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Abstract. Absolute tip–tilt recovery using a tilt signal measured on a Laser Guide Star is a central
problem in the framework of the development of Adaptive Optics Systems reaching full sky coverage
down to visible wavelengths. In the past few years, various techniques aimed at solving this problem
have been proposed. However only a couple of these has been recently tested in practice. We report
about an experiment aimed at evaluating the performance of one of these techniques called the
‘Elongation Perspective’ technique. Our experiment has been performed using the ALFA system in
Calar-Alto (Spain) and involves the simultaneous operation of the 3.6 m and the 2.2 m telescopes at
the Observatory. This article describes the telescope configuration used, as well as the data reduction
process carried out in order to estimate the scientific object tilt. The technique performances are
discussed in terms of the residual tilt error variance and related correlation coefficient. The analysis
shows that, despite the low SNR of our measurements, the atmospheric tilt variance is reduced to 80%
of its initial value corresponding to a correlation coefficient of about 0.6. To get a better estimate of
the performance achievable using this technique, the tilt error variance due to photon noise in the laser
measurement is estimated and removed from the obtained tilt error variance. When this correction is
done, this variance is reduced to about 50% of its initial value, showing that the use of this technique
can give rise to a significant reduction of the scientific object image motion.
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1. Introduction

In the recent years, Adaptive Optics Systems (AOS) using a Laser Guide Star
(LGS) as reference source have been developed and installed on 4 m class tele-
scope, such as, for example, the MPIA and MPE AOS called ‘Adaptive optics
system with a Laser For Astronomy’ (ALFA) (Quirrenbach et al., 1997). More
recently, systems for 8 m class telescopes are under development and should be in
operation in a short time. VLT, Keck and Gemini, among the others, plan to have a
LGS facility for routine operations.

However, these systems need a Natural Guide Star (NGS) located close to the
scientific object. This is done in order to retrieve the atmospheric tilt perturbation
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Figure 1.The laser projector and observing telescope configuration.

(Rigaut and Gendron, 1992; Oliver et al., 1993; Parenti and Sasiela, 1994; Sandler
et al., 1994) that is not properly sensed by the laser beacon. This requirement re-
duces the fraction of the sky where the AOS can be properly operated considerably.
Several schemes have been proposed in the literature (Ragazzoni and Esposito,
1997; Esposito, 1998) to estimate the scientific object tilt using LGS tilt meas-
urements. Recently one of these techniques has been tested at the Starfire Optical
Range Observatory (Belenkii et al., 1999).

Using the ALFA system installed at the German 3.6 m telescope together with
the 2.2 m telescope, located in Calar Alto (Spain), we have performed some obser-
vations devoted to obtaining the absolute tilt using one of the proposed techniques,
namely the ‘Elongation Perspective’ technique (Ragazzoni, 1997). Our experi-
ments are aimed at performing some early experimental verification of theoretical
predictions.

Although this experiment suffer from some limitations (e.g. photon noise), it
constitutes a first step toward more exhaustive investigations, which could lead
within a decade to the full demonstration and implementation of this method and
provide the long sought-after solution to the tip-tilt problem mentioned above.

2. The natural guide star perspective auxiliary projector technique

We briefly present the concept of the technique here. A more detailed description
can be found in Ragazzoni (1997). In this technique we use two auxiliary laser
projectors to measure the two orthogonal tilt components. The two auxiliary pro-
jectors are located at a certain distance from the main telescope so that the laser
source beam is seen from the main observatory as an elongated strip. In this case
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the auxiliary projector is pointed so that one edge of the laser strip is located, as
seen from the main telescope, at the same position as the Scientific Object (SO)
while, another part of the laser strip is located inside the isokinetic patch of a NGS.
Note that there are no fundamental restrictions to the distance between the SO
and the considered NGS. In this situation, as sketched in Figure 1, it is possible
to obtain the downward tilt of the SO itself, in the direction perpendicular to the
projected laser strip. In fact, it is easy to show that

TL1− TSO +1T fa1 = TL2− TNGS +1T fa2 = T upLASER , (1)

whereT upLASER is the upward tilt of the laser beam and1T fa is an error contri-
bution due to focus anisokinetism (Esposito et al., 1996; Neyman, 1996) that is
different at the two different locations of the natural guide stars. Neglecting focus
anisokinetism effects the SO tilt is given by

TSO = TL1− (TL2− TNGS) , (2)

where the quantitiesTL1, TL2 andTNGS are the measured tilts of the laser strip
patch one, laser strip patch two and of the natural star as reported in Figure 1. Still
referring to Figure 1, it is possible to show that the angular length of the laser strip
φ as seen from the observatory is given by

φ = dh/H 2 . (3)

Assuming a telescope-projector distance of≈ 300 m (as is the case in Calar Alto)
we obtain a projected length of about 70 arcseconds so that the natural star can be
located well outside the isokinetic patch of the SO.

