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A B S T R A C T

Adventitious shoot regeneration and protoplast isolation and culture were examined from leaf explants

of in vitro shoot cultures of several cauliflower (Brassica oleracea var. botrytis) cultivars, sourced from

Europe and Australia, was investigated with the aim to develop improved nuclear and plastid

transformation protocols for this vegetable crop. Eight out of 10 cultivars regenerated shoots from at least

79% of leaf explants. Mesophyll protoplasts from leaves gave high yields and division frequencies. Growth

of shoot cultures in large glass vessels with vented lids was the key factor in obtaining high protoplast

division frequencies of up to 71% and at least 70% of protoplast calluses regenerating shoots.

Crown Copyright � 2008 Published by Elsevier B.V. All rights reserved.
1. Introduction

There is an extensive plant tissue culture literature on Brassica

species (reviewed in Cardoza and Stewart, 2004), including research
into the production of intra- and intergeneric hybrids of brassicaceae
via protoplast fusion (Navrátilová, 2004). Shoot regeneration from
cauliflower tissue culture has been reported by somatic embry-
ogenesis (Deane et al., 1997; Leroy et al., 2000), but protocols aimed
at Agrobacterium-mediated transformation rely on adventitious
shoot formation from seedling explants. Cauliflower has been
transformed via Agrobacterium tumefaciens (e.g. Bhalla and Smith,
1998), Agrobacterium rhizogenes (David and Tempé, 1988) and
through direct DNA uptake into protocols from hypocotyls (e.g.
Mukhopadhyay et al., 1991; Xue et al., 1997) or mesophyll cells
(Radchuk et al., 2002; Nugent et al., 2006). Apart from transient
expression data in broccoli (Puddephat et al., 1999) there are no
reports of nuclear transformants of Brassica oleracea via biolistics.
Interestingly, biolistics has been used to produce plastid transfor-
mants of Brassica napus (Hou et al., 2003) and B. oleracea (Liu et al.,
2007) from seedling and leaf explants, respectively.

In this paper we report adventitious shoot regeneration from
leaf explants and mesophyll protoplasts from cauliflower cultivars
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sourced from Europe and Australia. We found an increased shoot
regeneration frequency from leaf explants and protoplast cultures
of cauliflower, which should be useful when applied to Agrobac-

terium-mediated and direct DNA uptake transformation methods
previously reported for cauliflower, but biolistics-mediated
nuclear and plastid transformation of vegetable brassicas might
also be achievable via leaf explants.

2. Materials and methods

2.1. Plant material

Seeds of European sourced cultivars of cauliflower (Thalassa,
Arbon, Martian, Nautilus and Liberty) were obtained from
Goldcrop Ltd. (Dublin, Ireland). Australian sourced cauliflower
cultivars were obtained from Clause Tezier Australia, Melbourne,
Australia (Thalassa), Yates (Quick Heart, All Year Hybrid, and
Phenomenal Early) or Fairbanks Selected Seed Co. Pty. Ltd.
(Melbourne, Australia) (Brittany and White Star). Seeds of the
Indian cultivar ‘Early Kunwari’ were kindly provided by Prof.
Pental, TATA Research Institute, India. Seeds were stored at 4 8C
prior to use.

2.2. Explant preparation

Cauliflower in vitro shoot cultures were established from
seedlings as described previously (Nugent et al., 2006). All plant
growth regulators (Duchefa) and silver nitrate (AgNO3) were filter
sterilised (Sartorius, 0.22 mm) and added to media after autoclav-
ll rights reserved.
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ing. Leaf explants were cut from leaves with a scalpel blade, at
approximately 1 cm2 sections, avoiding the mid-vein, with a cut
edge on each side, and cultured abaxial side down and in sterile
disposable Petri dishes (90 mm � 15 mm) containing 20 ml of MS
(Murashige and Skoog, 1962) based shoot induction medium (SIM)
(45 mM BAP/5.4 mM NAA/29.4 mM AgNO3) (after Dunwell, 1981),
at 22 8C under a 16 h photoperiod provided by cool, white
fluorescent lights at photon flux density of 50 mmol/(m2 s). The
plates were sealed with surgical tape (Leukopore). The number of
adventitious shoots/roots for all explants was counted after a total
period of 8 weeks in culture. An additional treatment with Thalassa
leaf explants tested the effect of bombardment using a gene gun on
regeneration frequency. Leaves were bombarded with gold
particles (0.6 mm diameter) coated with plasmid DNA (pZB1,
Nugent et al., 2006) using a PDS 1000/He Biolistic gene gun
(BioRad). A rupture disc pressure of 1100 psi, partial vacuum
Fig. 1. Cauliflower in vitro shoot cultures as a source of mesophyll protoplasts and shoot reg

