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The incidence of invasive aspergillosis (IA), an opportunistic infection in immuno­
compromised individuals, is rising, but its early diagnosis remains challenging and 
treatment options are limited. Hence there is an urgent need to improve existing 
diagnostic procedures as well as develop novel approaches. The clinical usefulness 
of galactomannan and β-d-glucan, widely used assays detecting cell-wall antigens 
of Aspergillus, is unclear and depends on clinicians’ awareness of their practical 
limitations. This leaves room for new methods that utilize genomic, proteomic and 
metabolomics approaches as well as novel detection procedures, for example point-
of-care lateral-flow devices. Each of these strategies has its own limitations and it is 
likely that a combination of methods will be required to achieve optimal performance 
for the diagnosis of IA and subsequent appropriate patient management.
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Background
Invasive fungal infections (IFIs) are a 
major source of morbidity and mortality in 
immunocompromised individuals, especially 
in hematological patients with prolonged 
periods of neutropenia [1]. They pose consid-
erable challenges to early diagnosis and effec-
tive patient management, where in addition 
to prophylaxis, early and appropriate initia-
tion of antifungal therapy is key to a favor-
able clinical outcome [2]. Many centers use an 
empirical approach to patient management 
and antifungal treatment is commenced 
when there are clinical signs and symptoms 
of invasive disease, even in the absence of 
fungal pathogen identification. This is likely 
to lead to the treatment of patients who do 
not have invasive fungal disease. By contrast, 
a diagnostic-driven approach combines bio-
marker detection and imaging techniques to 
direct therapy and aim for a rapid assessment 
of the likelihood of IFI. This approach aims 
to treat only patients with evidence of IFI, 
with treatment withheld and IFI excluded in 

patients with negative diagnostic test results. 
The success of such an approach is heavily 
reliant on the early availability of biomarker 
assays and imaging services, and its efficacy 
has not yet been established.

Diagnosis is generally based on a combi-
nation of compatible clinical findings in a 
patient with risk factors together with histo
pathological evidence of invasion, serological 
detection of antibodies or antigens, radio
logical data and, less frequently, isolation of 
the pathogen. Methods include direct micro
scopy, radiographic imaging such as x-rays 
and CT scans [3], biomarker analysis using 
molecular techniques [4], attempts to grow 
fungi taken from sterile culture and broncho
alveolar lavage (BAL) fluid as well as non
culture-based detection of fungal antigens in 
blood, plasma, serum or BAL fluid [1].

The European Organisation for Research 
and Treatment of Cancer/Mycoses Study 
Group (EORTC/MSG) has published con-
sensus criteria for defining proven, probable 
and possible IFIs. Under the original guide-
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lines, IFI was proven if a fungus was detected by his-
tological analysis or culture of a specimen of tissue 
taken from a site of disease [5]. Probable and possible 
IFI required:

•	 A host factor that identified the patients at risk;

•	 Clinical signs and symptoms consistent with the 
disease entity;

•	 Mycological evidence from culture and microscopic 
analysis as well as from indirect tests.

However, it became apparent that the definitions 
needed refinement and extension to recipients of solid-
organ transplants and patients with primary immuno-
deficiencies. This resulted in the revised definitions, 
which adopted the term invasive fungal disease (IFD), 
modified the criteria for proven and probable IFD to 
reflect advances in indirect tests and defined the cate-
gory of possible IFD more strictly to include only cases 
that are highly likely to be caused by a fungal etiology, 
although mycological evidence is lacking [6].

A serious practical problem with this classification is 
that testing requires the use of lung biopsies and BALs; 
however, at-risk patients are usually characterized by 
thrombocytopenia and neutropenia, which precludes 
the use of such invasive procedures. Since prompt ini-
tiation of therapy is a critical prognostic factor [7], this 
frequently means starting empirical antifungal ther-
apy. Furthermore, blood or other body fluids are rarely 
positive for fungal pathogens [8], particularly when 
blood samples are taken after the start of antimicrobial 
therapy.

Hence there has been a concerted effort to iden-
tify alternative procedures for the future diagnosis of 
mycoses, not all of which have entered clinical prac-
tice. They include the targeting of fungal antigens by 
ELISA or lateral flow devices (LFDs) [9], detection of 
siderophores [10] and amplification of fungal nucleic 
acids from tissue and body fluids [11] as well as applica-
tion of matrix-assisted laser desorption ionization TOF 
mass spectrometry (MALDI-TOF MS) [12] (Table 1).

One interesting development concerns the use of 
a combination of antibody-based technology and the 
PCR in the proximity ligation or extension assay (PLA 
or PEA) (Figure 1). PLA is an innovative immunoassay 
platform that combines the exquisite sensitivity and 
dynamic range of real time quantitative PCR (qPCR) 
with the specificity of antibody-based detection of pro-
teins and other analytes to allow accurate quantification 
of antigens in blood and tissue samples [13]. PLA offers 
several advantages over traditional ELISAs, including 
better sensitivity (∼50–500-fold) and broader dynamic 
range (∼5 vs 2.5 logs), simpler workflow (requiring no 

wash steps) and faster time to results (1.5–2 vs 5 h). 
The assay is being used to detect Aspergillus-specific 
N-linked glycoprotein antigens that are secreted con-
stitutively at the hyphal apex in actively growing organ-
isms [14] and is currently under development in one of 
the author’s laboratory (Bustin).

Invasive aspergillosis
Fungi of the genus Aspergillus are the cause of a wide 
range of diseases that range from allergic reactions to 
disseminated invasive disease in immunocompromised 
patients. Invasive aspergillosis (IA), the most common 
invasive mould disease worldwide, is usually seen in 
the lungs (pulmonary aspergillosis), but can also dis-
seminate to other tissues, including the CNS, sinuses, 
bone, heart, kidney, eye, blood and skin [15]. IA is 
caused primarily by inhalation of the ubiquitous Asper-
gillus fumigatus, although there are other pathogens in 
this genus, which include the morphologically distinct 
A. flavus, A. terreus, A. niger and A. nidulans, all of 
which can be agents of IA [16]. The small diameter of 
their conidia, which range from 2–5 μm depending on 
the species, allows them to reach the lung alveoli. This 
rarely has any adverse effect on immunocompetent 
individuals, since innate immune mechanisms remove 
the conidia fairly efficiently [17]. In immunosuppressed 
patients, on the other hand, inhaled conidia adhere to 
airway epithelial cells or pulmonary macrophages, are 
internalized and undergo germination. Hyphal growth 
occurs by apical extension, with their angiogenic prop-
erties giving the fungus access to the vascular compart-
ment (reviewed in [18]). This results in the dissemina-
tion and invasion of deep tissues, where they can cause 
severe and usually fatal invasive infections. Although 
the introduction of new noninvasive tests, combined 
with more effective and better-tolerated antifungal 
agents, has resulted in lower mortality rates associ-
ated with IA, this disease continues to have substantial 
attributable mortality combined with a major impact 
on hospital resource use [19].

