A secure searcher for end-to-end encrypted email
communication

Balamaruthu Mani

Dissertation 2015

Erasmus Mundus MSc in Dependable Software Systems

Maynooth
University

National University
of Ireland Maynooth

Department of Computer Science
National University of Ireland, Maynooth

Co. Kildare, Ireland

A dissertation submitted in partial fulfilment
of the requirements for the

Erasmus Mundus MSc Dependable Software Systems

Head of Department: Dr Adam Winstanley
Supervisor: Professor Barak A. Pearlmutter
8-June-2015

Word Count: 19469



Abstract

Email has become a common mode of communication for confidential personal as well as
business needs. There are different approaches to authenticate the sender of an email message at
the receiver’s client and ensure that the message can be read only by the intended recipient. A
typical approach is to use an email encryption standard to encrypt the message on the sender’s
client and decrypt it on the receiver’s client for secure communication. A major drawback of
this approach is that only the encrypted email messages are stored in the mail servers and the
default search does not work on encrypted data. This project details an approach that could be
adopted for securely searching email messages protected using end-to-end encrypted email
communication.

This project proposes an overall design for securely searching encrypted email messages and
provides an implementation in Java based on a cryptographically secure Bloom filter technique
to create a secure index. The implemented library is then integrated with an open source email
client to depict its usability in a live environment. The technique and the implemented library are
further evaluated for security and scalability while allowing remote storage of the created secure
index. The research in this project would enhance email clients that support encrypted email
transfer with a full secure search functionality.

Categories

H.3 Information Storage and Retrieval
H.3.3 Information Search and Retrieval
E. Data

E.3 Data Encryption

General Terms
Design, Documentation, Performance, Security

Keywords
Email encryption, Secure Index, Bloom filter, Secure Search, Searching Encrypted Email, Email
client



Declaration

The main text of this project report is approximately 19,469 words long, excluding the table of
contents and appendices. The work was performed during the current academic year under the
supervision of Professor Barak A. Pearlmutter.

| hereby certify that this material, which I now submit for assessment on the program of study
leading to the award of Master of Science in Dependable Software Systems, is entirely my own
work and has not been taken from the work of others save and to the extent that such work has
been cited and acknowledged within the text of my work.

Signed:
Balamaruthu Mani




Contents

AADSITACT ... bbb bbb E e E bbb 2
(08 (<10 o] 1= ST O TSP PR PR PR PP 2
GENEIAI TEIMNS ... ettt b bbb bbb bbb et b bbb bbb bbb 2
KBYWWOITS ...ttt b bR bbb e Rt bbb e e et b e bt bbb n s 2

DIBCIATATION ... bbb bbb b e bbbt bbb 3

I 141 oo [N o {0 TSP ST PO PP PP 8
1.1 OVEIVIBW ...ttt bbb bbb bbb b bt bbb bbb 8
1.2 IMIOBIVALION ...ttt bbb bbbt 8
1.3 ODJECTIVES ..ttt bbbttt n b 9

131 PrimMary ODJECHIVES......cciiic ettt s be e et sbe e beste e e e sreanes 9
1.3.2 SECONAANY ODJECTIVES. .....c.eiviiiiiteitete ettt bbbt nb e 9
1.3.3 Tertiary ODJECLIVES.....cuecieie ettt be et sbeete e s besaeeseenre e 9
1.4 PrOJECT OUICOIMIE ...tttk bbbt b bbbttt et ettt b 9
1.5  DisSertation OrganiSatiON...........ccciiiiieiiiiiiiiieieseeitese e e steste e e ste s e sresteesaesrestaesbesbeeseestesreeseesseans 10

2 CONLEXE SUNVBY ...tttk b et e bt s bbb e bt e bt s e e bt e Rt e bt e bt e b e e bt e b e e bt ab e e s s e bt e reennenbe e 11

% N = 7 Tod (o (o] U] T ISR U PSSRSO 11
2.1.1 ENcryption basic tEChNIQUES..........c.oviiiic et st 11
212 End-to-End ENCryption TECANIQUES ........ccoiiiiiiiiieieiceese e 11

2.2 REIAIE WOTK ...ttt 12
221 End-to-End Email ENCryption TOOIS. ..o 13
2.2.2 Search Techniques 0N ENCryPted data ..........cccccveieiiiieie et 17
2.2.3 Email CHENnt INTEQratioNn ..ot 20

1 12117 )Y S T PO PO PR URTUPTPP 23

3.1 DEVEIOPMENT STFALEGY .....eveteiiteiteieiee ettt bbbttt bbbt 23
3.11 TeChNIQUE SEIBCTION........eeiei ettt enes 23
3.1.2 IMPIEMENTAtiON SIFALEGY .. .. e eeieeeeee ettt sttt neeenes 23

3.2 TESHING SLFATEGY .. .veuveuvereeieetieie ittt sttt bbbt b bbb e bt e b ettt sttt b n e 24
3.2.1 JUnit and Scenario Dased teStING.........coove i e 24
3.2.2 PEITOMMANCE ...ttt et e e s e st e s e e besteestesteensesteeraestenrean 24

N I - o [ PR SRR 25
Ot R 1o 1 1V o I 0 1= T o SR 25

4.1.1 (000 =T =Tt o] 1 (o =PSSOSR 25



412 DESIGN NOTATION ...ttt ens 26

4.1.3 (oo Tor= LAY AT SR 26
414 DEPIOYMENT VIBW ...ttt e 27
A | o] 1V =T o ISR 32
421 LOGICAI VIBW ...ttt n s 32
4.2.2 RUNTIME VIBW ...ttt b s 35
4.3 [y Lo g Lo AT LTS T | o OSSOSO 36
IMPIEMENTATION ...t e bttt bbb nn e 38
5.1  Core Library IMpIemENntation...........ccovciiiiiiiiiiie ettt sre s 38
511 INABXET ettt bbb bbbttt b b nen e 38
5.1.2 Y\, LT T ] PSPPI 40
513 ENCIyPLioN ULHITIES ......voiiieiccee e 40
514 SBAICIIET ...t 40
515 DAta IMANAGET ...ttt r e nr b e nr e r e e n e re e 40
5.2 Integration IMPIEMENTATION..........oci i 41
5.2.1 Columba Client INtEGrAtioN..........ccciiiiiiiiie et sre st sr e sbe b sre e 41
522 MaITIT INEEGIATION .....viiiiiie bbb 42
5.3  ENcrypted Email GENEIALON..........coviiuiiieiieciece sttt ettt s te et besba et e sreetaesresre s 43
SBOUIE SEAICIIET ...ttt ettt bbb bt bbb bt ettt ettt e 44
6.1 IMPIEMENALION LIDIANY ....coviiiiiie et s re s 44
6.1.1 INAEXET ettt bbb 44
6.1.2 SBAICIIE ... 44
6.1.3 KEY IMBINAGET ...ttt 45
6.1.4 )=o) Y T PP PP R PRSP 45
6.2  Columba Search FUNCLIONAIITY ..........cooiieiiiiiicic e 46
6.2.1 INAEXING .ttt bbbttt b bbbttt b e b 46
6.2.2 SBANCINING. . ettt ettt te et e saeeneentenneas 47
6.2.3 QLI SOV A 1= T PSR 48
6.2.4 [NV (o] (=X O] o o U] = 1 oo SR 49
EVAIUBLION ..t e st e st et e et e te et e te e e teeteetenteera e renre s 50
% A © o 1= od 1 Y= USRS 50
7.2 DeVEIOPMENT SEFALEOY ... e ieeeeieeiieiee ettt ste ettt ste et e tesaeeseesbesneesesteeneeseeeseeneenneas 50
A T -5 1[0 S (- =10 YT OSSPSN 51



T4 FUNCHONAILY ..ottt b e 51

7.4.1 IMplementation LiDrary .........cccoooveiiiicie e 51
7.4.2 Integrated Email CHENT ..o 52
7.4.3 Critical Functionality ANAIYSIS .......coveiiiiiieiece st 52

7.5 PEITOMMANCE ...ttt bbb ettt b et n e 55
7.5.1 ANalYSIS ENVIFONMENT SEIUD ....c.viiiiiiiiisiiie st 55
7.5.2 INAEXING ANAIYSIS ...vecveiiiie et sttt s re e et e e b e ste e e nreenes 55
7.5.3 SEArCNING ANAIYSIS. ... 56

A TS = Tot U ) YRS OSSRPSN 59
7.6.1 Security model of the Final implementation.............ccccoeviiiiiinincneee e 59
7.6.2 Enhanced SECUrity MOUEL ........ccoii ittt 60
7.6.3 VUINErability IMOGEI ..o 60

7.7 SUIMIMIATY ¢ttt ettt ettt e e bt e e s bt et e e sh e e s b et e aabe e e ate e e bee e ante e e sn b e e anbe e e bbeeentneennbaenntes 60

8 Conclusions and FULUIE WOTK.........cc.oiiiiieieieiiieesies et 62
8.1 CONCIUSIONS ...ttt bbbt b bbbttt b bbb 62
8.2  SUMMArY OF ChallBNQES .....ccuviiiiiecicce e s et re s be e e sreetaesbeare s 62
8.3 Future WOorks and IMProVEMENTS. ........ccuoiiiiiiiiie ettt 63
A TESTING SUMMAIY ..ottt et e st e et e st e e te e besbeeseesbeeaeeseesteesbesbeeseesbesaeesbestaeneesreates 64
B Changes to Original SPECITICAION. .........oiiiiiiiiieee e 66
(O o110 = o TSSOSO SPRP 67
D USEE IMTBNUAL ...ttt bbbkt bbbt e e bbbt b b 68
D.1 Columba Client ConfigUIatioN ........c.coviiiiiiiicicie ettt sre st st sre e e 68
D.1.1  Email Account CoNFIQUIALION .........ooveiiiiiieiiiiiiie ettt 68
D.1.2 Enable IMAP 0N GMAail.......cccoiiiiieccece ettt nne s 70

D.2  Secure Searcher CONFIQUIALION .........coiiiiiiieeieie ettt st ne e see e 71
D.21 Key Store CONFIQUIALION.........oviiiiieieiicice e 71
D.2.2 1810 1= o TSP 72
D.2.3  SEAICNING. ...ttt bbbttt b 73

D.3 Demo AccoUNt CONFIQUIALTION .......ciiiiiiieie ittt ettt ene e sre e see e 73
D.3.1 Demo Account Configuration DetailS............cooereiiiiiiiiiii s 73
RETEIENCES ...t bbb bt E R Rttt b e n e 75



List of Figures

Figure 2-1 OpenPGP decrypted message using MailPile ............cccooioiiiiiiiiiceeee e 14
Figure 2-2 Mailpile search on encrypted eMail ..........cccooiiiiiiiiiiic e 14
Figure 2-3 Mailvelope mail compose editor With Gmail ... 15
Figure 2-4 OpenPGP encrypted message using MailVelope..........ccccov e 15
Figure 2-5 Thunderbird S/IMIME Encryption with Certificate Manager...........ccooeoereieiiiininninineseseas 16
Figure 2-6 Encryption using Enigmail with Key Management ............cccoovviriiiieienenessesese e 17
Figure 2-7 OpenPGP decryption using ENIgMal ..........c.ccooiviiiiiiiic i 17
Figure 2-8 POOKa EMAaIT CHENL..........ccoiiiiiiie e 22
Figure 2-9 Columba EMail CHENT.........cc.ooiiii e et re e e 22
Figure 4-1 Secure Searcher LOgIiCal DESIGN ......ccvcviiiiiiii ettt re e e 26
Figure 4-2 Secure Searcher Deployment DESIGN ........ccooviiiiiiienieieieesi st 28
Figure 4-3 Secure Searcher Remote Server Alternative Deployment DeSign ........cccccveveveiecicneieccnennnnn, 29
Figure 4-4 Secure Searcher Client Server Alternative Deployment DeSign..........ccccoeieiiiiniiniininenienennns 29
Figure 4-5 Secure Searcher Remote Storage Alternative Deployment Design .........ccccceveveeieneceeivennnan, 31
Figure 4-6 Secure Searcher LOGICAl VIBW .........ccviiiiiciiic ettt sttt s 32
Figure 4-7 Decrypter Logical Design - Chain of ResSponSibility ...........ccocoiiiiiiiiiiciccc e 33
Figure 4-8 IndeXing RUNLIME VIBW ......cviiiiii ittt st ettt et sbe et et reenee e e 35
Figure 4-9 Searching RUNTIME VIBW ......c.iiiiiiiiiicieeee sttt 36
Figure 4-10 Indexing INtegration DESIGN ........coeoveieieiiiieresie et 36
Figure 4-11 Searching INtegration DESIGN .........cciviiiiiiiiii it se et sbe et sbesre e sne e 37
Figure 6-1 Columba INdeXing DIAl0G .........ccciiiiiiiiiiiiiie e 46
Figure 6-2 GMail S/MIME IMESSAQE .....c.veiveiuieiieiteeie st eteeste e sreste e s e s e e sbeste e e e sbe s e e sbestaesbesbeetsesbesreesresseans 47
Figure 6-3 Columba S/MIME MESSAJE .......ccueuiiiieiieiiiieeiesie sttt sttt nnennen e 47
Figure 6-4 Gmail OPENPGP MESSAGE .......ccutiveiiiiieiieii sttt bbbttt sb et nn s 48
Figure 6-5 Columba OPENPGP MESSAQE ........civiiieeieiiecteeiteseeste et te st s te s be e e sbesteestesbeetsesbesreeneesreans 48
Figure 6-6 Columba KeyStore CONFIQUIATION..........ccuiiiiiiiiie et 49
Figure 7-1 JUNit TeSt COVErage REPOI .......cviiiiieeic ettt ste ettt te et e sbe et sbesreenresee e 51
Figure 7-2 Messages Indexing Time vS NUMbDEr of MESSAJES .......ccveiveiiiririie e 56
Figure 7-3 Index Records Search time with Message 1d ENCryption...........ccocoeveneneieinisinesc e 57
Figure 7-4 Final Index Records Search Time vs Number of Index Records..........cccocvvvevivoeiieniicennnenn. 58
Figure 7-5 Index Record Search Time vs Record Length...........cccooiiiiiiiiiiiieeeeesse e 58
Figure A-1 JUNIt TeSt EXECULION REPOIT ......eiiiiieieie ettt sttt nee e 64
Figure D-1 Columba New ACCOUNT WIZAIT ..........ccoiiiiieiieeeeeee e 68
Figure D-2 Columba Server PropertieS Wizard.............ccoeviiiiineeeesisesesie e 69
Figure D-3 Columba Account Preferences DIalog ........c.ooviieriiiiie e 69
Figure D-4 Columba IMAP CONNECLION SEIIINGS ......coviiiiiiriiiie e 70
Figure D-5 GMail ENADIE TIMIAP ..ottt sttt et e e eneeneenee e 70
FIgure D-6 GMail LESS SECUIE ACCESS ....eueiueeieiteeniesieaeeetesseesaesteaeestesseentesteaseeaseaneessesseeeesseeseessesseensessens 71
Figure D-7 Columba KeyStore CoNfIQUIAtION. .........c.cuiiiiriiieiieieeeeses e 71
Figure D-8 Enter Import Key and Secure Search Password Dialogs.............coviereniiciniininccees 72
Figure D-9 Columba Index All Encrypted Messages Dialog .........cccoveeeveiieieiiiic e 72
Figure D-10 Columba Encrypted MeSSage SEarCh ..........cccvveieiiiiic i st 73



1. Introduction

1.1 Overview

Email (Electronic mail) has become a common mode of communication for confidential personal
as well as business needs. Email messages are composed and sent using a local email client
which could be a browser based thin client software like Gmail web interface [Google 2015] or
thick clients like Thunderbird [Mozilla 2015] or Outlook [Microsoft 2015]. The composed email
messages are sent to the mail servers which facilitate the transfer of messages to the
corresponding recipients. The messages are typically encrypted to and from mail servers using a
transport layer security protocol (TLS) [Dierks & Rescorla 2008]. But the mail server has access
to the un-encrypted plain text form of the message contents.

Even though mail service providers may protect their data servers, recent leaks [Guardian News
and Media Limited 2015] regarding the surveillance of data servers by government agencies and
the number of possible attacks [Nanavati et al. 2014] on the data handled by the servers
emphasises a lack of security and privacy of the user’s data stored on an un-trusted cloud storage.
This has motivated the use of encrypted email services, in particular when communicating
confidential information.

A common approach for sending an encrypted message through email is to send encrypted
attachments [Adobe Systems Incorporated. 2015; WinZip Computing 2013] as a password
protected ZIP or PDF files. This method is commonly used in sending e-financial statements by
banks or income tax statements by tax departments. This technique is used due to a lack of
sophisticated support for sending encrypted email message, instead of an encrypted attachment.
And it provides a reasonable guarantee that only the intended recipient could view the
attachment.

There are many encryption protocols that specify a mechanism to send and receive encrypted
emails, the most commonly used encryption protocols include OpenPGP [Torto et al. 2015] and
S/MIME [Ramsdell & Turner 2010]. Some mail servers [Hush Communications Canada Inc.
2015; Trancecrypt Inc. 2014] that support secure mail transfer have the encryptions performed at
the mail server, so the mail server and the storage needs to be completely trusted. A security that
the data could be read only by the intended recipient at the receiver side is possible only with the
help of end-to-end encrypted email transfer.

End-to-End encryption requires keys used to encrypt the messages be managed at the client sides
i.e., sender and the receiver. Sender encrypts the message using a public key and this encrypted
message could be decrypted only by the receiver’s private key. With end-to-end encryption, only
the encrypted messages can be seen by the mail servers and thus the default search service
provided by the mail servers is not usable.

1.2 Motivation

Mailvelope [Obernddrfer 2014], GPGTools [GPGTools 2015] and Enigmail [Brunschwig 2015]
are some of the tools that offers functionalities for sending and receiving end-to-end encrypted
email messages. Most of the tools are plug-ins or extensions to existing email clients. Moreover,
ProtonMail [Yen et al. 2015], a mail service provider, offers mail services promising a full
pledged end-to-end encrypted service. But the common problem with these tools is that once the

8



data is encrypted, the encrypted email messages are stored in the mail provider storage and the
default search for email does not work on these encrypted messages. This project would enable
end-to-end encrypted email service providers to implement a full-pledged service with a secure
search capability.

Searching on encrypted data is discussed in some cryptography papers including [Xiaodong et al.
2000; Shmueli et al. n.d.; Goh 2004; Thian et al. 2005] . But the feasibility of an implementation
of the techniques proposed by these research papers using the existing encryption libraries as
well as the suitability of the technique with email communication is not clear. This project aims
to identify an approach for which an implementation is possible with the existing cryptographic
libraries. Furthermore, development of a tool using the approach would provide evidence of its
suitability for searching encrypted email messages.

A naive approach would be to decrypt all the encrypted messages and store them in a local
storage to support searching. But storing the decrypted data is inefficient with respect to storage
and portability, as a copy of the email is accessible only on the machine where decrypted emails
are stored. In addition, it increases the security risk if the storage is compromised. This project
aims to store a secure index of the encrypted emails, promising security and space efficiency.
Moreover this project evaluates the feasibility of storing the index on a remote server which
supports network search from any machine.

1.3 Objectives

The main goal of the project is to identify a mechanism to search encrypted email messages that
complements an end-to-end encrypted email transfer between a sender and receiver. And this
project focuses on the commonly used protocols for email encryption: OpenPGP and S/MIME.
The security and feasibility of such an approach should be evaluated with the help of a tool that
supports searching. Moreover, the scalability and usability of the tool needs to be evaluated.

1.3.1 Primary objectives

e ldentify an approach for securely searching encrypted email messages.

e Develop a tool that supports creating a secure index of the email messages encrypted
using the OpenPGP encryption protocol.

e Add a search capability to the tool resulting in pointers to the indexed email messages.

1.3.2 Secondary objectives

e Enhance the tool to support indexing of email messages encrypted using S/MIME
protocol.
e Extend the tool to support incremental indexing for incorporating new email messages.

