

The Impact of Rogue Nodes on the Dependability of Opportunistic Networks

Faizan Agha

2014-2015

Erasmus Mundus MSc in Dependable Software Systems

Department of Computer Science

Maynooth University, Maynooth

Co. Kildare, Ireland

A dissertation submitted in partial fulfillment of the requirements for the

Erasmus Mundus MSc Dependable Software Systems

(Distributed Systems Stream)

Head of Department : Dr Adam Winstanley

Supervisor : Dr. Stephen Brown

09 June 2015

Word Count: 17,182

Abstract
Opportunistic Networks (OppNets) are an extension to the classical Mobile Ad hoc Networks

(MANETs) where the network is not dependent on any infrastructure (e.g. Access Points or

centralized administrative nodes). OppNets can be more flexible than MANETs because an end

to end path does not exist and much longer delays can be expected. Whereas a Rogue Access

Point is typically immobile in the legacy infrastructure based networks and can have considerable

impact on the overall connectivity, the research question in this project evaluates how the pattern

and mobility of a rogue nodes impact the dependability and overall "Average Latency" in an

Opportunistic Network Environment. We have simulated a subset of the mathematical modeling

performed in a previous publication in this regard.

Ad hoc networks are very challenging to model due to their mobility and intricate routing

schemes. We strategically started our research by exploring the evolution of Opportunistic

networks, and then implemented the rogue behavior by utilizing The ONE (Opportunistic

Network Environment, by Nokia Research Centre) simulator to carry out our research over rogue

behavior. The ONE simulator is an open source simulator developed in Java, simulating the layer

3 of the OSI model. The Rogue behavior is implemented in the simulator to observe the effect of

rogue nodes. Finally we extracted the desired dataset to measure the latency by carefully

simulating the intended behavior, keeping rest of the parameters (e.g. Node Movement Models,

Signal Range and Strength, Point of Interest (POI) etc) unchanged. Our results are encouraging,

and coincide with the average latency deterioration patterns as modeled by the previous

researchers, with a few exceptions. The practical implementation of plug-in in ONE simulator has

shown that only a very high degree of rogue nodes impact the latency, making OppNets more

resilient and less vulnerable to malicious attacks.

I consider it an honour to work with Dr. Stephen Brown; without his knowledgeable guidance

and kind supervision, it would not have been possible.

To my dearest and beloved parents; for their interminable love and care, that kept me motivated

and genuinely helped me achieve this milestone.

Table of Contents

Abstract ... 2

1 Introduction ... 6

2 Background and Motivation.. 9

2.1 Infrastructure-based communication networks ... 9

2.2 Infrastructure-less Networks ... 9

2.3 Evolution to Opportunistic Networks ... 10

3 Rogue Behavior in Opportunistic Networks ... 13

4 Epidemic Router [6] .. 15

5 Related Work .. 17

5.1 Survey of DTN Protocols [2] .. 17

5.1.1 Deterministic Routing ... 18

5.1.2 Stochastic Or Dynamic Routing.. 18

5.1.3 Model-Based Approach .. 19

5.1.4 Node Movement Control-Based Approaches ... 20

5.1.5 Coding Based Approaches .. 20

5.2 On effects of Cooperation in DTNs [8] ... 21

5.3 Analytical Modeling to determine the impact of selfish or rogue behavior [10] 24

5.3.1 Modeling Message Delivery Under Rogue Nodes .. 25

5.3.2 Message Delivery Under Unrestricted Relaying ... 26

5.3.3 Message Delivery Under Two-Hop Relaying ... 26

5.3.4 Numerical Results ... 26

6 Why ONE Simulator? ... 29

6.1 Shortcomings in Network Simulators for OppNets before ONE .. 29

6.2 Routing Specific and OppNet Specific simulators .. 29

6.3 Issues with real world traces import for legacy simulators ... 29

6.4 ONE Simulator with Mobility, Visibility and OppNet Support .. 30

7 Methodology ... 32

7.1 Higher Level Approach ... 32

7.2 Plug-in for Mobile Rogue Nodes in ONE Simulator .. 32

7.3 Metric for Observation .. 33

7.4 Rogue Plug-in Implementation ... 33

7.4.1 Rogue Behavior in ONE: Implementation of subset of Analytical Model 34

7.4.2 Routing implementation for Rogue Noes ... 35

7.4.3 Core Implementation for Rogue Nodes .. 36

7.5 Experimental Setup ... 37

7.5.1 Platform for Scenario Simulations .. 37

7.5.2 Eclipse Settings ... 38

7.6 Verification of Rogue Behavior in ONE ... 38

7.6.1 Verification of implementation and existing functionality ... 38

7.6.2 Verification of implementation of Rogue Behavior .. 39

7.7 Experiments with Varying Rogue Degree ... 41

7.7.1 First Iteration... 41

7.7.2 Second Iteration .. 42

7.7.3 Explanation of Metrics in Message Stats Report .. 45

8 Results ... 48

8.1 Dataset and Explanation.. 48

8.2 Deduction/Analysis ... 52

9 Conclusions and Future Work ... 56

Appendix A ... 58

10 Appendix B ... 60

11 Appendix C .. 61

11.1 Input configuration file for Experiments. .. 61

12 Bibliography ... 65

1 Introduction

Mobile nodes in Opportunistic Networks (OppNets) transmit and receive useful messages in a

'Store and Forward' architecture [1]. OppNets are an extension to classical Mobile Ad hoc

Networks (MANETs) where the network is not dependent on any infrastructure (e.g. Access

Points or centralized administrative nodes). The connectivity can also be intermittent and

episodic, similar to the Delay Tolerant Networks (DTN). They are typically referred to as suitable

for, and deployable in 'Challenged Networking Conditions' owing to their inherent resilience with

respect to a path-less communication model, flexibility of internetworking between discrete

technologies and critical dependence of nodes mobility and cooperation. An interesting as well as

a highly challenging feature of these networks is, that an end to end path from source to

destination may not necessarily exist at any point in time. Path management in MANETs is an

expensive task to maintain over the period of time in a dynamic network topology. Nodes may

enter or leave without any permanent association with the network, therefore the mobility is an

inherent feature, which leads to creating or breaking of existing paths. OppNets offer their useful

operating model to get rid of this constraint.

Each node in an OppNet is crucial for providing end to end delivery of useful messages. This

leads to very important and critical concerns of reliability, security and privacy of the content:

The data may or may not be encrypted and can be potentially seen by the intermediaries. Routing

is already a big challenge for these networks [2], therefore the notion of altruism and cooperation

is expected from the contributing nodes. This project will first investigate and explore OppNets

with respect to their evolution, routing schemes and key research areas with the help of past

publications and related work. This was also needed to build the required knowledge of domain

with respect to key terminologies, protocols and tools available for the research and development.

The contributing nodes struggle to probe, and search for every available 'opportunity' (hence

called 'Opportunistic' Networks) in order to deliver the messages, which can potentially bring

them closer to the destination. However, the notion of 'rogue' (or selfish) behavior can also exist

(as explained in Section 3 later) just like it can exist in the infrastructure based networks. In this

project we will analyze, compare and contrast the impact of rogue nodes in the network against

the normal networking conditions. Whereas a rogue Access Point is immobile, the research

question in this project will address on how the pattern of a rogue nodes impacts the overall

"average latency" in an OppNet environment. Although delays are expected in OppNets, but the

existence of added malicious entities can further hamper the performance of network. Also it is

important to mention here, that though the primary focus in OppNets is to maximize the

transmission of data, very few papers have published the impact, that rogue mobile nodes can

have on further latency in the network.

The impact of rogue nodes will be measured by first simulating communication scenarios under a

specific mobility pattern assuming no malicious behavior exists. The simulation will again

performed with the same parameters, except that this time a portion of nodes will act as rogue

nodes.

We implement (and then simulate) the rogue behavior by utilizing The ONE simulator. The ONE

(Opportunistic Network Environment) simulator is an open source simulator developed in Java

simulating layer 3 of the OSI model. The rogue behavior will be customized in the simulator to

observe the effect of malicious nodes. Finally we develop the desired dataset to measure the

performance and QoS metrics by rigorously simulating the intended behavior, keeping rest of the

parameters (e.g. node movement models, signal range and strength, Point of Interest (POI) etc)

unchanged. Our results are based on comprehensive simulation of rogue behavior, and averaging

the delays introduced on the basis of 100 seeds for each run.

Although, ONE simulator is an open source platform developed by Nokia Research Centre

(Finland), it has hundreds of interlinked APIs, import and export functionalities. It was built

without any negative scenarios (e.g. routing via malicious nodes). It is comparatively a newer

tool, research and development is primarily being done by peer and online collaboration (forums

and emails) by self learning and experimenting. Simulations involving OppNets can be time

consuming (being a 'delay' tolerant simulation), reason being (discussed in more detail in Section

2.3 in their evolution) since these networks do not suffer from the overhead of path management

and connection establishment at TCP layer [3], they need to wait for the possible opportunities to

find the optimal intermediary for the message delivery to the end destination. Finding the

intermediate 'routers' (the term is used interchangeably with nodes/hosts in the literature) depends

on the underlying routing protocol, mobility model and most importantly the altruism of the

neighbors. Therefore simulation of scenarios requires careful analysis of input parameters and

output dataset after every iteration. Sometimes it is also necessary to graphically monitor the

movement and message logs even during the simulation, which motivated us that we chose ONE

simulator for our project (Please refer to Section 6: Why ONE Simulator). The intent is to make

the plug-in implemented as part of our implementation on Rogue Behavior as a potential addition

to the research community of ONE. To the best of our knowledge, currently no plug-in or

configurable parameter as an additional feature exists in the ONE simulator source files [4].

Although the researchers in [5] plot latency patterns on the basis of mathematical modeling and

simulate in ONE, their source files or repositories are not available publically.

There is not a huge amount of work done previously on rogue behavior in OppNets, as compared

to the efforts on routing and forwarding techniques. It makes sense because the prime intention

of OppNets was maximizing communication for areas or networking conditions which are

considered challenged for even slighter connectivity due to geographical areas, infrastructure

deficiencies and poor coverage of wireless media [1]. However, the notion of altruism cannot be

completely ignored since the mobility and portability of mobile devices can give birth to

opportunism and selfishness.

A number of papers analyze the performance variations by mathematical modeling followed by

simulation of key metrics like latency and delivery ratio. Majority of the researchers have used

"Epidemic Routing [6] and Two hop Relay" [7] [5] routing protocols. We referred to two

publications, one that analytically modeled the rogue behavior, and another performed the

modeling as well as implemented the behavior in ONE simulator. While the Epidemic Routing

Protocol is explained in much more detail in Section 4 (Epidemic Router). Two hop relay

typically aims to reduce the number of transmissions during message forwarding. Both these

protocols are multi-copy protocols but the essential difference between them is that in Two hop

relay, only the source can infect the neighbors with the desired message. It also ensures that each

time it encounters a node with no copy of the desired message, it forwards the message to it such

that there are two copies of message available. The intermediaries are not allowed to infect other

nodes with that very message, unless they are the intended destinations [8] [9]. Considering the

scope of our project we only performed a subset of implementation and subsequent simulation as

(Section 7: Methodology for further details) performed analytically in [10], but we also referred

to [5] for our some help with respect to simulation in ONE. There is a good correlation between

the simulation results presented in our project and the analytical results from these two papers.

Some dissimilarities in the impact are also identified and discussed (Section 8: Results).

2 Background and Motivation

2.1 Infrastructure-based communication networks

Two major classes of data and communication networks co-exist globally. In networking

literature they are mostly referred to as: Infrastructure-based and Infrastructure-less (or ad hoc)

networks. Communication Networks deployed on top of a fixed and proactively designed

'infrastructure' are commonly known as Infrastructure-based networks. These are designed

keeping in view the Quality of Service (QoS), security, reliability and availability requirements.

Typically the design involves performing geographical surveys prior to the design and

implementation of physical infrastructure. Some examples include Ethernet wired LAN, 802.11

Access Point and GSM/UMTS/LTE based telecommunication networks. The network topology,

capacity, bandwidth and related QoS parameter might differ in these distributed networks, but

one thing is common: They are dependent on central nodes (or a set of pre-installed nodes) in

order to carry out message transmission/Receiving. Network topology is pre-designed and fixed,

and is not prone to any alterations during the routing and forwarding of messages. These

networks have matured after being revolutionized and vivified by introducing newer protocols

and underlying technologies. Security, though was an afterthought in infrastructure-based

networks, modern cryptography schemes have made these networks less vulnerable to attacks

(e.g. Fake Access Points, Packet Sniffing, Distributed Denial of Service (DDoS), Man in the

Middle attacks etc).