Cell culture & direct microscopy
The traditional method for diagnosing IA involves cul-
turing of Aspergilli and using phenotype-based identifi-
cation schemes such as shape, size, color, ornamentation 
and/or mode of attachment to distinguish Aspergillus 
species [20]. While relatively low cost and having the 
advantage of allowing additional testing, for example 
for antibiotic resistance, its slowness (2–5 days mini-
mum), requirement for a surgical biopsy of a sterile site 
and potential for contamination make it less than ideal 
for early diagnosis [21]. Furthermore, although a posi-
tive culture result identifies an infection, it could be a 
result of colonization in the absence of invasive infec-
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tion. Also, culturing is not a sensitive detection method: 
most cases proven or probable by serum- or BAL-
positive ELISA are not culture positive [22] and sensi-
tivity in a rabbit model of IA ranged from 50–100%, 
interestingly dependent on the infecting Aspergillus 
species [23]. On the other hand, culture-positive rabbits 
treated with amphotericin B became culture-negative, 
whereas BALs remained positive for galactomannan 
(GM) and PCR, suggesting that GM or PCR positivity 
are not necessarily the equivalent of fungal viability, but 

nevertheless allow pathogen identification even after 
antifungal therapy has been started [23].

Histological examination of infected tissue remains 
the ‘gold standard’ for diagnosis, although obtaining 
tissue may be impractical owing to the risks associated 
with the underlying disease. A Gram’s stain or Grocott’s 
methenamine silver stain may be carried out to identify 
any fungal elements, with direct microscopic detection 
of Aspergillus hypha in clinical specimens confirming a 
likely role in infection [24]. Cells from bronchial wash-
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Table 1. Comparison of various actual and potential diagnostic assays.

Assay Advantages Disadvantages

Platelia™ Aspergillus EIA 
(Bio-Rad, France)

Rapid Variable sensitivity

Aspergillus specific Low positive-predictive value

Microtiter-based ELISA  

β-d-glucan EIA Rapid Low sensitivity

 Panfungal Low positive-predictive value

Siderophore detection Simple Species specificity to be determined 

 Rapid  

 Detects actively growing fungi  

 Microtiter-based format  

 High throughput  

 Potentially noninvasive 
(compatible with urine matrix)

 

Lateral flow devices Simple Qualitative/semiquantitative

 Rapid Relatively insensitive

 Cheap Readout not easily automated

 Portable  

 Long shelf-life  

 Robust  

 Medium–high throughput  

 User-friendly  

PCR/qPCR Simple Highly variable results

 Sensitive Potential for detecting false positives

 Early detection Not easily used at POC

 Species specific No information on viability

 Quantitative (qPCR) No information on active growth

 High throughput (qPCR) Contamination potential (PCR)

 Automated readout (qPCR) Need to extract DNA

MALDI-TOF MS Rapid Culture dependent

 High throughput Requires a reference database

 Cheap running costs Cost of instrument

 Easy sample preparation  

 Reliable identification  

EIA: Enzyme immunoassay; MALDI-TOF MS: Matrix-assisted laser desorption ionization TOF mass spectrometry; POC: Point-of-care; 
qPCR: Quantitative PCR.
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ings can be concentrated by centrifugation and pro-
cessed with calcofluor white mounts for examination. 
However, Aspergillus rarely sporulates in vivo, mak-
ing this approach rather nonspecific [25]. In addition, 
microscopy offers a low sensitivity [26,27] and structures 
can only be seen if they are present in abundance, usu-
ally at a later stage of infection [28]. Furthermore, mor-
phology-based characteristics are unstable and cannot 
reliably distinguish between different fungal species 
[25] (Figure 2). Moreover, clinical Aspergilli sometimes 
manifest atypically with slow sporulation and aberrant 
conidiophore formation [21]. Consistent discrimina-
tion of these species requires DNA sequence analysis 

[29]; hence molecular techniques have been applied to 
improve the reliability of species identification [30].

Molecular phylogeny groups fungi according to 
DNA sequence variation in a number of genes rang-
ing from the universal ribosomal DNA regions ITS 
(Figure 3) and the large ribosomal subunit D1–D2 [31] 
to protein-encoding genes such as the β-tubulin and 
calmodulin gene regions [32]. This has resulted in the 
identification of new fungal species that are morpho-
logically similar to A. fumigatus, but are genetically 
distinct [33]. These can be easily misidentified by clini-
cal laboratories, which can have severe consequences 
as they include human pathogens such as A. lentulus, 
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Figure 1. Proximity ligation assay. The proximity ligation assay (PLA) workflow consists of four main steps. (1) Antibodies 
targeting adjacent epitopes on the same Aspergillus-specific antigen are biotinylated and attached to different streptavidin-
linked oligodeoxynucleotides, creating ‘proximity probes’. (2) The two probes are combined and incubated with samples, allowing 
antibodies to bind to their epitopes. The reaction mixture also contains a single-stranded oligonucleotide that is complementary 
to the ends of the two oligonucleotides. If antigen is present, the oligonucleotides are linked. (3) A ligation reaction seals the gap. 
(4) This generates a template that can be amplified by PCR. (5) The amplification plot shows a PLA carried out using JF5 antibody. 
Please see color figure at www.futuremedicine.com/doi/full/10.2217/bmm.13.129
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A.  viridinutans, N. pseudofischeri and N. udagawae 
[21] that have been reported to be resistant in vitro to 
antifungal agents such as itraconazole, miconazole, 
posaconazole, ravuconazole and/or voriconazole [34].

These shortcomings have resulted in a long-term 
effort to introduce more reliable, robust, reproducible 
and rapid methods for the diagnosis of IA. The most 
successful of these have been targeted at Aspergillus 
antigens or metabolites, with the targeting of DNA 
hampered by poor assay quality, a lack of standardiza-
tion and interlaboratory validation and the ever-present 
risk of contamination [11].