vented (left) and unvented glass jars (right); (b) vigorous growth of shoot cultures after 4 w

microcolony in agarose at 20 d from protoplast isolation (bar = 50 mm); (e) protoplast colon

after 40 d (medium E); (g and h) adventitious shoot bud differentiation from leaf explan
pressure between 28 in Hg and a target distance of 6 cm was used
for bombardment.

2.3. Protoplast isolation and culture

Mesophyll protoplasts were isolated from leaves of shoot
cultures grown as described above and cultured according to a
published protocol (Nugent et al., 2006) as modified from Pelletier
et al. (1983). Shoot cultures were grown in several types of culture
vessels to determine the effect on protoplast yield and division
frequency. Shoot cultures established from 10-day-old germinated
seedlings were transferred to either Magenta vessels GA-7 (Sigma,
V8505), Phytacon Vessels (Sigma, P-5557), Glass jars
(145 mm� 85 mm, Phytotechnology Labs, C956) or Glass jars with
vented lids. The vented lids of glass jars were prepared by cutting a
(3 cm diameter) hole in the middle portion of the lids using a scalpel
eneration from leaf explants. (a) Early establishment of shoot cultures after 2 weeks in

eeks in vented glass jars; (c) shoot culture growth at the end of 8 weeks; (d) protoplast

ies in agarose at 30 d, medium D; (f) shoot and root regeneration from protoplast calli

ts after 2 weeks on SIM; bar = 1 mm.
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blade, and plugging the hole with absorbent cotton wool. All the
culture vessels were used with identical medium (MS + 30 g/
l sucrose +4 g/l Phytagel). These shoot cultures were maintained
at 25 8C under 16 h light/8 h dark light conditions. Protoplast
isolation experiments were carried out three times and each time
new shoot cultures were taken from germinated seedlings and
inoculated in the different containers. Protoplast viability was
measured with fluorescein diacetate (Widholm, 1972).

2.4. Data analysis

The number of explants that showed callus formation, root
formation and shoot formation per explant were counted.
Percentage of explants forming callus, root and shoot response,
and also root and shoot number from each explant, was recorded.
Normality test, data transformation, ANOVA and Tukey’s tests
were performed on root and shoot percentage response and their
number for the significant differences at p < 0.05 among the
explants and cultivars using MINITAB 14 software. Data were log
transformed to improve the normal distribution where necessary.
For the protoplast experimental data, yield, viability, division and
shoot regeneration from calli were also analysed with MINITAB
using the same methods.

3. Results and discussion

3.1. Shoot regeneration from leaf explants of cauliflower cultivars

Leaf explants from shoot cultures were examined as alternative
explants to seedling tissue for shoot regeneration for transforma-
tion studies. Adventitious shoot buds were visible from cut leaf
margins, callus and across the leaf surface from 2 weeks on SIM.
Buds may be initially unpigmented, pigmented or green (Fig. 1g
and h). There was no significant difference between the mean
number of shoots regenerated amongst cultivars within each
cultivar group (Table 1). The Australian sourced cultivars were
more uniform in response, with Early Glory and Quick Heart being
the choice cultivars, given their significantly higher regeneration
frequencies. Thalassa was a superior cultivar amongst the
European sourced cultivars, but did not have a significantly higher
frequency than the others. Leaves from shoot cultures maintained
for longer than three subculture periods of 3–4 weeks showed a
reduced capacity for shoot regeneration, but explants from leaves
Table 1
Adventitious shoot regeneration from in vitro leaves of European (bold) and Australian