2.2 Infrastructure-less Networks

With the inception of Wireless technologies, mobile devices started to gain more popularity

worldwide than the desktop based end stations, the portability of these handheld devices

leveraged by their multiple communication interfaces (e.g. Bluetooth IEEE 802.15,WLAN

802.11 family, NFC and Infrared etc) have helped mobile communication getting rid of

underlying infrastructure for traffic management and data relaying [11] [12]. When the mobile

nodes communicate in an ad hoc manner without any dependence on any central entity (Central

Access Point, Router etc), they form an 'Infrastructure-less' network [13]. In the 802.11 family of

WLANs, they are also said to be operating in an 'Ad hoc mode'. This lead to the evolution of

Mobile Ad hoc Networks (MANETs).

There is no fixed network topology in MANETs. Routes are built on the fly and need to be

maintained over the period of time, at the expense of bandwidth. When a route is built, all the

nodes in the current network need to be made aware by some handshaking mechanism. There are

not pre-designated routing or relaying/gateway nodes in these networks [14]. Every node is a

contributor to the overall performance and QoS parameters. Throughput, packet delivery ratio,

packet losses, Round Trip Times, bandwidth and delivery delays keep fluctuating as the nodes

move, leave or join the network in an ad hoc manner. The beauty of ad hoc network is, that the

communication or message passing is no longer dependent on a single entity (e.g. an Access

Point (AP) in an 802.11n configuration which acts a central unit for message passing, queue

management, and bandwidth allocation etc). Even if a node goes down (i.e. disconnects from the

network due to leaving, shutting down or connecting to another network) from an existing

MANET, the routes are rebuilt dynamically via another feasible node. Although it results in

more delays and bandwidth fluctuations, the connectivity is not hampered for all the valuable

routes built in the past [13], unless one or more nodes involved in the route are altered.

There are several disadvantages with MANETs because dynamic routes management via

contributing nodes is a memory expensive process. MANET protocols like AODV (Ad hoc on

demand distance routing vector) demand that route information has to be maintained across the

network at any given point in time, keeping all nodes notified of the topology changes. This is

done by frequent and periodic 'Hello' messages [14]. This can cost a significant increase in the

administrative responsibilities of nodes. However, from a network designer perspective

MANETs should add value to the usability of the overall network. Thus their configurations are

usually done as part of Mesh networks and other places on requirements basis. For example,

consider a remote place (say, Amazon jungle) with no communication or connectivity to

infrastructure based network is possible due to certain geographical and budgetary constraints.

MANETs can be an excellent choice to create a local network and then choosing a gateway node

to relay information to rest of the globally connected internet (e.g. via a BTS in a

GSM/UMTS/4G network making use of BTS to GGSN/SGSN connectivity). Consider living in

a status quo which does not offer connectivity to internet, or the infrastructure has collapsed due

to a disaster or earthquake; situations like these make MANETs a promising research field for

these emergency situations. Connectivity and its importance increases many folds under these

crucial circumstances.

2.3 Evolution to Opportunistic Networks

MANETs can operate by making use of several underlying routing protocols (namely AODV,

DSR, OLSR, DSDV etc, for more details please refer to [14]) which operate not only in a

reactive manner but also proactively. Our intention was to give a background by briefly

describing two major classes of communication networks. After building this crucial knowledge

we now turn our attention to yet another evolution of MANETs which directly relates to our

research question.

Common literature in ad hoc communication networks mistakenly refer to the terms

"Opportunistic Networks" (OppNets) and "Delay Tolerant Networks" (DTN) quite

interchangeably [1]. However, it should be noted that DTNs usually refer to those networks

where the connectivity between any two nodes is "episodic" or intermittent. They are broadly

divided into DTN Regions and DTN Gateways, where the former can be just like any other

legacy internets having their own internet stacks and internal protocols. The DTN Gateways

provide the connectivity between the two (or more) contributing Regions involved in sporadic

messages transmission. An example can been in the following diagram where a helicopter acts as

gateway to provide connectivity in between two separate internets. The aircraft career is

responsible for sending useful messages to the soldiers in the battlefield via the mediator entity,

which serves as a translator by configuring an overlay protocol layer, bridging the stack

differences between the end regions. As can be seen, the topology of the overall network is

known and not prone to dynamic changes in the routing tables.

Figure 1 An example of DTN: Helicopter being a Gateway Node for two discrete internets

Opportunistic Networks, on the other hand are even a more generalized class of DTNs. There is

absolutely no knowledge about the network topology in an OppNet. Every node acts as gateway,

or more generally speaking, a router itself. Nodes make use of localization knowledge to find the

potential 'opportunities' in order to relay messages towards the final destination. They are

sometimes also referred to as 'Pocket Switched Networks' (contrasting the traditional packet

switched networks). There are a large number of routing and message forwarding techniques

(which are discussed in one of the related work section in this report).

As can be seen in Figure 2, the opportunistic networks primarily depend on encounters (known

as contact times) between each other in order to optimally relay the messages. As discussed

above, portability of human carried devices has been a great motivation for these networks. A

modern device is usually designed with Bluetooth and 802.11 interfaces. Since wireless MAC is

broadcast in nature, it proves handy in these networks.

Figure 2 An Opportunistic Network Example: The red line indicates the possible delay i.e. latency introduced by each hop

during message relay

One of the fundamental challenge in OppNets has been message forwarding right from their

inception. What should be the most cost-effective forwarding protocol has largely been discussed

in the initial research. Various routing schemes including but not limited to, multi copy, single

copy paradigms have been proposed and discussed by researchers. However, the assumption of

unselfishness was always being made during the design and implementation of routing schemes.

In actual, most of the humans carrying mobile devices are constrained by the limited energy

available. Therefore, the notion of 'rogue' nodes (just like rogue Access Points (AP) in

infrastructure based networks) is very much possible. In contrast to the fixed rogue APs , the

rogue nodes in OppNets are mobile and can change their geographical locations quite

dynamically as the network topology changes. This can have impact on the throughput, delivery

ratio and latency of the network.

A network already challenged with the distinct and disconnected mobile nodes, and also

vulnerable to rogue behavior demands much more effort to simulate its behavior in dynamic

networking conditions. This challenge motivated and brought us to investigate and simulate the

impact of rogue nodes on the average latency in an epidemic routing protocol stack.

3 Rogue Behavior in Opportunistic Networks
Altruism or Rogue Behavior is a widely displayed phenomenon in the human race beginning

from the age of hunter gatherers to the current modern age. It has remained a subject of extensive

research and one person or node can have different values with respect to altruism when

compared to other nodes or people.

For the purpose of our research and simulation, it is assumed that altruism distribution is between

0% and 100% where 0 is completely rogue and 1 denotes completely altruistic node. However

various dimensions of rogue or selfish behavior exist in the literature. In one of the studies on

rogue and altruistic behavior in DTNs and Opportunistic Networks [15], various classes are

defined:

Percentage of Rogue Nodes: The percentage of rogue nodes can be between 0% and 100%

however in realty a node is not completely altruistic or selfish. This is the simplest altruism

distribution.

Uniform Distribution: There is a uniform distribution of altruistic value in the entire population

between 0 and 1. Such a distribution exists commonly in natural environment.

Normal Distribution: The pattern of altruistic values in the population has a normal distribution

with values ranging between 0 and 1. 5%and 95% Distribution Function (CDF) has also been

used in order to normalize the distribution.

Geometric Distribution: This approach calculates altruistic values on per pair of nodes and the

probability has an inverse relationship with social hop distance (k). The altruism values have

been normalized against the parameter p (altruism value for the first hop). However in real life

scenarios there is another factor to consider; which is decrease in altruism with decrease in

kinship or distance from first hop.

Degree-biased Distribution: This approach attempts to show the relationship between altruism

and node degree.

ai =(ki-kmin)
α

/(kmax-kmin)
α
 with

α
 > 0

Where kmin is the smallest while kmaxis the largest degree in the network. When ki is equal to kmin

then value of ai is zero and when ki is equal to kmax value of is ai 1. When the value of α is 1 then

value of a grows linearly with degree. The model illustrates the scenario that when someone is

more willing to help other people then that person becomes more popular on a social network.

However because of resource limitations, the person may not be able to help all of them in

reality. On the other hand if a person has only friend then there is a greater likelihood he/she will

be willing to help that friends.

Community-based Distribution: According to this approach people will be more willing to

help people from their own community rather than those from outside the community. Therefore

this mode includes two variables; a to account for intra-community altruism and e to account for

and inter-community altruism. It also assumes 0.7 probability for carrying data for intra-

community and 0.1 probability for carrying data for intercommunity.

For our simulation and experiments, we will consider rogue behavior with respect to the

percentage varying between 0 to 100%, and when the nodes acts rogue, it will deny forwarding

the message from its neighbors, but will try to send its own messages always.

4 Epidemic Router [6]
In the experimental setup which is performed as part of this project, we have chosen Epidemic

Router operating at layer 3 in the OSI model. The working of Epidemic router is thus essential to

grasp to analyze the impacts on key metrics. Although the plug-in developed is extensible for

any routing algorithm, in order to keep our evaluation closer to the analytical model in [10], we

performed all the experiments and subsequent reports on Epidemic Router.

Existing protocols for ad hoc routing are based on the assumption that a connected path exist

between source and destination which may not always be valid for example in the case of short

range wireless networks. Epidemic routing uses pair wise message exchange as the mode for

transmission. Maximizing the delivery rate of the message, minimizing latency, and minimizing

resource consumption are the main aims of epidemic routing.

In epidemic routing approach the message is distributed to hosts called carriers. When carries

come into contact with the connected portions of the network, the message gets transmitted and

gets transferred from one island of nodes to another. Figure 3 Shows two scenario, where S,C

and D are nodes and dotted circle shows the wireless communication range. Source transmits the

message to the nodes that are in its communication range.

Figure 3 Epidemic Routing

The purpose of epidemic routing is to increase the probability of message delivery to a host and

conserve resources by minimizing set of hosts that can transmit the message. These goals are

achieved by imposing a limit on maximum number of hops and per node buffer space.

Goals and Design Issues of Epidemic Router

For epidemic routing, the following design issues need to be considered.

 Routing Under Uncertainty: since the location of the receiver is not known, it is

important to transmit the message when the host node comes into contact with the

potential carries.

 Resource Allocation: Multiple copies of the message are transmitted and there should be

a balance between resource consumption and message delivery.

 Performance: Performance can be measured in terms of bandwidth consumption,

storage, latency and message delivery.

 Reliability: Some applications may ask for an acknowledgement of successful message

delivery so that the transmitting nodes can free their resources if message delivery is

successful.

 Security: A message may pass various routes before reaching its destination and hence it

is important that sensitivity of information is taken care of and certain cryptographic

techniques can be used to ensure this to some extent.

Figure 4 Message Transmission in Epidemic Router

Figure 4 shows how message transmission takes place in epidemic routing when two hosts come

in transmission range. Each node maintains a buffer of the messages it has transmitted and some

of the received ones as well. A unique identifier is attached with each message and listed in a

hash table index. A bit vector called the summary vector is used to indicate which entries in the

local hash tables are set. An anti-entropy session is triggered by a host that has a smaller

identifier when two hosts come in contact. The exchange vector lists to compare which message

is new to the host and such messages are exchanged while the receiving host is autonomous in

making the decision to accept the message. In order to aid in this decision a maximum queue size

is developed for each host and determines the maximum number of messages the host can hold.

In the initial study the researchers employed three features namely a unique message identifier

(unique 32-bit number), hop count and an optional ack request. The message identifier is a

concatenation of the ID of the host and ID of the message generated and hosts have been

assigned IDs statically. Hop count is the number of maximum hops for the message. Larger hop

counts help in delivering the messages quickly and important message can be assigned a higher

hop count. The ack request is used in instances when the destination host is required to provide

an acknowledgement of receipt. When a host reaches its buffer capacity then it drops the older

messages for receiving new ones. The simple strategy of first in first out (FIFO) is used here but

it compromises on fairness and quality of service. Another strategy called Weighted Fair

Queuing can also be investigated as an alternative.

5 Related Work

5.1 Survey of DTN Protocols [2]

As discussed above, routing had been the first and foremost challenge in OppNets and even in

DTNs. In this vast survey, the authors give a comprehensive classification of routing protocols

which can deployed in both environments.