3. The telescopes arrangement and measure configuration

In the framework of the European Community funded TMR network known as
Laser Guide Star for 8 m class telescopes(Foy, 1998) we set out to test this
technique experimentally. This has been done using the ALFA laser Adaptive Op-
tics system located in Calar Alto (Spain). In our experiment, the laser beam was
projected by the 3.6 m telescope and observed by the 2.2 m telescope. The two
telescopes are about three hundred meters apart so that the laser beam appears in
the smaller telescope field of view as an elongated strip about 70 arcseconds long.
By appropriately pointing the laser it is possible to obtain that in the field of view
of the 2.2 m telescope the laser strip appears to have two natural stars close to its
edges, at either end. Using this configuration, which is similar to the one reported
in Figure 1, it is relatively easy to test the technique performances. This is done
by measuring the tilt of the two NGSsTN1 andTN2, and the tilts of the laser strip
portionsTL1 andTL2 located close to the NGSs themselves. Using the measured
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Figure 2. Arrangements of the laser projector (3.5 m telescope) and observing telescope (2.2 m
telescope) in the measurement configurations in Calar Alto.

data we can compare the tilt of the NGSs with their estimates obtained consider-
ing Equation (2). In the following analysis, we attempt to estimate the tilt of the
NGS1. During the experiment we identified two stars not too far from the zenith
lying in the described configuration when the laser was propagated from the 3.6 m
telescope in the correct direction. The stars chosen were, respectively, SAO69471
and SAO69472. The observation was performed in the geometrical arrangement
shown in Figure 2. The 2.2 m telescope was equipped with a MAMA (Timothy
and Bybee, 1986) detector that gave information about the arrival time and the
position of each photon detected with a time resolution of one microsecond and
spatial resolution of about 0.3 arcsecond per pixel. A long exposure (10 s) frame is
shown in Figure 3 as an example. To get the highest number of photons per pixel
from the LGS we focussed the 2.2 m telescope on the laser strip. Consequently the
natural stars are strongly defocussed. This is shown in Figure 3 where the natural
star images clearly present the pupil central obscuration.

4. Technique verification and tilt estimation

To verify the performance achieved with this technique we had to measure the four
tilts contained in Equation (2), but with the SO tilt replaced by the natural guide tilt
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Figure 3. A MAMA subframe of 512×180 pixels with an integration time of 10 sec. Scale is 0.3
arcseconds per pixel.

TN1.a In order to obtain the required tilt, a first consideration is important. In our
images the laser strip and the two natural guide stars are somewhat superimposed
which made it difficult to measure the tilt of these objects. However, the ratio
between the number of photons received from each star and the corresponding
laser strip portion could be estimated from our data and it turns out to be about 5%.
Therefore we calculate the tilt of a subframe centered on the two NGSs, neglecting
the contribution from the laser strip photons. Furthermore we need to indirectly
evaluate the tiltsTL1 andTL2 of the two laser strip portions located under the NGSs
themselves. We obtained these two tilts by interpolating the tilt values measured
for the two laser strip portions located on the left and right side of each of the NGS
subframes. This situation is presented in Figure 4 where we show a sketch of the
various subframes used to identify the subimages needed to compute the various
tilts. For each subimage we obtained the tilt by considering the one-dimensional
profile in the y direction.b Referring to the symbols introduced in Figure 4, our
estimate of the the laser strip tiltsTL1 andTL2 results

T̃L1 =
(
T rL1+ T lL1

)
/2 (4)

T̃L2 =
(
T rL2+ T lL2

)
/2 . (5)

Furthermore, as will be clarified in the next section, this interpolation approach
reduces the error on the estimated laser tilt with respect to the case where only one
of the tilts located beside the considered NGS directly as an estimate of the central
patch laser tilt.