Antibody-targeted biomarkers
Galactomannan
GM is a polysaccharide made of a linear mannan back-
bone with side chains of galactofuran as major carbo-
hydrate constituents. It is present in the cell walls of 
yeasts and plants as well as a wide variety of fungi, 
including the genera Aspergillus, Penicillium, Clado-
sporium and Fusarium [35] and in Aspergillus is synthe-

sized in the lumen of the Golgi apparatus [36]. GM is 
anchored to the membrane via a glycosylphosphati-
dylinositol or is covalently linked to the cell wall and is 
readily released as a lipopeptide GM, either in a com-
plex with proteins or as a molecule of about 20 kDa 
[37]. In vivo the release of GM is believed to occur when 
nutrients become limited and growth is restricted [38], 
although in culture GM release peaks during periods of 
exponential growth [39]. GM release depends on fungal 
invasion of the endothelium [40], hence detection of cir-
culating GM requires angioinvasion. This is important 
since not all cases of IA result in angioinvasion: high-
resolution computed tomography (CT) in neutro
penic hematological and stem cell transplant recipient 
patients reveals angioinvasion as characteristic halos 
and these patients are almost always positive for serum 
GM [41]. On the other hand, while a halo sign has been 
reported in 61% of patients with invasive pulmonary 
aspergillosis [42], another report suggests sensitivity can 
be as low as 25% and GM positivity in serum is often 
not accompanied by a CT halo [3]. Angioinvasion is 
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20 µm

Figure 2. Microscopic views of different fungi reveal the similarities between different Aspergillus species. 
(A) Aspergillus niger, (B) A. candidus, (C) A. flavus, (D) A. fumigatus.  
Reprinted with permission from Melvyn Eydmann and Tim Linehan (Microbiology Department, Royal London 
Hospital, UK). 
Please see color figure at www.futuremedicine.com/doi/full/10.2217/bmm.13.129
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also less common in patients with chronic granuloma-
tosis, characterized by lung abscess development, and 
these patients are often GM-negative [43].

A double-sandwich ELISA, the Platelia™ Asper-
gillus enzyme immunoassay (Bio-Rad, France), has 
been developed that uses the EBA2 monoclonal anti-
body both as detector and acceptor for GM [44]. The 
US FDA approved this assay in 2003 as an adjunctive 
test for IA diagnosis when applied to serum; a positive 
serum GM result is also included in the microbiologi-
cal criteria of the revised EORTC/MSG classification 
of IA [6]. Test results are interpreted as a GM optical 
density (OD) index (GMI), which is the ratio of the 
sample OD divided by the mean OD of two threshold 
controls (Figure 4A). The FDA has cleared a GMI cut-
off of 0.5, as this allows sensitive detection with mini-
mal loss of specificity and recommends that positivity 
should be confirmed by repeating the test on the same 
specimen. The test can detect as little as 0.5 μg/ml of 
GM and a positive result can be obtained in 65% of 

patients around 5–8 days before clinical signs of IA 
develop, in 71% before findings on chest x-ray become 
apparent and in 100% of patients before cultures yield 
a positive result [45].

Nevertheless, there are some doubts about the clini-
cal utility of recording a serum-positive GM result in 
the nonculture-based diagnosis of IA. Although early 
reports indicate both high sensitivity and specificity, 
more recent studies have found a lower sensitivity, 
ranging from 40 to 50%, particularly in the setting 
of mould-active antifungal agents and with nonserial 
testing [46]. Another report concludes that while GM-
based diagnosis is associated with high specificity, it 
appears to be better for detecting non-A. fumiga-
tus Aspergillus species [47]. Other studies challenge 
the specificity of the GM ELISA: it detects a soluble 
antigen produced during infection with Geotrichum 
capitatum, with no evidence of aspergillosis [48], cross-
reacts with other opportunistic fungi in some other 
fungal infections such as histoplasmosis [49] and may 
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Figure 3. Phylogenetic tree based on fungal 18S ribosomal DNA sequences using the unweighted pair group method with arithmetic 
mean algorithm from the CLC Sequence Viewer 6.8.2 (CLC bio A/S, Denmark). Several Aspergillus fumigatus strains cluster together at 
different locations, all Candida cluster together and Penicillium chrysogenum is closely related to A. candidus. The branch annotations 
are the bootstrap values obtained from 1000 bootstrap tests. 
Please see color figure at www.futuremedicine.com/doi/full/10.2217/bmm.13.129
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react with antigens from Cryptococcus neoformans in 
patients with cryptococcosis [50]. Early problems with 
false-positive results from patients receiving β-lactam 
antibiotics [51] may have been caused by the presence of 
cross-reacting antigens from Penicillium during manu-
facturing [52], and are largely resolved [53]. Certainly 
the clinical problem can be minimized if batches are 
tested before use and/or if samples are collected prior 
to administration [54].

There have been several studies that set out to inves-
tigate the clinical validity of serum GM testing for 
the diagnosis of IA. The first systematic review of 27 
studies of serum GM testing for the diagnosis of IA 
in immunocompromised patients published between 
1996 and 2005 concluded that the assay has moderate 
accuracy, observing significant heterogeneity between 
the studies, dependent on patient population and type 
of reference standard used, with a lack of sensitivity 
in patients with solid organ transplantation [55]. This 
heterogeneity was also apparent in a second [56] and 
third meta-analysis [57], although in the first two only 
a minority of studies used the 0.5 GMI cut-off that 
is the current standard. There are several reasons for 
the observed variability in sensitivity of the serum GM 
assay. These include the effects of antifungal prophy-
laxis, where the sensitivity is 52% compared with 89% 
in patients not receiving therapy [58], the level and 
nature of immune suppression of the patient [59], but 
also technical parameters such as frequency of testing, 
whether IA is defined by one or two positive sera or 
what cut-off is used [25].

Another reason for the high degree of variability is 
the lack of reproducibility observed with repeat test-
ing of the same serum samples, especially when test-
ing samples with a GMI from 0.5–0.7 [60]. Lower 
reactivity on retesting has also been reported in 20% 
of samples stored for 4 years [61], another study found 
a lack of reproducibility when GM-positive samples 
were retested within 6 days [62], a third study reported 
a similar reduction in reactivity of samples on retest-
ing of positive samples within 3 days [63] and a fourth 
study confirmed the reduction in GM signals in serum 
samples, but not in BAL fluids [64]. These reports 
emphasize the importance of corroborating a positive 
result by retesting of the same sample and also raise 
doubts about the interpretation of data from frozen/
thawed samples, as well as samples tested in ‘real-time’ 
for patient management.