1.3.3 Tertiary objectives

¢ Integrate the library with an open source Java email client to demonstrate the functionality
in a live environment.

1.4 Project outcome

The project’s outcomes are a Java library that could be integrated into an existing email client for
securely searching email and an email client with a beta support reflecting usability and security.



Moreover, it proposes architecture for adding secure search functionality in the current email
communication model.

The implementation satisfies the primary and secondary objectives with capabilities to index and
search encrypted email messages using S/IMIME and OpenPGP protocols. The implementation
makes use of the existing Bouncy Castle [Bouncy Castle Inc 2013] cryptographic libraries and
adopts a layered design supporting future extensions. This project recommends an integration
model for securely searching email using the implemented library and analyses alternative
designs for security. Finally the security and scalability of the technique and implementation is
evaluated.

1.5 Dissertation Organisation
This dissertation document organisation is outlined as follows.

Context Survey section provides a background of end-to-end email encryption standards and
describes the related tools and techniques that influence this project.

Strategy section presents the design, development and evaluation strategies adopted for this
project.

Design section provides an overview of high level design of the overall solution. It is followed
by different architectural views of the implemented library and the proposed integration design
of the library with the existing email clients.

Implementation section details the implementation strategy, key decisions made and challenges
encountered during the implementation of the library.

Secure Searcher section provides an overview of the functionality provided by the implemented
library.

Evaluation section provides a critical analysis of the technique and implementation with respect
to the security, adopted strategy and scalability.

Conclusions and Future Work section summarises the achieved goals, encountered challenges
and possible future works on the project.

This document concludes with a series of appendices describing A Testing Summary, B Changes
to Original Specification, C Project Plan and D User Manual.

10



2 Context Survey

This chapter includes the details and influence of the related works that were considered for the
development of the tool. This chapter begins with a background section including an overview of
existing end-to-end encryption techniques followed by the related works section providing an
overview of end-to-end encryption tools, indexing and search techniques.

2.1 Background
This section outlines the background of basic encryption and end-to-end encryption techniques.

2.1.1 Encryption basic techniques

There are two classes of basic encryption techniques. One is referred to as symmetric encryption
where the data is encrypted using a shared secret key or password phrase and the data could be
decrypted only using the same secret key used for encryption. Another class of encryption refers
to the public key encryption, where two keys (private and public key) are maintained. The
private key is confidential and known only to the owner where as the public key could be
announced liberally. The messages encrypted using one key could be decrypted only by another
key of the key pair respectively.

2.1.2 End-to-End Encryption Techniques

The end-to-end encryption refers to a class of techniques where the encryption and decryption
are performed at the end user clients without involvement of a centralised encryption server. The
techniques that are considered popular and widely used/implemented for email communication
[Internet Mail Consortium 2015] are listed as follows.

2.1.2.1 PGP

PGP (Pretty Good Privacy) [Atkins et al. 1996] refers to a class of systems developed to support
encrypted email communications using a combination of symmetric encryption and public key
encryption technique. It was created by Philip Zimmermann in 1991 and the subsequent versions
were released with his guidance and are owned by PGP Corporation. The major services offered
by PGP includes the following

e Digital signature service offered by PGP involves sender creating a hash code of the
email message and encrypting it with the private key. The receiver could decrypt the hash
code with the corresponding public key and compare it with the hash code of the received
message for authenticity. The signatures are normally attached to the message although it
could also be sent as a separate entity after the message.

e Confidentiality of the email message is supported by the public key encryption. Sender
generates a random key called session key and encrypts the message using that session
key. The session key is then encrypted with the receiver’s public key. The encrypted
session key and the message are sent to the receiver, where the session key is decrypted
using the receiver’s private key. The decrypted session key is then used to decrypt the
message. If the message includes a signature, both the signature and message are
encrypted using the session key at the sender’s side.

11



2.1.2.2 OpenPGP/MIME

OpenPGP [Callas et al. 2007] refers to a standard for open source security implementation based
on PGP standard 5.x. The initial standard for Internet text messages [Crocker 1982] supported
only the transfer of text messages through email. Other formats like images or audio needed to
be transformed to reversible textual byte code for transmission using the initial standard. MIME
(Multipurpose Internet Mail Extensions) [Freed & Borenstein 1996] specifies a mechanism to
transmit data including text, images and audio files. Email messages with MIME headers could
be broken down into multiple parts each having its own content type such as text, html and
image.

Initially PGP was integrated with MIME using a special content type ‘application/pgp’ where the
signed messages are included into the body part. But the email clients were not able to decode
the messages without separating a specific PGP implementation details as part of the signature.
OpenPGP/MIME [Torto et al. 2015] specifies a mechanism to separate signature and the
message body so as to send encrypted messages using MIME. OpenPGP/MIME mechanism
includes the introduction of following content types

e The content type “application/pgp-signature” is used to denote signature part of the
message’s multi-parts.

e The encrypted message is included as a two-part multipart with content type
"multipart/encrypted” and protocol parameter value "application/pgp-encrypted”. The
first part contains the version number while the second part contains the actual encrypted
data.

e The content type “application/pgp-keys” is used to transmit public keys as part of the
email message.

2.1.2.3 S/MIME

S/IMIME (Secure/Multipurpose Internet Mail Extensions) [Ramsdell & Turner 2010] specifies a
mechanism to transfer secure MIME data using HTTP in addition to other supported protocols.
S/MIME introduces a content type “application/pkcs7-mime” to specify the secured MIME parts.
The messages are secured using Cryptographic Message Syntax (CMS) based on PKCS7 (Public
Key Cryptography Standard 7) [Kaliski 1998].

The user needs a key (private key) and certificate pair to use S/MIME mechanism. The
certificate contains the public key information with a signature using private key. The certificate
is entitled to an individual and should be obtained from a certificate authority (CA). The free
certificates can be obtained from online security entities such as StartSSL [StarCom Ltd. 2011]
and Comodo [Comodo CA Limited 2015]. The sender signs the message using the private key
and encryption is performed using the receiver’s certificate. The receiver could authenticate the
origin signature using the sender’s public certificate and the message could be decrypted using
the receiver’s private key.

2.2 Related Work

This section includes the existing end-to-end encryption tools and the encryption search
techniques that were researched during development.

12



2.2.1 End-to-End Email Encryption Tools

The following end-to-end email encryption tools were investigated during the development of
the library.

2.2.1.1 Mutt

Mutt [Elkins & Blosser 2014] is a Linux based email client that uses GPG to provide support for
OpenPGP/MIME email communication. GPG (GNU Privacy Guard) [Koch et al. 2015] is a free
implementation of the OpenPGP standard and is developed as part of the GNU project [Free
Software Foundation 2015]. Moreover, Mutt includes a support for S/IMIME encrypted emails as
well.

Mutt provides support for searching encrypted email messages [Gilles 2012], by decrypting each
email and searching in the decrypted content. In addition to being highly inefficient when
searching email, the Mutt tool works only on Linux environment. Notmuch [Notmuch 2014] is a
Linux based mail indexing and searching tool that could be integrated with Mutt. Whenever a
search is made, the results are stored and indexed in a special directory to support future search
rendering the messages vulnerable to attack if the indexed directory is compromised. This project
identifies an approach to build a secure index that supports efficient search using a platform
independent Java library.

2.2.1.2 ProtonMail

ProtonMail Beta [Yen et al. 2015] provides a web based mail service like Gmail except with the
support for end-to-end encryption ensuring privacy. ProtonMail servers are deployed at
Switzerland thereby protected by strict Swiss based laws for data privacy.

ProtonMail uses OpenPGP standard and open source cryptographic libraries for encrypted email
communication, where all the encryptions and decryptions take place at the end user system. The
private and public keys are generated in the client’s system when a new user signs up for a
ProtonMail account. All public keys are stored directly in the server whereas the private keys are
encrypted using the user’s password on the client’s system and the encrypted private key is
stored on the server.

In addition to OpenPGP communication, users can send regular un-encrypted email or email
encrypted using symmetric encryption to other users without encryption support. In the later
case, the receiver would receive a link and upon entering the shared password (symmetric key)
the message is decrypted. ProtonMail is still in beta stage, and is not clear if there is search
support for the encrypted email messages.

2.2.1.3 Mailpile

Mailpile [Einarsson et al. 2015] is an open source software written in Python that could be
installed on the user system. It provides a web interface on top of existing mail servers and it
enhances the services with the functionality to send and receive OpenPGP encrypted messages.
The encrypted messages are automatically decrypted for viewing as shown in the next figure.

13



200 M Test Feb 5 - securesearchi % ] 8 Test Feb 5 | SecureSearch” % Yo b/ _
<« C [} localhost:33411/thread/=0/
My Grnail: Email from G... &) Cricinfo.com | Crick.. Wy The Internet Movie... | Hello FM Radio 24hr... Yahoo! India TH The Hindu: Home P... B 1

™ mailpile | 2|

# Drafts Test Feb 5

B Inbox

7 Sent H Mbm Balmani

Spam
8 ENCRYPTED

Trash Hi.

=1]

This is test for email Feb 5

Gmail
BmM

All Mail

AR N &

Drafts

Figure 2-1 OpenPGP decrypted message using MailPile

Mailpile is still in beta stage, where the connection to Gmail server was intermittent during the
analysis of the tool as part of this project. Moreover, it is not clear how the key management is
supported by the tool. Interestingly, Mailpile supports searching of the OpenPGP encrypted
messages. As an answer to one of the FAQs (Frequently Asked Questions), Mailpile’s reply
regarding the security of the search support is “The search index is stored encrypted, and the
terms are stored as hashes. Good enough?” The figure below shows the search results including
the encrypted email (one with green lock icon) for search word ‘email’.

& mailpile [ 2 |

/ Drafts All # Unread # Attachments
B Inbox Click item or checkbox to select
w Sent ﬁ SecureSearch | 3 B3 Inbox Test Enigmail
il J_ Certificate Customer Serv... ES Inbox Your certificate is ready for collection!
i Trash
B vom samani 8 S Inbox TestFeb 5

Figure 2-2 Mailpile search on encrypted email

The encryption algorithms used and data structures used to store index or the technique to
ascertain the security of search is not documented and one with Python expertise could review
these aspects as part of the source code. If the created index is an inverted index with index
pointer and search terms encrypted, then it is vulnerable to frequency analysis attack where
depending on number of indexes (messages) a hashed search term occurs, the attacker could
identify the hashed search term. This project identifies an approach that is analysed for security
attacks including frequency analysis attack and moreover the performance of the search
operation is evaluated.

14



2.2.1.4 Mailvelope

Mailvelope [Oberndérfer 2014] is an extension plug-in for browsers based on OpenPGP.js java
script library to support OpenPGP encrypted email communication. The plug-in interface is
woven into the existing web interface provided by the popular web email providers such as
Yahoo, Gmail and GMX. In addition, Mailvelope provides support for key management where a
user could generate, import or export keys for OpenPGP encryption.

c More 1-50 of 206 > = - te]
'?\ chi i 3jibbej| gdi ghoambcijhkke/cummunlui.’Ed'\tDrfed\'lor.hlml?\d:5bld3873d51b9ch1b30b195&ed\(.‘.l = | B |
- Updates +
Compose Mail E tost > > @ Feb

Hi
This is test for email Feb 5

Bm

% Cancel 4= Undo # sign i Encrypt

Figure 2-3 Mailvelope mail compose editor with Gmail

The figure above shows the compose editor provided by Mailvelope and is weaved together with
the Gmail composer. After encryption, the message could be transferred to the Gmail editor and
sent to the intended recipients. The figure below shows the corresponding encrypted message
which is shown with a lock sign and decrypted with a click if the receiver has the private key
with Mailvelope installed. Since the email messages are encrypted, the default Gmail search
would not work on them and Mailvelope has no support to search such encrypted messages as
well.

Test Feb 5 Inbox  x

u ]
]

Mbm Balmani <mbmbalmani@gmail.com> Feb 5 (13 days ago) - -

to SecureSearch20. |~

Figure 2-4 OpenPGP encrypted message using Mailvelope

15



2.2.1.5 Thunderbird

Thunderbird email client [Mozilla 2015] provides support for S/MIME encrypted email
communication. Moreover, it includes a Certificate Manager to store sender’s certificate and
import other people’s public certificate. This is depicted in the People tab of the figure below
with an imported public certificate of mbmbalmani@gmail.com. Similar support is provided by
outlook email client [Microsoft 2015] as well.

-

Writs: Test SMIME encryption | (S| S—
File Edit ¥View Options Enigmail Toocls Help
% send | « Spelling = W Attach = 4% Enigmail ~ & S/MIME |~ | [& Save
From: SecureSearch <SecureSearch2015@gmail.cc v | Encrypt This Message -
T s s "  Digitally Sign This Message

View Security Info

Subject:  Test SMIME encryption
Hi,

This is test email for smime encryption.

55

& Certificate Manager = | B |

Your Certificates | People ServersIAuthoritieslOthersl

You have certificates on file that identify these people:

Certificate Mame Expires On E-Mail Address [==)
4 5tartCom Ltd.

mbmbalmani@gmail.com 2/18/2016 mbmbalmani@gmail.com

Figure 2-5 Thunderbird S/IMIME Encryption with Certificate Manager

An enhancement [Chang 2005] to support search on the encrypted messages communicated
using Thunderbird was filed initially on 2005. The enhancement initially suggests storing the
decrypted messages in local folder for search capability and link both encrypted and decrypted
messages. Owing to the open source nature of Thunderbird implementation and extensions made
in S/IMIME standard during the ten year span, the original enhancement still remains in the NEW
status and is yet to be implemented. This project identifies an approach to store only the secure
index for searching instead of storing decrypted form of all messages. Moreover, the secure
index could be stored in a remote un-trusted storage and shared with other local machines.

2.2.1.6 Enigmail

Enigmail [Brunschwig 2015] is an extension to Thunderbird to support OpenPGP secure email
communications. As shown in the next figure, Enigmail has a key management facility to
generate and import keys.

16


mailto:mbmbalmani@gmail.com

et O

File Edit View Insert Format Options Enigmail Tools Help
88 Send \ o Spelling v O Attach v 4 Enigmail | v| @ S/MIME v [lSave v

From:  SecureSearch <SecureSez Message will be encrypted ~ » 15 gmail.com

i i i »
To:  mbmbalmani@gmail.cor Message will be signed

4 |
& Enigmail Key Management e

File Edit View Keyserver Generate
Stibject i enigral Search for: P [V] Display All Keys by Default
Body Text ¥ Variable Width X, -“ A

Name + KeyID Fingerprint B
Hi, » mbm <mbmbalmani@gmail.com> 59A274D2 185 C491 E738 5415 DDB9 11C1 D7DB8FID ..
b SecureSearch <SecureSearch2015@gmail.com> 45066E3E 0900 5FA2 00B4 1E8B C7FA AB75 069D 95...
Test secure email using engimail - Thunderbird.

Bala

Figure 2-6 Encryption using Enigmail with Key Management

The encrypted messages are automatically decrypted on view with Thunderbird, provided the
corresponding private key is available in the key store. For the first time, Thunderbird prompts
for the password of the private key as shown in the figure below. The private key is then stored
in cache for limited time during which other encrypted messages are automatically decrypted on
view.

R,

Test Enigmail «  Mbm Balmani + 2/4/201511:47 PM

@  ReTestEnigmail (= [t | SecureSearch - 2/11/2015 3:46 PM
Test enigmail SecureSearch « 340 PM
Please enter the passphrase to unlock the . .
Test Feb 5 secret keyfor the OpenPGF certficats: Mbrm Balmani +  2/5/20159:00 PM
Test SMIME encryption "SecureSearch . SecureSearch « 326 PM
<SecureSearch2015@gmail.com>"
The hect of Gmail wherewer uo are 4096kt RSA key, ID A7BESS1A, _Grail Team .« 242730151112 DA
From Mbm Balmani <mbmbalmani@gmail.com: Passoh | 4 Reply | = Forward Archive ‘ Junk | @ De
assphrase
Subject Test Enigmail 2/4/201511:47

To Me Other Actior

————— BEGIN PGP MESSAGE----- oK | Cancel

Version: Mailvelope 8.11.8
Comment: Email security by Mailvelo

WCFMABVxWhGNt1UaAQ/ /SwSuz79A85eULgAly435]dtE7THI8g3kulsKvwESS
S5aRR/heDIQOxgeagd+¥YmCO1IEj+561aa2UodBuglulEngaVolLSXX0ehz f4f
28QjHCEIxVr/0e/03EzAU9/225ErNCTpllsrpMwQCE2EBosovgWTPTATIHA]

Figure 2-7 OpenPGP decryption using Enigmail

2.2.2 Search Techniques on Encrypted data

Storing data in the encrypted form requires trade off in terms of other functionalities such as
searching data which becomes computationally or spatially inefficient. The following encrypted
search techniques are analysed for its applicability as part of the end-to-end email encryption.
The following sections outline the overview of each technique and analyses the applicability as
part of the project.

2.2.2.1 Forward Index

Informally, Forward index refers to the indexing technique for documents where each
document’s unique id points to a set of words contained in that document. Hence the search for a
word using forward index would require sequentially scanning each document and comparing

17



against all unique words in each document. If N is the number of documents and M is the
average number of unique words in a document then O(N.M) comparisons would be required.

2.2.2.1.1 Applicability

Forward index technique is inefficient in terms of space required to store the data and number of
computations required to search. It imitates how the documents are normally stored and is not
typically used for searching. This project uses a cryptographically secure technique similar to the
forward index approach to create a secure index where the encrypted document id points to a
secure Bloom filter representing hashed set of words, instead of storing the words themselves.

2.2.2.2 Homomorphic Encryption

Homomorphic encryption refers to a class of encryption techniques that allows a range of
computations to be performed on the encrypted data without decryption. This project is
interested in a homomorphic encryption technique that enables secure and efficient searching on
the encrypted data. Searchable homomorphic encryption technique is diagonally opposite to the
naive approach of decrypting all the data and searching over it.

Xiaodong et al. [2000] discusses an approach where each word (W;) is XORed (Exclusive Or)
with a pseudo random bits (T;) generated using W; and the location i. The XORed values (ciphers
C;) are stored in the database. To search for a word (Ws), Ws and pseudo random bits for that
word (Ts) are input to the searcher which compares T with XOR of each cipher word (C;) and
W, This technique allows searching for a word as well as recovering the document (decrypting
all words) if needed.

2.2.2.2.1 Applicability

There are number of similar search techniques [Thian et al. 2005; Chang & Mitzenmacher 2005],
which require storing the data in a new searchable encryption form. Homomorphic encryption
techniques are a current area of research in many industries especially the cloud service
providers. But this project identifies a searching technique that is built on top of currently used
encryption protocols for email communications such as OpenPGP and S/MIME. Moreover, the
indexing techniques are analysed for applicability, where it is not necessary to recover the words
from index.

2.2.2.3 Inverted Index

A typical indexing technique is an inverted index tree, where each word (W) points to a set of
document pointers (document’s unique id) whose documents contain the word (W). Hence the
search for a word using inverted index would require scanning of all the unique words across all
documents. This approach is space efficient by storing only the unique words across all
documents and is typically stored in a tree structure requiring O(log N) comparisons where N is
the number of unique words across all documents.

Xiaodong et al. [2000] discusses a possible way to securely store and search the inverted index.
This would involve encrypting the words and document pointers associated with each word. This
is vulnerable to frequency analysis attack as it allows easy analysis of number of occurrences of
a word. To tackle against the frequency analysis attack, the document pointer list could be
maintained with identical size for all the words. This is possible by including additional dummy
document pointers to the documenter pointer list of the words with fewer occurrences.

18



2.2.2.3.1 Applicability

This project agrees with Xiaodong et al. [2000] that it would be a good research area to identify
how an addition of a new document could be securely handled. If a new document (D) is added
and the document pointer list of an existing word (W) in the inverted index is not updated, then it
implies that the word (W) is not contained in the document (D).