Cultivar Number of explants Root

regeneration (%)

Liberty 120 85

Nautilus 120 88

Early Kunwarib 120 96

Thalassa 120 84

Thalassa 3rdc 120 88

Thalassa (unshot)a 120 98

Thalassa (shot)d 120 99

Early Glory 150 59.3B

Phenomenal Early 150 61.3B

All Year Hybrid 150 59.3B

Quick Heart 150 60B

White Star 150 70.6AB

Brittany 150 70.6AB

Shoot induction medium (SIM): MS/45 mM BAP/5.4 mM NAA/29.4 mM AgNO3. Explant re

deviation (S.D.). Numbers followed by a different letter are significantly different after Tu
a Unshot control.
b Cultivar sourced from India.
c Leaf explants sourced from shoot cultures on their third subculture cycle. All othe
d Leaf explants shot with DuPont PDS/1000He gene gun, with plasmid pZB1 (Nugen
bombarded with gold particles coated in plasmid DNA with the
BioRad gene gun did not (Table 1). Several of the tested cultivars
have demonstrated the highest regeneration frequency from
leaves of any cauliflower cultivar yet reported. Seedling hypocotyls
are preferred for regeneration and transformation of brassicas
(Puddephat et al., 1996; Cardoza and Stewart, 2004), however,
there are few reports of shoot regeneration from B. oleracea leaves.
Regeneration frequencies from B. oleracea leaves have been
reported as 0 (Bhalla and de Weerd, 1999), 19% (Cheng et al.,
2001), 31% (Ovesná et al., 1993), 50% (Dunwell, 1981) and 79% (Cao
and Earle, 2003) but there have been few reports of shoot number
per explant. Mature leaves regenerated fewer shoots than younger
leaves of rapid cycling B. oleracea and broccoli (Cheng et al., 2001;
Cao and Earle, 2003), but the number of shoots per explant and
regeneration frequency was much lower than found in cauliflower
in our study.

Adventitious shoots arose from cut edges of leaves in our study,
but also from across the leaf lamina and from around vascular
tissue (data not shown). However Bhalla and de Weerd (1999)
reported no shoots were regenerated from cauliflower leaf
explants which did not contain leaf veins, but shoots regenerated
at low frequency from leaf vein explants without leaf lamina tissue
attached. It remains to be shown whether these shoots develop
directly or indirectly from mesophyll cells or vascular parenchyma
in cauliflower, given that several studies have shown that brassica
adventitious shoots arise from vascular parenchyma cells in
seedling and leaf explants (e.g. Hachey et al., 1991; Mukhopadhyay
et al., 1992; Sharma et al., 1993; Akasaka-Kennedy et al., 2005).
This is interesting as plastid transformants of B. oleracea have been
regenerated from leaf explants after biolistics delivery of plasmid
DNA (Liu et al., 2007). There is the possibility therefore that these
plastid transformants regenerated from the plastid rich mesophyll
cells, given that vascular parenchyma cells are a smaller target for
biolistics-delivered DNA and occur deeper in the leaf tissue than
many of the mesophyll cells. Nonetheless, the utility of leaves for
generating nuclear transformants of brassica directly via A.

tumefaciens or biolisitcs has yet to be reported. Leaves have been
used for A. rhizogenes-mediated transformation of brassicas (e.g.
Christey et al., 1997), but transgenic plants were generated
indirectly from hairy-root cultures. It does show that Agrobacter-

ium may transform some brassica leaf cells, but it has not been
demonstrated that Agrobacterium can transform leaf cells capable
of forming shoot primordial or somatic embryos.
sourced cultivars of cauliflower