In addition to serum, GM testing has also been 
applied to other body fluids [65]. BAL fluid has been 
investigated thoroughly, since it was reported that 
detection of GM in BAL fluid increased the diagnos-
tic sensitivity from 47% in serum to 85% [66], a com-
parison of 33 cases found that all 33 BAL specimens, 

but only nine serum specimens, were positive [67] and 
that BAL fluid from an established guinea pig model 
of IA gave a positive result more than 2 days sooner 
with BAL fluid than with serum [68]. This approach 
has been investigated for early diagnosis of IA follow
ing hematopoietic stem cell transplants [69], after solid 
organ transplantation [70], in patients with hemato-
logical malignancies and pulmonary infiltrates [71], 
chronic pulmonary disease [72–74] as well as in inten-
sive care units [75] and in nonimmunocompromised 
patients [76]. Nevertheless, its impact on clinical out-
come is uncertain: our analysis of the assay sensitivity 
reported in these studies shows variation from 57 to 
88%, with the specificity ranging from 87 to 95.8%, 
and positive-predictive values in the range of 41.7 to 
92.5%, when using a GMI cut-off of 0.5. Furthermore, 
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Figure 4. Antibody-based detection of Aspergillus 
antigens. (A) Colorimetric detection of GM. Key: clear: 
GM absent; yellow: GM present. (B) Lateral flow device 
showing a positive result for Aspergillus detection, 
indicated by the two bands, one of which serves as a 
positive assay control and the other being specific for 
the presence of antigen recognized by the monoclonal 
antibody JF5. 
Please see color figure at www.futuremedicine.com/
doi/full/10.2217/bmm.13.129
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the background level of GM is greater in BAL fluid 
than in serum [25], which has led to considerable dis-
cussion, but no agreement, about the most appropri-
ate diagnostic cut-off. There is one report suggesting 
a cut-off of 0.2 [77], but given the high levels of GM 
this is likely to lead to a large number of false positives. 
Individual studies suggest cut-offs of 0.5 [78,79], 0.8 [80], 
0.87 [81], 1.0 [82,83], 1.1 [84], 1.5 [85] or 2.0 [86] to avoid 
over-diagnosis. A recent systematic review and meta-
analysis of detecting GM in BAL for diagnosing IA 
suggests an optimal cut-off of 1.0 [87].

Not surprisingly, the sensitivity of GM detection in 
BAL has been questioned [88] and problems with false-
positive results have also been reported [75], most obvi-
ously with the use of fluids that contain GM, such as 
plasmalyte [89] but also in patients receiving β-lactam 
antibiotics at the time of bronchoscopy [77,90], although 
the latter issue appears to have been resolved. In addi-
tion, there is an urgent need to establish a standardized 
method of BAL collection, since the means and vol-
ume of collection, dwell time of instillate before aspi-
ration, number of washes and sample handling vary 
widely and affect assay performance [88].

Urine has several advantages over serum or BAL 
fluids: it permits diagnosis without invasive tissue 
sampling, so reducing the likelihood of complications 
and resulting morbidity; is more convenient to use as 
it requires no sophisticated laboratory processing; and 
it is ideal for use with lateral flow diagnostic tests for 
use at point-of-care. The feasibility of this approach 
has been demonstrated in a recent report that used a 
novel IgM monoclonal antibody (mAb476) that rec-
ognizes GM-like antigens from Aspergillus and other 
molds, together with a lateral flow immunochromato-
graphic assay to detect urinary excreted antigen in 
IA patient urine samples [92]. However, it remains to 
be seen whether the time course of GM expression is 
compatible with early diagnosis and if standardized 
pretreatment is critical.

1,3 β-d-glucan
1,3 β-d-glucans (BDGs) form a major heterogeneous 
polysaccharide component of the cell wall of most 
pathogenic fungi, with some exceptions such as Cryp-
tococcus neoformans and Zygomycetes [93]. BDG was iso-
lated and characterized by the same group that identi-
fied GM as the circulating antigen in patients with IA, 
but was found to be nonantigenic [94]. Instead, assays 
make use of the ability of BDG to activate a cascading 
series of serine proteases in the Limulus amoebocyte 
lysate coagulation cascade. The presence of BDG is 
detected either by a turbidimetric assay or via cleav-
age of a synthetic chromogenic substrate. BDG has 
been included in the revised EORTC/MSG diagnostic 

definitions for invasive fungal diseases on the basis of 
promising early results from a multicenter validation 
study [95], although it is unable to distinguish among 
fungal etiological agents. Its utility as an adjunct in 
the diagnosis and management of IA is suggested by 
recent data that showed a sensitivity and specificity of 
63 and 93%, respectively, in patients with acute leuke-
mia using two consecutive samples with a cut-off value 
of 7 pg/ml [96]. The test gave similar results for IA and 
candidiasis, although the time interval between onset 
of fever and BDG result was shorter for IA. Positive 
BDG test results were obtained before the results of 
any other conventional diagnostic method, including 
cultures, histopathology or radiological criteria, which 
may make it useful for early evaluation and preemptive 
initiation of appropriate antifungal treatment. A recent 
meta-analysis of 16 studies concluded that serum BDG 
measurement has a good diagnostic accuracy for IFD 
diagnosed in accordance with the EORTC/MSG cri-
teria, with a pooled sensitivity of 76.8% and a specific-
ity of 85.3% [97]. However, as with the GM studies, 
there was marked statistical heterogeneity among the 
studies [25]. With regards to the clinical utility of the 
BDG assay, there were significant technical differences 
between the studies, extending to the method of mea-
surement, the type of β-glucan used as standard, the 
pretreatment method and the cut-off levels [97]. Simi-
lar results were reported by another meta-analysis that 
included 17 studies where IA was specifically targeted as 
a subgroup for analysis; here sensitivity and specificity 
were 77 and 83%, respectively, and heterogeneity was 
equally significant [98]. In addition, the timing and fre-
quency of BDG testing for patients at risk has not been 
standardized, and neither have the criteria for defining 
a positive test result. A study focusing on routine use of 
BDG for panfungal screening of IFD in patients with 
hematological malignancy revealed limited usefulness 
of this test in such setting, with low sensitivity com-
bined with an extremely low positive-predictive value 
(11.8%) being the major limitations [99]. There are also 
factors other than a fungal infection that could gen-
erate positive BDG results, for example, the cellulose 
membranes used for hemodialysis contains BDG and 
BDG can be introduced into blood by medical inter-
vention [93]. Hence this assay shows promise, possibly 
in combination with GM testing, but clinicians need 
to be aware of its operating characteristics, sensitivity 
and potential to generate false positive results in order 
to apply them in the appropriate setting [100].