This project visualises one possible way to securely store an inverted index of N documents is to
have each word in the index point to a document pointer list with size N, indicating the presence
of the word in all the documents. Hence an addition of a new document would require adding
one entry or updating the document pointer list of all words in the index tree. Even then, if there
is a new word (Wy) in the added document (D), then the index would need to add the word (Wy)
with document pointer list thus leaking the information a new word (W) is not contained in all
the previous documents, but only in the new document (D). Thus creating a secure index using
this technique would require all words stored in the index initially which is inefficient and
impractical.

2.2.2.4 Secure Index based on Bloom Filter

Bloom filter [Bloom 1970] represents an array of bits of length M used to store a set elements N.
Each element N; is represented using r set bits in the Bloom filter. The mapping of an element to
the Bloom filter is performed with the help of r hash functions (hy, h; ... h;) each of which maps
an element to an index 1 to M of the Bloom filter.

To search for an element E; in the Bloom filter, r hash functions are applied on the element E;
and the r set bits in the Bloom filter at the indices resulted from r hash functions indicate Es may
be present in the set. As with any hashed mapping, there is a possibility of overlapping and a
probability for false positive i.e., the search for an element E, which is not in the original set
could be perceived as present as the bits for the E,, could have been set by the other elements. But
if any of the r bits is not set in the Bloom filter then E; is definitely not present in the set.

Eu-Jin Goh [2004] proposes an approach to build a secure index using Bloom filter. This
involves maintaining a Bloom filter for each document. To index a document, all the words from
that document are extracted and hashed using a key. Each hashed word is then used as a key to
hash that document’s unique id, so that the presence of a same word in multiple documents is not
leaked into the corresponding Bloom filter. That is if a same word is present in multiple
documents, different r bits will be set in those document’s Bloom filter owing to their unique
document id. Then the r hash functions are applied on the final hashed word to populate the
Bloom filter.

To search for a word in the index, the search word is first hashed using the same key used for
indexing. This hashed word is called trap door as only an authorised person with access to the
key could generate the trap door and proceed further for search. For each document, the trap door
is used as a key to hash the document id and then the final hashed word is searched for its
occurrence in the corresponding Bloom filter with the help of r hash functions.

2.2.2.4.1 Applicability

Goh’s Bloom filter technique is secure with maintaining an index for each document. It is faster
requiring O(N) to search for a word in N documents. The Bloom filter does not enable retrieval
of the indexed words which is not necessary for indexing email messages as part of this project.

19



The implementation of Bloom filter is space efficient with a BitSet data structure where each bit
could represent a presence of an entry (word) in the set (document).

The major drawback with the Bloom filter technique is the false positive rate associated with the
technique. The false positive rate can be controlled, in order to decrease the false positive
percentage, the number of bits M or the size of the Bloom filter needs to be increased which
tradeoffs with the space efficiency. The false positive association with email search is acceptable
from the view of this project as a user could always view the message and ignore the result. This
project aims to set the false positive rate configurable, so that the indexing is usable for all users
with different space constraints.

2.2.2.5 Hybrid scheme for search

This technique [Thian et al. 2005] is a hybrid of Bloom filter [Goh 2004], encrypted sequential
scan and encrypted inverted index techniques [Xiaodong et al. 2000] that are discussed in the
previous sections. Hybrid scheme aims to combine the good properties of the previous
techniques such as easy integration with the support for indexing any data of the Bloom filter
technique and preserving the stored words for decryption of Xiaodong et al. [2000].

The scheme involves maintaining a hash table as an index per document similar to the Bloom
filter model. At first words from the document are extracted and encrypted. Then hash of each
encrypted word and the document id of D is used as the key to D’s hash table. The encrypted
word XORed with pseudo random bits as in the technique described by Xiaodong et al. [2000] is
used as the corresponding value in the hash table. The search for the word (Ws) is possible by
encrypting the search word and then hashing with the document id to check for the W;
occurrence in that document’s hash table.

Hence this scheme uses hash table technique from Bloom filter for indexing each document
along with encryption and decryption technique form Xiaodong et al. [2000] for preserving the
indexed words for decryption.

2.2.2.5.1 Applicability

Thian et al. [2005] performs a comparison of this hybrid scheme with the parent techniques.
Hybrid scheme has an average processing run time compared with other techniques as the Bloom
filter and inverted index techniques are much faster than the hybrid scheme. This project
perceives the encryption and decryption of each word would increase the indexing and searching
time considerably. This technique would be a good alternative if it is necessary to retrieve the
indexed words from the index storage.

2.2.3 Email Client Integration

The library that is developed as part of the implementation needs to be integrated with existing
email clients to depict the suitability for practical use. The following sections briefly summarises
the class of email clients and the possible integration approaches that were considered for the
integration of the developed library.

2.2.3.1 Thin Email Clients - Web Browser

The web interface in the browsers connected to email server acts as a thin email client for
accessing email messages. The implemented library should complement the existing browser
plug-in tools that support end-to-end encryption. The integration is possible with a separate

20



trusted index server that uses the exposed searching and indexing APIs (Application
Programming Interfaces).

For indexing, this project foresee the following two alternatives

e End-to-end encryption plug-in tools for browsers could be extended to connect to the
index server and then send the decrypted message contents for indexing whenever the
plug-in tool is invoked to view/decrypt the encrypted message. The key management is
handled as part of the end-to-end encryption plug-in tools.

e The index server periodically queries the mail server for new messages and indexes them.
In this case, the index server should handle key management.

For searching, the index server needs to be queried for the result message ids and the mail server
needs to be invoked to display the search results (messages). This could be part of the existing
end-to-end encryption plug-in tool or a separate extension if the latter option is used for the
indexing process.

Consequently this approach requires an additional user authentication by the implemented library
for connecting to the mail server either as part of the browser plug-in tool extension or from the
index server.

2.2.3.2 Thick email clients - Thunderbird

Enhancement [Chang 2005] to support search for the encrypted email communication is still in
NEW Status. This project perceives the discussions in that enhancement and yet to be solved
enhancement as a proof for non-trivial nature of implementing such a facility as part of the core
thunderbird client.

Therefore this project examined the feasibility of developing a separate plug-in to support
encrypted email searching. Such a plug-in development is possible using Javascript and there is
support for C++ or Python language implementations as well. But, the extension development
documents specify plug-in development mechanism using Javascript [Mozilla Developer
Network 2015b; MozillaZine 2013] extensively as it is applicable to both Firefox web browser
and Thunderbird email client belonging to the same Mozilla group employing many common
technologies. While it is possible to invoke Java APIs as part of the Javascript plug-in code or
convert the Java implementation to Javascript [Mozilla Developer Network 2015a], there is no
direct support for invoking a Java library.

2.2.3.3 Open Source Java email Clients

There are number of open source email clients implemented in Java [Java-Source 2015]
primarily using Javamail [Oracle 2013b], an external library for sending and receiving messages
with a connection to external mail server. This project initially explored for a Java client that has
built-in support for SIMIME and OpenPGP encrypted email communication.

Pooka [Pilone et al. 2001] specification indicates that it has support for PGP and S/IMIME
encryption. The client has only alpha support for decryption and its key management is not fully
documented. This project tried to configure the encryption setup but the keys could not be
imported to the client. Hence this project could not examine the support provided by Pooka for

21



-_!,Pouka =

PGP and S/MIME. Pooka has a normal search support which could be extended with the
implemented library.

= | B |t

File Edit Mail Encryption Window Help

2 H -
EZII"_%IHI | |INBOX - SecureSearch2015@gmail.com — B3N
Fooka
B erserrmmseac || B8] 3]0 B 226 B 313 G| B | 88
Msg... |S...| A | ... Date From Subject
| h local 1 02/03/15 23:13 Gmail Team <mail-noreply @google.com>  [Three tips to get the most out of Gmail I
SecureSearch2015@gmail.c ||z 02/03/15 23:13 Gmail Team <mail-noreply @google.com>  [Stay more organized with Gmail's inbox
-1 SecureSearch2015@gmail.c (| {3 02/04/15 23:47 Mbm Balmani <mbmbalmani @gmail.com>  [Test Enigmail
[ SecureSearch2015@gmail.c ||/ {4 02/05/15 17:43 Google Takeout <noreply @google.com>  |Your Google data archive is ready
5 02/05/15 21:00 Mbm Balmani <mbmbalmani@gmail.com> [TestFeb 5
[ I 02/18/15 15:22 Certificate Customer Services <securee... Your certificate is ready for collection!
7 03/03/15 20:16 Microsoft Office Outlook <securesearch... |Microsoft Office Outlook Test Message
8 03/03/15 22:14 li@gmail.com=>  [Test SMIME Secure Email
9 03/03/15 22:58 i@gmail.com>= [Test SMIMEZ2
10 03/04/1500:31 ii@gmail.com=  [Test SMIME Secure Email
11 03/04/1500:33 i < i@gmail.com>  [Test SMIME Encryption
12 02/04/15 23:19 SecureSearch <SecureSearch2015@agm... [Test enigmail
13 03/26/15 15:46 Mbm Balmani i Invalid PGP test for another email address
14 03/30/15 14:57 Mbm Balmani Test live pgp send
15 03/30/15 15:02 bmbalmani live smime test
||

Figure 2-8 Pooka Email Client

Columba [Dietz et al. 2013] is another open source email client in Java with an user friendly
interface. Though it has no built-in support for SIMIME or PGP encryption, the plug-in
architecture of the client enables easy integration of new features. Despite the fact that the open
source Java clients are slow owing to the Java swing Ul, this project aims to identify the
integration points that help with integration of the implemented library with any email client.

"2 180K - Cotams W eS|

File Edit View Folder Message LUtilities Help

Q‘ Mew Message '@ Receive/Send @ Reply @ Forward @ ﬁ Q What's related Search: |@

Q Local Folders
E!--- SecureSearch2015

= Total: 15 Recent: 0 *®

Subject contains ¥

o . - - =
Y, 0% |@ \r | o ‘Subject i |Frorr.1 |Date |S|ze |
i MailStore Export Stay more organized... Gmail Team Feb 3, 2015 KB -
= . P & Three tips to get the ... Gmail Team Feb 3, 2015 6KEB
[Gmad] =) Test enigmail SecureSearch Feb 4, 2015 KB

Test Enigmail

Mbm Balmani Feb 4, 2015

= Test Enigmail

Subject : Test Enigmail
Date : February 4, 2015 11:47:52 PM
From : Mbrm Balmani

To : SecureSearch?015@gmail.com

Hi,

this is secure test

Figure 2-9 Columba Email Client

22



3 Strategy

The project’s goal is to identify a technique that supports securely searching encrypted email
stored on un-trusted storage. This involves researching the existing cryptography techniques and
deciding an approach suitable for email messages. The chosen approach needs to be
implemented and integrated with an email client to depict the suitability of that approach in
practice.

The following sections describe the development and testing strategies employed for this project.

3.1 Development strategy

This section outlines the strategies employed for the selection of technique and the
corresponding implementation. As described in the following sections, the selection and choice
adopted for one influence the other.

3.1.1 Technique selection

The following strategies were adopted in the selection of cryptography technique and they are
listed in the order of importance with higher order first.

e The primary factor influencing the selection is the feasibility of implementation of the
technique using the libraries that are currently available.

e The technique should support securely storing the index data an un-trusted storage. The
index data should not reveal any detail that is not deducible by an attacker with access to
the corresponding encrypted email.

e This project deals with the end-to-end encrypted email communication with the
encrypted email messages already being stored in the mail server; hence the index data
may not be a replication of the already stored encrypted data. This imply that data stored
as part of the index may need to be lesser than the original encrypted email message.

e It may not be possible to assess the run time requirements based on the technique
description, as the library used affects the run time for the cryptographic operations. The
following two things may be assessed

= A typical unsecure index requires only one communication with index where a
search query is sent and the results are retrieved. The upper bound of the number
of communication needed for storing or securely searching index may be linear in
terms of number of messages or search results.

= The number of comparison needed for searching should not exceed the naive
comparison limit i.e., the number of comparisons where each word in the
encrypted data is matched against the search word.

3.1.2 Implementation strategy
The following lists outline the strategy adopted for the implementation.

e This project follows an incremental prototype based approach where an initial prototype
is developed which is extended to the final implementation.

e The cryptography library chosen should be stable with some evidence of its usage in
successful projects. Moreover, the support for issues should readily exist with some
answered questions.

23



e This project may choose offline mail storage for its initial development and further
evaluation but there should be some evidence of its usability in a live environment.

e Any research project has its uncertainty with the implementation time line; this project
may stick with the original plan being broken down to individual tasks after consultation
with the supervisor. And there may not be a blocker issue more than a week without
seeking advice from supervisor.

3.2 Testing strategy

This project employs JUnit testing, scenario based testing and scalability tests as the techniques
for evaluating the project.

3.2.1 JUnit and Scenario based testing

JUnit tests shall be used for testing each functional module in the implementation. The
effectiveness of such tests shall be measured through a code coverage tool and shall have at least
80 percent code coverage. The tests shall be part of the same project as the source code or a
different test project with dependencies on the source project.

This project shall employ manual scenario based testing for testing end functionality which
cannot be tested through unit tests. These tests would involve manual execution of operations in
a live environment requiring human interpretation.

3.2.2 Performance

The performance of the implementation shall be tested on a corpus of encrypted email messages.
The performance shall be measured in terms of time required for indexing and searching as well
as space required for storing indexed messages. The measured time and space shall be plotted
against the number of messages and length of the messages. This evaluation should aim to
identify an upper bound against number and length of messages and identify areas of
performance improvement or bottlenecks in the implementation.

24



4 Design

This chapter describes the overall design proposed by this project for securely searching
encrypted email followed by the logical design and design decisions made for the
implementation of different functionalities. This chapter concludes with the runtime and
deployment view of the implemented library.

4.1 Solution Design

This section describes the overall design for securely searching encrypted email and its pre-
requisite is an end-to-end encrypted email communication setup. Therefore the existing setup
should enable sending and receiving encrypted email messages and the implementation of this
project complements the existing setup with secure search functionality.

Initially this section describes the core technique employed in the design followed by the
notation used to represent the design diagrams. And then the logical and deployment views
proposed by this project are outlined. All the design views presume that there exists an end-to-
end encrypted email communication setup between Userl and User2 and the views from the
perspective of Userl with the secure searcher functionality are described.

4.1.1 Core Technique

This project uses Goh’s Bloom filter [Goh 2004] as a core technique for creating a secure index
given an email message (document) and unique message Id (document Id). This project suggests
extensions to Goh’s approach and recommends a practical design for securely searching
encrypted email messages. The design proposed by this project includes the overall solution
design, design of the implemented library and the integration design describing how the
implementation could be integrated to an existing email client.

4.1.1.1 Modification to the Technique

During the indexing process, each word in the document is hashed using a key and this hashed
word is referred as a trap door for that word. The trap door is again used as a key to hash the
document id and then the final hashed word is converted into a set of r indices and corresponding
bits are set in the Bloom filter. Finally, instead of storing the Bloom filter and document id as an
index, as proposed by the original technique, this project stores the Bloom filter and encrypted
document id as an index.

During the search process, for the searched word the corresponding trap door word is created.
The original technique proposes retrieving the index and using the trap door again as a key to
hash the document id to search for that word in the Bloom filter. Because of the modification
during indexing, now the searcher has to first decrypt the document id and hash the decrypted
document id with trap door as the key to search for that word in the Bloom filter.

Let’s say there are U unique words in a document comprising N words (words repeat in a
document for example, the, a, and, are). Goh [2004] recommends adding X random words (X =
Total number of words (N) - Number of unique words (U)) to be IND-CKA semantically secure.
Therefore the Bloom filter indexes of two identical length documents have same number of
words mapped to the index irrespective of number of unique words in the documents. This
project modifies the technique in the view of additional functionality while promising same
security. Instead of mapping X random words, the repeated occurrence information of the word

25



can be mapped; for example, the word ‘this2’ is added to bloom filter index for the second
occurrence of word ‘this’. The “Word<N>’, where N is the nth repeated occurrence of the word
is mapped as this would lay the basis for future enhancement where the searcher could return
search results ordered by the number of occurrences of the search word.

4.1.1.1.1 Analysis

During the indexing process, storing an encrypted document id strengthens the security, as the
document id information is not leaked with the index being stored on un-trusted storage. While
this may look like an additional precaution, the main reason this project recommends this is to
strengthen the index against security attacks during the search process. This design strengthens
the security of the index against Replay attack and Brute force attack models. Security and the
performance tradeoffs associated with this modification is analysed further in the Evaluation
section.

4.1.2 Design Notation

This project follows the boxes and arrow style for representing components in a design and the
connections between them. Moreover, a magnetic disc symbol is used to represent a storage unit
and the physical machines are labelled with ‘Machine’ in their name. In Logical view the boxes
represent the logical components and the arrows represent the dependencies between the
components with arrow pointing towards the depended component. In the runtime view, boxes
represent executable components with arrows representing flow of control or flow of data.

4.1.3 Logical View

This section describes the high level interaction between the logical components of Secure
Searcher and an existing email client with end-to-end encryption setup. The functionality of each

logical component is detailed below.
End-to_End :
Email Encryption

Secure Searcher

N S
\\ //
\.\- //
Data Manager

Encryption
Key Utilities

Email Client < Manager

Crypto
Libraries

Figure 4-1 Secure Searcher Logical Design

26



4.1.3.1 Indexer

Email Client interacts with the Indexer component for indexing encrypted email messages. This
could be a live interaction i.e., the client invokes the Indexer whenever it receives new messages
or it could be an offline interaction where the client periodically (hourly or daily) indexes the
messages. Moreover, Email Client may pass the encrypted message to the Indexer or the client
could decrypt the message and send only the plain text message for indexing.

The indexing is based on unique message Id associated with each email message and the index is
stored in Email Index (database) with the help of Data Manager.

4.1.3.2 Searcher

Email client interacts with Searcher component for searching encrypted email messages.
Searcher accepts the search word and returns the unique message Ids whose message bodies may
contain the searched word.

4.1.3.3 Data Manager

Data Manager decouples the data store implementation type from the Indexer and Searcher
components. Data Manager manages the connection to the data store and enables storing and
retrieving the index data to and from the data store.

4.1.3.4 Key Manager

Key Manager enables Indexer and Searcher components to retrieve the indexing key used for
creating a secure email index. Key Manager exposes the functionality to import and securely
store this indexing key with the help of Crypto Libraries.

Email Client may interact with Key Manager to store the keys used for encryption/decryption
purpose as part of the end-to-end email communication. This process may not be needed if the
Email Client handles the decryption process and sends only the plain text message for indexing.
But if the Email Client needs the Indexer to index encrypted messages then the Indexer requests
the Key Manager for corresponding decryption key. Hence in the latter case the decryption key
need to be stored by Email Client using Key Manager.

4.1.3.5 Encryption Utilities

Encryption Utilities exposes hashing and encryption/decryption functionalities with the help of
Crypto Libraries. Crypto Libraries are collection open source standard libraries enabling full
strength cryptographic operations.

4.1.4 Deployment View

This section describes the recommended deployment approach for the secure search
functionality. The next figure shows User 1 having access to two machines Local Machine 1 and
Local Machine 2 to perform email operations using a same email account.

User 1 logs in to the email client on Local Machine 1 and checks for new messages. Any new
messages are indexed in the Email Index store on the Local Machine 1. If there is a need for
backup or portability, the stored secure Email Index could be backed up in a remote storage on
the cloud.

27



To illustrate the portability of the functionality, let’s say the Userl logs in to the Email Client
from another machine Local Machine 2. The designed solution requires merely a synchronisation
between the local Email Index and the remote cloud Email Index store. This negates the need to
download and index all the already indexed email messages again on the Local Machine 2. Local
Machine 2 could be a new machine with Email Client and Secure Searcher installed or an
alternate machine that is used by the Userl on regular basis.

. End-to-End User 2
Email Encryption

Local Machine 1 / ‘ Local Machine 2

Email Client

Secure Searcher Secure Searcher

Cloud Un-trusted
Storage

Figure 4-2 Secure Searcher Deployment Design

Though the description uses two machines to illustrate portability of the solution, the secure
searcher portability could be extended to N machines.

