider a remote place (say, Amazon jungle) with no communication or connectivity to 

infrastructure based network is possible due to certain geographical and budgetary constraints. 

MANETs can be an excellent choice to create a local network and then choosing a gateway node 

to relay information to rest of the globally connected internet (e.g. via a BTS in a 

GSM/UMTS/4G network making use of BTS to GGSN/SGSN connectivity). Consider living in 

a status quo which does not offer connectivity to internet, or the infrastructure has collapsed due 

to a disaster or earthquake; situations like these make MANETs a promising research field for 

these emergency situations. Connectivity and its importance increases many folds under these 

crucial circumstances. 

2.3 Evolution to Opportunistic Networks 

MANETs can operate by making use of several underlying routing protocols (namely AODV, 

DSR, OLSR, DSDV etc, for more details please refer to [14]) which operate not only in a 

reactive manner but also proactively. Our intention was to give a background by briefly 

describing two major classes of communication networks. After building this crucial knowledge 

we now turn our attention to yet another evolution of MANETs which directly relates to our 

research question. 

Common literature in ad hoc communication networks mistakenly refer to the terms 

"Opportunistic Networks" (OppNets) and "Delay Tolerant Networks" (DTN) quite 

interchangeably [1]. However, it should be noted that DTNs usually refer to those networks 

where the connectivity between any two nodes is "episodic" or intermittent. They are broadly 

divided into DTN Regions and DTN Gateways, where the former can be just like any other 

legacy internets having their own internet stacks and internal protocols. The DTN Gateways 

provide the connectivity between the two (or more) contributing Regions involved in sporadic 

messages transmission. An example can been in the following diagram where a helicopter acts as 

gateway to provide connectivity in between two separate internets. The aircraft career is 

responsible for sending useful messages to the soldiers in the battlefield via the mediator entity, 

which serves as a translator by configuring an overlay protocol layer, bridging the stack 

differences between the end regions. As can be seen, the topology of the overall network is 

known and not prone to dynamic changes in the routing tables. 



 

Figure 1 An example of DTN: Helicopter being a Gateway Node for two discrete internets 

 

Opportunistic Networks, on the other hand are even a more generalized class of DTNs. There is 

absolutely no knowledge about the network topology in an OppNet. Every node acts as gateway, 

or more generally speaking, a router itself. Nodes make use of localization knowledge to find the 

potential 'opportunities' in order to relay messages towards the final destination. They are 

sometimes also referred to as 'Pocket Switched Networks' (contrasting the traditional packet 

switched networks). There are a large number of routing and message forwarding techniques 

(which are discussed in one of the related work section in this report). 

As can be seen in Figure 2, the opportunistic networks primarily depend on encounters (known 

as contact times) between each other in order to optimally relay the messages. As discussed 

above, portability of human carried devices has been a great motivation for these networks. A 

modern device is usually designed with Bluetooth and 802.11 interfaces. Since wireless MAC is 

broadcast in nature, it proves handy in these networks.  

 

Figure 2 An Opportunistic Network Example: The red line indicates the possible delay i.e. latency introduced by each hop 

during message relay 

One of the fundamental challenge in OppNets has been message forwarding right from their 

inception. What should be the most cost-effective forwarding protocol has largely been discussed 

in the initial research. Various routing schemes including but not limited to, multi copy, single 

copy paradigms have been proposed and discussed by researchers. However, the assumption of 



unselfishness  was always being made during the design and implementation of routing schemes. 

In actual, most of the humans carrying mobile devices are constrained by the limited energy 

available. Therefore, the notion of 'rogue' nodes (just like rogue Access Points (AP) in 

infrastructure based networks) is very much possible. In contrast to the fixed rogue APs , the 

rogue nodes in OppNets are mobile and can change their geographical locations quite 

dynamically as the network topology changes. This can have impact on the throughput, delivery 

ratio and latency of the network.  

A network already challenged with the distinct and disconnected mobile nodes, and also 

vulnerable to rogue behavior demands much more effort to simulate its behavior in dynamic 

networking conditions. This challenge motivated and brought us to investigate and simulate the 

impact of rogue nodes on the average latency in an epidemic routing protocol stack.  

 

 

 

 

 

 

 

 

 

 

 

 

  



3 Rogue Behavior in Opportunistic Networks 
Altruism or Rogue Behavior is a widely displayed phenomenon in the human race beginning 

from the age of hunter gatherers to the current modern age. It has remained a subject of extensive 

research and one person or node can have different values with respect to altruism when 

compared to other nodes or people. 

For the purpose of our research and simulation, it is assumed that altruism distribution is between 

0% and 100% where 0 is completely rogue and 1 denotes completely altruistic node. However 

various dimensions of rogue or selfish behavior exist in the literature. In one of the studies on 

rogue and altruistic behavior in DTNs and Opportunistic Networks [15], various classes are 

defined: 

Percentage of Rogue Nodes: The percentage of rogue nodes can be between 0% and 100% 

however in realty a node is not completely altruistic or selfish. This is the simplest altruism 

distribution.  

Uniform Distribution: There is a uniform distribution of altruistic value in the entire population 

between 0 and 1. Such a distribution exists commonly in natural environment. 

Normal Distribution: The pattern of altruistic values in the population has a normal distribution 

with values ranging between 0 and 1. 5%and 95% Distribution Function (CDF) has also been 

used in order to normalize the distribution.  

Geometric Distribution:  This approach calculates altruistic values on per pair of nodes and the 

probability has an inverse relationship with social hop distance (k). The altruism values have 

been normalized against the parameter p (altruism value for the first hop). However in real life 

scenarios there is another factor to consider; which is decrease in altruism with decrease in 

kinship or distance from first hop.  

Degree-biased Distribution: This approach attempts to show the relationship between altruism 

and node degree.  

ai =(ki-kmin) 
α 

/(kmax-kmin) 
α
 with 

α
 > 0 

Where kmin is the smallest while kmaxis the largest degree in the network. When ki is equal to kmin 

then value of ai is zero and when ki is equal to kmax value of is ai 1. When the value of α is 1 then 

value of a grows linearly with degree. The model illustrates the scenario that when someone is 

more willing to help other people then that person becomes more popular on a social network. 

However because of resource limitations, the person may not be able to help all of them in 

reality. On the other hand if a person has only friend then there is a greater likelihood he/she will 

be willing to help that friends.  

Community-based Distribution: According to this approach people will be more willing to 

help people from their own community rather than those from outside the community. Therefore 

this mode includes two variables; a to account for intra-community altruism and e to account for 

and inter-community altruism. It also assumes 0.7 probability for carrying data for intra-

community and 0.1 probability for carrying data for intercommunity. 



For our simulation and experiments, we will consider rogue behavior with respect to the 

percentage varying between 0 to 100%, and when the nodes acts rogue, it will deny forwarding 

the message from its neighbors, but will try to send its own messages always. 

  



4 Epidemic Router [6] 
In the experimental setup which is performed as part of this project, we have chosen Epidemic 

Router operating at layer 3 in the OSI model. The working of Epidemic router is thus essential to 

grasp to analyze the impacts on key metrics. Although the plug-in developed is extensible for 

any routing algorithm, in order to keep our evaluation closer to the analytical model in [10], we 

performed all the experiments and subsequent reports on Epidemic Router. 

Existing protocols for ad hoc routing are based on the assumption that a connected path exist 

between source and destination which may not always be valid for example in the case of short 

range wireless networks. Epidemic routing uses pair wise message exchange as the mode for 

transmission.  Maximizing the delivery rate of the message, minimizing latency, and minimizing 

resource consumption are the main aims of epidemic routing.  

In epidemic routing approach the message is distributed to hosts called carriers. When carries 

come into contact with the connected portions of the network, the message gets transmitted and 

gets transferred from one island of nodes to another.  Figure 3 Shows two scenario, where S,C 

and D are nodes and dotted circle shows the wireless communication range. Source transmits the 

message to the nodes that are in its communication range. 

 

Figure 3 Epidemic Routing 

The purpose of epidemic routing is to increase the probability of message delivery to a host and 

conserve resources by minimizing set of hosts that can transmit the message.  These goals are 

achieved by imposing a limit on maximum number of hops and per node buffer space.  

 

Goals and Design Issues of Epidemic Router 

For epidemic routing, the following design issues need to be considered.  

 Routing Under Uncertainty: since the location of the receiver is not known, it is 

important to transmit the message when the host node comes into contact with the 

potential carries. 

 Resource Allocation: Multiple copies of the message are transmitted and there should be 

a balance between resource consumption and message delivery. 



 Performance: Performance can be measured in terms of bandwidth consumption, 

storage, latency and message delivery. 

 Reliability: Some applications may ask for an acknowledgement of successful message 

delivery so that the transmitting nodes can free their resources if message delivery is 

successful.  

 Security: A message may pass various routes before reaching its destination and hence it 

is important that sensitivity of information is taken care of and certain cryptographic 

techniques can be used to ensure this to some extent.  

 

 

Figure 4 Message Transmission in Epidemic Router 

 

Figure 4 shows how message transmission takes place in epidemic routing when two hosts come 

in transmission range.  Each node maintains a buffer of the messages it has transmitted and some 

of the received ones as well. A unique identifier is attached with each message and listed in a 

hash table index. A bit vector called the summary vector is used to indicate which entries in the 

local hash tables are set. An anti-entropy session is triggered by a host that has a smaller 

identifier when two hosts come in contact. The exchange vector lists to compare which message 

is new to the host and such messages are exchanged while the receiving host is autonomous in 

making the decision to accept the message. In order to aid in this decision a maximum queue size 

is developed for each host and determines the maximum number of messages the host can hold.  

In the initial study the researchers employed three features namely a unique message identifier 

(unique 32-bit number), hop count and an optional ack request. The message identifier is a 

concatenation of the ID of the host and ID of the message generated and hosts have been 

assigned IDs statically. Hop count is the number of maximum hops for the message. Larger hop 

counts help in delivering the messages quickly and important message can be assigned a higher 

hop count. The ack request is used in instances when the destination host is required to provide 

an acknowledgement of receipt. When a host reaches its buffer capacity then it drops the older 

messages for receiving new ones. The simple strategy of first in first out (FIFO) is used here but 

it compromises on fairness and quality of service. Another strategy called Weighted Fair 

Queuing can also be investigated as an alternative. 

 



5 Related Work 

5.1 Survey of DTN Protocols [2] 

As discussed above, routing had been the first and foremost challenge in OppNets and even in 

DTNs. In this vast survey, the authors give a comprehensive classification of routing protocols 

which can deployed in both environments.  