Other biomarkers
Aspergillus spp. produces a range of extracellular 
enzymes as well as primary and secondary metabolites 
that promise additional specificity unimpeded by the 
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presence of cross-reactive epitopes in patient specimens 
and that could serve as better surrogate markers of infec-
tion. For example, immunodetection of human IgG 
directed against the Aspergillus gliotoxin oxidoreductase 
[101] may have potential as a diagnostic biomarker of IA 
in nonimmunocompromised individuals [102].

A new ELISA has been described that is based on 
two monoclonal antibodies that recognize epitopes 
present on the cell walls of the hypha and conidia of 
Aspergillus. These circulate or are excreted as immuno-
dominant antigens during the acute phase of IA in rab-
bit models of the disease and its sensitivity is compa-
rable to that of the Platelia ELISA kit, with a specificity 
of 100% when tested against both serum and urine 
samples [103]. There was no cross-reactivity with puri-
fied GM antigen from Aspergillus or with common 
opportunistic fungi such as P.  marneffei and Can-
dida albicans, C. glabrata, C.  tropicalis, C. krusei and 
C. parapsilosis, although no other fungal species were 
tested.

A second study describes the generation of the Asper-
gillus-specific monoclonal antibody JF5, which binds 
to an extracellular glycoprotein antigen that is secreted 
during active growth of the fungus only [14]. JF5 was 
used to develop an immunochromatographic LFD for 
the detection of Aspergillus antigen in human serum 
and BAL fluids (Figure 4B) and its utility for diagno-
sis of IA was demonstrated using an animal model of 
infection, where it had superior sensitivity, specificity 
and speed compared with GM and BDG assays [104]. 
The LFD assay is reproducible between different lab-
oratories and studies [105] and its speed and accuracy 
provide a novel adjunct point-of-care test for diagnosis 
of IA in hematological malignancy patients [106].

A number of other targets for the detection of 
A. fumigatus by ELISA have been described. These 
include the surface protein Cf2, which was isolated 
from a human patient with proven IA and is also 
present in growing hypha of A. fumigatus but not in 
spores [107] as is Asp f6/MnSOD [108], gliotoxin, which 
is produced by most A. fumigatus strains and is pres-
ent in plasma and serum [109] and its inactive deriva-
tive bis(methylthio)gliotoxin, which is also recover-
able from blood [110], 15 immunogenic proteins of the 
immunosecretome [111] and secreted proteases whose 
activity in serum specimens might serve as a new 
diagnostic approach if used with reporter peptides [112].

Iron, an indispensable cofactor for many cellular pro-
cesses including electron transport, amino acid metabo-
lism and biosynthesis of DNA, is a key nutrient for most 
organisms, including Aspergillus [113]. However, since 
iron excess or incorrect storage can catalyze the forma-
tion of reactive oxygen species, Aspergillus has evolved 
complex mechanisms to balance its acquisition, storage 

and consumption [113]. Under iron-limited conditions 
one strategy involves the biosynthesis of siderophores, 
which are low molecular mass iron chelators that acquire 
iron from the environment [114] (Figure 5). Fusarinine 
C (FsC) and triacetylfusarinine C (TAFC), the major 
siderophores produced by A. fumigatus to mobilize 
extracellular iron are produced within hours of spore 
germination and, along with the intracellular sidero
phore ferricrocin, are essential for its virulence [115]. In a 
rat infection model, radiolabelled TAFC shows highly 
selective accumulation in infected lung tissue and good 
correlation with severity of disease, strongly suggesting 
that it is a promising agent for A.  fumigatus infection 
imaging [10]. Furthermore, since the fungus secretes 
large amounts of FsC and TAFC early in its life cycle, 
diagnostic tests have been developed to detect these ana-
lytes in serum and urine as biomarkers of infection [116]. 
Indeed, FsC has been specifically detected in serum and 
urine obtained from A.  fumigatus-infected immuno-
compromised guinea pigs, but not in uninfected ani-
mals [116]. However, investigations on clinical samples 
remain to be carried out.

Breath tests
Collection of exhaled breath condensate (EBC) is a 
convenient and noninvasive method for obtaining 
aerosolised sample molecules from the lungs (Figure 6). 
It can be used for repeated sampling, even in mechani-
cally ventilated patients and can be collected from 
young babies to the elderly with no need for active 
cooperation from the patient. EBC contains a large 
number of volatile (VOC) and nonvolatile organic 
compounds such as isoprostanes, leukotrienes, nitro-
gen oxides, peptides and cytokines [117], whose con-
centrations are influenced by inflammation, lung dis-
eases or the presence of pathogens and modulated by 
therapeutic interventions [118].

VOCs, of which there are more than 500 in breath, 
are promising targets for diagnostic testing, especially if 
the biochemical pathways by which they are produced 
can be linked to specific pathogens [119]. 2-pentylfuran 
is a VOC that falls into this category: it is produced 
by A. fumigatus, but not by mammalian metabolism. 
It could not be detected in breath samples from nor-
mal controls analyzed by gas chromatography/mass 
spectrometry but was present in the breath of at-risk 
patients infected with A.  fumigatus [120]. However, a 
recent review concludes that careful attention needs to 
be paid to the sensitivity and specificity of VOC test-
ing as contamination from the environment has a con-
founding effect and that, overall, EBC is disappointing 
as a diagnostic sample [121].

Many investigators have reported the detection 
of genomic [122], mitochondrial [123] and viral [124] 
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DNA in exhaled breath and have subjected EBC to 
detailed molecular and microscopic analysis of bacte-
ria and viruses [125]. However, a comparison of assays 
based on the detection of microbial nucleic acids from 
EBC and from spontaneous sputum in patients with 
acute exacerbations of chronic obstructive pulmonary 
disease found that the results did not correlate well 
[126]. Another study was unable to detect the IS6110 
repetitive DNA element of Mycobacterium tuberculo-
sis in EBC of patients with newly diagnosed active 
pulmonary TB [127]. Other studies looking at the 
potential utility of detecting RNA [128] or DNA [129] 
from viral pathogens concluded that EBC is unsuit-
able for clinically relevant detection of viral nucleic 
acid in the respiratory tract of lung transplant recipi-
ents, although changes to sampling techniques [130] 
or appropriate fractionation [131] of EBCs may lead to 
improved results. Hence a more optimistic interpre-
tation of these results is that the translation of the 
obvious potential of EBC into a practical diagnostic 
utility will require understanding of the technical 
problems and subsequent careful optimization of the 
many steps involved from sample collection to target 
analysis.