4.1.4.1 Alternative Approaches

The above approach is recommended owing to the simplicity of deployment coupled with the
security of the search mechanism. This section describes the alternative approaches that were
considered and reasons their limitations.

4.1.4.1.1 Remote Secure Search Server

The deployment approach described in this section requires a single remote search server
deployed on the cloud with which email clients could interact for indexing and searching.

This approach has the advantage of having a single deployment of Secure Searcher as opposed to
the recommended approach’s requirement of secure searcher configuration on all local machines
used for email communication. A serious limitation of this approach is that the Secure Searcher
needs access to the decrypted messages for indexing purpose. Moreover, any attacker having
access to the Secure Searcher could perform search operation on the stored Email Index.

28



End-to-End N User 2
Email Encryption
Local Machine 1 e ) Local Machine 2

Cloud Secure Search Server

Secure Searcher <

Figure 4-3 Secure Searcher Remote Server Alternative Deployment Design

Hence the remote Secure Search server needs to be a trusted server which restricts the access
only to the authenticated users and protects the Secure Searcher from the In-Memory attack i.e.,
the keys and decrypted messages are available in memory of the executing program during
indexing and searching purpose and is vulnerable to attack.

4.1.4.1.2 Secure Searcher Client and Server

This deployment approach tries to minimise the security vulnerability in the previous Remote
Secure Search Server approach by splitting the Secure Searcher functionality between the Local
Machine and remote server. The solution design is depicted in the figure below.

User 1 < End-to-End > User 2
Email Encryption

Local Machine 1 - Local Machine 2

Secure Search
Client

Email Client

Secure Search
Client

Cloud Server

Secure Search
Server

Email Index

Figure 4-4 Secure Searcher Client Server Alternative Deployment Design

29



The functionality of Secure Search client and the server during indexing and searching process
are described in the following sections.

4.1.4.1.2.1 Indexing

When a new message needs to be indexed by the Secure Search Client, the client indexes the
message and sends the index (encrypted message Id and Bloom filter) to the Secure Search
Server. Secure Search Server on receipt of the index, stores them in the Email Index store.

4.1.4.1.2.2 Searching

During the Search process, Secure Search Client creates a trap door for the received search word.
Trap door is a hashed word created using a keyed hash function where only the client could
create the corresponding hashed value while it would be hard for an attacker without the key.

The trap door is then sent to the Secure Search Server which performs the search and returns the
message Ids of messages containing the searched word.

4.1.4.1.2.3 Analysis

This approach is strong against the In-Memory attack vulnerability of the previous approach as
the Secure Search Server does not have access to the keys or plain text messages during
indexing. Moreover, only the Secure Search Client can perform the search operation as only the
client can generate trap door with a key.

But the major limitations of this approach are during search operation, where the deployed
Secure Search Server is vulnerable to frequency analysis attack. Suppose the user searchers for a
word ‘SearchWord’ then the Secure Search Client creates a trapdoor for ‘SearchWord’ let’s say
‘TrapDoorWord’. Secure Search Server receives the trapdoor ‘TrapDoorWord’ performs the
search and returns the result message Ids. Now the attacker having access to the Secure Search
Server could analyse that a certain word is possibly found in the email messages based on the
number of results. The number of search results acts as a vulnerability to perform frequency
analysis attack. Having access to history of such searched ‘TrapDoorWords’ and results, the
attacker could determine the corresponding ‘SearchWord’ for the ‘TrapDoorWord’ leaking the
information that ‘SearchWord’ is present in the resulted messages.

Another serious limitation with this approach is it suffers from the Replay attack. If the attacker
gets access to a ‘“TrapDoorWord’ and the remote server, the same trap door could be used in
future to check for the presence of the corresponding ‘SearchWord’.

Hence the remote Cloud server where the Secure Server is deployed needs to be a trusted server.
Moreover, a remote un-trusted server could block or modify the search results or the index
asserting the requirement of a trusted remote server.

4.1.4.1.3 Single Remote Email Index Data Store

This deployment approach is stronger than the previous split approach with only the data store
being stored in the remote un-trusted cloud storage.

30



User 1 . End-to-End User 2
Email Encryption

Local Machine 2

Local Machine 1

Secure Searcher Secure Searcher

Cloud Storage

Figure 4-5 Secure Searcher Remote Storage Alternative Deployment Design

When a new message needs to be indexed, the Secure Searcher sends the encrypted message Id
and corresponding index to store in the database. While searching, the stored indices are
retrieved from the Email Index data store sequentially or in batch and searched for the presence
of search word.

4.1.4.1.3.1 Analysis

Even though the search results or search word are not known to the remote storage, the data
access history during the search operation leaks information that a certain word may be
found/not found in accessed rows. Let’s say the default search configuration displays 20 search
results for initial search and only the first 20 rows of the Email Index data store are accessed.
Then this data access pattern leaks the information that a certain word is found in each of the first
20 email index. Similarly if the search operation accesses all the rows, then the information that
the corresponding search word may not be found in all index is leaked. This could act as a basis
of frequency analysis attack which could be avoided using an oblivious data store that hides the
history of access patterns.

This approach may be slightly more vulnerable than the recommended deployment approach.
But the key reason that this project recommends a local index store in synchronisation with the
remote data store is to increase the performance. The usage of cryptography libraries in the
Secure Searcher produces considerable delay in the search operation. Using a remote index store
for search operation might increase the delay further. But with current faster network services
and the designed space efficient index, this may be negligible and needs to be asserted with
further experiments.

31



4.2 Library Design

This section describes the high level design of the implemented library. It begins with the logical
view followed by the description of run time interactions between the components.

4.2.1 Logical View

This section describes the logical components of the implementation along with the
corresponding mapping to the implementation packages in the source code environment. The
design follows the layered approach with the responsibilities divided among three layers Client,
Server and Data Store. Each layer exposes APIs (Application Programming Interfaces) that are
consumed by the layer left or above to it.

The next figure shows the major logical components in the implemented library and their
dependencies. Each logical component and its functionalities are described as follows.

4.2.1.1 Secure Search Client

This component encompasses the Client side functionality described in the Secure Searcher
Client and Server deployment approach. It corresponds to the package org.maynooth.client in the
implementation structure.

A separate logical component for client and server is used, even though this project recommends
only a two-tier deployment approach comprising Secure Searcher with a local database on local
machine and a remote database on cloud storage. The separation of logical client and server
provide scope for future extensions and logical separation of functionalities.

The Secure Search Client handles integration with the email client and performs core of the
indexing functionality where as Secure Search Server handles integration with Data Store and
the core of searching functionality.

Secure Search Client

Decrypter

Secure Search Server

m Indexer
> Key Manager
Searcher
1
|
|
N

i Data Store

Encryption Utilities DataManager
Data Storer Data Searcher
Encryption Configuration

Figure 4-6 Secure Searcher Logical View

Data Store

32



4.2.1.1.1 Indexer

Client Indexer exposes APIs for indexing both encrypted and plain messages to the data store.
For indexing an encrypted message it utilises the Decrypter component to decrypt the contents
and it creates a Bloom filter data structure representing the index of the message. It passes the
index information to the Server Indexer for storage. This component corresponds to
org.maynooth.client.indexer package in the implementation structure.

4.2.1.1.2 Searcher

Client Searcher exposes APIs for searching in the indexed messages and returns a list of message
Ids whose contents may contain the searched word. Furthermore, it exposes API to search for
words in a particular message and returns a Boolean value indicating presence or absence of the
searched words.

For the input search word, it creates a trap door search word and passes the trap door to Server
Searcher for searching. The maximum number of results returned depends on the Searcher
configuration settings. This component corresponds to org.maynooth.client.searcher package in
the implementation structure

4.2.1.1.3 Decrypter

Indexer on receiving encrypted messages for indexing invokes the Decrypter component which
employs Chain of Responsibility design pattern to perform the decryption functionality.
Decrypter corresponds to org.maynooth.client.indexer.decrypter package in the implementation
structure.

DecrypterManager

+Decrypter getDecrypterChain()

iiUCCESSOF

Decrypter

+byte[] decrypt(Message message)

+void EncryptedMessagesToIndex(Iterator <Message » messages) #byte[] decryptMessage(Message encryptedMessage)
+void deleteMessagesFromIndex(Iterator <Message > messages) #boolean isDecryptable(Message message)

+void addPlainMessagesTolndex(Iterator <Message > messages)
+hoolean isMessagelndexed(Message message)

EmailIndexerClient

SmimeDecrypter OpenPGPDecrypter

+public byte[] decryptiMessage(Message encryptedMessage) +byte[] decryptMessage(Message encryptedMessage)
+boolean isDecryptable(Message message) +hyte[] decryptBytes(byte[] encryptedBytes)
#boolean isDecryptable(Message message)

Figure 4-7 Decrypter Logical Design - Chain of Responsibility

As depicted in the class diagram above, Indexer client gets the Decrypter chain from
DecrypterManager and invokes decrypt on the message. Decrypter chain first checks the
OpenPGPDecrypter for decryption, if the message is not OpenPGP encrypted or if the
corresponding key is not present in the key store the responsibility then goes to the next

33



successor SmimeDecrypter. If none of the Decrypter in the chain could handle the message then
the message is not indexed.

Chain of Responsibility pattern enables easy integration for future extension of new decrypter
functionality. This would involve specialising the Decrypter and modifying DecrypterManager
to add the new specialised Decrypter to the chain.

4.2.1.1.4 Key Manager

Key Manager corresponds to org.maynooth.client.keystore package in the implementation
structure. It consists of three major components described as follows.

e KeyStoreManager enables creation of a new key store and deletion of the existing key store.
It also exposes API to retrieve the key used for indexing purpose.

e PGPKeyManager enables importing and retrieving keys used for OpenPGP decryption.

e SmimeKeyManager enables importing and retrieving keys used for SIMIME decryption.

4.2.1.2 Secure Search Server

This component encompasses the Server side functionality described in the Secure Searcher
Client and Server deployment approach. It handles the majority of searching functionality and
corresponds to the package org.maynooth.server in the implementation structure. The logical
components of the server are detailed as follows.

4.2.1.2.1 Indexer

Server Indexer acts as a connector to the data store for passing the encrypted message Id and the
corresponding Bloom filter index for storage. This component corresponds to
org.maynooth.server.indexer package in the implementation structure.

4.2.1.2.2 Searcher

Server Searcher on receiving the trapdoor invokes the data store to retrieve indices and performs
the requested search. This component corresponds to org.maynooth.server.searcher package in
the implementation structure.

4.2.1.3 Encryption Utilities

Encryption Utilities exposes two functionalities; a keyed hash function known as HMAC
[Krawczyk et al. 1997] function and a symmetric encryption functionality. The algorithm or
standard used for hashing and encryption depends on the Encryption Configuration settings. This
component corresponds to org.maynooth.encryptionUtil package in the implementation
structure.

4.2.1.4 Data Store

Data Store corresponds to org.maynooth.datastore package in the implementation structure. It
consists of three major components described as follows

e Data Manager creates and closes the connection to the database. The connection parameters
depend on the Data Store Configuration settings.

e Data Storer exposes APIs for indexing purpose which includes inserting a new index,
removing an existing index and querying if the index already exists.

34



e Data Searcher exposes APIs for searching the data store and returns the indices containing
message id and Bloom filter index upon retrieve index operation by Server Searcher.

4.2.2 Runtime View

This section describes the run time interaction flow between the components of the library during
indexing and searching process.

4.2.2.1 Indexing Runtime View

Indexing runtime view describes run time interaction between the logical components of Secure
Searcher during a typical indexing process where a new message is indexed by the Secure

Searcher.
Encryption
Utilities

uses | 3

] ] 4 sends index ]
EmaillndexerClient EmaillndexerServer

uses
1
Key Manager
2
Decrypter

Data Manager

I

Data Storer

Data Store

Figure 4-8 Indexing Runtime View

EmailindexerClient on receiving a request to index email messages retrieves the indexing key
from the Key Manager and then uses Decrypter to decrypt the email message if it is an encrypted
message. EmaillndexerClient then uses Encryption Utilities to create an index for the message
and sends it to the server for indexing. EmaillndexerServer invokes Data Manager for getting a
connection and then stores the index to the Data Store.

4.2.2.2 Searching Runtime View

Searching runtime view describes the run time interactions between the logical components of
Secure Searcher for a typical search operation where the Searcher is queried for messages
containing the search word.

EmailSearcherClient on receiving a search request invokes Key Manager to get the indexing key
and then uses Encryption Ultilities to create a trap door word corresponding to the search word.
Trap door word is then sent to EmailSearcherServer which retrieves the index records from Data
Store to search for the records that satisfy the requested operation. EmailSearcherServer uses
Encryption Utilities and Key Manager for the search operation and returns the message lds of
messages containing the searched word to the EmailSearcherClient.

35



EmailSearcherClient

4.3 Integration Design

2 uses [ e 11 uses
Utilities

3 sends trapdoor

1 uses 10 uses
Key Manager

12 returns results

EmailSearcherServer

Figure 4-9 Searching Runtime View

Data Store

This section describes the high level design for the integration of the implemented library with
an existing email client. This section includes the integration design for indexing operation
followed by the design for search operation.

4.3.1.1 Indexing Integration
Integration design proposed by this project for indexing purpose using the Secure Searcher is
depicted in the next figure. As shown in the design diagram, there are two high level indexing
operations supported by this design numbered as 1 and 2.

Mes

Email Client

Secure Searcher

Get old i 1 - :
Messages EmaillndexerClient

2
New Message
Add Index Remove Index

sage

Listener

Messages Data Store
deleted

Indexer
Configuration

Figure 4-10 Indexing Integration Design

36



The first one is a support for full or first time indexing operation, where all the existing old
messages in the email client need to be indexed by Secure Searcher. Email client retrieves all the
messages for the configured email account and sends it to the EmailindexerClient.
EmailindexerClient indexes the messaged based on retrieved indexer configuration property
settings such as key store, database, Bloom filter and encryption settings.

The second one is a support for an incremental index operation, where new messages are indexed
and the deleted messages are removed from the index store. Email client listens for any new
messages or deletion of messages and invokes EmaillndexerClient to index or remove an
existing index.

4.3.1.2 Searching Integration

Integration design proposed by this project for search operation using Secure Searcher is
described in this section.

Secure Searcher

Email Client

1
Get Search Word EmailSearcherClient g Searcher Configuration

2
Display Search Results EmailSearcherServer

Email Store

Data Store

Figure 4-11 Searching Integration Design

Email client on receiving a search request from the user, invokes the search operation on
EmailSearcherClient. EmailSearcherClient performs the search operation utilising the default
Searcher configuration settings such as key store, searcher, database, Bloom filter and encryption
settings and then returns the message ids of messages that may contain the searched word. The
results are then processed by the email client and the corresponding email message data is
retrieved from the Email Store for display. Email Store may be a local cache of messages stored
by email client or the remote mail server containing the messages.

37



5 Implementation

This chapter details the implementation approach adhered to by the project. It begins with the
core library implementation details followed by the email client integration implementation
details and concludes with the encrypted email generator approach. Each section includes a
summary of key decisions made and the challenges faced during the implementation.

5.1 Core Library Implementation

This section describes the implementation details of the core library developed by this project. At
first, indexer implementation details are described, followed by the key manager and encryption
utilities information. Then the approach for searcher implementation is detailed and this section
concludes with the data manager details.

5.1.1 Indexer

Indexer extracts the message Id from the message and encrypts it with the indexing key obtained
from key manager and encryption utilities. Then it parses the message content and creates a
Bloom filter as the index of the message, the index creation details are outlined as follows.

5.1.1.1 Index Content

Indexer decrypts the message body and splits the message body into individual words. The
subject of the email message and attachments are not indexed owing to the following rationales.

e Subject lines are not considered as they are not encrypted by the end-to-end encryption
tools. This is due to the fact that the spam filters on the mail servers works on the basis of
subject line of the message as well. Hence the subject line of the email message could be
searched by the default search service provided by the mail service provider.

e Current tools that support end-to-end encrypted email communication do not have
support for encryption of attachments and hence indexing such attachments is considered
out of scope for the project.

For splitting the message body into individual words, a regular expression "[*A-Za-z0-9]+" is
used. Therefore any character other than the alphabets and numbers is considered as a delimiter
to split the message. Alternative approach would be to use white space characters as delimiter
but if employed then the words like “Thanks,” will be indexed including comma in it. A more
sophisticated delimiter would anticipate all such possibilities in words depending on the user
expectations. This project sticks with the initial regular expression and translates each word to a
case insensitive word for simplicity and usability.

5.1.1.2 Bloom Filter

This project uses Java BitSet [Oracle 2014] data structure to represent Bloom filter. The size of
the Bloom filter, number of words mapped to the Bloom filter and number of hash functions
used for mappings during the indexing process determines the false positive rate associated with
the search process. The number of words (N) extracted from the message body multiplied by the
Bloom filter configuration parameter ‘NumberOfBitsPerWord’ (B) is taken as the Bloom filter
size (M). This project uses ‘NumberOfHashFunctions’ configuration parameter to determine the
number of hash functions used for mapping words to the Bloom filter.

Bloom filter size M = (Number of words in the message N) * (Bits per word configuration B)

38



These configuration parameters are the properties files in the ‘configuration’ folder of the
project. This could be overridden by the integrated email client and changed at the run time.
More specifically, all changes to the configuration properties in the Secure Searcher should made
before running the first or full index operation. If the parameters are changed after the index
operation then the search operation may not work. As the search operation expects the
configuration to remain same as it was during the indexing stage.

Each word is hashed using encryption utilities with a pseudo key as the key and then hashed
word is again used as the key to hash the message id. Then the final hashed word is mapped to
the Bloom filter using r hash functions, details of the mappings are described in the next section.
A pseudo key is a random byte array (32 byte) generated using Secure Random with indexing
key as the key. Pseudo keys are used to generate n keys from a single key (indexing key) or for
the key with required key length (32 byte) to make the implementation independent of the size of
the indexing key used. It is recommended that key size be at least equal to the block size the data
processed by the hashing/encryption function [Krawczyk et al. 1997], which is 32 byte (256/8)
for the default hash function (HmacSHA256). 256 bits is set as the default hashing key size in
the encryption configuration, though a smaller key size would be padded up with Os on the right
to get the right key size.

5.1.1.3 Challenges in Indexer implementation

A challenge during the indexing was to identify r hash functions depending on the Bloom filter
configuration parameters. The initial idea was to use inbuilt hash functions with r pseudo keys
generated based on the original key. But then each hashed value which is a 256 bit length value
(HmacSHA256) needs to be mapped to the Bloom filter index from 0 to M.

This project decided to adapt the implementation approach used by an existing Bloom filter
implementation [MagnusS 2011]. Here instead of using r pseudo keys for r hash functions, first a
pseudo key is created and then the hashed value is split into 4 byte blocks (32 bits) and the
absolute value is taken as an integer. This integer mod the Bloom filter size is used to map to the
index 0 to M. So a single hashed 256 bit value could be mapped to 8 (256/32) Bloom filter index.
If more hash functions are needed i.e., r > 8 the next pseudo key is created to generate the next
hashed value. This provides a simple and light weight mapping instead of generating r pseudo
keys and using r keyed hash functions which are both costly operations.

5.1.1.4 Decrypter

The major challenge with the implementation is decrypting the initial encrypted message for
indexing. There are simple examples for decrypting OpenPGP and S/MIME encrypted contents
using bouncy castle library [Wiki ServiceNow 2012b; Bouncy Castle 2015]. While it was
straight forward to extract OpenPGP encrypted body content, extracting the message content
from the S/IMIME encrypted mail message was the major challenge. For SIMIME messages the
default message.getContent() returns mime multi-parts which needs to be parsed to extract the
encrypted content. The extracted content contained varied headers in the content depending on
the client or library (bouncy castle) used to create SIMIME encrypted message. This project
adopted an approach to get the raw input stream of the message part and parse it manually. The
raw input stream of the message body part parsing needed to be modified to adopt for mail dir
message format and multi-part (plain and html) message bodies.