 

 

 

 

 

 

 

 

Figure 5 shows the lack of a direct path between nodes S and D and the message can be 

delivered only if the nodes in between are able to forward the message. Examples include inter-

planet satellite communication networks, sensor networks and military and ad-hoc networks 

where the transmission takes place intermittently.  DTNs are able to tolerate delays beyond 

conventional IP forwarding delays and have various applications. Inter-planetary network (IPN) 

for example involves intermittent connectivity and withstands long delays. Zebra population 

information is collected using Zebranet. An example of village network is where the rural busses 

are being used to provide connectivity to internet.  

DTN research group has presented its findings and proposed architecture for DTNs that aims to 

address the associated communication issues in such networks. This architecture consists of 

regional networks and an overlay of transport layer on top. This architecture is able to provide 

retransmission, in-network data storage and forwarding. The aim of this architecture is to provide 

a solution that can deliver the message between dissimilar infrastructures. The basis of the DTN 

architecture is the store and forward mechanism and the issue of late binding addresses is 

covered using an addressing scheme. This results in a routing structure that is hierarchical in 

nature and because of this the implementation across networks becomes easier. DTNs can be 

deterministic or stochastic and based on the type different routing protocols are required.  

Since the connectivity is intermittent, some destination nodes may not be available for certain 

duration. Store-carry-forward routing is used in order to insure that when a packet arrives but its 

destination is not available it is not dropped but stored instead till the next hop becomes 

available. However when a node buffers data it is also important to select the next hop properly. 

The DTN routing protocols can be categorized as deterministic or stochastic. Deterministic 

protocols are based on the assumption that future typology of the network is known while the 

stochastic approach assumes the opposite.  

Figure 5 Time evolving behavior of ad-hoc networks 



5.1.1 Deterministic Routing 

Space and time routing, tree approach and modified shortest past approaches are deterministic 

routing models. According to the tree approach, the source host builds a tree where by children 

nodes are added and time is associated with nodes.  Every node is able to record certain 

information including the node that the message is travelling to and the earliest possible time to 

do so. Through this tree, it is easy to identify a path which will take the shortest time and 

minimum number of hops to deliver the message to the destination. Building this tree requires 

that nodes exchange the profile information with their neighbors. Another essential requirement 

is that the nodes are able to record the sequence in which the message has travelled.   

Based on the available knowledge regarding a network, various DTN routing algorithms have 

been proposed which define knowledge oracles 

Contacts Summary 

Oracle 
 Aggregate statistics of the contacts 

 Time-invariant information 

Contacts Oracle  Contact between two nodes at any point in 

time 

 Time-varying networks 

Queuing Oracle  Instantaneous buffer occupancies 

Traffic Demand Oracle  Present or future traffic demand 

 

Depending on the available information, the dynamics of the networks are modeled as a space-

time graph and using the shortest path algorithm and dynamic programming, routing algorithms 

are constructed.  Under these deterministic approaches, the entire path from start to end is 

determined even before the actual message transmission.  

5.1.2 Stochastic Or Dynamic Routing 

When the network behavior is random the decision to forward or drop a message is made using 

history and mobility data of nodes and uses various dynamic protocols. As also discussed in the 

previous section, in epidemic routing this decision to forward a message is made without using 

forwarding probability and the message is flooded into the network can be forwarded to any 

node except the one from which it was received.  Another approach is where the source node 

holds the message till it comes into communication range with another node. This approach 

results in low overhead but long delays. 2-hop forwarding approach and have explored a 

In the two hop framework the nodes have an infinite buffer and are able to move across the 

network independently and for a certain time slot two nodes can get close. The message from 

one node can be forwarded to any other receiver node that is one hop away. When this receiver 

node comes near the destination node it sends the message. In this method the message is 

delivered in two hops which may lead to delays but message delivery is ensured.  

In Infostation model the infostations are distributed in the network coverage area and the users 

are able to connect to the network when they are near the Infostations which provide high quality 

radio signals however the connectivity is also intermittent as the destination node may be outside 

the coverage of the infestation. The Shared Wireless Infostation Model (SWIM) combines 

infostaton and epidemic methods enabling many Infostations to serve as a destination nodes. 

However there is a tradeoff between capacity and delay.  



The relay-based approach to makes use of the traditional protocols and mobility of the nodes is 

used to disseminate messages through the mobile relay protocol. In this protocol storage 

capabilities are integrated with routing when a destination node is unavailable the node relays to 

its neighbors who store it and enter relaying mode in which traditional routing protocols are also 

checked for a shorter hop. If no shorter path is found then it is stored instead.  

In an opposite approach, the nodes estimate the probability of success of message reaching the 

destination and make the forwarding decision based on this knowledge. Per Contact Routing 

Based on Next Hop Information Only in which a bundle exchange takes place between two 

nodes along with their destinations and probability of delivery. Upon receiving this bundle the 

node removes its own messages and the messages that are more likely to be delivered by the 

other node and then categorizes these messages based on drop strategies. 

Another approach is called PROPHET (Probabilistic Routing Protocol using History of 

Encounters and Transitivity). The probability of delivery of each node is determined for each 

destination. The meeting nodes exchange summary vectors along with delivery predictability for 

destinations. In Context-Aware Routing (CAR) there is an integration of synchronous and 

asynchronous mechanisms. Under the synchronous mechanism when the packet arrives and the 

destination path can be found it is forwarded immediately using the existing protocol. Ln 

asynchronous method when the destination path for a packet is not there it is stored and then 

transmitted to a node which has the highest probability of delivering t destination.  

In Interrogation-Based Relay Routing (IBRR) the nodes make decisions after they interrogate the 

other nodes regarding typology of the network and capacity of the nodes and forward message to 

the node that has the highest chances of delivering to destination.  

Per Contact Routing Based on Average End-to-End Performance Metrics include protocols that 

base their decisions on the end to end performance including highest probability as well as the 

shortest path to destination and the delay in between. Meets and visits (MV) is based on a 

different mechanism to estimate forwarding probability by making use of the frequency at which 

nodes meet in certain regions and this historical data is used to determine chances of delivery for 

a specific path. 

The shortest expected path routing (SEPR) protocol also uses historical data to determine 

probability of forwarding keeping in perspective the time period for which two nodes connect 

and then shortest route is determined. Similar approach is used in minimal estimated expected 

delay (MEED) routing however it is independent of time and uses history to calculate expected 

delay and tracks the connection and disconnection time of nodes which is relayed to other nodes 

if a change occurs.  

5.1.3 Model-Based Approach 

All the research work discussed till this point estimates forwarding probability assuming that the 

mobile devices tend to move randomly and unknown trajectories. In practice mobile devices 

follow patterns that can be predicted to some extent for example while walking or driving. If the 

motion pattern is known then the intermediate nodes can more accurately predict forwarding 

probability. World models of mobile nodes are used in Model Based Routing (MBR) which 

helps in making a better selection in determining where the receiver node is located without 

flooding the network. Information such as road maps, building charts and user profiles are used 

to determine the motion pattern. 



5.1.4 Node Movement Control-Based Approaches 

Certain approaches try to limit the delay by trying to control their trajectories. This involves 

altering the trajectories of the host so that communication can be facilitated in ad hoc networks. 

The mobile host is not waiting passively but actively modifying the trajectory.  The message 

from one host to another is done by changing host trajectories.  This is useful when a network 

partition comes up. Algorithms for trajectory modifications are based on two assumptions that all 

nodes are known but host movement is unknown. The algorithm helps in determining when 

location update should be shared by host, with whom it should be shared and how it should be 

sent. A minimum spanning tree (MST) contains full connectivity in the graph. And it’s the 

responsibility of the host to update its location and inform the nodes connected in MST. In 

Virtual mobile nodes (VMN) it is assumed that an abstract node is moving in a predetermined 

and predictable path and during this movement, collects and delivers messages. A real node 

waits until the virtual node is in the vicinity and then transmits the message to the virtual node 

which collects it.  

When there is a mismatch between available capacity and demand in a wireless networks the 

capacity can be increased by adding participants that can carry bundles and autonomous agents 

can be added to the network but it requires a control algorithm for coordinating the movement of 

agents. A control-based approach can be used to develop controllers for autonomous agents. 

Latency, bundle latency, unique bandwidth, and bandwidth are used as control mechanisms. A 

proactive and mobility assisted approach for message delivery in sparse networks in Message 

Ferrying (MF). Communication services are provided using special mobile nodes called message 

ferries which move in the deployment area and carry messages to and from nodes.  A variation of 

message ferrying is Node-Initiated MF (NIMF) where the ferries follow specific routes.  A 

service request is generated to the ferry when a node wants to send or receive a packet using long 

range radio. The ferry adjusts its trajectory to for the exchange using short-range radios.  This 

minimizes message delay and increases system throughput and robustness. However designing 

the ferry route is a challenge and synchronization is needed when there are multiple ferries. 

There is a snake protocol as well that uses a snake-like carrier sequence in which the virtual 

nodes always remain adjacent, paired and move in a pre-determined way and cover a certain area 

in the network.   

In the runners protocol the carriers randomly walk the network and sweep it for possibilities of 

message exchange. A three tiered architecture is used in DataMules where spare sensors are 

connected. Access points exist in top tier which can be used as repositories.  DataMules are in 

middle tier which are mobile nodes with unknown mobility patterns. These have high capacity to 

store information and collect data from sensors which are in the bottom tier. 

5.1.5 Coding Based Approaches 

Erasure and network coding are recent developments with a purpose to encode the original 

message into a large number of coding blocks. If the original message contains k blocks the 

message will be coded into n blocks where n > k. replication factor determines the redundancy (r 

= n/k). The probability of successful transmission link (Pi) is known. The blocks are sent over 

path i in order to maximize probability of reception.  The coded blocks are equally distributed 

among the relays. It simply forwards the packets to the first “contact” the node encounters (all 

contacts are equally good relays. 



Erasure coding and estimation-based forwarding can be combined for optimization. The erasure 

coding is used to code the original messages which are then forwarded to relays.  A probabilistic 

forwarding approach based on network can be used in the case of DTNs where the intermediate 

nodes have the ability to combine packets that it has received so far and combine and send out as 

a new packet. This reduces the number of transmissions.  