There are no reports in the peer-reviewed literature 
of EBC screening with GM. A preliminary report sug-
gests it may be more sensitive than serum testing and 
that EBC-positivity may predate GM detection in 
BAL fluid or abnormal high-resolution CT signs [132]. 
Another early report evaluated the role of GM test-
ing in EBC for early diagnosis of IA in severe chronic 
obstructive pulmonary disease and confirmed that 
positivity in EBC may precede that of serum but found 
the sensitivity to be lower compared with serum [133]. 

Both studies were carried out on low patient numbers 
and have not yet been followed up with peer-reviewed 
publications.

Nucleic acid detection methods
Nucleic acid-based tests (NATs) comprise a range of 
amplification technologies and sophisticated detec-
tion methods that are readily adaptable for use in the 
fungal diagnostic laboratory [134] The most commonly 
used NAT is real-time qPCR, although there are a few 
reports describing the use of nucleic acid sequence-
based amplification, an isothermal technique for the 
amplification of RNA that is especially powerful when 
combined with molecular beacon chemistry [135–138]. 
However, the theoretical advantage of higher sensitiv-
ity and reduced likelihood of carry-over contamina-
tion must be balanced by the complexity of this tech-
nology: it requires a combination of three enzymes, 
the avian myeloblastosis virus, reverse transcriptase/
DNA polymerase, T7 RNA polymerase and a sepa-
rate RNase H [134]. Similarly, while another NAT, 
microarray technology, has the potential to concur-
rently detect many target nucleic acids from multiple 
organisms for simultaneous species identification [139], 
detection of virulence factors and antifungal resistance 
determinants [140] as well as gene expression profiling 
in the context of IFI [141], its practical adoption is hin-
dered by its low dynamic range and variable hybridiza-
tion efficiencies, resulting in unreliable quantification 
and false-positive/negative results [142]. Unfortunately, 
these problems are inherent to microarray technology; 
practical applications of microarray technology as clin-
ical diagnostic assays require the introduction of new 
detection chemistries and analysis approaches [134].
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Figure 5. Colorimetric detection of siderophore production by Aspergillus fumigatus under iron-free and replete 
conditions, respectively. Maximum siderophore production (800 μg/ml) was evident when Aspergillus fumigatus 
was cultured in the absence of iron. Key: blue: siderophores absent; orange/pink: siderophores present.
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Figure 5. Colorimetric detection of siderophore production by Aspergillus fumigatus under iron-free and replete 
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was cultured in the absence of iron. Key: blue: siderophores absent; orange/pink: siderophores present. 
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PCR & IA
Owing to the potential of noninvasive serial sampling 
for monitoring, blood has long been a focus for the 
detection of Aspergillus DNA, making PCR a potential 
diagnostic method of choice. The presence of viable 
fungi is rather rare, as evidenced by poor blood cul-
ture results, although this may have been due to col-
lection and subculture procedures [143]. The European 
Aspergillus PCR Initiative (EAPCRI) have published 
protocols for DNA extraction from serum [144] and 
whole blood [145], although these protocols were devel-
oped and validated using blood spiked with Aspergillus 
conidia. These methods require extensive and harsh 
extraction methods that can damage DNA and RNA 
to the extent that amplification becomes unreliable [11]. 
Interestingly, such harsh extraction steps may not be 
required since Aspergillus present in blood is highly 
unlikely to be conidial as Aspergillus rarely sporulates 
in vivo [25].

Marker detection in blood, serum and BAL fluid has 
been investigated in a guinea pig model of IA [146]. The 
authors found BAL fluid to be the most suitable sample 
for early diagnosis of IA by day 3 (postconidia inhala-
tion) using PCR, GM and BDG assays. Marker levels 
remained elevated throughout the study. Despite high 
fungal burden within tissue and BAL samples, it was 
found that serum and whole blood can remain negative 
with all three assays, even at an advanced stage of dis-
ease. This study, however, did not include any antifungal 
treatment, which can result in a significant reduction of 
serum marker levels, whereas marker levels may remain 
elevated in BAL fluid [105]. The usefulness of BAL fluid 
is underlined by the finding that a combination of PCR, 
PCR-ELISA and GM testing in the BAL fluid of patients 
with hematological malignancies was shown to enhance 
routine laboratory diagnosis of IA [147].

Both conventional, gel-based endpoint PCR and 
real-time qPCR methods have been used for the detec-
tion of Aspergillus. However, qPCR has several key 
advantages for clinical testing [148]:

•	 Simplicity: qPCR follows a basic, three-step work-
flow: nucleic acid is made accessible from a biologi-
cal sample; a specific nucleic acid is amplified using 
pathogen-specific DNA oligonucleotide primers; 
and amplification products are detected either in 
real-time or at the end of the assay;

•	 Sensitivity and specificity: qPCR has a theoretical 
detection limit of fewer than five copies of nucleic 
acid target, coupled to a capability for specific dif-
ferentiation of closely related species or subtypes 
as well as characterization of sequence variation. 
Fungal nucleic acid provides the ultimate biomarker 

for IA, as a carefully chosen target sequence will 
result in the exclusive identification of the pathogen 
involved;

•	 Speed: a qPCR assay can be completed and results 
analyzed in minutes;

•	 Minimal contamination risk: since there is no 
post-PCR handling of amplification products, 
the risk of contamination is significantly reduced 
compared with the need to pipette potentially high 
copy numbers of Aspergillus DNA and run them 
on gels.

In addition, there are other advantages that include 
convenience, robustness, potential for high throughput 
and quantification, familiarity with its advantages and 
disadvantages and relatively low cost [149] (Figure 7).

As with legacy PCR, there are several drawbacks to 
qPCR:

•	 A qPCR assay can only be designed if there is prior 
target sequence information;

•	 The need to use purified nucleic acids limits the 
practicality of qPCR in a clinical setting, since it 
increases the time needed for sample preparation 
and increases the likelihood of contamination [25];
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Figure 6. Collection of exhaled breath condensate 
using a condensation device designed to exclude gross 
salivary contamination. Patients sitting comfortably 
breathe at tidal volumes into a mouthpiece attached to 
a cold condenser for approximately 10 min. 
Please see color figure at www.futuremedicine.com/
doi/full/10.2217/bmm.13.129
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•	 qPCR is sensitive to environmental inhibitors that 
are concentrated along with pathogens during sam-
ple processing;

•	 The small volumes assayed [150] or some of the 
reagents used [151] may lead to false-negative results 
because of low fungal loads;

•	 Perhaps most crucially, assays determine only 
pathogen number and provide no information on 
whether a pathogen can establish an infection. 
Hence a positive result may not necessarily pose 
a public health threat. However, a combination of 
selective DNA extraction and intelligent targeting 
of the qPCR assay may allow qPCR assays to dis-
tinguish between germinated and nongerminated 
conidia [152].