39



5.1.2 Key Manager

Key manager provides functionalities to import OpenPGP and S/MIME keys that could be used
for indexing or decryption. The major challenge was to decide on how to store the keys on the
client machine. Initially password protected S/IMIME pfx (Personal Information Exchange) file
and the default encrypted OpenPGP key was used by the Key Manager. While S/IMIME could be
imported to a JKS (Java Key Store), this project could not find a standard way to store OpenPGP
keys that is usable by a Java library. This implementation converted the imported OpenPGP key
to a key and certificate pair so that it could be stored in JKS [Bouncy Castle Inc 2014]. This
approach was used so there is a common key store for both the keys and the key store is
protected by a single password. This promotes usability requiring user to input a single password
for indexing or decryption of both OpenPGP and S/MIME messages, irrespective of the
passwords used to protect the source S/IMIME pfx file and OpenPGP keys.

5.1.3 Encryption Utilities

The encryption utilities provides two functionalities, a keyed hashing function called HMAC
[Krawczyk et al. 1997] and a symmetric encryption function. The bouncy castle crypto library
[Bouncy Castle Inc 2013] is used for the implementation of these functions. Bouncy castle was
used as it provides support for both OpenPGP and S/IMIME from older release of JDK 1.3 and
there is good support online indicating the use of library on other successful products. While
there are number of libraries for GPG [Yemini 2010; daniele athome et al. 2015], One other
library considered for the project is Cryptix [Cryptix 2005] which claimed to provide good
support for PGP but was deactivated on 2005.

The default configuration employs HmacSHA256 and AES256 as keyed hashing and symmetric
encryption functions respectively. These standards are approved by NIST (National Institute of
Standards and Technology) and the standard used is configurable by changing the encryption
configuration properties settings, provided the bouncy castle library supports them.

Other NIST approved keyed hash functions are SHA-224, SHA-384, SHA-512, SHA-512/224
and SHA-512/256 and the approved encryption standards are Triple DES and Skipjack [NIPS
2015; NIST 2014].

5.1.4 Searcher

Searcher follows the same operations performed by the indexer for each word in message but on
the search word and invokes Data Manager to get the index and then for each message index it
decrypts the message id and uses the decrypted message id to check for the membership of the
word in that Bloom filter message index.

5.1.5 Data Manager

Data Manager provides connection to the database for storing and retrieving indices. This project
uses JDBC (Java Data Base Connectivity) driver with the configurable connection parameters to
allow runtime portability across different database types. Data Manager is a singleton class,
providing a single connection to the database while it could be extended to manage a pool of
connections for improving performance. Initially this project used JavaDB or Apache Derby
[Oracle 2015d] as a local file database due to the straight forward support from within Java. But
this project noticed a considerable delay in database operations. Hence this project moved to use

40



HSQLDB [HyperSQL 2014] as a local file database, as it promised to be another light weight
database written in Java guaranteeing comparatively increased performance.

5.2 Integration Implementation

This section describes the integration details with Columba email client for a live integration and
integration with Maildir for offline testing. Both the integrations accepts default configuration
parameters provided as part of the library.

5.2.1 Columba Client Integration

This section begins with the indexing integration details followed by the searcher and text viewer
details. For integration, the Secure Searcher library eclipse project is added as a depended project
to the Columba email client project [Dietz et al. 2013].

5.2.1.1 Indexing Integration
As described in the integration design section the implementation includes two indexing support.

The first or full time indexing implementation involved creating a Utility Menu ‘Index All
Encrypted Messages...” and displaying an Index dialog corresponding to the implementation file
‘org.columba.mail.gui.action.IndexMailDialog’. The implementation is similar to the existing
functionality provided by Columba for exporting email messages. In a nut shell, instead of
exporting email with an ExportFolderCommand implementation, Index email support invokes
the indexing command ‘org.columba.mail.folder.command.IndexFolderCommand’ where each
email message is retrieved and EmailClientindexer of the Secure Searcher is invoked to index
the message. Before starting the indexing process, the data store is cleared as it is a full index
operation.

For incremental indexing, initially this project tried to add ‘IMailCheckingListener’ to check for
new messages. But the notification of new messages with this listener was inconsistent;
moreover there was no notification for deleted messages. So this project added a listener on
Inbox  folder implementing the Columba  ‘IFolderListener’ interface  called
‘org.maynooth.indexer.integration.MaillndexerListener’ as it provided consistent notification for
both new and deleted messages.

5.2.1.2 Searcher Integration

For searcher integration, a new search type ‘Encrypted Body Contains’ is added to the search
filter combo menu in  ‘org.columba.mail.gui.filtertoolbar.FilterToolbar’. And the
‘DefaultSearchEngine’ is modified to invoke the new filter plug-in for the encrypted message
search ‘org.columba.mail.filter.plugins.EncryptedBodyFilter’.

The encrypted body filter gets the filter search pattern, the source folder (Inbox) and message id
as input. And it returns a Boolean value indicating whether the search pattern is found in the
message body of the message invoking ‘EmailSearcherClient’. 1t is possible to extend it to a
more efficient implementation that invokes ‘EmailSearcherClient’ once to get all message ids,
instead of invoking the Searcher for each message id. This project decided to follow the former
approach for a standard conformance with other filter plug-ins developed within Columba.

41



5.2.1.2.1 Challenges in Searcher Integration

Columba has two search facilities. One is a quick search that was integrated with this project and
another one is a detailed search. The detailed search supports conjunctions ‘And’, ‘Or’ among
searches on multiple search fields such as subject, to and cc fields of the email message. This
project initially attempted to integrate with detailed search but the work flow of detailed search
could not be easily identified and it repeatedly crossed over with the quick search
implementation. This project then chose to integrate with quick search and the detailed search
integration is moved as future work.

5.2.1.3 Text Viewer

Columba does not have an inbuilt support to decrypt the encrypted message. So this project
modified the ‘org.columba.mail.gui.message.viewer.TextViewer’ to display the encrypted
message. This involved identifying the encrypted message body and invoking the ‘Decrypter’
implementation to get the decrypted contents. This integration demonstrates an additional
capability supported by the implemented library.

5.2.2 Maildir Integration

This section describes the implementation details of the integration with Maildir for offline
testing. At first, the mail storage format details are described followed by the mail server and
client simulator details.

5.2.2.1 Mail Storage

This project uses Maildir [Qmail 2015] as an offline storage mechanism where each email
message is represented as a separate Maildir file. The JavaMaildir [Zhukov 2002] library is used
for parsing and reading the messages.

Initially, this project investigated IMAP (Internet Message Access Protocol) [Crispin 2003] and
Gmail Rest APIs [Google 2015] for retrieving email messages for indexing. But then, it decided
to use an offline mechanism to enable better support for the development environment. Initial
storage format used was Mbox [Hall 2005] where all messages are stored in a single Mbox file.
Gmail supports exporting email messages in Mbox format and the file is parsed using Mstor Java
library [Fortuna 2014]. But the major issue during development phase was the complexity
associated with modifying the original Mbox file for adding or deleting messages. So this project
moved to Maildir format where adding/removing messages would imply adding or removing
(renaming) the corresponding Maildir files in the Maildir source folder.

5.2.2.2 Mail Server Simulation

For offline simulation, this project created an email client implementation in the
‘org.maynooth.mailreader.client’ source package. The client registers two listeners with the
server and is used to listen for new and deleted messages. Server uses a polling mechanism to
poll periodically for the message changes (addition/deletion) and notifies the registered client
listeners.

A major challenge in the simulation was that JavaMaildir [Zhukov 2002] library used for parsing
Maildir files had full support for UNIX format files and it had issues in Windows development
environment used for the project. For example, for deletion of messages JavaMaildir renames the
corresponding file with “:2ST” at the end indicating the message has been seen and trashed. But

42



Windows environment does not allow the special character colon “:” in a file name. So this
project used a work around of creating a new folder (deletedmessages) whose new messages
were interpreted as deleted messages.

This integration could also act as a core for full pledged offline indexer and searcher that allows
searching encrypted email messages stored or exported in Mbox or Maildir format. In view of
the future extensions, the initial Mbox reader implementation is retained in the project even
though they are not used for the project’s offline testing.

5.3 Encrypted Email Generator

This section details the encrypted email generator implemented for the performance testing of
the library. The generator generates encrypted email from an input plain text data; this includes
OpenPGP and S/IMIME email generation.

The implementations belong to the package ‘org.maynooth.mailgenerator’. These two were the
challenging parts next to the decryption implementation discussed earlier. While S/MIME
encryption was straightforward from S/IMIME examples, the corresponding decryption has to be
modified so that it handles the S/IMIME generated email messages as well. Writing OpenPGP
encrypted email message was about finding a right OpenPGP encryption example [Archive
2015]. The final example was not easily searchable for reference and the examples that were
tried initially [Wiki ServiceNow 2012a; Fastpicket 2012; Sloanseaman 2012] were incomplete or
using old version of Bouncy Castle APIs.

43



6 Secure Searcher

This chapter describes the final functionalities exposed by the project. Due to the performance
loss described in the next section, the symmetric encryption/decryption utility functionality is
turned off in the final implementation. Other functionalities are exposed as per the design and
implementation chapters. At first, details of the APIs (Application Programming Interfaces)
exposed by the implemented library are described, followed by the functionalities that were
assessed using a live integration with the Columba email client.

6.1 Implementation Library

This section details the APIs exposed by the implemented library for consumption by external
email clients. At first, two major APIs (Indexer and Searcher) are outlined which are followed by
Key manager and Decrypter APIs.

6.1.1 Indexer

The indexing APIs are exposed as part of the ‘org.maynooth.client.indexer.EmaillndexerClient’
interface implementation. The major APIs are listed as follows and the Java docs contain the
detailed documentation of the APIs.

void addEncryptedMessagesTolndex(lterator<Message> messages)
void addPlainMessagesTolndex(lterator<Message> messages)
void deleteMessagesFromindex(lterator<Message> messages)
boolean isMessagelndexed(Message message)

The message objects accepted as part of the APIs are of type javax.mail.Message [Oracle 2013a].
The interface can be instantiated with the corresponding ‘EmaillndexerClientimpl’
implementation for usage.

The implemented functionality delegates the responsibility of possible exceptions while parsing
message or using cryptographic APIs to the email clients. Therefore the email client is
responsible for notifying users or taking appropriate roll back options; this strategy is used for all
other exposed functionalities.

In addition to the above APIs, similar APIs that accepts an additional message id parameter is
introduced to support email client integration. This is due to the possibility that the email clients
may store messages using their custom message Id instead of the message id header as part of the
email message. For example, Columba email client employed numbers for message ids while the
message id that is part of an email message needs to conform to a recommended format with
ankle brackets [Crocker 1982].

6.1.2 Searcher

The Searcher APIs are exposed as part of ‘org.maynooth.client.searcher.EmailSearcherClient’
interface implementation. The major APIs are listed as follows and the Java docs contain the
detailed documentation of the APIs.

44



List<byte[]> searchAllMessages(String searchWord)
List<byte[]> searchAllMessagesForAnded(List<String> searchWordList)
List<byte[]> searchAllMessagesForOred(List<String> searchWordList)

The result values are a list of message ids returned as a byte array for security and neutral
character encoding implementation. Similar to Indexer, Searcher contains additional APIs with
message id as an additional parameter to search within a specific message and they return a
Boolean value indicating the presence or absence of the searched word. Searcher can be
instantiated with the ‘EmailSearcherClientimpl’ implementation for usage.

6.1.3 Key Manager

The major key manager APIs exposed as part of the package ‘org.maynooth.client.keystore’ for
external email clients are listed as follows.

KeyStoreManager.createKeyStore(char[] password)
KeyStoreManager.generateSessionKey(char[] keyStorePassword)
KeyStoreManager.deleteSessionKey()

Above APIs use the key store configuration property setting to get the key store file location. In
addition to the above APIs there are overloaded APIs that accepts key store file path and
password as additional parameters.

Email client can generate the key for session; this is the indexing key needed for indexing or
searching using Secure Searcher. Email client is responsible for maintaining the session time
during which the key is stored in memory of the indexer. After the session time out, email client
may delete the key. Secure Searcher uses lazy loading of the key and the key is loaded during the
first actual search or index operation.

If the integrated email client needs Secure Searcher to index OpenPGP or S/IMIME encrypted
messages then the corresponding keys needs to be loaded into the key store. Email client needs
to load the PGP and/or SIMIME keys before the indexing process so that the Secure Searcher
could decrypt the messages for indexing.

PGPKeyManager.loadPGPKeyToKeyStore(String pgpFile, char[] pgpPassword)
SmimeKeyManager.loadPfxfileToKeystore(String pfxFile, char[] pfxPassword)

Secure Searcher uses IndexKeyAlias and SmimeAlias key store configuration settings for loading
the appropriate key from the key store. For OpenPGP decryption, the public key Id part of the
encrypted data is used to search for the corresponding key in the key store. This enables multiple
PGP keys and one S/IMIME key per user as the S/IMIME certificate is typically allocated to the
user (email address) by CA (Certificate Authority).

6.1.4 Decrypter

The major decrypter APIs exposed as part of the ‘org.maynooth.client.indexer.decrypter’
package that are usable by an external email client are listed below. These can be used for
decrypting the message (Java mail) or decrypting the content.

45



byte[] DecrypterManager.getDecrypterChain().decrypt(Message message)
The above API decrypts the input message and returns the decrypted message body.
byte[] decryptBytes(byte[] encryptedBytes)

The above API exposed in the OpenPGPDecrypter and SmimeDecrypter can be used by the
email client as part of its implementation to decrypt the respective encrypted contents.

6.2 Columba Search Functionality

This section details the search functionality implemented as part of the integration with Columba
email client. It begins with the indexing functionality followed by searching and then concludes
with the text viewer functionality.

6.2.1 Indexing

To perform initial indexing of already existing email messages, a utility menu is created which
indexes all existing encrypted emails. This option would clear the index store and load new
indices to the data store. The figure below shows the full index dialog box where the folder to be
indexed needs to be selected.

B2 Index All Encrypted messages =
Create Secure Index Eé,{
Run full index on the encrypted messages in the selected folder o

Select Folders:

D@ Lecal Folders
'I [—:}DE Inbox II

[ Fun Index [

s ? This option will clear the index store and run full index!!

..... E |

oK || Cancel |

I | S ERans

| Index Selected Folder | | Cloze J

Figure 6-1 Columba Indexing Dialog

Whenever a new message arrives at the Columba client or if a message is deleted in the Columba
client, the incremental indexer would automatically perform the corresponding index or remove
operation at the backend.

46



6.2.2 Searching

To illustrate the search functionality, consider an S/IMIME encrypted message sent to the setup
email account (SecureSearch2015@gmail.com). The figure below shows the Gmail web viewer
which does not recognise the encrypted email and is shown as an attachment smime.p7m.

GO gle n iE securesearch2015@gm...
Gmail ~ “ 0o 3 W %~ Mo 1614 ¢ > m=m~ Q-
m live smime test inbox « & Mbm Balmani
Inbox Join Google+
Staned mbmbalmani @ Mar 30 (11 days ago) - | = .
ert Mal e Show deti
Drafts (2)
MailStore Export
More =
® Secure - Q
S

B smimepim '

Figure 6-2 Gmail SIMIME message

The same message is received using the integrated Columba email client and the encrypted
message body was searched for the word in the message body ‘livesmime’. The figure below
shows the search result indicating the corresponding encrypted message. The same functionality
is implemented for OpenPGP encrypted messages as well.

-
B NGOX- Colmbs W o
i File Edit View Folder Message Utilities Help
@ MNew Message ? Receive/Send @] Reply @ Forward ﬁ ﬁ Q What's related Search: ‘@
= Total: 15 Recent: 0 ®
I @ Local Folders
I EI--- SecureSearch2(15
= INBOX
: } _____ ﬁre Export live smime test mbmbalmani Mar 30, 2015
(|| =D Gmaig
[
= live smime test *
Subject : live smime test
Date : March 30, 2015 3:02:53 PM
From : mbmbalmani
To: securesearch2015@gmail.com
Attachments :  * smime.pim =
|
i This is livesmime test E |

Figure 6-3 Columba SIMIME Message

47


mailto:SecureSearch2015@gmail.com

6.2.3 Text Viewer

Columba does not have a default support for viewing encrypted messages. The Decrypter APIs
exposed by the library is used to view the encrypted message content in Columba’s text viewer.
The previous figure shows the corresponding functionality where an S/IMIME encrypted message
is viewed in the Columba’s text viewer.

To illustrate OpenPGP decryption functionality, consider an OpenPGP encrypted message sent
to the setup email account (SecureSearch2015@gamail.com). The figure below shows the Gmail

web viewer with the encrypted message content.

Google

Gmail ~

Inbox

Starred

Sent Mail

Drafts (2)
MailStore Export
IMere >

® sSccure Q.
e

Start a new one

The same email when viewed using the Columba client displays the decrypted message content

as depicted in the next figure.

n securesearch2015@gm
+“ a [!] [} - - More = 20014 £ » ::::: Jlid ¢-
Test live pgp send  inbox « = | Mbm Balmani

Mbm Balmani
to me [+

Mar 30 (11 days ago) -

~----BEGIN PGP MESSAGE-----
version: OpenPGR.jz va.s.@
Comment: htto://openpgpis.org

WeFMARVXWhGNE1UaAQ/ SACEE /oKy PYCOSVIWEKDQNEKREUIZE7LFEq/ XHVTUD
P/4/VBCDETATNESI0QPIZafFCMIpEtQINNILF KT bEMEDKCANCiCs1z+6uT
{ThEtWSWIqLUFvEETIghvrIBe+Ak hdFaF FIwiB6a51YDEQT 3FBVIBrvkNVGh
U3 T+DVIKreZFKAUK jnhasdcelPLDxsmKE2nbTeApYayOhBr1BUOLYTQ7vITU
JpkiJeUaXlptx6n2gPHQTTlLKQrraZlES7VbpEgHNmMmECINYeDmaXh/ /58LTV
eSIR3FESELYKFlasOVAcke e 26pSqyxCFAZALYLKTqIHCirIdPDX/hdj53s]
rmgxsIEUOtILOLLRVERGIPUK /QmYYEypYnELVAr+kEGed6gpaZaUBShTN2CN
oP5VnyPEHWgeSnxdmrdoor 6to62ZNIagwIBi8zBGNEF s8VEKAgxEKGBNATHED
UGB RCEXPUIUXIQIEEYR+U+ CMWCS3XYEQaSNIDNIXSIMHEDUMrna FXomZECY
Q/1662EZNGVrEvkEmI L1OEEVVHPSH] 2%al0IPE1812VKESS
BYxQLRVSyE/ 528 onFTh j F3hs8Ez0: SFAEgSaztkkzTy/PxIqiNg
20V TQEVE+IBEISAXULKrK2rJ30WPES £TNNZS TWE X ZWACOYWLAWA
AykDIct@ewTUZHEHFRYPZP@SIIFOXri/ gpUcHFNZ51SemPEUZKeyLIeqoaC
VmbrjHdPbFSpPCNTdyaNTc TDOhTITTda=

=Fts4

-----END PGP MESIAGE-----

Figure 6-4 Gmail OpenPGP Message

Join Google+

BEEE -

Show

Encrypted Body contains ™ Search

g
a

Subject

|From |Date & |Size

[]

|0 |
[ET]

Test SMIME Encrypti... mbmbalmani

Mar 4, 2015

Invalid PGP test for a...Mbm Balmani Mar 26, 2015 3KB
& Test live pgp send Mbrm Balmani Mar 30, 2015 AKB
1] live srmirme test mbrmbalmani Mar 30, 2015 TKB v
= Test live pgp send X

Subject : Test live pgp send
Date : March 30, 2015 2:57:51 PM
From : Mbm Balmani

To: SecureSearch2015@gmail.com

This is livepgp sendtst

Figure 6-5 Columba OpenPGP Message

48


mailto:SecureSearch2015@gmail.com

6.2.4 Key store Configuration

The key store configuration dialog enables importing PGP and S/MIME private keys to the key
store. These keys are used for decrypting the encrypted messages for indexing. By default
S/IMIME key is used as the indexing key, this setting along with other default configurations can
be modified in the indexConfiguration.xml at Columba home directory.