Figure 5 shows the lack of a direct path between nodes S and D and the message can be

delivered only if the nodes in between are able to forward the message. Examples include inter-

planet satellite communication networks, sensor networks and military and ad-hoc networks

where the transmission takes place intermittently. DTNs are able to tolerate delays beyond

conventional IP forwarding delays and have various applications. Inter-planetary network (IPN)

for example involves intermittent connectivity and withstands long delays. Zebra population

information is collected using Zebranet. An example of village network is where the rural busses

are being used to provide connectivity to internet.

DTN research group has presented its findings and proposed architecture for DTNs that aims to

address the associated communication issues in such networks. This architecture consists of

regional networks and an overlay of transport layer on top. This architecture is able to provide

retransmission, in-network data storage and forwarding. The aim of this architecture is to provide

a solution that can deliver the message between dissimilar infrastructures. The basis of the DTN

architecture is the store and forward mechanism and the issue of late binding addresses is

covered using an addressing scheme. This results in a routing structure that is hierarchical in

nature and because of this the implementation across networks becomes easier. DTNs can be

deterministic or stochastic and based on the type different routing protocols are required.

Since the connectivity is intermittent, some destination nodes may not be available for certain

duration. Store-carry-forward routing is used in order to insure that when a packet arrives but its

destination is not available it is not dropped but stored instead till the next hop becomes

available. However when a node buffers data it is also important to select the next hop properly.

The DTN routing protocols can be categorized as deterministic or stochastic. Deterministic

protocols are based on the assumption that future typology of the network is known while the

stochastic approach assumes the opposite.

Figure 5 Time evolving behavior of ad-hoc networks

5.1.1 Deterministic Routing

Space and time routing, tree approach and modified shortest past approaches are deterministic

routing models. According to the tree approach, the source host builds a tree where by children

nodes are added and time is associated with nodes. Every node is able to record certain

information including the node that the message is travelling to and the earliest possible time to

do so. Through this tree, it is easy to identify a path which will take the shortest time and

minimum number of hops to deliver the message to the destination. Building this tree requires

that nodes exchange the profile information with their neighbors. Another essential requirement

is that the nodes are able to record the sequence in which the message has travelled.

Based on the available knowledge regarding a network, various DTN routing algorithms have

been proposed which define knowledge oracles

Contacts Summary

Oracle
 Aggregate statistics of the contacts

 Time-invariant information

Contacts Oracle Contact between two nodes at any point in

time

 Time-varying networks

Queuing Oracle Instantaneous buffer occupancies

Traffic Demand Oracle Present or future traffic demand

Depending on the available information, the dynamics of the networks are modeled as a space-

time graph and using the shortest path algorithm and dynamic programming, routing algorithms

are constructed. Under these deterministic approaches, the entire path from start to end is

determined even before the actual message transmission.

5.1.2 Stochastic Or Dynamic Routing

When the network behavior is random the decision to forward or drop a message is made using

history and mobility data of nodes and uses various dynamic protocols. As also discussed in the

previous section, in epidemic routing this decision to forward a message is made without using

forwarding probability and the message is flooded into the network can be forwarded to any

node except the one from which it was received. Another approach is where the source node

holds the message till it comes into communication range with another node. This approach

results in low overhead but long delays. 2-hop forwarding approach and have explored a

In the two hop framework the nodes have an infinite buffer and are able to move across the

network independently and for a certain time slot two nodes can get close. The message from

one node can be forwarded to any other receiver node that is one hop away. When this receiver

node comes near the destination node it sends the message. In this method the message is

delivered in two hops which may lead to delays but message delivery is ensured.

In Infostation model the infostations are distributed in the network coverage area and the users

are able to connect to the network when they are near the Infostations which provide high quality

radio signals however the connectivity is also intermittent as the destination node may be outside

the coverage of the infestation. The Shared Wireless Infostation Model (SWIM) combines

infostaton and epidemic methods enabling many Infostations to serve as a destination nodes.

However there is a tradeoff between capacity and delay.

The relay-based approach to makes use of the traditional protocols and mobility of the nodes is

used to disseminate messages through the mobile relay protocol. In this protocol storage

capabilities are integrated with routing when a destination node is unavailable the node relays to

its neighbors who store it and enter relaying mode in which traditional routing protocols are also

checked for a shorter hop. If no shorter path is found then it is stored instead.

In an opposite approach, the nodes estimate the probability of success of message reaching the

destination and make the forwarding decision based on this knowledge. Per Contact Routing

Based on Next Hop Information Only in which a bundle exchange takes place between two

nodes along with their destinations and probability of delivery. Upon receiving this bundle the

node removes its own messages and the messages that are more likely to be delivered by the

other node and then categorizes these messages based on drop strategies.

Another approach is called PROPHET (Probabilistic Routing Protocol using History of

Encounters and Transitivity). The probability of delivery of each node is determined for each

destination. The meeting nodes exchange summary vectors along with delivery predictability for

destinations. In Context-Aware Routing (CAR) there is an integration of synchronous and

asynchronous mechanisms. Under the synchronous mechanism when the packet arrives and the

destination path can be found it is forwarded immediately using the existing protocol. Ln

asynchronous method when the destination path for a packet is not there it is stored and then

transmitted to a node which has the highest probability of delivering t destination.

In Interrogation-Based Relay Routing (IBRR) the nodes make decisions after they interrogate the

other nodes regarding typology of the network and capacity of the nodes and forward message to

the node that has the highest chances of delivering to destination.

Per Contact Routing Based on Average End-to-End Performance Metrics include protocols that

base their decisions on the end to end performance including highest probability as well as the

shortest path to destination and the delay in between. Meets and visits (MV) is based on a

different mechanism to estimate forwarding probability by making use of the frequency at which

nodes meet in certain regions and this historical data is used to determine chances of delivery for

a specific path.

The shortest expected path routing (SEPR) protocol also uses historical data to determine

probability of forwarding keeping in perspective the time period for which two nodes connect

and then shortest route is determined. Similar approach is used in minimal estimated expected

delay (MEED) routing however it is independent of time and uses history to calculate expected

delay and tracks the connection and disconnection time of nodes which is relayed to other nodes

if a change occurs.

5.1.3 Model-Based Approach

All the research work discussed till this point estimates forwarding probability assuming that the

mobile devices tend to move randomly and unknown trajectories. In practice mobile devices

follow patterns that can be predicted to some extent for example while walking or driving. If the

motion pattern is known then the intermediate nodes can more accurately predict forwarding

probability. World models of mobile nodes are used in Model Based Routing (MBR) which

helps in making a better selection in determining where the receiver node is located without

flooding the network. Information such as road maps, building charts and user profiles are used

to determine the motion pattern.

5.1.4 Node Movement Control-Based Approaches

Certain approaches try to limit the delay by trying to control their trajectories. This involves

altering the trajectories of the host so that communication can be facilitated in ad hoc networks.

The mobile host is not waiting passively but actively modifying the trajectory. The message

from one host to another is done by changing host trajectories. This is useful when a network

partition comes up. Algorithms for trajectory modifications are based on two assumptions that all

nodes are known but host movement is unknown. The algorithm helps in determining when

location update should be shared by host, with whom it should be shared and how it should be

sent. A minimum spanning tree (MST) contains full connectivity in the graph. And it’s the

responsibility of the host to update its location and inform the nodes connected in MST. In

Virtual mobile nodes (VMN) it is assumed that an abstract node is moving in a predetermined

and predictable path and during this movement, collects and delivers messages. A real node

waits until the virtual node is in the vicinity and then transmits the message to the virtual node

which collects it.

When there is a mismatch between available capacity and demand in a wireless networks the

capacity can be increased by adding participants that can carry bundles and autonomous agents

can be added to the network but it requires a control algorithm for coordinating the movement of

agents. A control-based approach can be used to develop controllers for autonomous agents.

Latency, bundle latency, unique bandwidth, and bandwidth are used as control mechanisms. A

proactive and mobility assisted approach for message delivery in sparse networks in Message

Ferrying (MF). Communication services are provided using special mobile nodes called message

ferries which move in the deployment area and carry messages to and from nodes. A variation of

message ferrying is Node-Initiated MF (NIMF) where the ferries follow specific routes. A

service request is generated to the ferry when a node wants to send or receive a packet using long

range radio. The ferry adjusts its trajectory to for the exchange using short-range radios. This

minimizes message delay and increases system throughput and robustness. However designing

the ferry route is a challenge and synchronization is needed when there are multiple ferries.

There is a snake protocol as well that uses a snake-like carrier sequence in which the virtual

nodes always remain adjacent, paired and move in a pre-determined way and cover a certain area

in the network.

In the runners protocol the carriers randomly walk the network and sweep it for possibilities of

message exchange. A three tiered architecture is used in DataMules where spare sensors are

connected. Access points exist in top tier which can be used as repositories. DataMules are in

middle tier which are mobile nodes with unknown mobility patterns. These have high capacity to

store information and collect data from sensors which are in the bottom tier.

5.1.5 Coding Based Approaches

Erasure and network coding are recent developments with a purpose to encode the original

message into a large number of coding blocks. If the original message contains k blocks the

message will be coded into n blocks where n > k. replication factor determines the redundancy (r

= n/k). The probability of successful transmission link (Pi) is known. The blocks are sent over

path i in order to maximize probability of reception. The coded blocks are equally distributed

among the relays. It simply forwards the packets to the first “contact” the node encounters (all

contacts are equally good relays.

Erasure coding and estimation-based forwarding can be combined for optimization. The erasure

coding is used to code the original messages which are then forwarded to relays. A probabilistic

forwarding approach based on network can be used in the case of DTNs where the intermediate

nodes have the ability to combine packets that it has received so far and combine and send out as

a new packet. This reduces the number of transmissions.

5.2 On effects of Cooperation in DTNs [8]

The purpose of this paper is to evaluate the effect of three major routing algorithms on node

cooperation and examine the delay in message delivery and the resulting overhead incurred till

the message reaches its destination. Most of the studies that have explored DTNs have focused

more on the environment such as the size of the area the network covers. Behavior of nodes has

rarely been studied and often based on the unrealistic assumption that there is full cooperation

between the nodes. In reality the autonomous decision of the nodes is a major factor in

determining the performance of the DTN. The purpose of the paper is to examine the behavior of

the nodes in terms of cooperation when different routing algorithms are deployed, ways in which

non-cooperation between nodes can be detected and strategies to overcome this. The study has

been conducted under the framework of peer to peer and ad-hoc networks.

In order to improve cooperation, punishment mechanisms have been used which is a

manifestation of game theoretic approach whereby depending on each node’s behavior; different

incentives are provided to increase cooperation. In addition, advanced punishment methods are

used in the form of reputation mechanisms which monitor and record the actions of the nodes

and refer to these actions to handle the node. The study is carried out assuming that the

environment is non-cooperative.

Three routing mechanisms are studied. These mechanisms range from conservative scheme

where message copies are spread in the network solely by the source node to a fully aggressive

scheme in which the network is flooded with message copies. Transmission is measured until the

point the actual message stops spreading in the network and cooperation is measured through the

likelihood that a node will drop a message upon reception or forward it to another node.

The three multi copy algorithms used in the study are epidemic; two-hop and binary spray and

wait.

Routing Algorithm Description

Epidemic Message copies are exchanged whenever two nodes

encounter

 Provides minimum delay in message delivery

 Plagued by high utilization of bandwidth and buffer

occupancy

Two-Hop Maximum limit on the number of copies the source and

spread.

 Whenever it encounters a node which does not have a copy,

it transfers a copy up till the point it has only one left.

 There is a restriction on intermediate nodes to transfer their

copies to any other node except the destination node.

Binary Spray and Wait Each node transfers half of the copies it has to other nodes

upon interaction till only one copy is left.

 Faster than two hop algorithm.

A node that is aware of message delivery is termed as a notifier node and when this node

encounters an unaware node that possesses a message copy, the unaware node will become a

notifier and drop the message. There is always a tradeoff between the delay in message delivery

and overhead incurred. It is misleading to equate overhead with the number of transmissions till

the message is delivered and hence the following components are covered in this research:

The willingness of the node to spread a message is called cooperation and depends on various

resource and buffer constraints. In some cases a node drops a message while in others it may

keep the message without forwarding it. In Type I node behaviour, the message is dropped

(probability Pdrop) or forwarded as per rules of thealgorithm. The message is usually dropped

because of buffer limitations. In Type II node behavior, although the message is forwarded, the

probability is less than one (probability Pforward). This ussually occusrs because the node is facing

energy constraints. However the lack of cooperation may actually be a stragety that all the nodes

have adapted because of the constraints.