As a consequence, the clinical utility of this approach 
remains limited despite the development of numerous 
qPCR-based assays claiming early as well as reliable 
diagnosis of IA [153].

Crucially, there are no externally validated meth-
ods for PCR-based diagnosis, and there is a lack 
of standardization of protocols, with qPCR assays 
using disparate chemistries, different targets, there 
is sample-specific instrument-dependent variability 
and some assays use contamination-prone nested 
PCR methods aimed at enhancing analytical sensi-
tivity [154]. This inconsistency is further highlighted 
by a recent meta-analysis of 16 PCR studies applied 
to whole blood, serum and plasma, which included 
three extraction and four disruption methods, three 
different starting volumes, three different specimen 
types, three different target genes and four different 
PCR methods [155].

The same meta-analysis showed an overall sensitiv-
ity of 75% and specificity of 87% when two positive 
samples were used; a single sample gave an increased 
sensitivity of 88% at the cost of a reduced specificity 
of 75%. This is rather similar to the results of a second 
meta-analysis that analyzed studies published between 
1993 and 2012 and recorded an overall sensitivity of 
77.2% and a specificity of 93.5% [156]. This poor per-
formance and variability is a general characteristic of 
other PCR assays aimed at diagnosing IA, with one 
study reporting a complete lack of sensitivity [157], 
another 33–100%, depending on DNA extraction 
procedure [158] and others anything around 50–58% 
[159], 64% (BAL) or 73% (serum) [147], 75% [160], 80% 
[161,162] or 91% [163].

There is also heterogeneity in the results of stud-
ies that compare the diagnostic performance of PCR 
to that of GM in BAL: one suggests that they are 
similar, with PCR being slightly more sensitive [156], 

another that GM is more sensitive and more specific 
[79]. Nevertheless, both conclude that positivity for 
both GM and Aspergillus PCR in BAL is highly sug-
gestive of a pulmonary aspergillosis and that perform-
ing both tests results in optimal sensitivity with no 
loss of specificity [79,156].

This lack of concordance between PCR-based data 
is not limited to assays targeting Aspergillus: a survey of 
the general qPCR-based literature identified significant 
shortcomings with both the transparency of reporting 
and the quality of qPCR assays [164], a problem con-
firmed by a second, large-scale study [194] [Bustin et al., 

Submitted Manuscript]. This inconsistency and lack of 
reproducibility underlies the decision of the EORTC 
and MSG of National Institute of Allergy and Infec-
tious Diseases not to endorse the routine use of PCR 
in the diagnosis of IA. There have been two develop-
ments that may improve the reliability of PCR-based 
assays for the diagnosis of IA. The first one could have 
a direct effect and involves the EAPCRI, which was 
formed with the aim of providing optimal standard-
ized protocols for diagnostic Aspergillus PCR from 
serum. In a series of publications, its members have:

•	 Asserted that the efficiency of Aspergillus PCR is 
limited by the DNA extraction procedure and not 
by PCR amplification [165];

•	 Proposed guidelines for optimal DNA extraction 
[145];

•	 Concluded that the testing of serum by Aspergillus 
PCR can be performed using commercial nucleic 
acid extraction methods, providing standardiza-
tion and quality control [144].

Although this initiative is laudable, there is a prob-
lem with their interpretation of their own data. We have 
analyzed the data shown in that publication’s Table 
2 [165] and discovered that the amplification results 
obtained using the range of assays tested are highly 
variable. Excluding one assay that gives no result at all, 
the detection threshold in different centers ranges from 
0.27 to 270 copies of target/ml, a considerable 1,000-
fold difference that can easily account for the differ-
ence between a positive and a false-negative result. Our 
analysis demonstrates that there is a maximum differ-
ence of 100-fold when the same PCR strategy is carried 
out in different centers, readily explaining the variabil-
ity commented on by the authors of the meta-analyses 
[149]. Consequently, far from leading to the conclusion 
made by the EAPCRI, the appropriate conclusion is 
that the PCR assays are highly variable, with differ-
ent PCR efficiencies resulting in significantly different 
sensitivities.
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This is where the second development comes in: it 
is aimed at improving the standard of qPCR assays 
in general, but with obvious implications for assays 
aimed at diagnosing IA and concerns the publication 
of guidelines recording the ‘minimum information 
for the publication of real-time qPCR experiments’ 
(MIQE) [166]. These provide a blueprint for good 
assay design and aim to restructure today’s free-for-all 
qPCR methods into a more consistent format that will 
encourage detailed auditing of experimental detail, 
data analysis and reporting principles [167]. MIQE has 
become acknowledged as the defining event in the 
maturing of qPCR technology and its implementation 
is essential if qPCR is to remain the benchmark tech-
nology for molecular diagnosis [11]. The first qPCR 
assay targeting Aspergillus species designed, optimized 
and validated in strict compliance with the MIQE 
guidelines has been published recently [149]. The 
authors of that publication also analyzed the quality 
of some of the previously published qPCR assays and 
suggest that many Aspergillus qPCR assays use primers 

designed for conventional PCR assays, which can lead 
to suboptimal qPCR as in one study that quotes a PCR 
efficiency of 77%. In addition, a significant number 
of studies fail to use or report the use of negative 
extraction controls to monitor contamination during 
the extraction stage and even though it is well known 
that PCR inhibitors can reduce product yield and even 
result in complete failure of the PCR, only just over 
half of the studies evaluated using the MIQE guide-
lines reported the use of some form of an inhibition or 
amplification control [153].

Mass spectrometry
MALDI-TOF MS separates molecules based on dif-
ferences in mass:charge ratio and combines the paral-
lel testing capability offered by microarrays with the 
accuracy of nucleic acid sequencing [168]. It represents 
a fresh approach that has the potential to replace con-
ventional fungal identification techniques for a major-
ity of routine isolates encountered in clinical micro-
biology laboratories [169]. Biomolecules such as nucleic 
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acids, metabolites, proteins or whole microorganisms 
are embedded in a crystalline matrix of α-cyano-4-
hydroxy-cinnamic acid, vaporized and ionized in a 
vacuum by a short laser pulse. The molecules are then 
accelerated in an electric field and, depending on their 
mass, travel faster or slower and so hit a detector at 
different times, hence the term TOF. This results in a 
peak pattern, the mass spectrum, which is compared 
with a spectrum database, allowing its identification in 
a matter of minutes [170].