B3 KeyStore Configuration Iﬁ
KeyStore Location  C\Users\Dell\.columba\securesearcher\keystore\Indexerkeystore.jks | & Change KeyStore |
Key Alias Thumbprint | Import S/MIME Key |
5003994042069308698 2B5AOF51 6B FDOFTEABFA DT 3C15 AC 285D P
| ImportPGPKey |
smimekeyalias B37110536095 CBD517 3CEF 28 4F 65 F7 9E —_—
| Close J | Help

Figure 6-6 Columba KeyStore Configuration

49



7 Evaluation

This chapter outlines how the developed system satisfies the objectives and conforms to the
strategies that were initially adopted. And then it critically analyses the functionality,
performance and security of the implementation.

7.1 Objectives

This project answers the core research question regarding the feasibility of securely searching
encrypted email messages with different design approaches and corresponding security tradeoffs
in the Design chapter. A Java library is developed which exposes APIs (Application
Programming Interfaces) for securely searching and indexing encrypted as well as plain text
messages. The implemented library is then integrated with Columba, an open source Java email
client and the secure search functionality is realised using the implemented library.

This project proposes a design for securely searching encrypted email messages with Goh’s
Bloom filter technique at its core to index the email messages. A Java library is developed using
Java Cryptographic library and Bouncy Castle Cryptographic library for indexing and searching
OpenPGP encrypted messages, thus realising the primary objective of the project.

The implemented library is extended to support S/IMIME encrypted email messages to realise the
secondary objectives. The responsibility of differentiating whether the indexing process is a first
time indexing of all old email messages or an incremental indexing of new messages is delegated
to the invoker of the designed library by design. But as part of the realisation of the tertiary
objective to integrate the library with an email client, the integration with the email client was
seamless for both first time and incremental indexing. Thus the project realises both the primary
and secondary objectives along with the first part of tertiary objectives.

The secondary part of the tertiary objective to deploy a remote data server that synchronises with
the local index data store is not demonstrated due to time constraints. This would involve
utilising a data base replication and synchronisation technique which is typically used in
applications where data resides on cloud storage.

7.2 Development Strategy

The selection of Goh’s Bloom filter as a core technique for Secure Searcher satisfies the initial
technique selection strategy. The implemented library asserts the feasibility of the
implementation. The size of the created index is compact with each word being indexed uses 8
bits and this could be further reduced depending on the false positive rate tolerance. Thus the
selection satisfies the first two major strategies for technique selection. The security and
performance of the technique is analysed as part of the respective sections in this chapter.

This project strictly adhered with the initial development strategy of incremental development
where a core implementation is extended to realise additional objectives. The implementation is
extensible with the layered architecture asserting each layer is suitable for future extensions.
Moreover, the integrated Columba email client follows plug-in architecture where the integrated
search functionality can be extended further.

The technique and the cryptographic libraries are selected after an initial prototype and an
investigation in terms of search support for issues faced during prototyping. Mail dir is chosen as

50



a mail format for offline testing as it allows seamless addition and deletion of messages.
Furthermore, all existing encrypted email messages can be exported as ‘.eml’ (Electronic MaiL
file) or Mail dir format and can be indexed and securely searched with the implemented library
without any integration to the email client. This would need additional Ul on top of the existing
Mail dir server implementation.

7.3 Testing Strategy

JUnit tests are written to test the functional modules in each layer including the final exposed
APIs. The effectiveness of the written tests is measured with ECIEmma [Hoffmann et al. 2015] a
code coverage analysis tool. The figure below shows that the tests written cover 86.7% of the
implemented library. This is well above the adopted testing strategy to cover 80% of the source
code. Apart from some exceptional cases, the code to handle S/IMIME decryption for various
mail message formats as part of mailreader affected the coverage.

Element Coverage Covered Instructio...  Missed I|:15tructi|:|r15 Total Instructions
a [#src == 867 % 4,765 729 5,494
. 3 org.maynooth.server.searcher = 885% 1,155 150 1,305
.} org.maynocth.mailreader I 390 % 89 139 228

. ¥ org.maynocth.client.keystore = 839 % 675 130 805
.} org.maynooth.clientindexer.decrypter 755 % 394 128 522
.} org.maynocth.datastore = 881 % 653 88 741
.} org.maynooth.encryptionUtil | 88.7 % 290 37 327
.} org.maynocth.client.searcher = 952 % 550 28 578
.} org.maynooth.clientindexer = 973 % 585 16 601

. 3 org.maynocth.clientindexer.bloomFilter I 0969 % 217 7 224
.} org.maynocth.configuration 038% 45 3 43
.} org.maynooth.serverindexer 1 974 % 112 3 115

Figure 7-1 JUnit Test Coverage Report

The suitability of the developed library for its use with a live email client is assessed with its
integration to the Columba email client. Additional scenario testing performed as part of the
evaluation of operations in the user manual complements the existing JUnit tests. Testing the
capability of Bouncy Castle library to decrypt OpenPGP and S/MIME encrypted messages is out
of the scope of this project. But the scenario testing used Mailvelope and Enigmail for sending
OpenPGP encrypted messages whereas Microsoft Outlook email client is used to send S/IMIME
encrypted messages. Detailed list of tests summary is available as part of the appendix A Testing
Summary.

7.4 Functionality

This section discusses the functionalities exposed as part of the implemented library and with the
integration to the Columba email client. It concludes with a critical analysis of missing
functionalities.

7.4.1 Implementation Library

This section evaluates the functionality or APIs exposed as part of the implementation library
which includes both the indexing and searching functionalities.

51



7.4.1.1 Indexing

Indexing APIs provide functionality to index both encrypted (OpenPGP and S/MIME) and plain
text messages. In addition, an API to check whether the given message is already indexed is
exposed. The APIs exposed accepts an Iterator [Oracle 2015a] of Java mail Message [Oracle
2013a] instances allowing multiple email messages to be sent to the indexer. It is trivial for an
email client to convert a message body to Java mail Message; the encrypted email generation
functionality implemented as part of the secure email generator could also be used as a reference.

As part of the integration with Columba, additional APIs that accepts a separate message id
parameter was introduced. This is due to the fact that the Message Id header values as part of a
Java mail Message needs to be of particular format within ankle brackets [Crocker 1982]. But,
the email clients use a local message id typically starting with a number 1 for caching the
messages locally and it is nontrivial to change the Message Id header of an existing Java mail
Message instance [StackOverflow 2013]. So the additional APIs enable seamless integration
with email client.

7.4.1.2 Searching

For searching, the implementation exposes APIs to perform case insensitive search for a word in
all the messages or in a particular message. Searcher configuration settings limit the number of
search results returned by the searcher. The next batch search functionality where the searcher
searches in the next batch after the previous search results assert the suitability in a typical email
client search, where the results are displayed in batches of 20 in a page.

Moreover, Searcher exposes APIs for a compound search where multiple words must be present
in the message (‘AND °) or one of the words must be present in the message (‘OR”). These two
APIs can be used to extend the search functionality to provide a more sophisticated search where
some words may be present, other words must be present and other combinations.

7.4.2 Integrated Email Client

Email client integration shows both the indexing and search capability of the secure searcher.
Moreover, the functionality exposed by Key Manager APIs for importing keys is also integrated
to the client. A full key manager Ul implementation to export or view the keys in the key store or
import keys sent as part of the email is considered out of the scope of this project.

7.4.3 Critical Functionality Analysis

This section analyses the missing functionalities and discusses the feasibility of implementing
such functionality and tradeoffs associated with them.

7.4.3.1 Searching Subject or Attachments

The Secure Searcher indexes only the message body of the email messages. It is trivial to
integrate the functionality to search subject or attachments in the message with the addition of
additional Bloom filter indices or adding to data to a single index. It is not implemented as the
end-to-end email encryption tools do not encrypt the email message subject. This is due to the
fact that the subject of the message is parsed by the spam detection services in the mail servers.
Moreover, the email encryption tools do not support encryption of attachments and even a
typical email client do not offer search support on attachments. Hence searching attachments
(encrypted or plain) is considered out of scope of this project.

52



7.4.3.2 Context information

Context sensitive search refers to searching for a word with respect to the context of another
word i.e., a ‘SearchWord1‘occurs before or after a ‘SearchWord2’. This functionality requires
identifying the location of the searched word in the email message as its core.

Implementing this would require adding the location information to the word before mapping it
to the Bloom filter index. For example, instead of mapping a ‘word’, ‘wordL’ is mapped to the
Bloom filter where L is the location in the message with N words [1-N]. But during the search
process, the searcher has to search for all locations [1-N] in the message, making the search
complexity polynomial O(N*M), where N is the average number of words in a message and M is
the total number of messages indexed.

Another way would be to store all the words in the message and compare against each word as in
homomorphic encryption with the search capability. This would also require polynomial
comparisons and it may not be possible with the investigated techniques that have linear search
time as the implemented one.

7.4.3.3 Number of occurrences

This functionality refers to searching in terms of number of occurrences of search word i.e., the
message contains ‘SearchWord” N times. The existing indexing process indexes the repeated
occurrence information as per the proposed design modifications. During the search process,
search queries on the indices of the search results needs to be implemented to sort based on
repeated occurrence information. Implementing this functionality is considered as a future
enhancement.

7.4.3.4 Stemming

The current implementation supports only exact word searching i.e., if the indexed word is
‘stemming’, search for the word ‘stem’ or ‘stems’ or ‘stemmer’ or ‘stemmed’ would not return
the index. The two possible approaches to implement this functionality are outlined below.

During indexing, all the stemmed words could be indexed as well. In addition to increase in the
indexing time, this would require increase in the Bloom filter index size or increase in the false
positive rate.

An alternative would be to index using the default approach and search for all the stemmed
words. This would increase the search time depending on number of stemmed words.

7.4.3.5 Technique Complexity

Indexer needs to scan the email at least once to index it, while the current technique scans the
input words twice for determining the total number of words in the message and then indexing
the words.

The technique used needs to process N records for searching N indexed messages demanding
O(N) search complexity. The index record for each message needs to be stored separately to
guarantee the security against frequency analysis attack described later in this chapter.

If the security threat model do not require protection against frequency analysis attack then the
search time could be made close to O(log N) using the current technique. As described as an

53



efficient search mechanism in Goh’s Bloom filter technique [Goh 2004], for indexing each word,
hash that word (trap door) but skip the next additional step where the hashed word is again used
as the key to hash the message id. The trap door is then mapped to the Bloom filter index. Since
the word mappings are no longer unigue to each message, a Bloom filter tree could be created by
computing bitwise OR of the two Bloom filter sets. Thus a non-existent word may be ruled out
by searching against the root index in the Bloom filter tree. The cost of searching and indexing
using the technique are analysed further in the Goh’s report which are both in O(log N).

Moreover, the inverted index technique could even scale the complexity close to O(1). But this
project considers frequency analysis attack as a basic security attack especially if the created
index is stored on un-trusted storage.

7.4.3.6 Lost Indexing Key

As with any encryption requirements, the key used for indexing the encrypted email messages
needs to be stored securely. Moreover, similar to the fact that the encrypted email messages
could not be decrypted if the corresponding decryption key is lost, the created secure index is not
usable if the corresponding indexing key is lost.

7.4.3.7 False Positive Rate

This project’s default Bloom filter configuration employs 8 bits per word in the message body
with 6 hash functions for mapping each word to the index. These parameters are described as
ones that produce an optimal false positive probability of 0.0215 [Fan et al. 2000] asserting the
selection as default parameters. Evaluating this theoretical false positive rate in the Secure
Searcher implementation is considered out of scope of the project.

It is possible to further reduce the false positive rate by increasing the number of bits per word
configuration, requiring a space efficiency trade off. This is configurable with the help of
configuration property settings in the implemented library. This project considers 0.0215 error
rate as acceptable as this is non-critical search functionality. Moreover, the end user could view
the email message and see that the word is not present in the email.

7.4.3.8 Maximum word limit

Maximum number of words that a message can contain so that it could be indexed by the current
technique is represented below

Maximum number of words = (java.lang.Integer. MAX_VALUE / BitsPerWord configuration)

With the default configuration the above expression calculates to 26,84,35,456 maximum
allowable words per message. Note that this is the supported maximum number of words by the
implemented library, while the database Bloom filter index column would also need to be
expanded to hold the large index. The default database configuration as part of the integration
implementation supports a maximum limit of 32,768 words in a message. This project views this
as an acceptable limit for the body of email messages used in typical communication.

54



7.5 Performance

This section analyses the run time of secure searcher for indexing and searching test email
messages generated using Encrypted email generator. The environment used for the analysis
followed by indexing and searching time analyses is described in the following sections.

7.5.1 Analysis Environment Setup

Runtime analysis is carried on a Dell Inspiron 1525 Laptop with 2 GHz Intel Core 2 Duo T7250
processor and 4GB Transcend DDR2 SDRAM. The indexing process is tested from an Eclipse
Luna development environment installed on Windows 7 64 bit operating system.

Initially this project considered using the spam or advertisement promotion email messages as
the test source. But these email messages mostly contain images while this project requires a text
based content for analysis. This project uses luindex [Blackburn et al. 2006] text data comprising
1230 text documents utilised by DaCapo benchmark suite for benchmarking Apache Lucene
[Apache Software Foundation 2012], an open source indexer and searcher for text documents.
The text documents are converted to Open PGP, S/IMIME and Plain messages using Encrypted
email generator and the resulting 3690 email messages are used for analysing indexing and
searching time.

7.5.2 Indexing Analysis
This analysis focuses on the following two analysis questions

e What is the time taken to Index a message based on the number of words in a message?
e How does the OpenPGP or S/IMIME encryption affects the message indexing time?

Plain, OpenPGP and S/MIME messages are indexed separately and the indexing process is
repeated 5 times with the median value being plotted in the graphs below. The detailed values
are included as part of the maildirtestresources/evaluationresults directory for further reference.

The analysis graph shows the indexing time of approximately 1 second for indexing 3000 words
and it increases with increase in the number of words with a maximum value of 5.5 seconds for
indexing 32000 words in an OpenPGP encrypted message. Compared to plain messages,
S/MIME and OpenPGP messages require additional time at the beginning for decryption process
owing to key retrieval process. The following observations could be made from the
corresponding analysis graph.

Interestingly the indexing time for S/MIME and plain messages remain almost same while
OpenPGP messages take comparatively more time. S/IMIME decryption implementation uses
predefined ‘SmimeKeyAlias’ to identify the private key for decryption of S/MIME messages
rendering the key lookup process negligible. OpenPGP decryption implementation scans the
message payload to identify the encrypted public key id and requests the key store for respective
OpenPGP private key. This project examined this additional scanning to be one of the causes for
the slight increase in decryption time.

55



Messages Indexing Time

6
(72}
25
8
o 4 -
w
'E 3 Plain Messages
£ 2 -
= . =>¢=0penPGP Messages
o0 i
-% 0 . . . . . . =#=S/MIME Messages
©
£ 0 5000 10000 15000 20000 25000 30000

Number of Words in Message

Figure 7-2 Messages Indexing Time vs Number of Messages

The project’s implementation could be modified to decrease the OpenPGP key look up process
with a preconfigured key alias like ‘OpenPGPKeyAlias’. But this project adheres to the default
implementation as S/IMIME keys are unique certificates issued by Certificate Authority to a
person (email address). Hence an email address typically has one SIMIME key associated with it,
whereas a user could have multiple PGP keys employed for different purposes and the current
implementation supports storing multiple PGP keys per user.

Another important observation is the initial time of up to 4 seconds for indexing only 100 words
approximately. This is the first email message considered for indexing during which the
SecureSearcher initialises encryption services and pseudo key generator. This delay could be
negated by performing the initialisation as part of a backend process after the client is loaded.
Moreover, the indexing of email messages is typically handled by a backend process in the email
client. Hence this project does not analyse further to improve the complexity and performance of
the indexing process.

7.5.3 Searching Analysis

This analysis focuses on the analysis question of measuring the search time against the number
of index records to be processed. The results from five searches with different search words are
used for the analysis.

This analysis does not consider the length of the search word as any search word is hashed into
256 bit hashed word (Trap door) for further searching. In addition, success or failure of the
presence of a search word in the message accounts for a negligible processing time difference
during search operation. This due to the fact that the additional processing involved is only on
checking the additional indices in the Bloom filter for set bits.

7.5.3.1 Search time with Message Id Encryption

The graph presented next indicates the initial time of 8 seconds for searching 20 index records,
which increases up to 30 seconds for searching 100 index records and requires around 6 minutes
for searching 1260 index records.

56



Search time for the implementation is viewed unacceptable for practical purposes. On further
investigation this project deduced that the decryption of message id during the search process of
each index record took around 2 seconds. Note that the current implementation uses a single
thread, with a single connection to database searching each record iteratively. Each step could be
optimised to compensate for the performance loss during searching.

Index Records Search Time with Message Id
Encryption

400

(7]

E

o 300 -

§ Searchl
2200

-; . = Search2
€ 100

= Search3
o =

- T T T T T T T T T T T T T T T T T T T T T T T 1 Sea rch4
5 O O O OO OO0 OO0 OO0 OO0 OO0 0OO0O OO OO oo o o

ft NN O MO MO IMOIMOLML O MO MO mMmMOoOoWmOouwmOo wmOo

© N ANOON T NDWNWD O ONMNODWODWO O OO —+H 1 N —— Sea rChS
‘% ™ o

Number of Index Records Searched

Figure 7-3 Index Records Search time with Message Id Encryption

7.5.3.1.1 Impact on Final Functionality

This project modified the final functionality to use the plain message id, to better accommodate
the integrated implementation with the Columba client. The final index stored on the un-trusted
storage is still secure as per the original Goh’s Bloom filter technique. But the attacker model
scope is modified, which is discussed in the next security evaluation section. More importantly,
this project considers no information is leaked based on the plain message id information stored
as part of the index. After the implementation of performance improvement changes, the
encryption of message id could be turned on by changing flags in the SymmetricEncryptionUtil
implementation.

An alternative secure approach would be to store only the plain message id instead of encrypted
message id. But instead of hashing the message id with trap door (initial word hashed with key)
as the key, the message id could be hashed with the indexing key used for trap door. And then
the hashed message id could be hashed with the trap door as the key before mapping the word to
the Bloom filter. This guarantees the same attacker model as the initial design proposed by the
project, by replacing decryption process during search process of record with a hashing process.
This would be a good alternative and needs to be analysed further for the time taken to search
with a less costly hashing process instead of decryption.

7.5.3.2 Final Search time without Message Id Encryption

This section analyses the modified final functionality without decryption or encryption of
message id. As depicted in the analysis graph below, the search time is within 3.5 seconds for
searching 3690 index records. The initial 2 second delay is due to the index key generation and

57



the trap door generation for the search word. This project considers the final delays as practical
and acceptable as there is more scope for further performance improvements.

Final Index Records Searching Time
3.5
3
c 3
o
§ 2.5
£ 2 A = Searchl
)
£ 15 Search2
=
=4 1 Search3
£ 05
o = Search4
g O TT T T 1T rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrTrrrrrrrrrrrrrrrrrrrrrrrrrrrrrnrna
v O 00O 0000000000000 0O0O0O0 OO0 O O O Search5
NN O WNMNMO MO MO MO MWL OWILMWMOWIMmMO MmO mOo un o wn o
AN <t OMN OO AN MW OO OO A NS INMNOOO-HMSTS O
™I AN AN AN AN AN AN OO ONHmD N
Number of Index Records Searched

Figure 7-4 Final Index Records Search Time vs Number of Index Records

7.5.3.3 Search time against Bloom filter index size

This analysis focuses on the analysis question to determine if the search time depends on the
length of the index record being processed. The initial spikes with maximum of 80 milliseconds
are owing to the generation of pseudo key and the trap door word generation during each search.
In summary, as depicted in the graph the search time increases with the length of the index
record but the increase is negligible from 0 milliseconds to 4 milliseconds for lengths from 1000
to 250000 Bloom filter size index record.