In order to quantify how the performance of algorithm is effected by cooperation,two metrics

have been used. The performance of the algorithm in a fully cooperative environment is

compared to performance with a ceratin degree of cooperation. The more deviation between the

performance in the two environments, the more sensitive the algorithm is. The other metric is

used for Type I where the performance is compared for a certain degree of cooperation in the

fully cooperative equivalent (FCE). The study was conducted in an 8km x 8km area with 100

uniformly distibuted nodes.

The performance of the three algorithms is shown in Figure 1 and 2. Minimum delivery delay

can be seen in epidemic routing however compromises on transmissions. In a fully cooperative

environment the delvery delay is low in binary spray and wait. However below 0.75 cooperation

degree, the delay performance of two hop is better than that of spray and wait. In less

cooperative environments the total overhead induded for binary spray and wait decreases while

Overhead
Components

Till Delivery: Number of transmissions till the message
is delivered to destination

Additional: Number of transmissions till the message is
delivered to destination

Total: Sum of till delivery and additional

the exact opposite happens in two hop.

In figure 4, the graph shows the cumultaive distribution function for all three algorithms with a

cooperation degree of 0.5. Two hop algorithm has a smaller delivery delay while the binary

spray and wait out performs it when the interval is less then 3 hours. The results reveal that the

comapritive performance of the two algorithms is different on the dimension of mean delay.

Figures 5 and 6 represent the sensitivity of the algorithms to cooperation. As far as the total

transmission is concerned, epidemic is the most sensitive algorithm. For mean delivery delay,

spray and wait is the most sensitive. Two hop method was least sensitive in both metrics.

Rogue node Behavior

Probability of refusing to
accept and store data meant

for another node

P nc

Refusing to relay data

P fc

5.3 Analytical Modeling to determine the impact of selfish or rogue behavior [10]

This paper was primarily our reference and benchmark for the implementation and simulation

performed. The purpose of explaining this paper is to study the impact of rogue node behavior on

data transfer for two popular schemes namely “unrestricted” and “two-hop”. This study aims to

reveal how vulnerable these schemes are when it comes down to node selfishness. Although we

only worked on portion of the results drawn, our implementation is extensible for future work in

the same direction.

Based on the node’s concern for storage space and energy consumption, selfishness has been

defined as follows for the purpose of this paper:

Rogue Behavior may be demonstrated deterministically or probabilistically by all network nodes

or a certain subset of the nodes.

Research design of the paper is such that assuming rogue nodes; the data transmission process

has been modeled as absorbing two-dimensional Continuous Time Markov Chain (CTMC). This

model is then used to study delay in message delivery. The performance level assuming full

cooperation and that assuming rogue nodes is then compared to arrive at a metric for

performance deterioration which has been termed as deceleration factor.

5.3.1 Modeling Message Delivery Under Rogue Nodes

The fundamental assumption of the study is that the time period in which a node pair interact,

follows a Poisson distribution with an intensity represented by 𝜆 which means that the

intermeeting time between nodes is distributed exponentially. The paper relies on this

assumption as it has been shown to show resilience historically in two models; random waypoint

and random direction mobility model. In these two models there are small communication

ranges (𝑅) while the total network area is represented by 𝐴. The mean relative velocity is

represented by 𝜈. The relationship between these factors has been modeled as follows:

𝜆 = 𝑐 × (𝜈×𝑅)/ 𝐴

𝑐 is constant = 1(1.368)

It is assumed that out of the total relay nodes 𝑁 −1, K nodes are selfish. Furthermore the two-

dimensional pure-birth process (n(t),k(t)) 𝑡≥0 can be used to describe how data progresses from

source to destination nodes for both these schemes.

Figure 1: The CTMC for the unrestricted (ur) and two-hop relay (2hr)

The generator matrix Q for both chains in figure 1, is as follows:

In the absorbing Continuous Time Markov Chains (CTMCs), W represents the finite number of

transient states while the state is represented by D. the above matrix is therefore a 𝑊×𝑊 matrix

where the rate if transition between transient states is represented by elements {𝑇𝑖𝑗}.

R is the sub matrix which is of the type 𝑊 ×1 matrix and contains the rate of transitions from the

transient to absorbing states. Apart from these, there are two other matrices with zero elements.

One of the zero matrixes is 1×𝑊 matrix and contains the vector of transition rates when transfer

occurs from absorbing state to transient states. On the other hand, the second zero matrixes

represents the negative sum of transition rates that are outbound from the absorbing state to the

transient states.

5.3.2 Message Delivery Under Unrestricted Relaying

According to the unrestricted relay method, message replication is not restricted. When the nodes

are fully cooperative unrestricted relaying shows least delay but at the cost of high resource

consumption. These transition states (non-zero) are as follows:

Transition states for column vector are as follows:

5.3.3 Message Delivery Under Two-Hop Relaying

In the two-hop method a node can receive a message from a source and relay the message to a

destination node only once. This method aims to optimize message delivery and resource

consumption trade off. These transition states (non-zero) for two-hop method are as follows:

5.3.4 Numerical Results

The deceleration factor (FD (N,K) is used to quantify the decrease in the performance of the DTN

when nodes exhibit rogue behavior. This factor shows the ratio of expected delay in message

delivery when K number of selfish nodes exists in the network as opposed to when the nodes are

fully cooperative.

Delay in message delivery for the two schemes is quantified as follows:

Figure2 (a): Expected message delivery delay

Figure 2(a) shows that the unrestricted relay method performs better than the two-hop because

the data transmission scheme is quite aggressive. The gap between performance decreases as

intensity and number of rogue nodes increases and disappears when all nodes are rogue.

Figure2 (b): Deceleration factor

Figure 2(b) shows the degradation in performance by plotting the deceleration factor and reveals

that unrestricted relay is more vulnerable to rogue nodes because performance degradation

occurs faster. However the fact that both methods are quite tolerant to degradation cannot be

ignored.

Figure3: Required number of network relay nodes vs. number of deterministically rogue nodes

The last part focuses on remediation actions for which this model can be used. The degradation

in performance can be recompensed to some extent by increasing the range of transmission and

velocity of the nodes. Another method can be to introduce robotic nodes which controllable

mobility patterns. Figure 3 shows that even in the worst scenario where nodes are

deterministically rogue, the performance can be preserved. When the limit for expected delay is

made lenient, both methods require a comparable number of nodes.

Under normal conditions unrestricted method has a performance advantage when compared to

two-hop however results reveal that this advantage decreases as the number of rogue nodes and

the intensity of rogue behavior increases. In absolute terms, the unrestricted relay method out

performs two hop however in the presence of rogue behavior, its performance declines faster

than that of two-hop. However both protocols displayed robustness against rogue behavior

because the decline in performance was fairly slow.

6 Why ONE Simulator?

6.1 Shortcomings in Network Simulators for OppNets before ONE

After gaining the important background and crucial knowledge about Opportunistic Networks,

fundamental to our research was the simulation of these networks. Opportunistic Networks are

the most complicated ones to simulate owing to their inherent definition of geographical

diversity, mode mobility and routing granularities. They are highly mobile and path formation in

any OppNet is an uphill task. On top of that, simulating such a path or route requires considering

several network parameters. Some of them include episodic connection, inter-contact time,

message size, underlying protocol and fluctuating signal strengths. It is a known fact that we

need to compromise on some of the parameters whenever we simulate such a network. Also,

time delay in completion of overall simulation and visibility is quite challenging to produce. This

can be frustrating and can lead to intuitional inferences if proper traces, GUI modeling and log

reports are not readily available.

6.2 Routing Specific and OppNet Specific simulators

Since OppNets are an evolution of MANETs, initially ns2 [16], OMNeT++ [17], dtnsim [18]

and dtnsim2 [19] provided functionalities such has routing, subsequent event simulation,

mobility modeling and the required opportunistic networking support. One of the biggest

challenge in OppNets has been the simulation of emerging protocols in order to research which

protocol suits the best in these challenged networking conditions. These simulators either focus

on routing or provide OppNet functionalities alone. A good balance between the required

features of Event Generation, Modeling and Message passing has not been fully achieved using

these tools.

Geographical movement of nodes for effective message traversal is at the heart of any OppNet.

Those simulators which specifically consider random generation of interactions between nodes

are impractical and unrealistic. Humans carrying devices or mobile Infrastructure equipped with

radios have specific patterns in their movement. Be it a social gathering or normal day at work,

the carriers follow a realistic path. The random generation of data for the optimal routing lacks

this localization information.

A community resource, CRAWDAD [20] is utilized by the researchers to get the wireless traces

which are based upon real experiments. In the recent past, their influx has increased ever since

OppNets have proved their importance as the next generation networks. The versions of dtnsim

and dtnsim2 provide a good support for OppNet routing protocols and support to import the

traces. They somehow narrow down the gap which exists in ns2 for movement models, but the

exact geography of contributing nodes, their interaction times (usually known as contact times)

are still based on approximation. For example, the traces gathered via the interface of the mobile

device can validate the Access Point (AP) being shared by the nodes (by the location/cell ID in

GSM or 802.11 Base station identifiers). This can approximate somehow the locations of nodes

but the exact X and Y coordinates up to the required granularities are still ambiguous.

6.3 Issues with real world traces import for legacy simulators

Another issue with import of real world traces into legacy simulators are their deficiency of

length contact intervals. Because such a measurement requires physical involvement of skilled

researchers or a trained group. The energy constraints tagged with the mobile devices only fulfill

the contact instant during the scanning part of experiment, the exact duration is usually

constrained owing to the limited battery power. Now this has a stern impact on OppNet

simulations because the ad hoc mobility of nodes always varies, and thus the actual realization of

inter-contact time cannot be accurately calculated. Every nodes' interface has a specific range

(e.g. 10m for a 802.15 Bluetooth, 10-100m for 802.11) and their precise contact times are needed

to simulate the connection establishment issues, message start/stop times, message drop rate,

success or failure and the required acknowledgment between the immediate nodes. Another

limitation in the import of external traces is their scarce count of subjects (i.e. people doing

experiments) involved in the measurement process. They are unable to depict or portray the real

life behavior (most importantly for our research question, the rogue behavior) and thus do not

represent actual communication and mobility paradigm. The researchers are usually proactive

with pre-defined routes and artificial contacts which fail to expose the loopholes and further

research challenges in OppNets.

6.4 ONE Simulator with Mobility, Visibility and OppNet Support

ONE simulator has emerged as a promising research tool in recent past [21], in order to cater for

the aforementioned tribulations in the existing MANET simulators. We can very briefly

summarized the core functionalities of the simulator using the three terms: Mobility, Visibility

and OppNet Support. They signify the tool's feasibility not only to the revolutionary OppNets

and DTNs, but also address our research question. However, as we describe in the next section,

there are difficulties with regards to rogue plug-in development in ONE, due to lack of

extensibility and support for malicious behaviors. Nevertheless, to the best of our knowledge this

tool is by far the most credible and widely used for research and analysis in the domain of DTNs

and OppNets.

The ONE simulator addresses the challenges posed in the research and simulation of OppNets.

The architecture and overview of main system components are described in Figure 6.

Figure 6 Architecture and Integration of ONE Core Components [21]

As can be seen, ONE simulator provides an integrated environment for a range of Movement

Models. These movement models can be simulated based upon the coordinates of any underlying

map (E.g. we developed our plug-in and performed simulations over the map of Helsinki,

Finland). Apart of that, the mobility data can be imported from external traces and routing

protocols can be applied on these movement models (Figure 6). Another configurable option in

the simulator is to not only perform the routing algorithms internally for message forwarding, but

by virtue of External Event Generators, the message passing information can be imported from

traces. This flexible combination of Modeling and Event Generation can then be fed to the

simulation engine, and visually observed in rich GUI available during the entire simulation

period. At the end of simulation, a number of reports can be extracted and be post-processed for

graphs or charts.

7 Methodology

7.1 Higher Level Approach

The following flowchart (Figure 7) describes, at a higher level, the approach we followed for

developing the plug-in in order to simulate and analyze the Rogue Behavior. Our work started by

exploring The ONE Simulator's technical workflows, process, tool and reporting functionalities.