5.2 On effects of Cooperation in DTNs  [8] 

The purpose of this paper is to evaluate the effect of three major routing algorithms on node 

cooperation and examine the delay in message delivery and the resulting overhead incurred till 

the message reaches its destination. Most of the studies that have explored DTNs have focused 

more on the environment such as the size of the area the network covers. Behavior of nodes has 

rarely been studied and often based on the unrealistic assumption that there is full cooperation 

between the nodes. In reality the autonomous decision of the nodes is a major factor in 

determining the performance of the DTN. The purpose of the paper is to examine the behavior of 

the nodes in terms of cooperation when different routing algorithms are deployed, ways in which 

non-cooperation between nodes can be detected and strategies to overcome this. The study has 

been conducted under the framework of peer to peer and ad-hoc networks.  

In order to improve cooperation, punishment mechanisms have been used which is a 

manifestation of game theoretic approach whereby depending on each node’s behavior; different 

incentives are provided to increase cooperation. In addition, advanced punishment methods are 

used in the form of reputation mechanisms which monitor and record the actions of the nodes 

and refer to these actions to handle the node.  The study is carried out assuming that the 

environment is non-cooperative.  

Three routing mechanisms are studied. These mechanisms range from conservative scheme 

where message copies are spread in the network solely by the source node to a fully aggressive 

scheme in which the network is flooded with message copies. Transmission is measured until the 

point the actual message stops spreading in the network and cooperation is measured through the 

likelihood that a node will drop a message upon reception or forward it to another node.  

The three multi copy algorithms used in the study are epidemic; two-hop and binary spray and 

wait.  

Routing Algorithm Description 

Epidemic  Message copies are exchanged whenever two nodes 

encounter  

 Provides minimum delay in message delivery 

 Plagued by high utilization of bandwidth and buffer 

occupancy 

Two-Hop  Maximum limit on the number of copies the source and 

spread. 

 Whenever it encounters a node which does not have a copy, 

it transfers a copy up till the point it has only one left. 

 There is a restriction on intermediate nodes to transfer their 

copies to any other node except the destination node. 

Binary Spray and Wait  Each node transfers half of the copies it has to other nodes 

upon interaction till only one copy is left. 



 Faster than two hop algorithm. 

 

A node that is aware of message delivery is termed as a notifier node and when this node 

encounters an unaware node that possesses a message copy, the unaware node will become a 

notifier and drop the message.  There is always a tradeoff between the delay in message delivery 

and overhead incurred.  It is misleading to equate overhead with the number of transmissions till 

the message is delivered and hence the following components are covered in this research: 

 

 

 

 

 

 

The  willingness of the node to spread a message is called cooperation and depends on various 

resource and buffer constraints. In some cases a node drops a message while in others it may 

keep the message without forwarding it. In Type I node behaviour, the message is dropped 

(probability Pdrop ) or forwarded as per rules of thealgorithm. The message is usually dropped 

because of buffer limitations. In Type II node behavior, although the message is forwarded, the 

probability is less than one (probability Pforward). This ussually occusrs because the node is facing 

energy constraints.  However the lack of cooperation may actually be a stragety that all the nodes 

have adapted because of the constraints.  

In order to quantify how the performance of algorithm is effected by cooperation,two metrics 

have been used. The performance of the algorithm in a fully cooperative environment is 

compared to performance with a ceratin degree of cooperation. The more deviation between the 

performance in the two environments, the more sensitive the algorithm is. The other metric is 

used for Type I where the performance is compared for a certain degree of cooperation in the 

fully cooperative equivalent (FCE). The study was conducted in an 8km x 8km area with 100 

uniformly distibuted nodes. 

The performance of the three algorithms is shown in Figure 1 and 2. Minimum delivery delay 

can be seen in epidemic routing however compromises on transmissions. In a fully cooperative 

environment the delvery delay is low in binary spray and wait. However below 0.75 cooperation 

degree, the delay performance of two hop is better than that of spray and wait.  In less 

cooperative environments the total overhead induded for binary spray and wait decreases while 

Overhead 
Components

Till Delivery:  Number of transmissions till the message 
is delivered to destination

Additional: Number of transmissions till the message is 
delivered to destination

Total: Sum of till delivery and additional



the exact opposite happens in two hop.  

 

 

 

 

 

 

 

 

 

In figure 4, the graph shows the cumultaive distribution function for all three algorithms with a 

cooperation degree of 0.5. Two hop algorithm has a smaller delivery delay while the binary 

spray and wait out performs it when the interval is less then 3 hours. The results reveal that the 

comapritive performance of the two algorithms is different on the dimension of mean delay.  

 

 

 

 

 

 

 

 

Figures 5 and 6 represent the sensitivity of the algorithms to cooperation. As far as the total 

transmission is concerned, epidemic is the most sensitive algorithm.  For mean delivery delay, 

spray and wait is the most sensitive. Two hop method was least sensitive in both metrics.  



Rogue node Behavior

Probability of refusing to 
accept and store data meant 

for another node 

P nc 

Refusing to relay data

P fc 

 

  

5.3 Analytical Modeling to determine the impact of selfish or rogue behavior [10] 

This paper was primarily our reference and benchmark for the implementation and simulation 

performed. The purpose of explaining this paper is to study the impact of rogue node behavior on 

data transfer for two popular schemes namely “unrestricted” and “two-hop”. This study aims to 

reveal how vulnerable these schemes are when it comes down to node selfishness. Although we 

only worked on portion of the results drawn, our implementation is extensible for future work in 

the same direction. 

Based on the node’s concern for storage space and energy consumption, selfishness has been 

defined as follows for the purpose of this paper: 

 

 

 

 

 

 

 

 

Rogue Behavior may be demonstrated deterministically or probabilistically by all network nodes 

or a certain subset of the nodes. 

Research design of the paper is such that assuming rogue nodes; the data transmission process 

has been modeled as absorbing two-dimensional Continuous Time Markov Chain (CTMC). This 

model is then used to study delay in message delivery. The performance level assuming full 

cooperation and that assuming rogue nodes is then compared to arrive at a metric for 

performance deterioration which has been termed as deceleration factor.  



5.3.1 Modeling Message Delivery Under Rogue Nodes 

The fundamental assumption of the study is that the time period in which a node pair interact, 

follows a Poisson distribution with an intensity represented by 𝜆 which means that the 

intermeeting time between nodes is distributed exponentially.  The paper relies on this 

assumption as it has been shown to show resilience historically in two models; random waypoint 

and random direction mobility model.  In these two models there are small communication 

ranges (𝑅) while the total network area is represented by 𝐴.  The mean relative velocity is 

represented by 𝜈. The relationship between these factors has been modeled as follows: 

𝜆 = 𝑐 ×  (𝜈×𝑅)/ 𝐴 

𝑐 is constant = 1(1.368)  

It is assumed that out of the total relay nodes 𝑁 −1, K nodes are selfish. Furthermore the two-

dimensional pure-birth process (n(t),k(t)) 𝑡≥0 can be used to describe how data progresses from 

source to destination nodes for both these schemes.  
 

 

Figure 1: The CTMC for the unrestricted (ur) and two-hop relay (2hr) 

The generator matrix Q for both chains in figure 1, is as follows: 

 
In the absorbing Continuous Time Markov Chains (CTMCs), W represents the finite number of 

transient states while the state is represented by D. the above matrix is therefore a 𝑊×𝑊 matrix 

where the rate if transition between transient states is represented by elements {𝑇𝑖𝑗}. 

R is the sub matrix which is of the type 𝑊 ×1 matrix and contains the rate of transitions from the 

transient to absorbing states. Apart from these, there are two other matrices with zero elements. 

One of the zero matrixes is 1×𝑊 matrix and contains the vector of transition rates when transfer 

occurs from absorbing state to transient states. On the other hand, the second zero matrixes 

represents the negative sum of transition rates that are outbound from the absorbing state to the 

transient states.  

 



5.3.2 Message Delivery Under Unrestricted Relaying 

According to the unrestricted relay method, message replication is not restricted. When the nodes 

are fully cooperative unrestricted relaying shows least delay but at the cost of high resource 

consumption. These transition states (non-zero) are as follows: 

 

Transition states for column vector are as follows: 

 

5.3.3 Message Delivery Under Two-Hop Relaying 

In the two-hop method a node can receive a message from a source and relay the message to a 

destination node only once. This method aims to optimize message delivery and resource 

consumption trade off. These transition states (non-zero) for two-hop method are as follows: 

 

5.3.4 Numerical Results 

The deceleration factor (FD (N,K) is used to quantify the decrease in the performance of the DTN 

when nodes exhibit rogue behavior.  This factor shows the ratio of expected delay in message 

delivery when K number of selfish nodes exists in the network as opposed to when the nodes are 

fully cooperative.  

 

Delay in message delivery for the two schemes is quantified as follows: 

 

 

 



 

 

 

 

 

Figure2 (a): Expected message delivery delay 

Figure 2(a) shows that the unrestricted relay method performs better than the two-hop because 

the data transmission scheme is quite aggressive. The gap between performance decreases as 

intensity and number of rogue nodes increases and disappears when all nodes are rogue.  

 

 

 

 

 

 

 

 

Figure2 (b): Deceleration factor 

Figure 2(b) shows the degradation in performance by plotting the deceleration factor and reveals 

that unrestricted relay is more vulnerable to rogue nodes because performance degradation 

occurs faster. However the fact that both methods are quite tolerant to degradation cannot be 

ignored.   

 

 

 

 

 

 

 

 

Figure3: Required number of network relay nodes vs. number of deterministically rogue nodes 



The last part focuses on remediation actions for which this model can be used.  The degradation 

in performance can be recompensed to some extent by increasing the range of transmission and 

velocity of the nodes. Another method can be to introduce robotic nodes which controllable 

mobility patterns. Figure 3 shows that even in the worst scenario where nodes are 

deterministically rogue, the performance can be preserved.  When the limit for expected delay is 

made lenient, both methods require a comparable number of nodes.  

Under normal conditions unrestricted method has a performance advantage when compared to 

two-hop however  results reveal that this advantage decreases as the number of rogue nodes and 

the intensity of rogue behavior increases.  In absolute terms, the unrestricted relay method out 

performs two hop however in the presence of rogue behavior, its performance declines faster 

than that of two-hop. However both protocols displayed robustness against rogue behavior 

because the decline in performance was fairly slow. 