Index Record Search Time against

(7]

E Record Length

E

£ —&—Search1
Q

E —fli—Search2
[l

.E’ Search3
i =

E =>¢=Search4
b 0 50000 100000 150000 200000 250000 . cearchs

Length of the Index Record (Bloom filter size) in bits

Figure 7-5 Index Record Search Time vs Record Length

58



7.6 Security

This section describes the threat model that the index stands against on un-trusted storage. Then
it describes the enhanced attacker model with the proposed design alternative which needed
further performance improvements. Finally the attacker model that this design does not
withstand is described at the end.

7.6.1 Security model of the Final implementation
This section describes the attacker model that the final implementation protects against.

7.6.1.1 IND-CKA Semantic Security

The final implementation adheres to Goh’s original secure index approach; hence it has IND-
CKA (INDistinguishability against Chosen Keyword Attack) semantic security. The security is
explained with a challenger and indexer response scenario as follows.

The challenger inputs the indexer with two identical length messages; the indexer returns two
indices corresponding to the two messages as a response. The challenger would not be able to
distinguish which index belongs to which message, no different than the probability of ¥ (choice
of picking one at random). Hence the index does not reveal the contents of the messages that are
indexed. The implementation assumes no information is leaked from the message id information.

7.6.1.2 Controlled Searching

To perform search operation, a trap door of the search word needs to be created using the
indexing key. Only the user with access to the indexing key could perform the search on the
index.

7.6.1.3 Frequency Analysis attack

During the indexing process, hashing each unique message id again with the trap door word as
the key renders the mapping unique to that index. l.e., if two messages have identical contents,
then the resulting index would be different owing to the unique message id.

Moreover, the number of words mapped on to the Bloom filter index depends on the number of
words in the message. Even if the message with N words contains only 1 unique word repeated
N times. After mapping the unique word, N-1 words with repeated information i.e., word2,
word3... wordN-1 are mapped to Bloom filter index as per the proposed modification.

7.6.1.4 Brute force Attack with Known Plain Text

The trap door restricts an attacker from searching against the stored index i.e., only the user with
access to the indexing key can generate the trap door. It does not prevent the attack against the
original hashing technique used to generate the trap door. Because an attacker with a known
plain message would be able to perform a brute force hashing of a known word and try different
keys to search against the stored index.

The HMAC [Krawczyk et al. 1997] function is strong against the known plain text attack, with
the default configuration (HmacSHA256) requiring attacker to try 2'?® key values. The
recommended modification of encrypting the message id further strengthen the index against
brute force attack as the attacker has to perform an additional brute force decryption of the
message id on each index record.

59



7.6.2 Enhanced Security Model

This section describes how the current implementation suffers from the mentioned vulnerabilities
and how the proposed design modification withstands them.

7.6.2.1 Replay Attack

If the attacker gets hold of a trap door, then the attacker could use the same trap door to
repeatedly perform search on the index. This would be a serious security flaw as it would divulge
the presence of words in the new indexed messages as well.

The additional encryption of message id by the proposed design modification strengthens the
index against replay attack. The replay attack may not be possible as the attacker with the trap
door word has to first decrypt the message id to search the index. But the cost of this secure
modification is the time required to decrypt each message id during the search process.

7.6.3 Vulnerability Model

This section describes the threat model that both the final implementation and the enhanced
security model could not withstand.

7.6.3.1 Key store

To begin with, the information regarding the length of the message indexed is leaked from the
size of the index. Moreover, as with any security model, this model relies heavily on the secure
storage of the indexing key. To reiterate, the default implementation provides an option to store
keys in a password protected Java Key Store (JKS).

7.6.3.2 In-Memory attack

The design does not protect against an In-Memory attack where the attacker could view the In-
Memory data during indexing or searching process. As the indexing keys and decrypted
messages are available In-Memory, they are vulnerable to attack. But even the end-to-end
encryption tools suffer from this attack as the input password for the key needs to be loaded in
the memory for authentication. The tools typically create a security sandbox model over the
application process to prevent such attacks. Preventing this attack is considered out of scope of
this project as per the adopted strategy.

7.6.3.3 Confidentiality Integrity Availability (CIA)

Furthermore, if the index is stored on un-trusted external system then the current design of secure
index ensures only the confidentiality of the email messages. The un-trusted system should
ensure the availability and integrity of the stored index. While there is no design modification to
ensure the availability of the index, this project sees the following option to enforce integrity.
Each Bloom filter index and message id data could be combined and a signature hashing
algorithm could be used to add signature as another column. This would ensure authenticity and
integrity of the data. As checking for integrity during each search operation would increase the
search time, integrity check could be carried out on demand as a back ground task.

7.7 Summary

This project satisfies the initial objectives and conforms to the strategies adopted initially. The
code coverage analysis asserts the effectiveness of the JUnit tests. Moreover, this project
evaluated the performance of the implementation in terms of length of the messages indexed.

60



The existing implementation is modified to compensate for the performance loss during the
search time evaluation. In addition, the integration of the implemented library with an open
source email client asserts the suitability of using the library in a real environment.

61



8 Conclusions and Future Work

This chapter provides a summary of achievements and the challenges faced during the course of
the project. It concludes with a list of possible improvements and future works.

8.1 Conclusions

This project addresses the initial research question regarding the feasibility of securely searching
encrypted email. Different secure search techniques and deployment architectures are discussed
for its feasibility and security. This project recommends a deployment architecture having a
cryptographically strong Goh’s Bloom filter secure index technique at its core.

The core objectives are realised with an implementation library supporting indexing and
searching of plain, OpenPGP and S/MIME encrypted email messages. This project proposes
modifications to Goh’s secure index technique in a view to enhance the security and usability of
the library. The implemented modifications are selectively enabled depending on the assessment
of performance in the previous chapter. Furthermore, this library is integrated with Columba, an
open source Java email client to demonstrate the usability of the library in a live environment.

This project adhered closely to the initial adopted strategies for design, development and
evaluation. Finally the Evaluation chapter provides a critical analysis on the missing
functionalities, performance and security. These analyses include the feasibility of incorporating
additional functionalities to the existing library and tradeoffs associated with the same.
Furthermore, the developed library adopted the layered architecture to support future extensions.
Finally the search functionality in the integrated email client can be extended further owing to
the plug-in architecture of the email client.

8.2 Summary of Challenges
This section summarises the challenges faced during the different phases of this project.

Initial research phase involved the challenges in understanding the existing cryptographic secure
search techniques. The next challenge was in the design phase to identify a practical deployment
architecture that enables the use of the adopted technique in a live environment.

The development challenge involved adopting an extensible design and decrypting S/MIME
encrypted messages where message.getContent() did not result in expected encrypted message
body. Hence, this project adopted a work around to get raw message stream and parse it
manually. For the integration with email client, the architecture and usability of the existing
email clients including Pooka and Columba needed to be analysed for extensibility. For the
Columba client with plug-in architecture, the main challenge was to identify source code work
flow and the extension points for integration.

Finally for evaluation, a sufficient source of encrypted messages needed to be identified. Initial
choice of spam and promotion messages were rejected as they typically contain images and
Dacapo benchmark source was finally selected. This text document source was then converted to
encrypt email messages with the help of an encrypted email generator implementation.
Moreover, this project moved from Mbox to Maildir format for offline email storage owing to
the good support for adding or removing messages.

62



8.3 Future Works and Improvements

In addition to the functionalities that were analysed critically for incorporation with the
implementation in the previous chapter, this project views the following as possible future
extensions.

The current implementation searches index based on the indexed order. An extension could be to
add functionality to search by ordered time or last accessed time or depending on the priority or
the location folder of the message. Moreover, the number of occurrences of the searched word in
a message could be used for sorting the search results as the repeated information is already
indexed during the index operation.

Furthermore, the current implementation indexes email messages belonging to one email account
in one index store. But a typical user has multiple accounts for different purposes such as
university, work place and personal. Since a user would typically use same end-to-end
encryption key for all the accounts, indexing all these emails in a single repository store would
be an interesting approach.

Maildir client simulator could be further extended with a Ul support enabling indexing and
securely searching encrypted email messages offline. This would require exporting the email
messages from email account in .eml or MailDir format and using the client simulator for
searching the exported messages.

This project’s approach for secure searcher library was to add indexing capability at the back end
server or thick client. An alternative would be an implementation as part of a thin client browser
Ul using Java script cryptographic APIs. This would be an interesting design allowing extensive
usage with typical web email interfaces.

The solution proposed in this project shows the feasibility of a secure search implementation for
encrypted email messages. The adoption of the implemented library or the proposed design
would enhance the usability of end-to-end encryption tools with the secure search functionality.

63



A Testing Summary

JUnit tests were written for testing the functional modules written as part of the implementation
library. The tests are located inside the ‘tests’ folder of the secure searcher project. The
summary of tests written and their mapping to the source code are outlined as follows.

[# Package Explorer Tg Type Hierarchy E'ﬁ.lUnit s
Finished after 17,775 seconds

Runs: 70,70 B Errors: 0 A Failures: 0

> E?_| org.maynooth.client.ClientBloomFilterTests [Runner: JUnit 4] (1.751 =)

> E?_| org.maynooth.encryptionUtil.EncryptionUtil Tests [Funner: JUnit 4] (2.337 5)

» E?_| org.mayncoth.client.ClientKeyStoreTests [Runner JUnit 4] (1.804 =)

s E?_| org.maynooth.client.ClientSearcherTests [Runner JUnit 4] (3.524 5)

> E?_| org.maynooth.client.ClientDecrypterTests [Runner: JUnit 4] (7.680 =)

> E?_| org.maynooth.datastore.DataStoreConfigurationTests [Runner: JUnit 4] (0,001 s)
> E?_| org.maynooth.server.ServerTests [Runner: JUnit 4] (0,000 s

- E?_| org.mayncoth.client.ClientndexerTests [Runner JUnit 4] (0.256 s)

» E?_| org.mayncoth.configuration.ConfigurationManagerTests [Runner JUnit 4] (0,005 5)
> E?_| org.maynooth.datastore.DatalndexStorerTests [Funner: JUnit 4] (0.127 5)

> E?_| org.maynooth.datastore.DatalndexSearcherTests [Funner: JUnit 4] (0,030 s)

Figure A-1 JUnit Test Execution Report

A.1 Client Tests

Tests written as part of ‘org.maynooth.client” package includes indexer, key store and searcher
client tests testing the APIs exposed as part of the implementation library.

Moreover, the package includes Bloom filter tests testing the Bloom filter index creation module
and Decrypter tests testing the decrypter chain for testing the decrypter functionality for SSMIME
and OpenPGP encrypted messages.

A.2 Data store Tests

Tests written as part of ‘org.maynooth.datastore’ package include tests for DatalndexStorer and
DatalndexSearcher that facilitate storing and retrieving the index. In addition,
DataStoreConfigurationTests test the default data store configuration parameters.

A.3 Encryption Utility Tests

Tests written as part of ‘org.maynooth.encryptionUtil’ package include tests for default
symmetric encryption utilities and HMAC hashing utilities implemented as part of the library.

A.4 Server Tests

Tests written as part of ‘org.maynooth.server’ package include tests for server side indexing and
searching APIs.

A.5 Performance Tests

The performance tests were carried out with the help of MailDirReader implementation
contained as part of ‘org.maynooth.mailreader.client’ package in the ‘maildirtest’ source folder.
The resources used by MailDirReader are contained in the ‘maildirtestresources’ directory. The

64



folder names mentioned in the remainder of this section will refer ‘maildirtestresources’ as root
directory.

The ‘maildirectory/cur’ is the source maildir folder looked up by the MailDirReader for current
messages. The ‘messagecollection’ folder contains the OpenPGP, S/IMIME and plain messages
generated based on messages from Dacapo benchmark suite contained in ‘luindex’ folder. These
messages were moved to ‘cur’ of the maildirectory to measure the performance.

An alternative to MailDirReader is to use MailDirServer as part of
‘org.maynooth.mailreader.server’ package which could be used to demonstrate incremental
indexing capability by adding new messages to ‘maildirectory/new’ folder.

The evaluation logs are part of ‘EvaluationResultLogs’ folder contain the logs obtained from
each test runs. The final run values used to generate the charts are contained in
FinalEvaluationReport.xIsx excel document.

65



B Changes to Original Specification

The following changes were made to the original objectives after the initial submission of
objectives as part of Thesis proposal.

e The initial tertiary objective to integrate with existing end-to-end encryption tools was
removed as it was not feasible due to time constraints.

e As an alternative to the above tertiary objective, this project performed integration with a
live client with a local index data store to demonstrate the functionalities.

e The secondary part of the tertiary objective to deploy a remote data server that
synchronises with the local index data store is removed due to time constraints.

e In addition to the above tertiary objectives, Maildir server simulator was added for offline
evaluation. This could be extended further to support offline indexing and searching of
email messages.

66



C Project Plan

Tasks

2014 Wdd (10026

2014 W45
2014 W4E

(11423
1149

1. Identify a design for securely searching Encrypted emails
2. Implement a prototype for OpenPGP Encrypted emails
3. Add SIMIME capability to the tool

4. Interim Project Presentation

5. Integrate the tool with an email client

6. Evaluate the tool for security, performance and functionalities
7. Unit testing

8. Context survey and research

9. Report Documentation

10. Adding additional functionalities, Refactor and tests

11. Submitting the first draft for review

12. Incorporating review comments

13. Vacation and Examinations

2014 WaT (11M6)

2014 W4 (11/23)

2014 a9 (117300
2014 Ws0

(1247)

IR I s I R - I I s I A R = I I A A A = s R A s R
T |- Dy ||| |D|0|o s D 0N DD oD e DO~ T e
g e e s A AR A R R AN AR~ s AR R g AT R o S e
SN N~ |||~~~ ~ 0|0 @~ == |~ 00w N~ DO
g B z|o|o el a|es fA A A EARA AR <A
|z

g g % g g g g g % g g SHHEHBEHEHEE § g § § § §
(S| F | D DD D DOV (O V(O R |D N LYY LYYV WLD N YW
B e e e e e e e e e e e e e I e -
QIO Q|QQ|Q|Q| Q|| Qe Q|/Q|Q|Q| Q|leg|lQ(e|(Q(Q Q|8 Q
GO NN NN N[N NN N NN NN NN NN NN N

67



D User Manual

This section contains the manual for configuring Columba email client with secure searcher
functionality. Moreover, this section includes the details to configure demo account
SecureSearch2015 for evaluation purpose.

D.1 Columba Client Configuration

The Secure Searcher with Columba client is available as an executable JAR
(ColumbaSecureSearcher.jar) file under deployment directory. It could be run by double clicking
the JAR or using the command line option ‘java —jar ColumbaSecureSearcher.jar’. Both these
options require a JRE (Java Run time Environment) for execution. This project was tested using
JRE versions 7 and 8 and JRE version 8 is recommended for execution.

For indexing and decrypting S/IMIME messages unlimited strength JCEs (Java Cryptography
Extensions) needs to be enabled by replacing some files in the default JRE used for execution.
These files are available at Oracle sites [Oracle 2015c; Oracle 2015b]. The files local_policy.jar
and US_export_policy.jar inside the <JREHome>\lib\security folder needs to be replaced with
the corresponding downloaded files.

For demo or evaluation purpose the user could directly jump to Section D.3. The indexing and
searching functionalities are described as part of the Columba search functionality section.

D.1.1 Email Account Configuration

This section contains the details of a typical email client configuration for sending and receiving
email messages. The steps followed for configuring the demo account are detailed as follows.

On executing the Columba client for the first time, a new account configuration wizard pops up.
Enter the account details as depicted in the figure below.

g Yy
|| Account Wizard lﬁj
Identity Information S

Specify your identity information 7
If you send a message, your name and address are visible in the From-Field of the message.
Please enter your name as you want it to appear,
Name: lSecure Search 20151 ‘

Example: Bill Gates

Address: 1SecureSearchZOlSl@gmail.com ‘

Example: BillGates@microsoft.com

Account Name: i SecureSearch20151| ‘

Example: Bill's private mail

I Next > i Cancel H Help ]

Figure D-1 Columba New Account Wizard

68



Then enter incoming and outgoing server details for receiving email messages. In the setup the
incoming server is an IMAP server account.

"
£ Account Wizard @
Incoming Server Properties éé
Please enter your Incoming Mail Server

Please specify your incaming rail server properties, If wou are unsure please

ask your system administrator ar internet service provider for help,

Login: |securesearch20151 |

Exarnple: billgates

Host: |imap.gmai|.com |

Example: mail.microsoft.com

Type:  [IMAP -

< Back || MNext = I [ Cancel H Help

Figure D-2 Columba Server Properties Wizard

Go to Edit -> Mail Account Settings... Check the input configuration and configure the
connection port for IMAP server details.

{ a Y
E Account Preferences @

Account Name: Type

Add...
h {Default) IMAP4 e —
secure search (Defau & Edit.. |
Remove |

[ Close |[ Help |

Figure D-3 Columba Account Preferences Dialog

The connection type and the port use for IMAP can be changed for the configured account. This
depends on the connected IMAP server details.

69



|2 5
B Preferences for SecureSearch20151 M

Identity\ Incoming Server (IMAP4) \ Receive Options"\‘ Outgeing Server \ Security\ Spam Filter\

Configuration

Login: |securesearch20151 |

Host: |imap.gmai|.c0m | Bort: | 933 H
Security

Authentication Type: [Most Secure v| I Checkout supported Types |

Uze 551 for secure connection |Secure Socket Layer (IMAPS) '|

["] Store password in configuration file

| (0] 4 _“ Cancel || Help

Figure D-4 Columba IMAP Connection Settings

D.1.2 Enable IMAP on Gmail

If it is a Gmail account, connection to IMAP server for the account needs to be enabled as Gmail
uses custom protocol for the connection. This needs to be turned on by following Settings ->
Enable IMAP on the Gmail account logged in through a browser.

Settings

General Labels Inbox Accountsand Import Filters Forwarding and POP/IMAP Chat Labs Offline Themes

Forwarding:

| Add a forwarding address |
Leamn more

Tip: You can also forward only some of your mail by creating a filter!

POP Download: 1. Status: POP is disabled
Learn more Enable POP for all mail

Enable POP for mail that arrives from now on

2. When messages are accessed with POP | keep Gmail's copy in the Inbox v

3. Configure your email client (e.g. Outloock. Eudora, Netscape Mail)
Configuration instructions

IMAP Access: Status: IMAP is disabled
|3c0ess Gmail from other clients using IMAF) # Enable IMAP
Leamn more Disable IMAP

Figure D-5 Gmail Enable IMAP

Moreover, Gmail considers connections through IMAP server as less secure and therefore less
secure connection has to be turned on. This is needed for the connection from Columba to Gmail
account and is irrespective of whether Columba has an integrated secure searcher.

70



B https://www.google.com/settings/security/lesssecureapps
3mail: Email from G... (¢ Cricinfo.com | Cricke... Wl The Internet Movie... [ Hello FM Radio 24h... Yahoo! India TH The Hindu : Home P... Isaiaruvi tamil music... % Tennis - £

& Less secure apps

Some apps and devices use less secure sign-in technology, which makes your account more vulnerable.
You can turn off access for these apps, which we recommend, or turn on access if you want to use them
despite the risks. Learn more

Access for less secure apps Turn off

® Turnon

Figure D-6 Gmail Less Secure Access

D.2 Secure Searcher Configuration

During the first time Columba initialisation, a default key store and HSQL index data store is
created in the Columba home directory ‘<Home>/.columba’ under the subdirectory
‘securesearcher’. For example, ‘C:\Users\<User>\.columba\securesearcher’ is the directory in
the Windows environment. All default configurations such as index configuration, key store and
index data store can be changed in that directory.

D.2.1 Key store Configuration

Before starting the indexing process, the PGP and S/IMIME keys should be imported to the key
store for decryption and indexing.