After considerable experience with the simulator we setup the environment on Windows/Eclipse

IDE and then identified key packages that needed modifications for rogue behavior, along with

the customizations needed for validating the analytical results on average latency in [10]. After

the required implementation and verification of changes, we conducted set of experiments, each

run with 100 seeds and the corresponding rogue degree of nodes. Finally, the dataset was

analyzed and we deduced results and possible future work in this area.

Figure 7 Higher Level Approach for the Rogue Plug-in Development

Our experiments were designed in order to evaluate the mathematical modeling done in [10].

Although not all parameters could be configured as per equations formulated by the researcher in

that paper. We tried to bring our implementation and behavior as close to the pre-requisites,

keeping theirs as the benchmark. Our implementation was only a subset of their model based on

Poisson Distribution of nodes (as discussed in detail in Section 5.3). Also we did a few

enhancements in the implementation w.r.t Map Based Mobility Model rather than the trivial

Random Waypoint model which is hardly feasible in real world OppNets.

7.2 Plug-in for Mobile Rogue Nodes in ONE Simulator

We have used ONE simulator v1.5.1-RC2 [4] in order to develop the required plug-in for rogue

nodes induction, and their varying rogue degree. The ONE simulators' original design

architecture, class relationships, native APIs or interfaces do not provide any functionality with

respect to the maliciousness which could be extended. Therefore it was crucial to reverse

engineer and then develop the required plug-in to simulate the rogue behavior. This involved

•Reverse Engineering of
ONE Simulator Workflows
and APIs

•ONE Online community
Membership

•Sample runs with default
configuration

ONE Simulator
Investigation

•Platform Setup on
Windows/Eclipse

•Customization of
Core/Routing/Reporting
APIs for Rogue Plug-in

Rogue Behavior
Implementation

•Configuration of
parameters w.r.t
analytical model

•Running Experiments
with varying Rogue
Degree

Experiments
Design and
Execution

•Data Set Analysis

•Deductions and
Conclusions

•Future Work

Results and
Deductions

investigating and debugging plenty of Java classes, configuration files, reports and method

invocations and their respective executions, which was challenging mainly because of two

reasons:

 ONE is an open source simulator developed in Java (1.6) and any support with respect to

APIs, integration or extension by plug-ins is purely based on voluntary basis via an on-

line mailing group

 Basic documentation is provided along-with the simulator, but the workflows and

execution path supervised by the simulation engine, between the routing protocols,

movement models and reporting artifacts can be realized by rigorous debugging.

Right from the inception of this project, we were strongly engaged with the on-line forum for

online collaboration over the queries. The development of rogue behavior is rather a new

research field since most of the researchers tend to work and investigate over routing and

forwarding techniques in OppNets.

7.3 Metric for Observation

The metric chosen in our research question is Average Latency. Latency is usually defined as the

amount of time it takes a message to traverse from the source to the destination. Opportunistic

Networks are disconnected networks. The delays occurring during the transmissions and routing

of messages can be much more than the legacy networks, which is a known fact. However on top

of that, how the rogue nodes further deteriorate the performance of the network is our main

motive to investigate. The delays occurring may or may not be as drastic as opposed to the

infrastructure based networks, reason being the inherent mobility factor in opportunistic

networks.

7.4 Rogue Plug-in Implementation

ONE simulator provides an extensible software architecture for new routing protocols,

forwarding techniques and reporting functionalities. However, its main design aim was not to

provide extensions with respect to development or research over any malevolent activities by the

contributing nodes in an OppNet Environment. Figure 8 shows the package diagram and the

interactions between the major Java packages in ONE simulator.

Figure 8 Rogue Plug-in impacted packages (Highlighted blue)

The packages highlighted with circles are the ones needed customizations with rogue logic and

configurations of parameters for the APIs. We can discuss these one by one:

7.4.1 Rogue Behavior in ONE: Implementation of subset of Analytical Model

In order to compliment the analytical modeling done in [10] into the ONE simulation, we kept

the simulation parameters as close to the mathematical model as possible. As explained in

Section 5.3, the below diagram shows the number of selfish nodes, K, versus the expected

latency denoted by D. The authors in their modeling have made use of Epidemic as well as two

hop relay protocol, varying the total nodes from 20 to 50. The degree of rogue nodes was

simulated with two probability values namely Pnc and Pnf. Due to the scope and timelines of our

project, we have simulated Epidemic protocol, with Pnc varying between 0 to 1. Therefore the

dotted black line in the graph was intended behavior to be simulated and compared. But it should

be noted that since the implementation of our plug-in is completely generic, the two hop relay

protocol can be a small extension for future work and comparison between the two protocols.

7.4.2 Routing implementation for Rogue Nodes

 MessageRouter is the parent class for all kind of routers (e.g. Epidemic, Direct Delivery, Spray

and wait etc) in ONE. This abstract super class provides all the basic methods needed in the

routing functions of the simulator. Some of the important ones are to establish a connection

between any nodes, send or receive message, provide buffer information, creating new messages,

deleting messages and providing routing information. A complete list of methods provided by

this class are provided in Appendix B. Another abstract class ActiveRouter provides all the utility

functions needed for the current router active in the simulation. All kind of routers can override

the methods from this class and must extend this router if they are to implement any routing

scheme. The hierarchy between MessageRouter and ActiveRouter exists in the diagram give

below. Passive Routers are usually utilized for external event traces and unless they are being

invoked with relevant event traces they act as dummy throughout the simulation.

Figure 9 Hierarchy of Message Routers in ONE

In order to introduce the rogue behavior, a configurable and efficient algorithm was required so

that all the routers can utilize this functionality. The receiveMessage(Message m, Host from) was

overridden with the required logic and can be described with the following pseudo code:

On every invocation of the message receipt:

 Check if the rogue behavior is enabled in Input Configuration File,

 If NO then

 Put the message in the buffer and receive the message as per the protocol

 If YES then

 If the Router is willing to relay or store as per Pseudorandom Generator

 if YES then continue receiving normally

 If NO then check if the message was intended for the router itself

 if YES then put the message in the incoming buffer

 If NO then deny the message as rogue with probability P (0-100)

7.4.3 Core Implementation for Rogue Nodes

7.4.3.1 Rogue Flag and Rogue Degree

It was mandatory to change the core design of the simulator in order to create rogue nodes along

with the required degree of selfishness. We achieved this by creating a two new parameter in the

configuration file namely:

 Rogue Behavior Flag

When the flag is true, ONE starts to take into consideration that rogue nodes will

considered during routing and reporting.

 Rogue Degree

Rogue degree is defined as an integer parameter which varies from 0 - 100. This

parameter is considered only when the flag is set to true. If the flag is true and rogue

MessageRouter

PassiveRouter

ActiveRouter

Epidemic DirectDelivery

SnW ...

degree is 0, there is no impact on the altruism in the OppNet. For the rogue behavior to

come into operation the value should be > 0 and <= 100. For Rogue Degree = 100, the

router (i.e. the rogue node) acts completely selfish and denies all the messages.

7.4.3.2 Node Willingness decision

Once the rogue node flag is true, all the contributing nodes in the simulator behave rogue or

altruistic based upon a pseudorandom number. In order to be consistent with the random number

generator currently being used for Mobility and Movement Models, we used the same instance

of the RNG value. And the decision if a particular node is willing or unwilling is described as

follows:

On every instance of a contributing Node in an Oppnet:

 Generate a random number (0-100) via the global generator;

 Compare the value with the input Rogue Degree

 If the random number is > Rogue Degree

 Node will relay the message as being altruistic

 else

 Node will deny the message as ROGUE_DENIED

7.4.3.3 Creating Rogue Hosts

The routing behavior and attributes of rogue nodes are different from the altruistic nodes.

Therefore it was necessary to create a separate pool of node which will be exhibiting varying

degree of altruism during the simulation. The class SimScenario is responsible in ONE for taking

all the configuration parameters from the input file (The actual file is shown in Appendix B) and

then creating the connection interfaces, listeners, simulation settings and then finally creating the

hosts on the basis of inputs. This was customized this class to create rogue nodes, with the exact

same settings as it would be for the altruistic nodes, except that a rogue node will now deny the

message with a rogue degree, as modified in the DTNHost class based on the willingness

decision.

On every set up of the scenario for the simulation run:

If the Rogue Behavior is disabled

 Perform simulation with altruistic nodes

else

 Keep all the simulation settings and parameters same

 Create all the nodes being rogue, associating each with a Rogue Degree from the input

 file

7.5 Experimental Setup

7.5.1 Platform for Scenario Simulations

ONE simulator can be deployed and customized in Linux, Unix and Windows platforms. All the

experiments were run on a Windows machine with the following details:

Hardware: Intel (R) Core 2 (TM) i5-3230M (L2 cache 3MB @ 2.6GHz/Memory 8GB)

Operating System: Windows 8.1

7.5.2 Eclipse Settings

ONE Simulator version 1.5.1-RC2 comes as an executable with no customization option

available. In order to perform the necessary modification for Rogue implementation, the project

was setup on Eclipse IDE. Since it has now become a requirement for researchers, there are a

number of steps are now available online [22].

7.6 Verification of Rogue Behavior in ONE

7.6.1 Verification of implementation and existing functionality

After the configuration of necessary parameters in the input configuration file, experiments were

designed in order of varying rogue degree for all the nodes. As discussed, that gave a more

realistic pattern that actual rogue nodes follow. However, before the experiments could start to

observe the average latency impact, keeping the original logic and existing implementation of

ONE simulator existing OppNet protocols, movement models, simulation settings and hundreds

of other features intact was inevitably mandatory to verify and validate. One methodology we

came up with was to cover the boundary conditions in the rogue degree and verifying the rogue

enable/disable flag. This has also been recommended by some of the peer researchers via the

Knowledge Base and online mailing digest for ONE simulator [23].

Keeping the rogue flag enabled:

 Configure the Rogue Degree <= 0 and keeping rest of the parameters same, measure

 the values of Average Hop Count and rogue_denied on Epidemic Rogue Router.

Keeping the rogue flag disabled:

 Irrespective of the value of Rogue Degree, measure the same parameters, they should

 be equal.

Figure 10 Message Stats Report for both Rogue Degree = 0 and Rogue Behavior set to false

As shown in Figure 10, there were no denial of messages in either case since all the routers were

relaying the messages in an altruistic manner. Also the hop count average remained the same for

a single run. This verified that the implementation of rogue behavior had no side effect in the

existing routing, mobility and reporting functions of the simulator. A detailed explanation of the

metrics mentioned in this report is given in Section 7.7.3.

7.6.2 Verification of implementation of Rogue Behavior

After verifying the existing APIs and workflows were intact, we wanted to confirm if the Rogue

Behavior is correctly implemented as per the desired requirement. That is, each router should

behave rogue with the required amount of degree. The previous verification also gave a hint that

when there no rogue routers, system was working in a usual way.

For a second check, we performed the following experiment:

Keeping the Rogue Degree > = 100:

 Keep rest of the Scenario Parameters intact and verify the Average Hope Count to be exactly

 equal to 1.

When the rogue degree was configured greater or exactly equal to 100, all the routers were rogue

in the simulation. No router relayed any message for the neighboring nodes and all messages

were denied. In that case, although the underlying routing was based on Epidemic Router, it

behaved like a Direct Delivery Router. Therefore the average hop count was exactly 1. All

routers acting as sources had to find their destination individually for the final delivery of

messages. This was validated by three experiments, since it was the most crucial factor to

determine the correct implementation.

First we verified the report as shown in the Figure 11:

Figure 11 Average Hop Count is 1 on setting Rogue Behavior 100%

Secondly we verified the individual stats of all the sources and destination by making use of

GraphViz as a drawing tool to visually display the node interactions. Since the number of

messages were huge, depending upon their creation every tens of seconds, we show a snapshot

of some sources and destinations on their encounters in Figure 12.

Figure 12: Individual Sources transmitting the messages directly to the destinations on Rogue Degree = 100

Thirdly, in order to verify that it was not the case generally we configured a nominal value of

rogue degree and passed the Delivered Message Report to GraphViz again. In that case, the

nodes showed a usual hop count. Again, only snapshot is attached here in Figure 13.

Figure 13: Rogue Degree other than 100%

As an example the node p19 delivers a message to p28 via p20 in the bottom right corner of the

graph. The average hop count in that scenario was 2.56.