  



6 Why ONE Simulator? 

6.1 Shortcomings in Network Simulators for OppNets before ONE 

After gaining the important background and crucial knowledge about Opportunistic Networks, 

fundamental to our research was the simulation of these networks. Opportunistic Networks are 

the most complicated ones to simulate owing to their inherent definition of geographical 

diversity, mode mobility and routing granularities. They are highly mobile and path formation in 

any OppNet is an uphill task. On top of that, simulating such a path or route requires considering 

several network parameters. Some of them include episodic connection, inter-contact time, 

message size, underlying protocol and fluctuating signal strengths. It is a known fact that we 

need to compromise on some of the parameters whenever we simulate such a network. Also, 

time delay in completion of overall simulation and visibility is quite challenging to produce. This 

can be frustrating and can lead to intuitional inferences if proper traces, GUI modeling and log 

reports are not readily available. 

6.2 Routing Specific and OppNet Specific simulators 

Since OppNets are an evolution of MANETs, initially ns2 [16], OMNeT++ [17], dtnsim [18]  

and dtnsim2 [19] provided functionalities such has routing, subsequent event simulation, 

mobility modeling and the required opportunistic networking support. One of the biggest 

challenge in OppNets has been the simulation of emerging protocols in order to research which 

protocol suits the best in these challenged networking conditions. These simulators either focus 

on routing or provide OppNet functionalities alone. A good balance between the required 

features of Event Generation, Modeling and Message passing has not been fully achieved using 

these tools. 

Geographical movement of nodes for effective message traversal is at the heart of any OppNet. 

Those simulators which specifically consider random generation of interactions between nodes 

are impractical and unrealistic. Humans carrying devices or mobile Infrastructure equipped with 

radios have specific patterns in their movement. Be it a social gathering or normal day at work, 

the carriers follow a realistic path. The random generation of data for the optimal routing lacks 

this localization information.  

A community resource, CRAWDAD [20] is utilized by the researchers to get the wireless traces 

which are based upon real experiments. In the recent past, their influx has increased ever since 

OppNets have proved their importance as the next generation networks. The versions of dtnsim 

and dtnsim2 provide a good support for OppNet routing protocols and support to import the 

traces. They somehow narrow down the gap which exists in ns2 for movement models, but the 

exact geography of contributing nodes, their interaction times (usually known as contact times) 

are still based on approximation. For example, the traces gathered via the interface of the mobile 

device can validate the Access Point (AP) being shared by the nodes (by the location/cell ID in 

GSM or 802.11 Base station identifiers). This can approximate somehow the locations of nodes 

but the exact X and Y coordinates up to the required granularities are still ambiguous. 

6.3 Issues with real world traces import for legacy simulators 

Another issue with import of real world traces into legacy simulators are their deficiency of 

length contact intervals. Because such a measurement requires physical involvement of skilled 

researchers or a trained group. The energy constraints tagged with the mobile devices only fulfill 

the contact instant during the scanning part of experiment, the exact duration is usually 



constrained owing to the limited battery power. Now this has a stern impact on OppNet 

simulations because the ad hoc mobility of nodes always varies, and thus the actual realization of 

inter-contact time cannot be accurately calculated. Every nodes' interface has a specific range 

(e.g. 10m for a 802.15 Bluetooth, 10-100m for 802.11) and their precise contact times are needed 

to simulate the connection establishment issues, message start/stop times, message drop rate, 

success or failure and the required acknowledgment between the immediate nodes. Another 

limitation in the import of external traces is their scarce count of subjects (i.e. people doing 

experiments) involved in the measurement process. They are unable to depict or portray the real 

life behavior (most importantly for our research question, the rogue behavior) and thus do not 

represent actual communication and mobility paradigm. The researchers are usually proactive 

with pre-defined routes and artificial contacts which fail to expose the loopholes and further 

research challenges in OppNets. 

6.4 ONE Simulator with Mobility, Visibility and OppNet Support 

ONE simulator has emerged as a promising research tool in recent past [21], in order to cater for 

the aforementioned tribulations in the existing MANET simulators. We can very briefly 

summarized the core functionalities of the simulator using the three terms: Mobility, Visibility 

and OppNet Support. They signify the tool's feasibility not only to the revolutionary OppNets 

and DTNs, but also address our research question. However, as we describe in the next section, 

there are difficulties with regards to rogue plug-in development in ONE, due to lack of 

extensibility and support for malicious behaviors. Nevertheless, to the best of our knowledge this 

tool is by far the most credible and widely used for research and analysis in the domain of DTNs 

and OppNets. 

The ONE simulator addresses the challenges posed in the research and simulation of OppNets. 

The architecture and overview of main system components are described in Figure 6. 

 

Figure 6 Architecture and Integration of ONE Core Components [21] 



As can be seen, ONE simulator provides an integrated environment for a range of Movement 

Models. These movement models can be simulated based upon the coordinates of any underlying 

map (E.g. we developed our plug-in and performed simulations over the map of Helsinki, 

Finland). Apart of that, the mobility data can be imported from external traces and routing 

protocols can be applied on these movement models (Figure 6). Another configurable option in 

the simulator is to not only perform the routing algorithms internally for message forwarding, but 

by virtue of External Event Generators, the message passing information can be imported from 

traces. This flexible combination of Modeling and Event Generation can then be fed to the 

simulation engine, and visually observed in rich GUI available during the entire simulation 

period. At the end of simulation, a number of reports can be extracted and be post-processed for 

graphs or charts. 

 

 

  



7 Methodology  

7.1 Higher Level Approach 

The following flowchart (Figure 7) describes, at a higher level, the approach we followed for 

developing the plug-in in order to simulate and analyze the Rogue Behavior. Our work started by 

exploring The ONE Simulator's technical workflows, process, tool and reporting functionalities. 

After considerable experience with the simulator we setup the environment on Windows/Eclipse 

IDE and then identified key packages that needed modifications for rogue behavior, along with 

the customizations needed for validating the analytical results on average latency in [10]. After 

the required implementation and verification of changes, we conducted set of experiments, each 

run with 100 seeds and the corresponding rogue degree of nodes. Finally, the dataset was 

analyzed and we deduced results and possible future work in this area. 

 

 

Figure 7 Higher Level Approach for the Rogue Plug-in Development 

Our experiments were designed in order to evaluate the mathematical modeling done in [10]. 

Although not all parameters could be configured as per equations formulated by the researcher in 

that paper. We tried to bring our implementation and behavior as close to the pre-requisites, 

keeping theirs as the benchmark. Our implementation was only a subset of their model based on 

Poisson Distribution of nodes (as discussed in detail in Section 5.3). Also we did a few 

enhancements in the implementation w.r.t Map Based Mobility Model rather than the trivial 

Random Waypoint model which is hardly feasible in real world OppNets. 

7.2 Plug-in for Mobile Rogue Nodes in ONE Simulator 

We have used ONE simulator v1.5.1-RC2 [4] in order to develop the required plug-in for rogue 

nodes induction, and their varying rogue degree. The ONE simulators' original design 

architecture, class relationships, native APIs or interfaces do not provide any functionality with 

respect to the maliciousness which could be extended. Therefore it was crucial to reverse 

engineer and then develop the required plug-in to simulate the rogue behavior. This involved 
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investigating and debugging plenty of Java classes, configuration files, reports and method 

invocations and their respective executions, which was challenging mainly because of two 

reasons: 

 ONE is an open source simulator developed in Java (1.6) and any support with respect to 

APIs, integration or extension by plug-ins is purely based on voluntary basis via an on-

line mailing group 

 Basic documentation is provided along-with the simulator, but the workflows and 

execution path supervised by the simulation engine, between the routing protocols, 

movement models and reporting artifacts can be realized by rigorous debugging. 

Right from the inception of this project, we were strongly engaged with the on-line forum for 

online collaboration over the queries. The development of rogue behavior is rather a new 

research field since most of the researchers tend to work and investigate over routing and 

forwarding techniques in OppNets.  

7.3 Metric for Observation 

The metric chosen in our research question is Average Latency. Latency is usually defined as the 

amount of time it takes a message to traverse from the source to the destination. Opportunistic 

Networks are disconnected networks. The delays occurring during the transmissions and routing 

of messages can be much more than the legacy networks, which is a known fact. However on top 

of that, how the rogue nodes further deteriorate the performance of the network is our main 

motive to investigate. The delays occurring may or may not be as drastic as opposed to the 

infrastructure based networks, reason being the inherent mobility factor in opportunistic 

networks. 

7.4 Rogue Plug-in Implementation 

ONE simulator provides an extensible software architecture for new routing protocols, 

forwarding techniques and reporting functionalities. However, its main design aim was not to 

provide extensions with respect to development or research over any malevolent activities by the 

contributing nodes in an OppNet Environment. Figure 8 shows the package diagram and the 

interactions between the major Java packages in ONE simulator.  



 

Figure 8 Rogue Plug-in impacted packages (Highlighted blue) 

 

The packages highlighted with circles are the ones needed customizations with rogue logic and 

configurations of parameters for the APIs. We can discuss these one by one: 

7.4.1 Rogue Behavior in ONE: Implementation of subset of Analytical Model 

In order to compliment the analytical modeling done in [10] into the ONE simulation, we kept 

the simulation parameters as close to the mathematical model as possible. As explained in 

Section 5.3, the below diagram shows the number of selfish nodes, K, versus the expected 

latency denoted by D. The authors in their modeling have made use of Epidemic as well as two 

hop relay protocol, varying the total nodes from 20 to 50. The degree of rogue nodes was 

simulated with two probability values namely Pnc and Pnf. Due to the scope and timelines of our 

project, we have simulated Epidemic protocol, with Pnc varying between 0 to 1. Therefore the 

dotted black line in the graph was intended behavior to be simulated and compared. But it should 

be noted that since the implementation of our plug-in is completely generic, the two hop relay 

protocol can be a small extension for future work and comparison between the two protocols. 

 



 

7.4.2 Routing implementation for Rogue Nodes 

 MessageRouter  is the parent class for all kind of routers (e.g. Epidemic, Direct Delivery, Spray 

and wait etc) in ONE. This abstract super class provides all the basic methods needed in the 

routing functions of the simulator. Some of the important ones are to establish a connection 

between any nodes, send or receive message, provide buffer information, creating new messages, 

deleting messages and providing routing information. A complete list of methods provided by 

this class are provided in Appendix B. Another abstract class ActiveRouter provides all the utility 

functions needed for the current router active in the simulation. All kind of routers can override 

the methods from this class and must extend this router if they are to implement any routing 

scheme. The hierarchy between MessageRouter and ActiveRouter exists in the diagram give 

below. Passive Routers are usually utilized for external event traces and unless they are being 

invoked with relevant event traces they act as dummy throughout the simulation. 