As an estimator of the image displacement we chose the energy distribution
median which is relatively less sensitive to photon noise errors than baricenter

a Hereafter, we refer to ‘tilt’ as the tilt component in they direction of the detector pixel
coordinate system that is, to a first approximation, orthogonal to the observed laser strip.

b Going from 2D images to 1D profiles in calculating the tilt does not significantly affect the tilt
determination process and speeds up the calculations (Stone, 1989).



140 S. ESPOSITO ET AL.

Figure 4.A sketch of the various boxes considered to determine the needed tilt signals. The numbers
close to the boxes represent their dimension in pixels.

measurements, as reported in Stone (1989). Image displacement signals are ob-
tained by rebinning the MAMA data with a minimum temporal binwidth of 0.1 s
giving a trade-off between photon noise errors and the atmospheric tilt signal atten-
uation. Furthermore in the following data analysis we calculate the tilt signalsTN1,
TN2, TL1 andTL2 by considering a running average of time width ranging between
0.2 and 2 s. The technique performance is evaluated by calculating the variances
σ 2

1 , σ 2
2 andσ 2

3 of the signalsS1, S2 andS3 defined as follows:

S1 = TN1

S2 = TN1 − TN2

S3 = TN1 − T̃N1 ,

(6)

whereT̃N1 represent our estimate ofTN1 and is given by

T̃N1 = T̃L1− (T̃L2− TN2) . (7)

The introduced variances allow us to obtain the correlation coefficients between the
two coupled tilts that forms the quantitiesS2 andS3. This is done considering that
the correlation coefficientγ between two signalsa andb having the same standard
deviationσ is such that〈

(a − b)2〉 = 2 σ 2(1− γ ) , (8)

whereγ has the standard definition

γ = < ab >

σ 2
. (9)

Results obtained for the variancesσ 2
1 ,σ 2

2 andσ 2
3 and the two correlation coeffi-

cientsγ2 andγ3 are reported in Figure 5 as a function of the width of the running
average window.
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Figure 5.Behavior of the signals variance versus the running average window width. The upper lines
represent the correlation coefficients.

5. Results discussion and photon noise error

Considering Figure 5 we can check if our tilt estimateT̃N1 is useful as absolute
tilt correction signal. The first condition for this is thatσ 2

3 < σ 2
1 or γ3 > 0.5.

This condition is satisfied for a running average window larger than 1.0s. As an
example at 1.5 s using the estimate signal to correct the tiltTN1 gives a residual tilt
varianceσ 2

3 of about 80% of the initial tilt variance. For comparison purpose we
plot varianceσ 2

2 that corresponds using the tiltTN2 to correctTN1. This variance
is, in our data, greater thanσ 2

3 . Howeverσ 2
3 approachesσ 2

2 when the width of
the averaging window is increased. This suggest that photon noise limits our tilt
measurement̃TN1. As seen from Equation (2) the varianceσ 2

3 contains a con-
tribution due to photon noise in the laser tilt measurementsTL1 andTL2. In our
measurements this term is not negligible because of the low detector Q.E (< 3%).
To estimate the technique performance when a better SNR on the laser measure-
ments is available we quantify this contribution in the following analysis in order
to subtract it fromσ 2

3 . For reasons of clarity we identify a particular measurement
of a quantityTa with the symbolθa. Furthermore we use, as before, the symbol
T̃a to refer to our approximation of a quantityTa. Following these conventions and
using Equation (2) where focus anisokinetism error is neglected the varianceσ 2

3 is
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given by the expression

σ 2
3 = < (θN1− T̃N1)

2 > = < (θN1− [θN2 − (θL1− θL2)])
2 > =

= σ 2
N1+ σ 2

N2+ σ 2
L1+ σ 2

N2 , (10)

where< > indicates the expectation value andσ 2
N1, σ 2

N2, σ 2
L1 andσ 2

L2 represent
the measurement error variances, supposed uncorrelated, of the quantitiesTN1, TN2,
TL1, TL2, respectively. Considering Equation (5) we can obtain an expression for
σ 2
L1 andσ 2

L2. To this end we write an expression for a particular measurement of
T lL1 andT rL1

θ lL1 = TL1+1T l1 +1nl1 (11)

θrL1 = TL1+1T r1 +1nr1 , (12)

where1T and1n represent the tilt error term due to tilt angular decorrelation and
photon noise, respectively. With these notations the error variancesσ 2

L1 andσ 2
L2 of

our estimationsTL1 andTL2 are given by

σ 2
L1 =

< (1T l1)
2 > + < (1T l1)2 > + < (1nl1)

2 > + < (1nl1)2 >
4

(13)