7.7 Experiments with Varying Rogue Degree

After the necessary verification and validation of intended behavior, rest of the project work

involved in designing the experiments with varying rogue degree and in the presence of rogue

behavior. We varied the rogue degree in the maximum feasible steps in order to provide

sufficient data for analyzing the trend of change in the average latency. Rogue Degree 0, 20, 40,

60, 80, 90 and 100 was chosen for each simulation scenario. Each Scenario was executed with

100 different seeds of Movement Model so as the random generation of routing and message

passing data can be averaged and any deviation could be compensated.

One of issues we faced was that ONE simulator does not allow execution of scenarios in parallel.

Although many permutations can be designed for a set of experiments but still they are fed to the

simulator in sequence. Our set of experiments had 2 concrete iterations over the period of time so

as to learn not only the time taken for each scenario can be measured, and learn for the next

iteration. So before running the final and second simulation we had learnt that running each

scenario with 100 seeds with each simulation time of 12 hours (time on clock around 2hr, since

ONE fast forwards the time slots) would not be feasible to run in a sequential manner. The

estimated time would be around 14 hours for such complete execution of experiments. In order

to accommodate this, we used a work around of creating multiple input configuration files with

the specific rogue degree and ran each scenario with 100 seeds in parallel. The net simulation

time for all the runs with every corresponding configuration settings file was then reduced to

almost 8 hours in total.

7.7.1 First Iteration

The first iteration was performed immediately without any relevance with the values of count of

nodes, speed, or range identical to the paper we wanted to compliment. The intent was to use the

default parameters of ONE simulator and experience the execution time. This was an initial run

with 5 seeds for each value of rogue degree:

Rogue

Degree

0 30 60 90 100

Latency (sec) 4761.07634 4862.1358 4803.75412 4779.77438 10321.99832
Figure 14 First iteration with default ONE settings and corresponding latency values

Figure 15 Snapshot of ONE simulator running in GUI mode. The green circles represent the range of the respective node,
denoted by p<n> where n is the sequence number. Each scenario is listed as the Title, CS-645-0-1 in this case.

7.7.2 Second Iteration

The second iteration was performed after two lessons learnt from the first one:

 The ONE simulator can execute the configuration parameters of a particular scenario in

parallel, if there are multiple configuration files available.

 In the first iteration, we used graphical mode in order to see the mobility of nodes and the

event log (for message information). If we were to run with more discrete rogue degree

values, 100 seeds/scenario, the analysis can be overwhelming considering the amount of

information and data displayed on the GUI. So we decided to execute the scenarios in

Batch Mode of the simulator (Shell Command: -b <Number of Runs> <Input Settings>)

Figure 16: Terminal logs when running ONE in Batch Mode

A snapshot of one of such run with seed 1 and rogue degree 100 is shown in the Figure 16 above.

As described above the Simulation Scenario is named as CS-645-100-1 where 100 represents the

rogue degree and 1 is the seed value. Each simulation provides the logs if the Rogue behavior

was enabled or not. The stats are also provided for the interim simulated and actual timestamps

during the simulation.

In the second iteration we conducted 7 experiments in parallel with 7 different configuration

files. In order to draw the graph between the rogue degree and the intended metric, average

latency, we kept rest of the parameters intact. Those parameters are explained in the section

below:

Experiment

No.

Rogue

Degree

Rogue

Flag

1 0 True

2 20 True

3 40 True

4 60 True

5 80 True

6 90 True

7 100 True

Figure 17 Number of experiment with varying rogue degree

Scenario

End Time

(s)

Host

Groups

Rogue

Behavior

Transmitter

Range

(m)

TTL

(s)

Seeds Walking

Speed

(m/s)

43200 1 True 50 43200 100 0.5 to 2.5

Figure 18 Some important input parameters

7.7.2.1 Configuration Parameters for all the Experiments

It is also important to explain the modified parameters, which were needed to bring the

simulation conditions and configuration of network attributes in synchronization with the

analytical model. There are plenty of configuration parameters but not all require our attention

for the specific scenario needed for performing experiments on rogue behavior. The important

parameters are discussed below.

7.7.2.1.1 Simulation Time for Scenario

Simulation time was kept 43200 seconds or 12 hours. While the analytical model depicts the

simulation scenario as an absorbing CTMC following a Poisson Distribution with t>0, any

OppNet simulation is time bound. We simulated the network with multiple runs to make sure

that the results achieved are not impacted by the limitation of net simulation time. A scenario

with a bound of 12 hrs is being used by many researchers and is considered sufficient to analyze

the impact of desired attributes [5].

7.7.2.1.2 Scenario Name Settings with Seeds

One of the major objective of this project was to comprehensively execute the simulations runs

so that any deviations due to random seeds can be compensated by the handsome average

statistics. As discussed in the Dataset section in detail, it lead to creation of hundreds of files

containing network parameters. A Scenario convention followed is given below:

CS-645-%%Scenario.rogueDegree%%-%%MovementModel.rngSeed%%

Where the term rogueDegree is replaced by the input degree and rngSeeds denotes the seeds

value for every run. It is useful for reporting and analysis purposes and was obviously, not

required in the mathematical modeling.

7.7.2.1.3 Number of Host Groups

ONE simulator by default creates 6 host groups ranging between Pedestrians, Cars and Trams.

(Actually it is up to the researcher to define any number of groups). For the purpose of keeping

similarity, it was required to stick to one kind of hosts. For all the simulation runs, Pedestrians

were chosen as a single group involved in the simulation.

7.7.2.1.4 Transmitter Range

Transmitter range was selected to be 50m as per the value chosen for the mathematical model.

The type of interface was Bluetooth interfaces and every node had one such interface to

broadcast the messages.

7.7.2.2 Output Reports to extract the Data Set

Every run of simulation scenario resulted in three reports. These reports are given below:

7.7.2.2.1 Message Delay Report

This report provides the cumulative probability of delivery of messages sorted by the delay

values of each message. It was useful to check the delay values and the probability of delivery at

that very successful transmission of message.

7.7.2.2.2 Message Delivery Report

This report provides the amount of messages delivered, delivered/created, every time a message

is created or delivered.

7.7.2.2.3 Delivered Message Report

A big number of messages and connections (up to hundreds and thousands) of messages are

generated during the simulation of rogue behavior. Sometimes it is necessary to graphically view

and verify if the message routing is as per the desired routing protocol and implementation

performed. This report generates the message traversal expressions recognized by the famous

GraphViz [24] tool. A sample report is shown in Appendix A. A few graphs generated by

making use of this tool are shown in the previous section in Figure 12 and Figure 13.

Snapshots of some of the reports taken from the repository are shown in the Appendix A at the

end of the report.

7.7.2.2.4 Message Stats Report

This is the main report we were primarily interested in. It provides all the useful summaries of

metrics e.g. Average Latency, Average Hop Count, Number of created messages, relayed

messages and other important ones. Since the metrics in this report were crucial, we provide a

brief explanation of the next section.

7.7.3 Explanation of Metrics in Message Stats Report

We have summarized the definitions of metrics as per the logic defined in the algorithms in the

ONE simulator. These definitions although appear straightforward, but can infer different

meanings, especially when some of the terms seem equivalent but they are actually not. We were

mainly interested in Average Latency, which is highlighted blue in the below table. However a

correlation between these metrics always exist, where an increase or decrease in one is directly

or inversely proportional to the other, or has no impact in certain conditions. Therefore it is

important to understand the difference between these metrics:

Created It denotes the total number of messages created during simulation.

The count does not include replicated messages for the relaying or

forwarding purpose. Every node in the simulation creates the

messages as per a single configurable value (every x seconds).

Started (Relayed +

Aborted = Started)

It describes the total number of message transmissions started

between network nodes. It is the sum of number of relayed and

aborted values (explained below). The value is different because it

gives the overall picture of message entities in the simulation.

Relayed Number of successful transmissions between nodes are denoted by

Relayed count. It does not include the unsuccessful or aborted

transmissions. This value increase many folds in dissemination or

replication based protocols because the multiple-copy nature of

those protocols implies more proliferation of messages as per the

logic. Epidemic Router by far leads to great the greatest count of

relayed messages since every node infects every other node on its

encounter, and exchanges the missing copies of messages (Section

4: Epidemic Router)

Aborted The count of aborted transmissions between nodes. It is different

from dropped messages.

Dropped Describes the total count of messages dropped from nodes’ buffers.

It can be due to a TTL timeout or Buffer space full reason.

Removed The pseudo-code for this metric is defined as follows in The ONE

simulator:

if delivered

then

 true

else

 drop from buffer

If the message cannot be delivered due to any reason and is

dropped from current node's buffer, a value in the removed count is

increased

Delivered It just denotes the total number of successfully delivered messages

in the overall simulation period. The delivered message has an

acknowledgment status of RCV_OK as per the rules in ONE

simulator.

Delivery_prob This metric describes the message delivery probability at the end

of the simulation. Sometimes it is also referred to as the delivery

ratio since it is the ratio between the delivered messages and

created messages. As described in the previous sections, one of the

main objective of OppNets is to maximize this value

Response_prob We never used this metric since the message acknowledgments

back to the initial source via a number of hops are not configured

(and typically not required in OppNets) in The ONE simulator. But

the logic is defined, if needed for future use, as follows:

 if (protocol supports response)

 then

 applicable

else

 0.000

Overhead_ratio

It denoted an assessment of bandwidth efficiency during the

simulation and is calculated as per the following formula:

((NumberOfRelayedMessages – NumberOfDeliveredMessages))

/NumberOfDeliveredMessages

Latency_avg It is the average message delay from creation of message from the

source to its delivery to the destination. The term delay and latency

are interchangeably used in OppNets. This is the main metric used

in our evaluation criteria, in order to measure how the latency is

impacted with the change in rogue intensity and behavior of nodes.

latency_med It denoted the median of average message delay value at the end of

the simulation.

hopcount_avg This is an important metric to refer to after the end of simulation

because it counts the average number of hops which were needed

between source and destination nodes, in order to deliver the

messages as per the underlying routing protocol. In OppNets, the

routing protocol Direct Delivery always has the value 1. For the

other protocols, the value can vary depending upon the altruism,

the geographical positions of nodes, their intermeeting times and

many other factors (Appendix C for all the parameters)

hopcount_med It describes the median of hop count values throughout the

simulation time

buffertime_avg Average time that the messages stayed in the buffer at each node

The formula is: (creation time/receiving time) (next hop)

buffertime_med Median of buffer time values

rtt_avg Round Trip Time Average – Average time from creation to

confirmation of delivery

8 Results

All the set of experiments were executed without any error or exceptions. The batch mode of The

ONE simulator ran parallel in 7 streams produced all the logs and reports as explained in Section

7.7.2 (Also refer to the git repository under 'reports' directory of ONE simulator). After every run

of the scenario, the directory populated with the corresponding number of reports. The files can

be post processed for further analysis and deductions. A total number of 2100 files (7

Experiments*100 Seeds*3 files per Experiment) were output after the simulation. In order to

take the average of latency values for our evaluation against

We describe the detailed dataset extracted as a result of all simulation runs in the next section.

8.1 Dataset and Explanation

Each experiment resulted in three reports (output files showing required metrics) as explained

before. Our main metric to observe was Average Latency which is dumped in Message Stats

Report (Section 7.7.2.2.3). However for further investigation we often referred to Message

Delivery Report, Delay Report (Figure 18) and Delivered Message Report. These reports contain

interim statistics about messages as explained in the previous sections. We will primarily be

focusing on the metrics obtained from Message Stats Report (Section 7.7.3). These contained the

important metrics aggregated after each experiments we performed.

Figure 19 For Rogue Degree = 20, this file shows the average latency calculated after every run of experiment with a different

seed. All these 100 values were again averaged to draw the graph with respect to the Rogue Degree

Figure 19 shows the average latency values obtained after 100 runs with different seeds with a

single rogue degree. In this very case, the rogue degree was configured as 20. The values of

average latency for the first six experiments did (up till rogue degree 90) did not show any major

variations. In fact, the lowest average value was around 5860.299 seconds at a much higher

degree of rogue nodes. All the seven files each with 100 average latency values can be seen in

the project repository. We also tried to use another mobility model and tried to vary the number

of nodes involved in the simulation, to figure out why the latency value was not increasing but

the pattern remained the same. In the Section 8.2 we discuss this in more detail. We also took

help from the Message Stats Report to analyze the rest of the metrics.