 

Figure 9 Hierarchy of Message Routers in ONE 

In order to introduce the rogue behavior, a configurable and efficient algorithm was required so 

that all the routers can utilize this functionality. The receiveMessage(Message m, Host from) was 

overridden with the required logic and can be described with the following pseudo code: 

On every invocation of the message receipt: 

        Check if the rogue behavior is enabled in Input Configuration File,  

 If NO then 

  Put the message in the buffer and receive the message as per the protocol 

 If YES then 

  If the Router is willing to relay or store as per Pseudorandom Generator 

   if YES then continue receiving normally 

   If NO then check if the message was intended for the router itself 

    if YES then put the message in the incoming buffer 

    If NO then deny the message as rogue with probability P (0-100) 

7.4.3 Core Implementation for Rogue Nodes 

7.4.3.1 Rogue Flag and Rogue Degree 

It was mandatory to change the core design of the simulator in order to create rogue nodes along 

with the required degree of selfishness. We achieved this by creating a two new parameter  in the 

configuration file namely: 

 Rogue Behavior Flag 

When the flag is true, ONE starts to take into consideration that rogue nodes will 

considered during routing and reporting. 

 Rogue Degree 

Rogue degree is defined as an integer parameter which varies from 0 - 100. This 

parameter is considered only when the flag is set to true. If the flag is true and rogue 

MessageRouter

PassiveRouter

ActiveRouter

Epidemic DirectDelivery

SnW ...



degree is 0, there is no impact on the altruism in the OppNet. For the rogue behavior to 

come into operation the value should be > 0 and <= 100. For Rogue Degree = 100, the 

router (i.e. the rogue node) acts completely selfish and denies all the messages. 

 

7.4.3.2 Node Willingness decision 

Once the rogue node flag is true, all the contributing nodes in the simulator behave rogue or 

altruistic based upon a pseudorandom number. In order to be consistent with the random number 

generator currently being used for Mobility and Movement Models, we used the same instance 

of the RNG value. And the decision if a particular node is willing or unwilling is described as 

follows: 

On every instance of a contributing Node in an Oppnet: 

 Generate a random number (0-100) via the global generator; 

 Compare the value with the input Rogue Degree 

  If the random number is > Rogue Degree 

   Node will relay the message as being altruistic 

  else 

   Node will deny the message as ROGUE_DENIED 

 

 

7.4.3.3 Creating Rogue Hosts  

The routing behavior and attributes of rogue nodes are different from the altruistic nodes. 

Therefore it was necessary to create a separate pool of node which will be exhibiting varying 

degree of altruism during the simulation. The class SimScenario is responsible in ONE for taking 

all the configuration parameters from the input file (The actual file is shown in Appendix B) and 

then creating the connection interfaces, listeners, simulation settings and then finally creating the 

hosts on the basis of inputs. This was customized this class to create rogue nodes, with the exact 

same settings as it would be for the altruistic nodes, except that a rogue node will now deny the 

message with a rogue degree, as modified in the DTNHost class based on the willingness 

decision.  

On every set up of the scenario for the simulation run: 

If the Rogue Behavior is disabled 

 Perform simulation with altruistic nodes 

else 

 Keep all the simulation settings and parameters same 

 Create all the nodes being rogue, associating each with a Rogue Degree from the input 

 file 

7.5 Experimental Setup 

7.5.1 Platform for Scenario Simulations 

ONE simulator can be deployed and customized in Linux, Unix and Windows platforms. All the 

experiments were run on a Windows machine with the following details: 

Hardware: Intel (R) Core 2 (TM)  i5-3230M (L2 cache 3MB @ 2.6GHz/Memory 8GB) 

Operating System: Windows 8.1 



7.5.2 Eclipse Settings 

ONE Simulator version 1.5.1-RC2 comes as an executable with no customization option 

available. In order to perform the necessary modification for Rogue implementation, the project 

was setup on Eclipse IDE. Since it has now become a requirement for researchers, there are a 

number of steps are now available online [22]. 

7.6 Verification of Rogue Behavior in ONE 

7.6.1 Verification of implementation and existing functionality 

After the configuration of necessary parameters in the input configuration file, experiments were 

designed in order of varying rogue degree for all the nodes. As discussed, that gave a more 

realistic pattern that actual rogue nodes follow. However, before the experiments could start to 

observe the average latency impact, keeping the original logic and existing implementation of 

ONE simulator existing OppNet protocols, movement models, simulation settings and hundreds 

of other features intact was inevitably mandatory to verify and validate. One methodology we 

came up with was to cover the boundary conditions in the rogue degree and verifying the rogue 

enable/disable flag. This has also been recommended by some of the peer researchers via the 

Knowledge Base and online mailing digest for ONE simulator [23]. 

Keeping the rogue flag enabled: 

 Configure the Rogue Degree <= 0 and keeping rest of the parameters same, measure  

 the values of Average Hop Count and rogue_denied on Epidemic Rogue Router. 

Keeping the rogue flag disabled: 

 Irrespective of the value of Rogue Degree, measure the same parameters, they should  

 be equal. 

 
Figure 10 Message Stats Report for both Rogue Degree = 0 and Rogue Behavior set to false 

As shown in Figure 10, there were no denial of messages in either case since all the routers were 

relaying the messages in an altruistic manner. Also the hop count average remained the same for 

a single run. This verified that the implementation of rogue behavior had no side effect in the 

existing routing, mobility and reporting functions of the simulator. A detailed explanation of the 

metrics mentioned in this report is given in Section 7.7.3. 



 

7.6.2 Verification of implementation of Rogue Behavior 

After verifying the existing APIs and workflows were intact, we wanted to confirm if the Rogue 

Behavior is correctly implemented as per the desired requirement. That is, each router should 

behave rogue with the required amount of degree. The previous verification also gave a hint that 

when there no rogue routers, system was working in a usual way. 

For a second check, we performed the following experiment: 

Keeping the Rogue Degree > = 100: 

 Keep rest of the Scenario Parameters intact and verify the Average Hope Count to be  exactly 

 equal to 1. 

 

When the rogue degree was configured greater or exactly equal to 100, all the routers were rogue 

in the simulation. No router relayed any message for the neighboring nodes and all messages 

were denied. In that case, although the underlying routing was based on Epidemic Router, it 

behaved like a Direct Delivery Router. Therefore the average hop count was exactly 1. All 

routers acting as sources had to find their destination individually for the final delivery of 

messages. This was validated by three experiments, since it was the most crucial factor to 

determine the correct implementation. 

First we verified the report as shown in the Figure 11: 

 
Figure 11 Average Hop Count is 1 on setting Rogue Behavior 100% 

Secondly we verified the individual stats of all the sources and destination by making use of 

GraphViz as a drawing tool to visually display the node interactions. Since the number of 

messages were huge, depending upon their creation every tens of seconds, we show a snapshot 

of some sources and destinations on their encounters in Figure 12. 

 



 
Figure 12: Individual Sources transmitting the messages directly to the destinations on Rogue Degree = 100 

Thirdly, in order to verify that it was not the case generally we configured a nominal value of 

rogue degree and passed the Delivered Message Report to GraphViz again. In that case, the 

nodes showed a usual hop count. Again, only snapshot is attached here in Figure 13. 

 

 

 
Figure 13: Rogue Degree other than 100% 

As an example the node p19 delivers a message to p28 via p20 in the bottom right corner of the 

graph. The average hop count in that scenario was 2.56.  



7.7 Experiments with Varying Rogue Degree 

After the necessary verification and validation of intended behavior, rest of the project work  

involved in designing the experiments with varying rogue degree and in the presence of rogue 

behavior. We varied the rogue degree in the maximum feasible steps in order to provide 

sufficient data for analyzing the trend of change in the average latency. Rogue Degree 0, 20, 40, 

60,  80,  90 and 100 was chosen for each simulation scenario. Each Scenario was executed with 

100 different seeds of Movement Model so as the random generation of routing and message 

passing data can be averaged and any deviation could be compensated. 

One of issues we faced was that ONE simulator does not allow execution of scenarios in parallel. 

Although many permutations can be designed for a set of experiments but still they are fed to the 

simulator in sequence. Our set of experiments had 2 concrete iterations over the period of time so 

as to learn not only the time taken for each scenario can be measured, and learn for the next 

iteration. So before running the final and second simulation we had learnt that running each 

scenario with 100 seeds with each simulation time of 12 hours (time on clock around 2hr, since 

ONE fast forwards the time slots) would not be feasible to run in a sequential manner. The 

estimated time would be around 14 hours for such  complete execution of experiments. In order 

to accommodate this, we used a work around of creating multiple input configuration files with 

the specific rogue degree and ran each scenario with 100 seeds in parallel. The net simulation 

time for all the runs with every corresponding configuration settings file was then reduced to 

almost 8 hours in total. 

7.7.1 First Iteration 

The first iteration was performed immediately without any relevance with the values of count of 

nodes, speed, or range identical to the paper we wanted to compliment. The intent was to use the 

default parameters of ONE simulator and experience the execution time. This was an initial run 

with 5 seeds for each value of rogue degree: 

 

Rogue 

Degree 

0 30 60 90 100 

Latency (sec) 4761.07634 4862.1358 4803.75412 4779.77438 10321.99832 
Figure 14 First iteration with default ONE settings and corresponding latency values 



 

Figure 15 Snapshot of ONE simulator running in GUI mode. The green circles represent the range of the respective node, 
denoted by p<n> where n is the sequence number. Each scenario is listed as the Title, CS-645-0-1 in this case. 

7.7.2 Second Iteration 

The second iteration was performed after two lessons learnt from the first one: 

 The ONE simulator can execute the configuration parameters of a particular scenario in 

parallel, if there are multiple configuration files available. 

 In the first iteration, we used graphical mode in order to see the mobility of nodes and the 

event log (for message information). If we were to run with more discrete rogue degree 

values, 100 seeds/scenario, the analysis can be overwhelming considering the amount of 

information and data displayed on the GUI. So we decided to execute the scenarios in 

Batch Mode of the simulator (Shell Command: -b <Number of Runs> <Input Settings>)  

 

 

Figure 16: Terminal logs when running ONE in Batch Mode 



A snapshot of one of such run with seed 1 and rogue degree 100 is shown in the Figure 16 above. 

As described above the Simulation Scenario is named as CS-645-100-1 where 100 represents the 

rogue degree and 1 is the seed value. Each simulation provides the logs if the Rogue behavior 

was enabled or not. The stats are also provided for the interim simulated and actual timestamps 

during the simulation. 

In the second iteration we conducted 7 experiments in parallel with 7 different configuration 

files. In order to draw the graph between the rogue degree and the intended metric, average 

latency, we kept rest of the parameters intact. Those parameters are explained in the section 

below: 

 

Experiment 

No. 