Number of roots,

mean � S.D.a
Shoot regeneration (%) Number of shoots,

mean � S.D.a

5.3 � 4.5ab 60 3.6 � 4.7a

5.9 � 4.8ab 72 4.1 � 4.1a

6.3 � 3.1a 88 4.1 � 3.5a

4.2 � 3.0b 82 5.6 � 4.8a

4.3 � 2.8b 53 2.6 � 3.1a

9.0 � 5.0a 85.8 7.3 � 6.5a

7.5 � 3.9a 85 5.4 � 4.6a

2.8 � 2.5A 92A 7.3 � 3.2A

2.7 � 2.4A 80B 5.5 � 3.2AB

2.8 � 2.6A 80B 5.2 � 3.0B

2.6 � 2.4A 82.6AB 6.1 � 3.2AB

3.2 � 2.6A 80B 5.5 � 3.3AB

3.2 � 2.4A 78.6B 5.4 � 3.2AB

sponses recorded at 5 weeks, recorded as percentages and mean number � standard

key’s test (p < 0.05).

r leaves taken from shoot cultures after one subculture.

t et al., 2006).



Table 2
Protoplast responses from shoot cultures grown in various vessel types (cv. Brittany)

Cultivar Protoplast yield

(�106 #pp/g fwt)

Protoplast

viability (%)

Protoplast

division (10 d) (%)

Shoot regeneration

from calli (n = 200) (%)

Magenta 1.07a 77.6a 11.8a 32a

Sigma 1.6a 77a 10.9a 31a

Glass jar 2.0a 87b 41.6b 57b

Glass jar with vented lid 2.1a 96.6c 70.1c 78c

Yield is measured as the number of protoplasts per gram of fresh weight of leaf tissue. Protoplast viability measured with FDA (Widholm, 1972). Division recorded at 10 d after

isolation. Numbers followed by a different letter are significantly different (p < 0.05) after Tukey’s test.

Table 3
In vitro responses of protoplasts isolated from various Australian sourced cauliflower cultivars

Cultivar Protoplast yield (�106 #pp/g fwt) Viability (%) Protoplast division (10 d) (%) Calli regeneration (n = 200) (%)

Thalassa 2.6a 96.0a 71.7a 76.3a

White Star 2.2a 97.0a 69.3a 71.3a

Brittany 2.1a 96.7a 69.9a 71.7a

Quick Heart 2.0a 96.0a 53.3c 67.3a

All Year Hybrid 2.6a 96.2a 67.7a 68.3a

Phenomenal Early 2.7a 96.7a 52.0c 64.7b

Early Glory 2.5a 97.5a 60.3b 67.7a

Yield is measured as the number of protoplasts per gram of fresh weight of leaf tissue. Protoplast viability measured with FDA (Widholm, 1972). Division recorded at 10 d after

isolation. Shoot regeneration from calli recorded 5 weeks after transfer to medium F. Numbers followed by a different superscript letter are significantly different (p < 0.05)

after Tukey’s test.
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3.2. Protoplast isolation and culture

Regeneration from cauliflower mesophyll protoplasts has been
more successful with protocols based on Pelletier et al. (1983) than
Glimelius (1984) (reviewed in Kik and Zaal, 1993). As such,
efficient protoplast isolation and culture, incorporating such
factors as agarose embedding, were established for cv. Thalassa
(data not shown), based on a protocol developed at Rijk Zwaan BV,
Netherlands, adapted from Pelletier et al. (1983) (see Nugent et al.,
2006). Shoot cultures of Brittany were then used in the container
experiment where similar yields of mesophyll protoplasts were
obtained from leaves from the four container types (Table 2).
Significantly higher protoplast viability, division and shoot
regeneration was obtained from shoot cultures grown in glass
jars (Table 2). Protoplasts from leaves of shoot cultures grown in
large, vented culture vessels produced significantly higher division
frequency than those from leaves from unvented containers of the
same or smaller size (Fig. 1a). Shoot cultures developed vigorously
in vented jars (Fig. 1b and c). The importance of ventilation of
culture vessels and Petri dishes has also been demonstrated in
other brassica tissue culture systems. Micropropagated cauliflower
seedlings grew better in vitro in vented containers with or without
added AgNO3 (Zobayed et al., 1999) and a significant improvement
in culture of B. napus protoplasts was obtained when shoot
cultures, used as a source of mesophyll protoplasts, were grown on
a modified basal medium in large, vented glass jars (Dovzhenko,
2001). However this medium made cauliflower shoots chlorotic in
our study (data not shown), but large culture vessels was a key
improvement for cauliflower (Table 2).