Figure 20 For Rogue Degree 20 the Message Stats Reports (All the metrics explained in Section 7.7.3)

Figure 20 shows the individual report of all the aggregated values of metrics obtained after every

simulation run. We picked a random seeds value for the report as shown in the Figure. The total

number of message created for this scenario were 1458. Since the router was Epidemic we

expected a huge number of message transmissions considering the message was being created by

Figure 21 For Rogue Degree 80 the Message Stats Reports. Notice the a subtle increase in delivered messages and almost 475

seconds increase in the delay. However, the delay was minimized by the average values later on

each node every 25 to 30 seconds. Excluding the warm up period (when the count of creation of

messages is not taken into consideration), a total of 28139 messages were created. Out of these,

23876 were dropped due to connection loss, rogue denial and possibly the buffer limit of the

node. We compared these stats to one of the report having the rogue degree of 80 (Figure 21).

Notice that these are individual seed value not the overall average. If we compare the latency

values between the two reports, there was an increase of 475 seconds in the delay. Also, there

was a very subtle increase in the delivery ratio of the messages. Though we expected this value

to decrease as the rogue degree is increased. This result was surprising, as we deduce and

compare in the next section. Finally we compared these two seed values with the maximum

rogue degree of 100, when all the nodes were denying every other message received from the

neighbors.

Figure 22 Rogue Degree of 100. The latency value was almost doubled with a hop count of 1

Figure 22 shows the snapshot of the report containing the message stats obtained after a running

the scenario with rogue degree of 100. All the nodes were acting selfish all the times during this

simulation. The total number of messages created were again the same i.e. 1458. The total of 702

transmissions started only when the source and destinations had the mutual contact. Therefore

the equal number of 702 messages were relayed. We could not figure out the 1 dropped message

in this case, which may have been created at the end of the simulation and before it could find

the corresponding destination, it got dropped. No messages were aborted or removed considering

the only immediate neighbor in contact were both source and destination.

The delivery ratio was decreased to 0.4815 in this case. But the critical deviation in this scenario

was the doubling of average latency to 10604 (The average for all 100 seeds was 11039

seconds). The standard deviation in this case was 338 seconds. The median value shown as

7786.7 is only for one seed over one simulation. The average hop count came out to be exactly 1

since no intermediate nodes were involved for relaying. Since we configured the buffer time till

the end of simulation, no messages were dropped due to time out of the buffer value.

Although not much useful for the overall results, we made use of Message Delay Report less

frequently to monitor the delay value at the cumulative probability value over the period of

simulation, as shown in Figure 23.

Figure 23 Message Delay Report. Each line shows the delay of message and cumulative probability at that instant

Overall there were no considerable fluctuations in the our intended metric after varying the rogue

degree from 0 to 90%. Average latency was apparently not impacted how much a node was

behaving rogue during these configured values. It is only when all the nodes started to behave

selfishly and denied others messages, average latency had a drastic increase to almost double the

value during the entire previous simulation runs at varying rogue degrees less than 100.

8.2 Deduction/Analysis
As discussed in Section 7.7.1, we mainly performed two set of iterations. The first iteration gave

us a high level picture of how the simulator was behaving after we implemented the rogue plug-

in ONE. The graph was not very credible since there were only 5 seeds per rogue value. The

latency value started from 4761 depending upon the world size parameters, as can be seen in the

repository.

Figure 24 First Iteration of Latency against Rogue Values

In Figure 25 we again draw our benchmark for the comparison of trend of Average Latency

against the rogue values. As described in the implementation section, our simulations and results

were targeted to a portion of the analytical model. The value against Pnc = 1 in the dotted line of

the graph with 50 nodes represents the pattern of Average Latency against the rogue or selfish

nodes. The graph drawn as a result of our implementation and experiments is shown in Figure

26, as a result of 2nd iteration of experiments during the project.

The graph shown in Figure 26 shows the relationship between Average Latency values and the

increasing Rogue Degree from left to right, as a result of the experiments performed in the 2nd

iteration of experiments. As opposed to the modeling based on Continuous Markov Chain and

Poisson Distribution (Section 5.3) of nodes, the simulation in ONE was a discrete pair of values

(Average Latency, Rogue Degree). Therefore the graph was expected to not be having as smooth

transitions, especially after the results we got from the Rogue Degree 90 to 100. Also, the author

in [10] made use of Random Way Point as a Mobility Model, which we have discussed is less

realistic than the one we used (Shortest Map Based Model). Therefore the starting values of

Average Latency at Rogue Degree = 0 can vary between our simulation and the modeling value

done previously. It is the pattern that matters the most over the period of fluctuating altruism in

the nodes but not the initial values.

1 2 3 4 5

latency 4761.07634 4862.1358 4803.75412 4779.77438 10321.9983

Degree 0 30 60 90 100

0

2000

4000

6000

8000

10000

12000

La
te

n
cy

 A
ve

ra
ge

 in
 s

e
co

n
d

s

Figure 25 Our evaluation was targeted against the black dotted line representing Epidemic Router with Pnc = 1 and N = 50. As
discussed in Section 5.3.

Figure 26 Iteration 2 of Average Latency versus Rogue Degree. Each experiment with the respective degree was run with

100 seed values

1 2 3 4 5 6 7

Degree 0 20 40 60 80 90 100

latency 5904.77 5900.68 5873.77 5895.51 5860.29 5917.00 11039.7

0

2000

4000

6000

8000

10000

12000

A
ve

ra
ge

 L
at

e
n

cy
 in

 S
e

co
n

d
s

Percentage of Rogue Node nodes with increasing degree

Average Latency against increasing Rogue Degree: Epidemic
Router

It also depends on the simulation area utilized by the mobile nodes involved in message

transmission and receiving. As discussed in the configuration parameters, the map area used by

the previous researchers was quite small (1000m x 1000m). We realized an area bigger than that

(4500m x 3400m) to simulate a map based movement with WKTs (A new feature of ONE

simulator). Larger area was specifically chosen in order to cover the default layout of Helsinki

map and the default parameters of WKT files.

The difference resulted in the starting values of Average Latency, which in our case was more

than twice (5905 seconds for our simulation and around 2200 seconds for the analytical model).

However, it is the pattern of change which is important on varying the rogue degree. Moreover,

there are a few parameters like contact duration (lemda = 0.37 contact/hr) which was not

available in ONE. And parameters like buffer size and RTT were not mentioned in the paper. But

to be on the safe side, we configured the parameters optimally (i.e. we configured the buffer big

enough to last until the end of the simulation. TTL value was set so that no messages will be

dropped on the basis of timing out, since the intent was to monitor the denial of messages from

rogue nodes primarily) so as to bring the simulated scenario as close to the modeled graph.

As shown in the graph, there are very little fluctuations in the latency value from Rogue Degree

0 up till even 90. This coincides with the results achieved by earlier researchers. The noticeable

increase in the delay happens after 90% of the nodes behave rogue. Whereas we could see a very

smooth transition in the paper results, our discrete value of rogue degree of 100% had a sudden

jump from an average latency of 5917 seconds to 11040 seconds. This is referred to as an

exponential increase and leads to a very important deduction as explained below.

With the nodes moving at a constant speed of 0.5 to 2.5 m/s, the mobility offered by the altruistic

nodes was a powerful aid which negated the rogue behavior instilled in the scenario at the times

when nodes acted selfish as per the rogue degree configured for the scenario. The times when

nodes were acting altruistic, they dominated successful message delivery over the rogue ones.

The contacts and Shortest Path Map Based movement model was though randomly generated via

the RNG seeds, but it offered very frequent interactions with the alternative nodes. And since we

wanted to keep our scenario in sync with the modeling, we kept the buffer and TTL values big

enough so that message dropping due to these metrics can be ignored. Only when the nodes were

close to 100% selfish, then every node had to wait for its contact with its destination. This is the

reason (as also discussed in the paper), the mobile OppNets are less vulnerable to the malicious

attacks. And this also deducts that compared to those of legacy infrastructure based networks

which are drastically impacted by the rogue access points, OppNets can utilize alternate means

for message relay in these conditions.

Another important difference in our implementation and the mathematical model was the

inherent definition of rogue behavior. As per our investigation and peer collaboration [23],the

ONE simulator architecture, as discussed previously, is not designed for evaluating the security

or scenarios which take malicious behavior into consideration. Therefore we could modify the

core design by introducing the rogue degree as a random attribute to every node as per the RNG

generator. Whereas, the it was straightforward for the author of the paper to model the selfish

nodes in the formula:

Where 'ur' represents the unrestricted or epidemic router and N is the total number of nodes, with

the presence of 0 rogue nodes. The authors model the increase in the rogue nodes (K) until K = N

- 1, which we simulated in our case as the 100% rogue degree. Although in real world, our

implementation is more practical since a mobile node might not be deterministically acting rogue

all the times. Therefore a random association of rogue degree was more suitable. However, it can

lead to differences at higher level of rogue degrees and the associated contact time between the

nodes. Whereas, a node acting rogue with a probability of X% can vary its altruism level during

the contact time with a set of nodes, a completely rogue node at that very instant will be rejecting

all the messages relayed to this. This could be one of the reasons at higher level of rogue degrees,

the mathematical model showed deterioration in the latency values.

The analytical model also draws the conclusion that both the two hop relay and epidemic router

are inherently resilient by drawing the deceleration factor, on comparing the two protocols. We

were not able to make such a comparison since we dealt with Epidemic Router only. However,

as per their results, Epidemic Router's performance deteriorates more severely than the two hop

relay. It is also shown in [5] and the numerical results in [8].

9 Conclusions and Future Work
Our research started with exploring the enhanced features and functionalities of Delay Tolerant

Networks/Opportunistic Networks. This involved a comprehensive literature review on the

subject area. Opportunistic Networks undoubtedly add the flexibility, reduce the inter

networking technologies disparity and bridge these gaps by effectively bundling the important

message communication at the Bundle Layer in the OSI stack. They have their pros especially

making use of mobility and trust, but their cons also include indefinite delays and

acknowledgements whatsoever. However, the emergency and disastrous conditions demand

some mean to transfer useful information (Imagine the criticality and efficacy of an OppNet

during recent earthquake in Nepal on April 25, 2015, where internet connectivity was severely

degraded [25]). The notion of Rogue behavior can exist in these networks especially due to

energy scarcity in the mobile devices mostly, and some intermediaries can act selfish by only

taking part in the network for relaying their own messages.

As per our literature review, we could find 4 dedicated and critical publications by researchers in

this area, and only a one of them considered simulating the OppNets in ONE simulator, taking

Rogue Scenarios in consideration. We took one of the publication as a reference model for our

simulation in The ONE simulator, as the modeling was done on the parameters we could see

feasible for our project and scope of work. Our research question involved how the latency is

impacted if the percentage of rogue degree in mobile nodes is increased. The results for the

unrestricted relaying protocol (i.e. Epidemic Routing) showed correlation with the trend of

deterioration of latency values as modeled in the chosen paper, with a few exceptions as detailed

in Section 8.2. We provided a flexibility to make the scenario more realistic than the past paper

by taking into account Map Based Movement rather than a hypothetic Random Way Point

movement.

Our plug-in implementation for The ONE simulator, and the subsequent set of experiments

showed that Map based mobility models are quite less vulnerable to rogue nodes. In particular,

for areas of smaller size, even a rogue degree of 90% has negligible impact on the average

latency of the network. Although the simulation was not based on real world mobility and

connectivity of an OppNet, the synthetic node movements in Epidemic routing provide a good

motivation to compare and contrast the results with real world traces, and intermeeting with the

nodes. Two differences in our implementation was configurable fully rogue nodes and the

absence of comparison with the two hop routing protocol, which we could not take into

consideration due to the feasibility and scope of the project.

Having said that OppNets are less vulnerable to rogue node as compared to infrastructure based

networks, their detection in an OppNet is more challenging and is currently a very active

research area for OppNets. There are many efficient schemes for detecting malicious attacks for

classical networks since their static topology leverages many methodologies to aid this objective

[26]. After assessing the impacts on OppNets, the detection and penalization of rogue nodes can

be investigated for future research areas in this regard. More importantly, most of the research

for evaluating the rogue behavior is done on simulated scenarios based on random number

generators (RNG). ONE simulator provides a flexibility to import wireless traces in the form of

well known texts (commonly referred as WKTs), with respect to mobility as well as the

connection establishment granularities between the corresponding nodes. To the best of our

knowledge, there has been no paper published on evaluating the rogue behavior on the basis of

real world wireless traces. The plug-in developed in this project can readily aid in this regard.