Rogue 

Degree 

Rogue 

Flag 

1 0 True 

2 20 True 

3 40 True 

4 60 True 

5 80 True 

6 90 True 

7 100 True 

Figure 17 Number of experiment with varying rogue degree 

 

Scenario 

End Time 

(s) 

Host 

Groups 

Rogue 

Behavior 

Transmitter 

Range 

(m) 

TTL  

 

(s) 

Seeds Walking 

Speed 

(m/s) 

43200 1 True 50 43200 100 0.5 to 2.5 

Figure 18 Some important input parameters 

7.7.2.1 Configuration Parameters for all the Experiments 

It is also important to explain the modified parameters, which were needed to bring the 

simulation conditions and configuration of network attributes in synchronization with the 

analytical model. There are plenty of configuration parameters but not all require our attention 

for the specific scenario needed for performing experiments on rogue behavior. The important 

parameters are discussed below. 

 



7.7.2.1.1 Simulation Time for Scenario 

Simulation time was kept 43200 seconds or 12 hours. While the analytical model depicts the 

simulation scenario as an absorbing CTMC following a Poisson Distribution with t>0, any 

OppNet simulation is time bound. We simulated the network with multiple runs to make sure 

that the results achieved are not impacted by the limitation of net simulation time. A scenario 

with a bound of 12 hrs is being used by many researchers and is considered sufficient to analyze 

the impact of desired attributes [5]. 

7.7.2.1.2 Scenario Name Settings with Seeds 

One of the major objective of this project was to comprehensively execute the simulations runs 

so that any deviations due to random seeds can be compensated by the handsome average 

statistics. As discussed in the Dataset section in detail, it lead to creation of hundreds of files 

containing network parameters. A Scenario convention followed is given below: 

CS-645-%%Scenario.rogueDegree%%-%%MovementModel.rngSeed%% 

Where the term rogueDegree is replaced by the input degree and rngSeeds denotes the seeds 

value for every run. It is useful for reporting and analysis purposes and was obviously, not 

required in the mathematical modeling. 

7.7.2.1.3 Number of Host Groups 

ONE simulator by default creates 6 host groups ranging between Pedestrians, Cars and Trams. 

(Actually it is up to the researcher to define any number of groups). For the purpose of keeping 

similarity, it was required to stick to one kind of hosts. For all the simulation runs, Pedestrians 

were chosen as a single group involved in the simulation. 

7.7.2.1.4 Transmitter Range 

Transmitter range was selected to be 50m as per the value chosen for the mathematical model. 

The type of interface was Bluetooth interfaces and every node had one such interface to 

broadcast the messages. 

 

7.7.2.2 Output Reports to extract the Data Set 

Every run of simulation scenario resulted in three reports. These reports are given below: 

7.7.2.2.1 Message Delay Report 

This report provides the cumulative probability of delivery of messages sorted by the delay 

values of each message. It was useful to check the delay values and the probability of delivery at 

that very successful transmission of message. 

7.7.2.2.2 Message Delivery Report 

This report provides the amount of messages delivered, delivered/created, every time a message 

is created or delivered. 

 



7.7.2.2.3 Delivered Message Report 

A big number of messages and connections (up to hundreds and thousands) of messages are 

generated during the simulation of rogue behavior. Sometimes it is necessary to graphically view 

and verify if the message routing is as per the desired routing protocol and implementation 

performed. This report generates the message traversal expressions recognized by the famous 

GraphViz [24] tool. A sample report is shown in Appendix A. A few graphs generated by 

making use of this tool are shown in the previous section in Figure 12 and Figure 13. 

Snapshots of some of the reports taken from the repository are shown in the Appendix A at the 

end of the report. 

7.7.2.2.4 Message Stats Report 

This is the main report we were primarily interested in. It provides all the useful summaries of 

metrics e.g. Average Latency, Average Hop Count, Number of created messages, relayed 

messages and other important ones. Since the metrics in this report were crucial, we provide a 

brief explanation of the next section. 

 

7.7.3 Explanation of Metrics in Message Stats Report 

We have summarized the definitions of metrics as per the logic defined in the algorithms in the 

ONE simulator. These definitions although appear straightforward, but can infer different 

meanings, especially when some of the terms seem equivalent but they are actually not. We were 

mainly interested in Average Latency, which is highlighted blue in the below table. However a 

correlation between these metrics always exist, where an increase or decrease in one is directly 

or inversely proportional to the other, or has no impact in certain conditions. Therefore it is 

important to understand the difference between these metrics: 

Created It denotes the total number of messages created during simulation. 

The count does not include replicated messages for the relaying or 

forwarding purpose. Every node in the simulation creates the 

messages as per a single configurable value (every x seconds).  

Started (Relayed + 

Aborted = Started) 

It describes the total number of message transmissions started 

between network nodes. It is the sum of number of relayed and 

aborted values (explained below). The value is different because it 

gives the overall picture of message entities in the simulation. 

Relayed Number of successful transmissions between nodes are denoted by 

Relayed count. It does not include the unsuccessful or aborted 

transmissions. This value increase many folds in dissemination or 

replication based protocols because the multiple-copy nature of 

those protocols implies more proliferation of messages as per the  

logic. Epidemic Router by far leads to great the greatest count of 

relayed messages since every node infects every other node on its 

encounter, and exchanges the missing copies of messages (Section 

4: Epidemic Router) 

Aborted    The count of aborted transmissions between nodes. It is different 



from dropped messages. 

Dropped Describes the total count of messages dropped from nodes’ buffers. 

It can be due to a TTL timeout or Buffer space full reason. 

Removed The pseudo-code for this metric is defined as follows in The ONE 

simulator: 

if delivered 

then 

   true 

else 

   drop from buffer  

If the message cannot be delivered due to any reason and is 

dropped from current node's buffer, a value in the removed count is 

increased 

Delivered It just denotes the total number of successfully delivered messages 

in the overall simulation period. The delivered message has an 

acknowledgment status of RCV_OK as per the rules in ONE 

simulator. 

Delivery_prob  This metric describes the message delivery probability at the end 

of the simulation. Sometimes it is also referred to as the delivery 

ratio since it is the ratio between the delivered messages and 

created messages. As described in the previous sections, one of the 

main objective of OppNets is to maximize this value 

Response_prob We never used this metric since the message acknowledgments 

back to the initial source via a number of hops are not configured 

(and typically not required in OppNets) in The ONE simulator. But 

the logic is defined, if needed for future use, as follows: 

 if (protocol supports response) 

 then 

    applicable 

else 

    0.000 

Overhead_ratio 

 

 

It denoted an assessment of bandwidth efficiency during the 

simulation and is calculated as per the following formula: 

((NumberOfRelayedMessages – NumberOfDeliveredMessages)) 

/NumberOfDeliveredMessages 

Latency_avg It is the  average message delay from creation of message from the 

source to its delivery to the destination. The term delay and latency 

are interchangeably used in OppNets. This is the main metric used 

in our evaluation criteria, in order to measure how the latency is 

impacted with the change in rogue intensity and behavior of nodes.  

latency_med  It denoted the median of average message delay value at the end of 



the simulation. 

hopcount_avg  This is an important metric to refer to after the end of simulation 

because it counts the average number of hops which were needed 

between source and destination nodes, in order to deliver the 

messages as per the underlying routing protocol. In OppNets, the 

routing protocol Direct Delivery always has the value 1. For the 

other protocols, the value can vary depending upon the altruism, 

the geographical positions of nodes, their intermeeting times and 

many other factors (Appendix C for all the parameters) 

hopcount_med It describes the median of hop count values throughout the 

simulation time 

buffertime_avg Average time that the messages stayed in the buffer at each node 

The formula is: (creation time/receiving time) (next hop) 

buffertime_med Median of buffer time values 

rtt_avg Round Trip Time Average – Average time from creation to 

confirmation of delivery 

  



8 Results 

All the set of experiments were executed without any error or exceptions. The batch mode of The 

ONE simulator ran parallel in 7 streams produced all the logs and reports as explained in Section 

7.7.2 (Also refer to the git repository under 'reports' directory of ONE simulator). After every run 

of the scenario, the directory populated with the corresponding number of reports. The files can 

be post processed for further analysis and deductions. A total number of 2100 files (7 

Experiments*100 Seeds*3 files per Experiment) were output after the simulation. In order to 

take the average of latency values for our evaluation against  

We describe the detailed dataset extracted as a result of all simulation runs in the next section. 

8.1 Dataset and Explanation 

Each experiment resulted in three reports (output files showing required metrics) as explained 

before. Our main metric to observe was Average Latency which is dumped in Message Stats 

Report (Section 7.7.2.2.3). However for further investigation we often referred to Message 

Delivery Report, Delay Report (Figure 18) and Delivered Message Report. These reports contain 

interim statistics about messages as explained in the previous sections. We will primarily be 

focusing on the metrics obtained from Message Stats Report (Section 7.7.3). These contained the 

important metrics aggregated after each experiments we performed. 

 
Figure 19 For Rogue Degree = 20, this file shows the average latency calculated after every run of experiment with a different 

seed. All these 100 values were again averaged to draw the graph with respect to the Rogue Degree 

Figure 19 shows the average latency values obtained after 100 runs with different seeds with a 

single rogue degree. In this very case, the rogue degree was configured as 20. The values of 

average latency for the first six experiments did (up till rogue degree 90) did not show any major 

variations. In fact, the lowest average value was around 5860.299 seconds at a much higher 



degree of rogue nodes. All the seven files each with 100 average latency values can be seen in 

the project repository. We also tried to use another mobility model and tried to vary the number 

of nodes involved in the simulation, to figure out why the latency value was not increasing but 

the pattern remained the same. In the Section 8.2 we discuss this in more detail. We also took 

help from the Message Stats Report to analyze the rest of the metrics.  

 
Figure 20 For Rogue Degree 20 the Message Stats Reports (All the metrics explained in Section 7.7.3) 

Figure 20 shows the individual report of all the aggregated values of metrics obtained after every 

simulation run. We picked a random seeds value for the report as shown in the Figure. The total 

number of message created for this scenario were 1458. Since the router was Epidemic we 

expected a huge number of message transmissions considering the message was being created by  

 

 
Figure 21 For Rogue Degree 80 the Message Stats Reports. Notice the a subtle increase in delivered messages and almost 475 

seconds increase in the delay. However, the delay was minimized by the average values later on 



each node every 25 to 30 seconds. Excluding the warm up period (when the count of creation of 

messages is not taken into consideration), a total of 28139 messages were created. Out of these, 

23876 were dropped due to connection loss, rogue denial and possibly the buffer limit of the 

node. We compared these stats to one of the report having the rogue degree of 80 (Figure 21). 