σ 2
L2 =

< (1T l2)
2 > + < (1T l2)2 > + < (1nl2)

2 > + < (1nl2)2 >
4

. (14)

The experimental data allow us to estimate the two different error contributions
< (1T )2 > and< (1n)2 >. To do this we consider the tilt signalsTS1, TS2 and
TS3 of the three central laser patches shown in Figure 4. Following notation of
Equations (11) and (12) a particular measurement of these three quantities has the
expression

θS1 = TS2+1T1+1n1 (15)

θS2 = TS2+1n2 (16)

θS3 = TS2+1T3+1n3 . (17)

Our experimental data allow to calculate the quantity

σ 2 =
〈[
θS2− 1

2
(θS1+ θS3)

]2
〉
, (18)

that using Equations (15), (16) and (17) gives

σ 2 =< (1n2)
2 > +

+< (1n1)
2 > + < (1n3)

2 > + < (1T1)
2 > + < (1T2)

2 >

4
. (19)
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As in Sandler et al. (1994) we assume that the tilt error variance due to photon
noise is inversely proportional to the number of photons used to calculate the tilt
signal. We locate the three laser patches in the middle of the laser strip so that
each patch receive approximately (within 10%) the same number of photonsNs
per integration time. Using this condition we have

σ 2 = 3

2
< (1n)2 > +1

4

[
< (1T1)

2 > + < (1T2)
2 >

] = σ 2
n + σ 2

T . (20)

The last error varianceσ 2
T , due to tilt angular anisoplanatism, has an analytical

expression given in Sandler et al. (1994). We assume, as an overestimation of
varianceσ 2

T , a linear relationship between angular anisoplanatism tilt error variance
and the angular separation of the considered objects. In this situation we can rescale
the measured varianceσ 2

2 to the angular separation of the considered laser patches.
This allows us to evaluate the quantityσ 2

T experimentally. Our calculations show
thatσ 2� σ 2

T so that we obtain

< (1n)2 >= 2

3
σ 2 . (21)

This estimation of the photon noise error for a given portion of the laser strip can
be used to calculate the two quantities

σ 2
T L1 =

1

4

[〈
(1nlL1)

2
〉+ 〈(1nrL1)

2
〉]

(22)

σ 2
T L2 =

1

4

[〈
(1nlL2)

2
〉+ 〈(1nrL2)

2
〉]
, (23)

that gives the photon noise error due to laser measurements contained in variance
σ 2

3 . This is done again by considering the photon noise as being inversely pro-
portional to the received photons. Using this condition we obtain< (1nlL1)

2 >,
< (1nlL1)

2 >, < (1nlL1)
2 > and< (1nlL1)

2 > by rescaling the error variance
< (1n)2 >, previously determined according to Equation (21), to the number of
photons received in the four laser patches used to calculateTL1 andTL2. Subtracting
the two quantitiesσ 2

T L1 andσ 2
TL2 from σ 2

3 gives a new variancẽσ 2
3 where laser

photon noise effect is removed. This quantity, together with the related correlation
coefficient γ̃3 is shown in Figure 5. The residual varianceσ̃ 2

3 is aboutσ 2
2 for a

binning window shorter than 1.0s and is lower for longer windows. In this case the
correlation coefficient̃γ3 stay well above 0.6 and reach a maximum value of about
0.75. This value correspond to a tilt variance reduction of 50%. This shows that,
if laser measurements with a better SNR were used, the technique could achieve a
significant accuracy in estimating the tiltTN1. Finally we note that similar results on
the correlation coefficient of the tilt estimate signals have been obtained in Belenkii
et al. (1999).
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6. Conclusion

This article describes a first experimental evaluation of the so called ‘Elongation
Perspective’ technique. The data analysis has shown that a reduction of the tilt
variance of about 30% of the initial value can be obtained using the considered
technique. However, the principal limitation of the performed experiment is the low
SNR of the laser measurements due to the low quantum efficiency of the MAMA
detector (< 3%) used. When photon noise error is numerically removed in the data
analysis a significant reduction of the tilt variance of about 50% is achieved.

To get better SNR the experimental configuration could be improved in vari-
ous ways, for example, independent focusing of the LGS and NGS and dichroic
filters to select the light from these two sources, to cite the more evident ones.
Finally experiments with higher SNR are needed in order to demonstrate that using
techniques like this Adaptive Optics Systems can be operated in sky regions not
containing bright NGSs.
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