One of the interesting future research area involve the incentives and penalties to encourage the

cooperation in OppNets. There have been a few approaches like IRONMAN [27] which makes

use of proliferation of useful information about the contacts who behave selfishly, and hence

broadcast the repute of individual nodes for cooperation. Opportunistic Network is still a very

immature field in terms of routing protocols and reliable communications, the research,

implementation and simulation of rogue behavior has paved way for many challenging

dimensions in OppNets, along with the ease it would provide for future research and

development using The ONE Simulator.

Appendix A

Figure 27 A ONE input simulation file. Rogue Behavior and Degree parameters are highlighted

Figure 28 Plug in for creating Rogue Nodes from the SimScenario Class

Figure 29 The algorithm for denying the rogue messages. Customized in Message Router Class

Figure 30 Data generated by Delivered Message Report in order to draw graph in GraphViz tool [24]. E.g. A message from
node p37 was sent to p0 via p27 in the last line of the report.

10 Appendix B

Figure 31 Methods provided by class MessageRouter

11 Appendix C
11.1 Input configuration file for Experiments.
The input settings and configuration file has been copied here for reference. Please note the parameters
related to Rogue Degree were varied accordingly as described in the Results section.

Default settings for the simulation
Plug-ins added for CS 645, Maynooth University (2014-2015)
Scenario settings
########################
#Scenario.name = default_scenario
Scenario.name = CS-645-%%Scenario.rogueDegree%%-%%MovementModel.rngSeed%%
#######################3
Scenario.simulateConnections = true
Scenario.updateInterval = 0.1
43200s == 12h
Scenario.endTime = 43200
Define 6 different node groups
Scenario.nrofHostGroups = 1
#Scenario.nrofHostGroups = 6
CS 645 Introduce Rogue Behavior and degree
Scenario.rogueBehavior = true
Scenario.rogueDegree = 0
Interface-specific settings:
type : which interface class the interface belongs to
For different types, the sub-parameters are interface-specific
For SimpleBroadcastInterface, the parameters are:
transmitSpeed : transmit speed of the interface (bytes per second)
transmitRange : range of the interface (meters)
"Bluetooth" interface for all nodes
btInterface.type = SimpleBroadcastInterface
Transmit speed of 2 Mbps = 250kBps
btInterface.transmitSpeed = 250k
########### CS 645
#btInterface.transmitRange = 10
btInterface.transmitRange = 50
############
High speed, long range, interface for group 4
highspeedInterface.type = SimpleBroadcastInterface
highspeedInterface.transmitSpeed = 10M
highspeedInterface.transmitRange = 1000
Group-specific settings:
groupID : Group's identifier. Used as the prefix of host names
nrofHosts: number of hosts in the group
movementModel: movement model of the hosts (valid class name from movement package)
waitTime: minimum and maximum wait times (seconds) after reaching destination
speed: minimum and maximum speeds (m/s) when moving on a path
bufferSize: size of the message buffer (bytes)
router: router used to route messages (valid class name from routing package)
activeTimes: Time intervals when the nodes in the group are active (start1, end1, start2, end2, ...)
msgTtl : TTL (minutes) of the messages created by this host group, default=infinite
Group and movement model specific settings
pois: Points Of Interest indexes and probabilities (poiIndex1, poiProb1, poiIndex2, poiProb2, ...)
for ShortestPathMapBasedMovement
okMaps : which map nodes are OK for the group (map file indexes), default=all
for all MapBasedMovent models
routeFile: route's file path - for MapRouteMovement

routeType: route's type - for MapRouteMovement
Common settings for all groups
Group.movementModel = ShortestPathMapBasedMovement
Group.router = EpidemicRouter
#################################
#Group.bufferSize = 5M
Group.bufferSize = 50M
#################################
Group.waitTime = 0, 120
All nodes have the bluetooth interface
Group.nrofInterfaces = 1
Group.interface1 = btInterface
Walking speeds
##############
#Group.speed = 0.5, 1.5
Group.speed = 0.5, 2.5
#############
Message TTL of 300 minutes (5 hours)
#####################
#Group.msgTtl = 300
Group.msgTtl = 720
#####################
40 previously
Group.nrofHosts = 50
#####################
group1 (pedestrians) specific settings
Group1.groupID = p
##################
group2 specific settings
#Group2.groupID = c
cars can drive only on roads
Group2.okMaps = 1
10-50 km/h
#Group2.speed = 2.7, 13.9
another group of pedestrians
#Group3.groupID = w
The Tram groups
#Group4.groupID = t
#Group4.bufferSize = 50M
#Group4.movementModel = MapRouteMovement
#Group4.routeFile = data/tram3.wkt
#Group4.routeType = 1
#Group4.waitTime = 10, 30
#Group4.speed = 7, 10
#Group4.nrofHosts = 2
#Group4.nrofInterfaces = 2
#Group4.interface1 = btInterface
#Group4.interface2 = highspeedInterface
#Group5.groupID = t
#Group5.bufferSize = 50M
#Group5.movementModel = MapRouteMovement
#Group5.routeFile = data/tram4.wkt
#Group5.routeType = 2
#Group5.waitTime = 10, 30
#Group5.speed = 7, 10
#Group5.nrofHosts = 2
#Group6.groupID = t
#Group6.bufferSize = 50M

#Group6.movementModel = MapRouteMovement
#Group6.routeFile = data/tram10.wkt
#Group6.routeType = 2
#Group6.waitTime = 10, 30
#Group6.speed = 7, 10
#Group6.nrofHosts = 2
Message creation parameters
How many event generators
Events.nrof = 1
Class of the first event generator
Events1.class = MessageEventGenerator
(following settings are specific for the MessageEventGenerator class)
Creation interval in seconds (one new message every 25 to 35 seconds)
Events1.interval = 25,35
Message sizes (500kB - 1MB)
Events1.size = 500k,1M
range of message source/destination addresses
#Events1.hosts = 0,126
Events1.hosts = 0,50
Message ID prefix
Events1.prefix = M
Movement model settings
seed for movement models' pseudo random number generator (default = 0)
Model Seeds
MovementModel.rngSeed =
[1;2;3;4;5;6;7;8;9;10;11;12;13;14;15;16;17;18;19;20;21;22;23;24;25;26;27;28;29;30;31;32;33;34;35;36;36;37;38;39;40;41;42;43
;44;45;46;47;48;49;50;51;52;53;54;55;56;57;58;59;60;61;62;63;64;65;66;67;68;69;70;71;72;73;74;75;76;77;78;79;80;81;82;82;
84;85;86;87;88;89;90;91;92;93;94;95;96;97;98;99;100]
World's size for Movement Models without implicit size (width, height; meters)
#######################
MovementModel.worldSize = 4500, 3400
1401 for lemda 0.37
MovementModel.worldSize = 4500, 3400
######################
How long time to move hosts in the world before real simulation
MovementModel.warmup = 1000
Map based movement -movement model specific settings
MapBasedMovement.nrofMapFiles = 4
MapBasedMovement.mapFile1 = data/roads.wkt
MapBasedMovement.mapFile2 = data/main_roads.wkt
MapBasedMovement.mapFile3 = data/pedestrian_paths.wkt
MapBasedMovement.mapFile4 = data/shops.wkt
Reports - all report names have to be valid report classes
how many reports to load
Report.nrofReports = 3
length of the warm up period (simulated seconds)
Report.warmup = 0
default directory of reports (can be overridden per Report with output setting)
Report.reportDir = reports/3rd_Iteration/RogDeg=0
Report classes to load
Report.report1 = MessageStatsReport
Report.report2 = MessageDeliveryReport
Report.report3 = MessageDelayReport
Default settings for some routers settings
ProphetRouter.secondsInTimeUnit = 30
SprayAndWaitRouter.nrofCopies = 6
SprayAndWaitRouter.binaryMode = true
Optimization settings -- these affect the speed of the simulation

see World class for details.
Optimization.cellSizeMult = 5
Optimization.randomizeUpdateOrder = true
GUI settings
GUI underlay image settings
GUI.UnderlayImage.fileName = data/helsinki_underlay.png
Image offset in pixels (x, y)
GUI.UnderlayImage.offset = 64, 20
Scaling factor for the image
GUI.UnderlayImage.scale = 4.75
Image rotation (radians)
GUI.UnderlayImage.rotate = -0.015
how many events to show in the log panel (default = 30)
GUI.EventLogPanel.nrofEvents = 100
Regular Expression log filter (see Pattern-class from the Java API for RE-matching details)
#GUI.EventLogPanel.REfilter = .*p[1-9]<->p[1-9]$

12 Bibliography

[1] A. P. M. C. Luciana Pelusi, "Opportunistic networking: data forwarding in disconnected mobile ad

hoc networks," 2006.

[2] S. D. R. C. ZHENSHENG ZHANG, "Routing in intermittently connected mobile ad hoc networks and

delay tolerant networks: overview and challenges".

[3] V. C. D. G. I. H. Stephen Farrell, "When TCP Breaks Delay- and Disruption-Tolerant Networking," pp.

72-78, 2006.

[4] N. R. C. (. TKK, "The ONE," [Online]. Available: http://www.netlab.tkk.fi/tutkimus/dtn/theone/.

[Accessed 03 01 2015].

[5] S. M. I. G. S. D. O. W. S. M. I. Yong Li, "The Impact of Node Selfishness on Multicasting in Delay

Tolerant Networks," in IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 60, NO. 5, JUNE

2011, 2011.

[6] D. B. Amin Vahdat, "Epidemic Routing for Partially-Connected Ad Hoc Networks".

[7] M. G. a. D. N. C. Tse, "Mobility increases the capacity of ad hoc Wireless Networks," 2002.

[8] A. V. a. l. S. Antonis Panagakis, "On the Effects of Cooperation in DTNs".

[9] C. Bettstetter, "Mobility Modeling in Wireless Networks: Categorization, Smooth Movement, and

Border Effects," SIGMOBILE Mob. Computing, pp. 55-66.

[10] M. Karaliopoulos, "Assessing the Vulnerability of DTN Data Relaying Schemes to Node Selfishness,"

2009.

[11] M. Satyanarayanan, "Mobile computing: the next decade".

[12] G. W. U. Z. J. Forman, "The challenges of mobile computing," pp. 38 - 47, 1994.

[13] E. Royer, S. B. C. U. California Univ. and C.-K. Toh, "A review of current routing protocols for ad hoc

mobile wireless networks," pp. 46 - 55, 1999.

[14] C.-K. T. E.M. Royer, "A review of current routing protocols for ad hoc mobile wireless networks,"

1999-4.

[15] P. Hui, "Selfishness, Altruism and Message Spreading in Mobile Social Network".

[16] "The Network Simulator NS-2," [Online]. Available: http://www.isi.edu/nsnam/ns/. [Accessed 06 05

2015].

[17] A. Varga, "The OMNET++ discrete event simulation system," Proceedings of the European

Simulation Multiconference, pp. 319-324, 2001.

[18] K. F. a. R. P. Sushant Jain, "Routing in a delay tolerant," Proceedings of the 2004 conference on

Applications, technologies, architectures, and protocols for computer communications, pp. 145-158,

2004.

[19] "dtnsim," [Online]. Available:

http://dtn.sourceforge.net/DTN2/doc/doxygen/html/classdtnsim_1_1SimConvergenceLayer.html.

[20] D. College, "Community Resource for Archiving Wireless Data," [Online]. Available:

http://crawdad.cs.dartmouth.edu/. [Accessed 04 06 2015].

[21] J. O. T. K. Ari Keränen, "The ONE Simulator for DTN Protocol Evaluation," 2009.

[22] "The ONE simulator tutorial for beginners," [Online]. Available: http://one-simuator-for-

beginners.blogspot.ie/2013/08/how-to-integrate-one-with-eclipse.html.

[23] "The ONE Knowledge Base," [Online]. Available: http://theonekb-barunsaha.rhcloud.com/.

[24] "Graphviz - Graph Visualization Software," [Online]. Available: http://graphviz.org/. [Accessed

2015].

[25] "Earthquake rocks Internet in Nepal," [Online]. Available:

http://research.dyn.com/2015/04/earthquake-rocks-internet-in-nepal/. [Accessed 06 06 2015].

[26] S. Shetty, "Rogue Access Point Detection by Analyzing Network Traffic Characteristics," 2007.

[27] H. U. o. S. A. U. Bigwood, "IRONMAN: Using Social Networks to Add Incentives and Reputation to

Opportunistic Networks," Privacy, Security, Risk and Trust (PASSAT) and 2011 IEEE Third

Inernational Conference on Social Computing (SocialCom), 2011 IEEE Third International Conference

on, 2011.