Notice that these are individual seed value not the overall average. If we compare the latency 

values between the two reports, there was an increase of 475 seconds in the delay. Also, there 

was a very subtle increase in the delivery ratio of the messages. Though we expected this value 

to decrease as the rogue degree is increased. This result was surprising, as we deduce and 

compare in the next section. Finally we compared these two seed values with the maximum 

rogue degree of 100, when all the nodes were denying every other message received from the 

neighbors. 

 
Figure 22 Rogue Degree of 100. The latency value was almost doubled with a hop count of 1 

Figure 22 shows the snapshot of the report containing the message stats obtained after a running 

the scenario with rogue degree of 100. All the nodes were acting selfish all the times during this 

simulation. The total number of messages created were again the same i.e. 1458. The total of 702 

transmissions started only when the source and destinations had the mutual contact. Therefore 

the equal number of 702 messages were relayed. We could not figure out the 1 dropped message 

in this case, which may have been created at the end of the simulation and before it could find 

the corresponding destination, it got dropped. No messages were aborted or removed considering 

the only immediate neighbor in contact were both source and destination. 

 

The delivery ratio was decreased to 0.4815 in this case. But the critical deviation in this scenario 

was the doubling of average latency to 10604 (The average for all 100 seeds was 11039 

seconds).  The standard deviation in this case was 338 seconds. The median value shown as 

7786.7 is only for one seed over one simulation. The average hop count came out to be exactly 1 

since no intermediate nodes were involved for relaying. Since we configured the buffer time till 

the end of simulation, no messages were dropped due to time out of the buffer value. 

 



Although not much useful for the overall results, we made use of Message Delay Report less 

frequently to monitor the delay value at the cumulative probability value over the period of 

simulation, as shown in Figure 23. 

 
Figure 23 Message Delay Report. Each line shows the delay of message and cumulative probability at that instant 

Overall there were no considerable fluctuations in the our intended metric after varying the rogue 

degree from 0 to 90%. Average latency was apparently not impacted how much a node was 

behaving rogue during these configured values. It is only when all the nodes started to behave 

selfishly and denied others messages, average latency had a drastic increase to almost double the 

value during the entire previous simulation runs at varying rogue degrees less than 100.  



8.2 Deduction/Analysis 
As discussed in Section 7.7.1, we mainly performed two set of iterations. The first iteration gave 

us a high level picture of how the simulator was behaving after we implemented the rogue plug-

in ONE. The graph was not very credible since there were only 5 seeds per rogue value. The 

latency value started from 4761 depending upon the world size parameters, as can be seen in the 

repository. 

 

 

Figure 24 First Iteration of Latency against Rogue Values 

 

In Figure 25 we again draw our benchmark for the comparison of trend of Average Latency 

against the rogue values. As described in the implementation section, our simulations and results 

were targeted to a portion of the analytical model. The value against Pnc = 1 in the dotted line of 

the graph with 50 nodes represents the pattern of Average Latency against the rogue or selfish 

nodes. The graph drawn as a result of our implementation and experiments is shown in Figure 

26, as a result of 2nd iteration of experiments during the project. 

The graph shown in Figure 26 shows the relationship between Average Latency values and the 

increasing Rogue Degree from left to right, as a result of the experiments performed in the 2nd 

iteration of experiments. As opposed to the modeling based on Continuous Markov Chain and 

Poisson Distribution (Section 5.3) of nodes, the simulation in ONE was a discrete pair of values 

(Average Latency, Rogue Degree). Therefore the graph was expected to not be having as smooth 

transitions, especially after the results we got from the Rogue Degree 90 to 100. Also, the author 

in [10] made use of Random Way Point as a Mobility Model, which we have discussed is less 

realistic than the one we used (Shortest Map Based Model). Therefore the starting values of 

Average Latency at Rogue Degree = 0 can vary between our simulation and the modeling value 

done previously. It is the pattern that matters the most over the period of fluctuating altruism in 

the nodes but not the initial values. 
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Figure 25 Our evaluation was targeted against the black dotted line representing Epidemic Router with Pnc = 1 and N = 50. As 
discussed in Section 5.3. 

 

Figure 26 Iteration 2 of Average Latency versus Rogue Degree. Each experiment with the respective degree was run with 

100 seed values 
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It also depends on the simulation area utilized by the mobile nodes involved in message 

transmission and receiving. As discussed in the configuration parameters, the map area used by 

the previous researchers was quite small (1000m x 1000m). We realized an area bigger than that 

(4500m x 3400m) to simulate a map based movement with WKTs (A new feature of ONE 

simulator).  Larger area was specifically chosen in order to cover the default layout of Helsinki 

map and the default parameters of WKT files. 

The difference resulted in the starting values of Average Latency, which in our case was more 

than twice (5905 seconds for our simulation and around 2200 seconds for the analytical model). 

However, it is the pattern of change which is important on varying the rogue degree. Moreover, 

there are a few parameters like contact duration (lemda = 0.37 contact/hr) which was not 

available in ONE. And parameters like buffer size and RTT were not mentioned in the paper. But 

to be on the safe side, we configured the parameters optimally (i.e. we configured the buffer big 

enough to last until the end of the simulation. TTL value was set so that no messages will be 

dropped on the basis of timing out, since the intent was to monitor the denial of messages from 

rogue nodes primarily) so as to bring the simulated scenario as close to the modeled graph. 

As shown in the graph, there are very little fluctuations in the latency value from Rogue Degree 

0 up till even 90. This coincides with the results achieved by earlier researchers. The noticeable 

increase in the delay happens after 90% of the nodes behave rogue. Whereas we could see a very 

smooth transition in the paper results, our discrete value of rogue degree of 100% had a sudden 

jump from an average latency of 5917 seconds to 11040 seconds. This is referred to as an 

exponential increase and leads to a very important deduction as explained below. 

With the nodes moving at a constant speed of 0.5 to 2.5 m/s, the mobility offered by the altruistic 

nodes was a powerful aid which negated the rogue behavior instilled in the scenario at the times 

when nodes acted selfish as per the rogue degree configured for the scenario. The times when 

nodes were acting altruistic, they dominated successful message delivery over the rogue ones. 

The contacts and Shortest Path Map Based movement model was though randomly generated via 

the RNG seeds, but it offered very frequent interactions with the alternative nodes. And since we 

wanted to keep our scenario in sync with the modeling, we kept the buffer and TTL values big 

enough so that message dropping due to these metrics can be ignored. Only when the nodes were 

close to 100% selfish, then every node had to wait for its contact with its destination. This is the 

reason (as also discussed in the paper), the mobile OppNets are less vulnerable to the malicious 

attacks. And this also deducts that compared to those of legacy infrastructure based networks 

which are drastically impacted by the rogue access points, OppNets can utilize alternate means 

for message relay in these conditions. 

Another important difference in our implementation and the mathematical model was the 

inherent definition of rogue behavior. As per our investigation and peer collaboration [23],the 

ONE simulator architecture, as discussed previously, is not designed for evaluating the security 

or scenarios which take malicious behavior into consideration. Therefore we could modify the 

core design by introducing the rogue degree as a random attribute to every node as per the RNG 

generator. Whereas, the it was straightforward for the author of the paper to model the selfish 

nodes in the formula: 

 



Where 'ur' represents the unrestricted or epidemic router and N is the total number of nodes, with 

the presence of 0 rogue nodes. The authors model the increase in the rogue nodes (K) until K = N 

- 1, which we simulated in our case as the 100% rogue degree. Although in real world, our 

implementation is more practical since a mobile node might not be deterministically acting rogue 

all the times. Therefore a random association of rogue degree was more suitable. However, it can 

lead to differences at higher level of rogue degrees and the associated contact time between the 

nodes. Whereas, a node acting rogue with a probability of X% can vary its altruism level during 

the contact time with a set of nodes, a completely rogue node at that very instant will be rejecting 

all the messages relayed to this. This could be one of the reasons at higher level of rogue degrees, 

the mathematical model showed deterioration in the latency values. 

The analytical model also draws the conclusion that both the two hop relay and epidemic router 

are inherently resilient by drawing the deceleration factor, on comparing the two protocols. We 

were not able to make such a comparison since we dealt with Epidemic Router only. However, 

as per their results, Epidemic Router's performance deteriorates more severely than the two hop 

relay. It is also shown in [5] and the numerical results in [8].  



9 Conclusions and Future Work 
Our research started with exploring the enhanced features and functionalities of Delay Tolerant 

Networks/Opportunistic Networks. This involved a comprehensive literature review on the 

subject area. Opportunistic Networks undoubtedly add the flexibility, reduce the inter 

networking technologies disparity and bridge these gaps by effectively bundling the important 

message communication at the Bundle Layer in the OSI stack. They have their pros especially 

making use of mobility and trust, but their cons also include indefinite delays and 

acknowledgements whatsoever. However, the emergency and disastrous conditions demand 

some mean to transfer useful information (Imagine the criticality and efficacy of an OppNet 

during recent earthquake in Nepal on April 25, 2015, where internet connectivity was severely 

degraded [25]). The notion of Rogue behavior can exist in these networks especially due to 

energy scarcity in the mobile devices mostly, and some intermediaries can act selfish by only 

taking part in the network for relaying their own messages. 

As per our literature review, we could find 4 dedicated and critical publications by researchers in 

this area, and only a one of them considered simulating the OppNets in ONE simulator, taking 

Rogue Scenarios in consideration. We took one of the publication as a reference model for our 

simulation in The ONE simulator, as the modeling was done on the parameters we could see 

feasible for our project and scope of work. Our research question involved how the latency is 

impacted if the percentage of rogue degree in mobile nodes is increased. The results for the 

unrestricted relaying protocol (i.e. Epidemic Routing) showed correlation with the trend of 

deterioration of latency values as modeled in the chosen paper, with a few exceptions as detailed 

in Section 8.2. We provided a flexibility to make the scenario more realistic than the past paper 

by taking into account Map Based Movement rather than a hypothetic Random Way Point 

movement.  