2 Columbs ——— - e — . TN T

File Edit Yiew Folder Message Help

G‘ New Message ? Receive/Send Profile Manager.. What's related Search: [
ﬁ Plugin Manager..
= Folder Tree ® || ¥ Mess: External Tools...
(=8 Local Folders Subject Show Error Log...
{2 SecureSearch2015
-3 INBOX Index All Encrypted Messages..,
[ mailstore Export KeyStore Configuration Settings...
BB [Gmail - =
[ AN Mail (1) Create Filter from Message [Keystore Cl Settings.. |
Drafts -
-[E Important (1) Export Mail... EZ KeyStore Configuration g
- [E Sent Mail Impert Mailbosx...
- [E3 Spam Hello, World!
; " Starred Display log KeyStore Location | Ci\Users\Dell\.columba'\securesearcher\keystore\IndexerKeystore.jks | =1 Change KeyStore
-5 Trash L —
Key Alias Thumbprint [ Import S/MIME Key J
5003994042069308698 2B5A9F51 6B FD OF JE ABFA D7 3C 15 AC 28 9D
= Message Viewer smimekeyalias B371105960 96 CB D517 3C 8F 28 4F 65 F7 OE

Figure D-7 Columba KeyStore Configuration

71



As depicted in the figure, go to ‘Utilities -> KeyStore Configuration Settings...” Key Store
Configuration dialog allows the user to import one S/IMIME private key (.pfx file) and multiple
PGP private keys (ASCII format). While importing the key, the user needs to input the password
with which the source private key is protected. After the import, all keys would be stored using a
single master password of that of the stored key store.

i« '

Enter import key encryption password @ Enter Secure Search master password 2

| Ok || Cancel | | Ok || Cancel |

-

L. L "

Figure D-8 Enter Import Key and Secure Search Password Dialogs

The default key store password is ‘Welcome’. This should be entered as a master password for
secure searcher. Moreover, the key store used for secure search can be changed using key store
configuration dialog.

D.2.2 Indexing

Go to ‘Utilities -> Index All Encrypted Messages’ to select the Inbox folder on which full index
should be run initially. This would clear the index store and create a secure index of all the
encrypted messages in that folder.

Columba integration has online indexing feature where any new email messages are
automatically indexed and deletion of any messages would result in removal of the
corresponding index from the index store.

E= Index All Encrypted messages Iﬁ

Create Secure Index r
Run full index on the encrypted messages in the selected folder”

Select Folders:

]

-] Inbox

B SecureSearch2015

| Index Selected Folder | | Close _J

Figure D-9 Columba Index All Encrypted Messages Dialog

72



D.2.3 Searching

Select the Search type to ‘Encrypted Body Contains’, enter the search word and press enter to
search indexed email messages.

Encrypted Body contains ¥ | |livepgp Search Reset

Subject contains From Date ™ Size

Mbm Balmani Mar 30, 2015

From contains
To contains
Cc contains
Bee contains
Body contains

® Encrypted Body contains

P Unread Messages
! Flagged Messages
High Priority Messages

Spam Messages

Custom Search...
Subject : Test ive pgp send
Date : March 30, 2015 2:57:51 PM

From : Mbm Balmani

To: SecureSearch2015@gmail.com

This is livepgp sendtst

Figure D-10 Columba Encrypted Message Search

D.3 Demo Account Configuration
To configure the demo account, the demo account home directory (columbademol or

columbademo?2) in the Deployment\DemoConfiguration\DemoAccounts directory needs to be
extracted to .columba directory at User home  ‘C:\Users\<User>\.columba .

The KeyStoreFile and DatabaseURL location configuration settings in the indexer configuration
file at C:\Users\<User>\.columba\securesearcher\indexConfiguration.xml need to be corrected.
Change the <User> (‘Dell’ in demo configuration) to the installed machine user directory.

o KeyStoreFile="C:\Users\<User>\.columba\securesearcher\keystore\IndexerKeystore.jks"

e <DatabaseURL
DatabaseURL="jdbc:hsgldb:file:C:\Users\<User>\.columba\securesearcher\database\Inde
xStore;user=test;password=test">

Moreover, the PGP and S/IMIME keys used for the demo account are available as part of the
deployment directory. Use the default key store password ‘Welcome’ as the master secure search
password.

D.3.1 Demo Account Configuration Details

D.3.1.1 Demol Account Details
Username: SecureSearch2015@gmail.com

Password: secure2015

73


mailto:SecureSearch2015@gmail.com

Demo Key store password: Welcome

D.3.1.1 DemoZ2 Account Details
Username: SecureSearch20151@gmail.com

Password: secure2015

Demo Key store password: Welcome

74


mailto:SecureSearch20151@gmail.com

References

Adobe Systems Incorporated., 2015. Adobe PDF. Available at:
http://www.adobe.com/products/acrobat/protect-pdf-security-encryption.html [Accessed
November 2, 2015].

Apache Software Foundation, 2012. Apache Lucene. Available at:
https://lucene.apache.org/core/ [Accessed April 17, 2015].

Archive, C.D., 2015. Bouncy Castle. Available at:
http://www.bouncycastle.org/devmailarchive/msg09187.html [Accessed October 4, 2015].

Atkins, D., Stallings, W. & Zimmermann, P., 1996. PGP, Available at:
http://tools.ietf.org/pdf/rfc1991.pdf.

Blackburn, S.M. et al., 2006. The DaCapo Benchmarks : Java Benchmarking Development and
Analysis,

Bloom, B.H., 1970. Space/time trade-offs in hash coding with allowable errors,
Bouncy Castle, 2015. Smime Decryption Example. Available at:
http://www.docjar.org/docs/api/org/bouncycastle/mail/smime/examples/ReadEncryptedMail

html [Accessed April 10, 2015].

Bouncy Castle Inc, 2013. Bouncy Castle. Available at: http://bouncycastle.org/java.html
[Accessed April 9, 2015].

Bouncy Castle Inc, 2014. Jce PGP Converter. Available at:
http://grepcode.com/file/repol.maven.org/maven2/org.bouncycastle/bcpg-
jdk14/1.47/org/bouncycastle/openpgp/operator/jcajce/JcaPGPKeyConverter.java [Accessed
April 17, 2015].

Brunschwig, P., 2015. Enigmail. Available at: https://www.enigmail.net/home/index.php.

Callas, J. et al., 2007. OpenPGP, Available at: http://tools.ietf.org/pdf/rfc4880.pdf [Accessed
February 17, 2015].

Chang, W.-T., 2005. Thunderbird encrypted search enhancement. Available at:
https://bugzilla.mozilla.org/show_bug.cgi?id=280588 [Accessed February 18, 2015].

Chang, Y. & Mitzenmacher, M., 2005. Privacy Preserving Keyword Searches on Remote
Encrypted Data. , pp.442-455.

Comodo CA Limited, 2015. Comodo. Available at: https://www.comodo.com/home/email-
security/free-email-certificate.php [Accessed February 18, 2015].

75



Crispin, M., 2003. IMAP RFC,

Crocker, D.H., 1982. Standard for the format of ARPA Internet Text Messages, Available at:
http://tools.ietf.org/pdf/rfc822.pdf.

Cryptix, 2005. Cryptix. Available at: http://www.cryptix.org/ [Accessed April 10, 2015].

daniele athome et al., 2015. guardianproject GPG. Available at:
https://github.com/guardianproject/gnupg-for-java [Accessed April 10, 2015].

Dierks, T. & Rescorla, E., 2008. The Transport Layer Security (TLS) Protocol,

Dietz, F. et al., 2013. Columba. Available at: http://sourceforge.net/projects/columba/ [Accessed
April 6, 2015].

Einarsson, B., McCarthy, S. & Novak, B., 2015. Mailpile. Available at: https://www.mailpile.is/
[Accessed February 18, 2015].

Elkins, M.R. & Blosser, J., 2014. Mutt. Available at: http://www.mutt.org/ [Accessed February
18, 2015].

Fan, L. et al., 2000. Summary cache: A scalable wide-area Web cache sharing protocol,

Fastpicket, 2012. Bouncy Castle PGP Encryption 2. Available at:
http://fastpicket.com/blog/2012/05/14/easy-pgp-in-java-bouncy-castle/ [Accessed April 10,
2015].

Fortuna, B., 2014. Mstor. Available at: https://github.com/benfortuna/mstor [Accessed April 10,
2015].

Free Software Foundation, 2015. GNU. Available at: https://www.gnu.org/ [Accessed June 8,
2015].

Freed, N. & Borenstein, N.S., 1996. MIME,

Gilles, 2012. Mutt Search. Available at: http://unix.stackexchange.com/questions/46580/e-mail-
client-in-linux-which-allows-to-search-encrypted-mail [Accessed February 18, 2015].

Goh, E., 2004. Secure Indexes,

Google, 2015. Gmail API Java. Available at:
https://developers.google.com/gmail/api/quickstart/quickstart-java [Accessed April 10,
2015].

GPGTools, 2015. GPG Tools. Available at: https://gpgtools.org/ [Accessed February 11, 2015].

76



Guardian News and Media Limited, 2015. NSA Surviellance. Available at:
http://www.theguardian.com/world/2013/jun/07/nsa-prism-records-surveillance-questions
[Accessed November 2, 2015].

Hall, E., 2005. Mbox,

Hoffmann, M.R., Janiczak, B. & Mandrikov, E., 2015. EclEmma. Available at:
http://lwww.eclemma.org/ [Accessed April 17, 2015].

Hush Communications Canada Inc., 2015. Hushmail. Available at: https://www.hushmail.com/
[Accessed February 11, 2015].

HyperSQL, 2014. HSQL DB. Available at: http://www.hsqldb.org/ [Accessed April 10, 2015].

Internet Mail Consortium, 2015. Internet Mail Consortium. Available at:
http://www.imc.org/smime-pgpmime.html [Accessed February 17, 2015].

Java-Source, 2015. Java Source. Available at: http://java-source.net/open-source/mail-clients
[Accessed April 6, 2015].

Kaliski, B., 1998. PKCS #7: Cryptographic Message Syntax, Available at:
http://tools.ietf.org/pdf/rfc2315.pdf.

Koch, W. et al., 2015. GPG. Available at: https://www.gnupg.org/ [Accessed February 17,
2015].

Krawczyk, H., Bellare, M. & Canetti, R., 1997. RFC HMAC, Available at:
http://tools.ietf.org/pdf/rfc2104.pdf.

MagnussS, 2011. Bloom filter Create hashes. Available at: https://github.com/MagnusS/Java-
BloomFilter/blob/master/src/com/skjegstad/utils/BloomFilter.java [Accessed April 9, 2015].

Microsoft, 2015. Outlook. Available at: http://products.office.com/en-us/outlook/email-and-
calendar-software-microsoft-outlook [Accessed February 11, 2015].

Mozilla, 2015. Thunderbird. Available at: https://www.mozilla.org/en-US/thunderbird/
[Accessed February 11, 2015].

Mozilla Developer Network, 2015a. JavaXPCOM. Available at:
https://developer.mozilla.org/en-
US/docs/Mozilla/Tech/ XPCOM/Language_bindings/JavaXPCOM [Accessed April 6,
2015].

Mozilla Developer Network, 2015b. Thunderbird extension Environment. Available at:
https://developer.mozilla.org/en-US/Add-
ons/Setting_up_extension_development_environment [Accessed April 6, 2015].

77



MozillaZine, 2013. Mozillazine Extension Development. Available at:
http://kb.mozillazine.org/Getting_started_with_extension_development [Accessed April 6,
2015].

Nanavati, M. et al., 2014. Cloud security: A Gathering Storm. Communications of the ACM, 57,
pp.70-79. Available at: http://dl.acm.org/ft_gateway.cfm?id=2593686&type=html.

NIPS, 2015. NIPS Encryption Standards. Available at:
http://csrc.nist.gov/groups/ST/toolkit/block_ciphers.html [Accessed April 10, 2015].

NIST, 2014. NIST Hash Policy. Available at: http://csrc.nist.gov/groups/ST/hash/policy.html
[Accessed April 10, 2015].

Notmuch, 2014. NotMuchMail. Available at: http://notmuchmail.org/ [Accessed February 18,
2015].

Oberndorfer, T., 2014. Mailvelope. Available at: https://www.mailvelope.com/ [Accessed
February 11, 2015].

Oracle, 2015a. Iterator. Available at:
https://docs.oracle.com/javase/8/docs/api/javalutil/lterator.html [Accessed April 17, 2015].

Oracle, 2014. Java Bitset. Available at:
https://docs.oracle.com/javase/7/docs/api/java/util/BitSet.html [Accessed April 17, 2015].

Oracle, 2015h. Java Cryptography Extension (JCE) Unlimited Strength Jurisdiction Policy Files
7. Available at: http://www.oracle.com/technetwork/java/javase/downloads/jce-7-
download-432124.html [Accessed June 4, 2015].

Oracle, 2015c. Java Cryptography Extension (JCE) Unlimited Strength Jurisdiction Policy Files
8. Available at: http://www.oracle.com/technetwork/java/javase/downloads/jce8-download-
2133166.html [Accessed June 4, 2015].

Oracle, 2015d. Java DB. Available at:
http://lwww.oracle.com/technetwork/java/javadb/overview/index.html [Accessed April 10,
2015].

Oracle, 2013a. Java Mail. Available at:
https://javamail.java.net/nonav/docs/api/javax/mail/Message.html [Accessed April 10,
2015].

Oracle, 2013b. JavaMail. Available at:

https://javamail.java.net/nonav/docs/api/javax/mail/Message.html [Accessed April 17,
2015].

78



Pilone, D. et al., 2001. Pooka. Available at: http://sourceforge.net/p/pooka/wiki/Home/
[Accessed April 6, 2015].

Qmail, 2015. Maildir. Available at: http://www.gmail.org/man/man5/maildir.html [Accessed
April 10, 2015].

Ramsdell, B. & Turner, S., 2010. Secure/Multipurpose Internet Mail Extensions, Available at:
http://tools.ietf.org/pdf/rfc5751.pdf.

Shmueli, E. et al., Designing Secure Indexes for Encrypted Databases, Available at:
http://lwww.cs.berkeley.edu/~dawnsong/papers/se.pdf.

Sloanseaman, 2012. Bouncy Castle PGP Encryption 3. Available at:
http://sloanseaman.com/wordpress/2012/05/13/revisited-pgp-encryptiondecryption-in-java/
[Accessed April 10, 2015].

StackOverflow, 2013. MimeMessage Messageld. Available at:
http://stackoverflow.com/questions/17818501/set-messageid-in-header-before-sending-mail
[Accessed April 17, 2015].

StarCom Ltd., 2011. StartSSL. Available at: https://www.startssl.com/ [Accessed February 18,
2015].

Thian, L. et al., 2005. Efficient Search on Encrypted Data, Available at:
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1635501.

Torto, D. Del et al., 2015. MIME Security with OpenPGP, Available at:
https://tools.ietf.org/html/rfc3156.

Trancecrypt Inc., 2014. Neomail. Available at: https://www.neomailbox.com/services/secure-
email [Accessed November 2, 2015].

Wiki ServiceNow, 2012a. Bouncy Castle PGP Encryption 1. Available at:
http://wiki.servicenow.com/index.php?title=Sample_Java_BouncyCastle_Algorithm_for_E
ncryption [Accessed April 10, 2015].

Wiki ServiceNow, 2012h. OpenPGP Decryption Example. Available at:
http://wiki.servicenow.com/index.php?title=Sample_Java_BouncyCastle_Algorithm_for_E
ncryption [Accessed April 10, 2015].

WinZip Computing, 2013. Winzip. Available at:
http://kb.winzip.com/help/help_actions_encrypt.htm [Accessed February 11, 2015].

Xiaodong, D., David, S. & Adrian, W., 2000. Practical Techniques for Searches on Encrypted
Data, Available at: http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=848445.

79



Yemini, Y., 2010. GPG Wrapper. Available at:
http://www.macnews.co.il/mageworks/java/gnupg/ [Accessed April 10, 2015].

Yen, A., Stockman, J. & Sun, W., 2015. ProtonMail. Available at: https://protonmail.ch/
[Accessed February 11, 2015].

Zhukov, A., 2002. JavaMaildir. Available at: http://javamaildir.sourceforge.net/ [Accessed April
10, 2015].

80



	Abstract
	Categories
	General Terms
	Keywords

	Declaration
	Introduction
	Overview
	Motivation
	Objectives
	Primary objectives
	Secondary objectives
	Tertiary objectives

	Project outcome
	Dissertation Organisation

	Context Survey
	Background
	Encryption basic techniques
	End-to-End Encryption Techniques
	PGP
	OpenPGP/MIME
	S/MIME


	Related Work
	End-to-End Email Encryption Tools
	Mutt
	ProtonMail
	Mailpile
	Mailvelope
	Thunderbird
	Enigmail

	Search Techniques on Encrypted data
	Forward Index
	Applicability

	Homomorphic Encryption
	Applicability

	Inverted Index
	Applicability

	Secure Index based on Bloom Filter
	Applicability

	Hybrid scheme for search
	Applicability


	Email Client Integration
	Thin Email Clients – Web Browser
	Thick email clients - Thunderbird
	Open Source Java email Clients



	Strategy
	Development strategy
	Technique selection
	Implementation strategy

	Testing strategy
	JUnit and Scenario based testing
	Performance


	Design
	Solution Design
	Core Technique
	Modification to the Technique
	Analysis


	Design Notation
	Logical View
	Indexer
	Searcher
	Data Manager
	Key Manager
	Encryption Utilities

	Deployment View
	Alternative Approaches
	Remote Secure Search Server
	Secure Searcher Client and Server
	Indexing
	Searching
	Analysis

	Single Remote Email Index Data Store
	Analysis




	Library Design
	Logical View
	Secure Search Client
	Indexer
	Searcher
	Decrypter
	Key Manager

	Secure Search Server
	Indexer
	Searcher

	Encryption Utilities
	Data Store

	Runtime View
	Indexing Runtime View
	Searching Runtime View


	Integration Design
	Indexing Integration
	Searching Integration


	Implementation
	Core Library Implementation
	Indexer
	Index Content
	Bloom Filter
	Challenges in Indexer implementation
	Decrypter

	Key Manager
	Encryption Utilities
	Searcher
	Data Manager

	Integration Implementation
	Columba Client Integration
	Indexing Integration
	Searcher Integration
	Challenges in Searcher Integration

	Text Viewer

	Maildir Integration
	Mail Storage
	Mail Server Simulation


	Encrypted Email Generator

	Secure Searcher
	Implementation Library
	Indexer
	Searcher
	Key Manager
	Decrypter

	Columba Search Functionality
	Indexing
	Searching
	Text Viewer
	Key store Configuration


	Evaluation
	Objectives
	Development Strategy
	Testing Strategy
	Functionality
	Implementation Library
	Indexing
	Searching

	Integrated Email Client
	Critical Functionality Analysis
	Searching Subject or Attachments
	Context information
	Number of occurrences
	Stemming
	Technique Complexity
	Lost Indexing Key
	False Positive Rate
	Maximum word limit


	Performance
	Analysis Environment Setup
	Indexing Analysis
	Searching Analysis
	Search time with Message Id Encryption
	Impact on Final Functionality

	Final Search time without Message Id Encryption
	/
	Search time against Bloom filter index size


	Security
	Security model of the Final implementation
	IND-CKA Semantic Security
	Controlled Searching
	Frequency Analysis attack
	Brute force Attack with Known Plain Text

	Enhanced Security Model
	Replay Attack

	Vulnerability Model
	Key store
	In-Memory attack
	Confidentiality Integrity Availability (CIA)


	Summary

	Conclusions and Future Work
	Conclusions
	Summary of Challenges
	Future Works and Improvements

	A Testing Summary
	A.1 Client Tests
	A.2 Data store Tests
	A.3 Encryption Utility Tests
	A.4 Server Tests
	A.5 Performance Tests

	B Changes to Original Specification
	C Project Plan
	D User Manual
	D.1    Columba Client Configuration
	D.1.1 Email Account Configuration
	D.1.2 Enable IMAP on Gmail

	D.2    Secure Searcher Configuration
	D.2.1 Key store Configuration
	D.2.2 Indexing
	D.2.3 Searching

	D.3    Demo Account Configuration
	D.3.1 Demo Account Configuration Details
	D.3.1.1 Demo1 Account Details
	D.3.1.1 Demo2 Account Details



	References