No significant difference in protoplast yield or viability was
found among the seven Australian sourced cultivars. In all of these
cultivars, high yields, viabilities and division frequencies were
obtained (Table 3). Protoplast microcolonies were well developed
by 20 d of culture (Fig. 1d) and masses of green colonies easily
visible by eye in agarose discs by 30 d on medium D (Fig. 1e) and
early stages of shoot and root regeneration were visible on medium
E by 40 d after protoplast isolation (Fig. 1f). Only Phenomenal Early
showed significantly lower shoot regeneration from protoplast
calli than the other cultivars. Protoplast division and regeneration
in our study were the highest yet reported for cauliflower (e.g. Kik
and Zaal, 1993) and comparable to the broccoli cultivar Green
Comet (Robertson and Earle, 1986). With a division frequency
reliably around 70% for several cultivars including Thalassa, using
the modified protocol in combination with vented vessels, we have
a sound basis for improved transgenesis from protoplasts of
cauliflower, compared to earlier studies (Radchuk et al., 2002;
Nugent et al., 2006).

In conclusion, this study has found that regeneration from
several of the European and Australian sourced cultivars exhibit
the most efficient regeneration from leaf explants and mesophyll
protoplasts reported to date for this species. The utility of this high
regeneration frequency in transformation systems is under
examination.

Acknowledgements

This study was funded by a European Union 5th Framework
grant, QLK3CT199900692 and by RMIT University. We also thank
Prof. D. Pental, Tata Energy Research Institute, New Delhi, India for
seeds of B. oleracea var. botrytis ‘Early Kunwari’ used in this study.

References

Akasaka-Kennedy, Y., Yoshida, H., Takahata, Y., 2005. Efficient plant regeneration
from leaves of rapeseed (Brassica napus L.): the influence of AgNO3 and geno-
type. Plant Cell Rep. 24, 649–654.

Bhalla, P.L., Smith, N., 1998. Agrobacterium tumefaciens-mediated transformation of
cauliflower, Brassica oleracea var. botrytis. Mol. Breed. 4, 531–541.

Bhalla, P., de Weerd, N., 1999. In vitro propagation of cauliflower, Brassica oleracea
var. botrytis for hybrid seed production. Plant Cell Tiss. Org. Cult. 56, 89–95.

Cao, J., Earle, E.D., 2003. Transgene expression in broccoli (Brassica oleracea var.
italica) clones propagated in vitro via leaf explants. Plant Cell Rep. 21, 789–796.

Cardoza, V., Stewart Jr., C.N., 2004. Brassica biotechnology: progress in cellular and
molecular biology. In Vitro Cell. Dev. Biol. Plant. 40, 542–551.

Cheng, P.-K., Lakshmanan, P., Swarup, S., 2001. High-frequency direct shoot regen-
eration and continuous production of rapid-cycling Brassica oleracea in vitro. In
Vitro Cell. Dev. Biol. Plant. 37, 592–598.

Christey, M.C., Sinclair, B.K., Braun, R.H., Wyke, L., 1997. Regeneration of transgenic
vegetable brassicas (Brassica oleracea and B. campestris) via Ri-mediated trans-
formation. Plant Cell Rep. 16, 587–593.
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Navrátilová, B., 2004. Protoplast cultures and protoplast fusion focused on Brassi-
caceae—a review. Hortic. Sci. (Prague) 31, 140–157.
Nugent, G.D., Coyne, S., Nguyen, T.T., Kavanagh, T.A., Dix, P.J., 2006. Nuclear
and plastid transformation of Brassica oleracea var. botrytis (cauliflower)
using PEG-mediated uptake of DNA into protoplasts. Plant Sci. 170,
135–142.

Ovesná, J., Ptácek, O.Z., Opartny, Z., 1993. Factors influencing the regeneration
capacity of oilseed rape and cauliflower in transformation experiments. Biol.
Plant. 35, 107–112.

Pelletier, G., Primard, C., Vedel, F., Chétrit, P., Rémy, R., Renard, M., 1983. Intergeneric
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