Our plug-in implementation for The ONE simulator,  and the subsequent set of experiments 

showed that Map based mobility models are quite less vulnerable to rogue nodes. In particular, 

for areas of smaller size, even a rogue degree of 90% has negligible impact on the average 

latency of the network. Although the simulation was not based on real world mobility and 

connectivity of an OppNet, the synthetic node movements in Epidemic routing provide a good 

motivation to compare and contrast the results with real world traces, and intermeeting with the 

nodes. Two differences in our implementation was configurable fully rogue nodes and the 

absence of comparison with the two hop routing protocol, which we could not take into 

consideration due to the feasibility and scope of the project. 

Having said that OppNets are less vulnerable to rogue node as compared to infrastructure based 

networks, their detection in an OppNet is more challenging and is currently a very active 

research area for OppNets. There are many efficient schemes for detecting malicious attacks for 

classical networks since their static topology leverages many methodologies to aid this objective 

[26]. After assessing the impacts on OppNets, the detection and penalization of rogue nodes can 

be investigated for future research areas in this regard. More importantly, most of the research 

for evaluating the rogue behavior is done on simulated scenarios based on random number 

generators (RNG). ONE simulator provides a flexibility to import wireless traces in the form of 

well known texts (commonly referred as WKTs), with respect to mobility as well as the 

connection establishment granularities between the corresponding nodes. To the best of our 



knowledge, there has been no paper published on evaluating the rogue behavior on the basis of 

real world wireless traces. The plug-in developed in this project can readily aid in this regard. 

One of the interesting future research area involve the incentives and penalties to encourage the 

cooperation in OppNets. There have been a few approaches like IRONMAN [27] which makes 

use of proliferation of useful information about the contacts who behave selfishly, and hence 

broadcast the repute of individual nodes for cooperation. Opportunistic Network is still a very 

immature field in terms of routing protocols and reliable communications, the research, 

implementation and simulation of rogue behavior has paved way for many challenging 

dimensions in OppNets, along with the ease it would provide for future research and 

development using The ONE Simulator. 

  



Appendix A 

 

Figure 27 A ONE input simulation file. Rogue Behavior and Degree parameters are highlighted 

 

Figure 28 Plug in for creating Rogue Nodes from the SimScenario Class 



 

Figure 29 The algorithm for denying the rogue messages. Customized in Message Router Class 

 

Figure 30 Data generated by Delivered Message Report in order to draw graph in GraphViz tool [24]. E.g. A message from 
node p37 was sent to p0 via p27 in the last line of the report.  



10 Appendix B 

 

Figure 31 Methods provided by class MessageRouter 

 

  



11 Appendix C 
11.1 Input configuration file for Experiments. 
The input settings and configuration file has been copied here for reference. Please note the parameters 
related to Rogue Degree were varied accordingly as described in the Results section. 

# 
# Default settings for the simulation 
# Plug-ins added for CS 645, Maynooth University (2014-2015) 
## Scenario settings 
######################## 
#Scenario.name = default_scenario 
Scenario.name = CS-645-%%Scenario.rogueDegree%%-%%MovementModel.rngSeed%% 
#######################3 
Scenario.simulateConnections = true 
Scenario.updateInterval = 0.1 
# 43200s == 12h 
Scenario.endTime = 43200 
# Define 6 different node groups 
Scenario.nrofHostGroups = 1 
#Scenario.nrofHostGroups = 6 
# CS 645 Introduce Rogue Behavior and degree 
Scenario.rogueBehavior = true 
Scenario.rogueDegree = 0 
## Interface-specific settings: 
# type : which interface class the interface belongs to 
# For different types, the sub-parameters are interface-specific 
# For SimpleBroadcastInterface, the parameters are: 
# transmitSpeed : transmit speed of the interface (bytes per second)  
# transmitRange : range of the interface (meters) 
# "Bluetooth" interface for all nodes 
btInterface.type = SimpleBroadcastInterface 
# Transmit speed of 2 Mbps = 250kBps 
btInterface.transmitSpeed = 250k 
########### CS 645 
#btInterface.transmitRange = 10 
btInterface.transmitRange = 50 
############ 
# High speed, long range, interface for group 4 
highspeedInterface.type = SimpleBroadcastInterface 
highspeedInterface.transmitSpeed = 10M 
highspeedInterface.transmitRange = 1000 
## Group-specific settings: 
# groupID : Group's identifier. Used as the prefix of host names 
# nrofHosts: number of hosts in the group 
# movementModel: movement model of the hosts (valid class name from movement package) 
# waitTime: minimum and maximum wait times (seconds) after reaching destination 
# speed: minimum and maximum speeds (m/s) when moving on a path 
# bufferSize: size of the message buffer (bytes) 
# router: router used to route messages (valid class name from routing package) 
# activeTimes: Time intervals when the nodes in the group are active (start1, end1, start2, end2, ...) 
# msgTtl : TTL (minutes) of the messages created by this host group, default=infinite 
## Group and movement model specific settings 
# pois: Points Of Interest indexes and probabilities (poiIndex1, poiProb1, poiIndex2, poiProb2, ... ) 
#       for ShortestPathMapBasedMovement 
# okMaps : which map nodes are OK for the group (map file indexes), default=all  
#          for all MapBasedMovent models 
# routeFile: route's file path - for MapRouteMovement 



# routeType: route's type - for MapRouteMovement 
# Common settings for all groups 
Group.movementModel = ShortestPathMapBasedMovement 
Group.router = EpidemicRouter 
################################# 
#Group.bufferSize = 5M 
Group.bufferSize = 50M 
################################# 
Group.waitTime = 0, 120 
# All nodes have the bluetooth interface 
Group.nrofInterfaces = 1 
Group.interface1 = btInterface 
# Walking speeds 
############## 
#Group.speed = 0.5, 1.5 
Group.speed = 0.5, 2.5 
############# 
# Message TTL of 300 minutes (5 hours) 
##################### 
#Group.msgTtl = 300 
Group.msgTtl = 720 
##################### 
# 40 previously 
Group.nrofHosts = 50 
##################### 
# group1 (pedestrians) specific settings 
Group1.groupID = p 
################## 
# group2 specific settings 
#Group2.groupID = c 
# cars can drive only on roads 
# Group2.okMaps = 1 
# 10-50 km/h 
#Group2.speed = 2.7, 13.9 
# another group of pedestrians 
#Group3.groupID = w 
# The Tram groups 
#Group4.groupID = t 
#Group4.bufferSize = 50M 
#Group4.movementModel = MapRouteMovement 
#Group4.routeFile = data/tram3.wkt 
#Group4.routeType = 1 
#Group4.waitTime = 10, 30 
#Group4.speed = 7, 10 
#Group4.nrofHosts = 2 
#Group4.nrofInterfaces = 2 
#Group4.interface1 = btInterface 
#Group4.interface2 = highspeedInterface 
#Group5.groupID = t 
#Group5.bufferSize = 50M 
#Group5.movementModel = MapRouteMovement 
#Group5.routeFile = data/tram4.wkt 
#Group5.routeType = 2 
#Group5.waitTime = 10, 30 
#Group5.speed = 7, 10 
#Group5.nrofHosts = 2 
#Group6.groupID = t 
#Group6.bufferSize = 50M 



#Group6.movementModel = MapRouteMovement 
#Group6.routeFile = data/tram10.wkt 
#Group6.routeType = 2 
#Group6.waitTime = 10, 30 
#Group6.speed = 7, 10 
#Group6.nrofHosts = 2 
## Message creation parameters  
# How many event generators 
Events.nrof = 1 
# Class of the first event generator 
Events1.class = MessageEventGenerator 
# (following settings are specific for the MessageEventGenerator class) 
# Creation interval in seconds (one new message every 25 to 35 seconds) 
Events1.interval = 25,35 
# Message sizes (500kB - 1MB) 
Events1.size = 500k,1M 
# range of message source/destination addresses 
#Events1.hosts = 0,126 
Events1.hosts = 0,50 
# Message ID prefix 
Events1.prefix = M 
## Movement model settings 
# seed for movement models' pseudo random number generator (default = 0) 
# Model Seeds 
MovementModel.rngSeed = 
[1;2;3;4;5;6;7;8;9;10;11;12;13;14;15;16;17;18;19;20;21;22;23;24;25;26;27;28;29;30;31;32;33;34;35;36;36;37;38;39;40;41;42;43
;44;45;46;47;48;49;50;51;52;53;54;55;56;57;58;59;60;61;62;63;64;65;66;67;68;69;70;71;72;73;74;75;76;77;78;79;80;81;82;82;
84;85;86;87;88;89;90;91;92;93;94;95;96;97;98;99;100] 
# World's size for Movement Models without implicit size (width, height; meters) 
####################### 
# MovementModel.worldSize = 4500, 3400 
# 1401 for lemda 0.37 
MovementModel.worldSize = 4500, 3400 
###################### 
# How long time to move hosts in the world before real simulation 
MovementModel.warmup = 1000 
## Map based movement -movement model specific settings 
MapBasedMovement.nrofMapFiles = 4 
MapBasedMovement.mapFile1 = data/roads.wkt 
MapBasedMovement.mapFile2 = data/main_roads.wkt 
MapBasedMovement.mapFile3 = data/pedestrian_paths.wkt 
MapBasedMovement.mapFile4 = data/shops.wkt 
## Reports - all report names have to be valid report classes 
# how many reports to load 
Report.nrofReports = 3 
# length of the warm up period (simulated seconds) 
Report.warmup = 0 
# default directory of reports (can be overridden per Report with output setting) 
Report.reportDir = reports/3rd_Iteration/RogDeg=0 
# Report classes to load 
Report.report1 = MessageStatsReport 
Report.report2 = MessageDeliveryReport 
Report.report3 = MessageDelayReport 
## Default settings for some routers settings 
ProphetRouter.secondsInTimeUnit = 30 
SprayAndWaitRouter.nrofCopies = 6 
SprayAndWaitRouter.binaryMode = true 
## Optimization settings -- these affect the speed of the simulation 



## see World class for details. 
Optimization.cellSizeMult = 5 
Optimization.randomizeUpdateOrder = true 
## GUI settings 
# GUI underlay image settings 
GUI.UnderlayImage.fileName = data/helsinki_underlay.png 
# Image offset in pixels (x, y) 
GUI.UnderlayImage.offset = 64, 20 
# Scaling factor for the image 
GUI.UnderlayImage.scale = 4.75 
# Image rotation (radians) 
GUI.UnderlayImage.rotate = -0.015 
# how many events to show in the log panel (default = 30) 
GUI.EventLogPanel.nrofEvents = 100 
# Regular Expression log filter (see Pattern-class from the Java API for RE-matching details) 
#GUI.EventLogPanel.REfilter = .*p[1-9]<->p[1-9]$ 
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