Proteomics-targeted MALDI-TOF MS has already 
become an accurate identification tool in bacteriol-
ogy and is now being applied to the identification 
of filamentous fungi at speeds relevant for fungal 
diagnostic procedures [171]. Following the first report 
describing the characterization of spores from four 
Aspergillus species by MALDI-TOF MS [172], mass 
spectral fingerprints can now achieve unambiguous 
discrimination of members of the genus Aspergillus at 
the species level, with a 95% accuracy at the strain 
level [173]. Another report used a database of the ref-
erence spectra from 28 clinically relevant Aspergillus 
species to identify correctly 138/140 isolates, with no 
misidentification [174]. This is similar to other stud-
ies that were able to identify 91/94 [175] and 160/162 
[176] Aspergillus isolates correctly at the species level. 
Another study reported the detailed proteomic 
phenotyping of 230 filamentous fungi isolated from 
immunocompromised patients. These comprised ten 
genera (Aspergillus, Emericella, Fusarium, Geosmithia, 
Neosartorya, Penicillium, Pseudallescheria, Scedospo-
rium, Talaromyces, Fomitopsis) and were correlated 
to 22 laboratory-adapted reference MALDI-TOF 
MS proteomic fingerprints. This not only goes some 
way towards a redefinition of phenotypes according 
to proteomic traits of fungal pathogens, allowing 
fungal identification in cases where more traditional 
classifications are inadequate [177] but may also lead to 
accurate prediction of drug resistance.

Most problems with identification are due to absence, 
mistakes or incomplete reference spectra as well as dif-
ferences in sample handling procedures [169]. Hence, 
reliable identification of organisms by this technique is 
only possible if the strains used to construct the refer-
ence spectral database have been carefully selected and 
identified by a reliable method such as the sequencing of 
the ITS region [178]. This points to another problem: the 
ongoing genome-wide sequencing of fungi is leading to 
changes in fungal classification that can cause confusion 
and disagreement between laboratories [179], although of 
course in the longer term the identification of cryptic 
species within the Aspergillus species complex could help 
with more accurate prognoses, antifungal susceptibility 
profiles and so drive appropriate therapies tailored to the 

specific pathogen [180]. The identification and classifica-
tion of fungi also requires dedicated software to enable 
comparisons with the reference spectra [180]. Careful cal-
ibration of the machine and selection of adequate inter-
nal standards are also required, in particular when intra-
species characterization is needed. Geographic variation 
in the genotypic and phenotypic expression may require 
region-specific calibration and preparation of locally 
adapted databases [181]. Finally, care must be taken 
always to use the culture medium that has been used 
to construct the reference spectra [182]. Unfortunately, 
at the moment, very few reference spectra are included 
in the database of commercially available MALDI-TOF 
MS systems and individual research groups use their 
own. Furthermore, they also use their own, not always 
completely documented, sample preparation techniques 
and this lack of standardized extraction protocols is 
the cause of much of the variability in the reported 
reproducibility of this technology [183].

Identification of fungal pathogens from subcultures 
is not ideal, as this takes time, even if the MS itself 
is very rapid. Furthermore, the technique is cultiva-
tion-dependent as growth must be obtained in order 
to be able to perform the analyses. Direct analysis of 
clinical samples would increase the usefulness of MS. 
Although one report describing its use for detection 
of fungemia in blood culture found it to be unreliable 
[184], this is probably associated with experimental pro-
cedures and a second report describes a detailed opti-
mization of protocols, which allowed identification of 
Candida species [12], suggesting that further technical 
developments will help solve that problem.

The flexibility that allows MS to analyze all kinds 
of molecules under optimal conditions makes it likely 
that it can soon be used for the detection of Aspergil-
lus-specific metabolites and nucleic acids [185]. There is 
an interesting perspective on the potential detection 
of nonribosomal cyclic peptides and depsipeptides by 
MS as highly specific fungal markers [186] and a recent 
report describes the derivatization of gliotoxin [187], 
which is produced by nonribosomal peptide synthesis, 
to make it detectable by MALDI-TOF MS. The poten-
tial of MALDI-TOF using metabolomic approaches is 
demonstrated by the successful profiling of low-molec-
ular mass volatile compounds in the headspace (the air 
or empty space left above the contents in a sealed con-
tainer) of C. albicans urine suspensions by another MS 
method, proton-transfer reaction MS [188]. MALDI-
TOF instruments can record in excess of 10 spectra per 
second; since a mass spectrum provides many detection 
channels, a MALDI-TOF analysis is suitable for high-
throughput, multichannel detection and quantitative 
analysis of DNA [189] and RNA [190]. Consequently, 
this method has become a powerful platform for the 
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study of nucleic acid sequence [191] and expression level 
changes [168] and holds tremendous potential, as yet 
untapped, for specific detection of fungal pathogens.

Conclusion
There are several nonculture-based biomarkers cur-
rently available for diagnosis of IA, with the most widely 
used GM and BDG having variable sensitivity and 
high false-positivity rates. An alternative, LFD-based 
approach immunodetection of an antigen expressed by 
actively growing Aspergilli holds considerable promise 
with BAL fluids, although its performance in serum is 
uncertain. Siderophore detection is also emerging as a 
potential strategy for diagnosis of IA. Hence, accurate 
diagnosis continues to rely on complementary diag-
nostic approaches, as test results must be interpreted 
in conjunction with a range of clinical indicators of 
infection [1,9]. Which combination will prove to be 
the most clinically useful remains a moot point, but 
one attractive combination is GM testing and PCR 
analysis [192,193], or a triple test involving GM, the LFD 
and PCR. For now, clinical decision-making is usu-
ally made on intuition and suspicion, rather than on 
hard evidence. While there are potential alternatives, 
none have yet been validated in clinical trials. PCR-
based assays, useful in many other diagnostic settings, 

require a significant quality overhaul before they can 
be incorporated into EORTC/MSG diagnostic criteria 
and generate clinically relevant results. However, the 
steady addition of Aspergillus genomic sequences to the 
sequence database should help identify more discrimi-
natory diagnostic markers for Aspergillus-associated 
infections, providing a strong incentive to continue 
optimizing and validating PCR-based assays. One way 
of overcoming many of the problems associated with 
detection of Aspergillus antigens and nucleic acids may 
be to combine the two approaches by using a PLA or 
PEA technology approach. MALDI-TOF MS is prov-
ing to be a fast, accurate and reliable tool for the iden-
tification of pathogenic fungi, although of course the 
general problem of obtaining positive cultures from 
clinical samples remains. The use of MS methods is 
still challenged by the high cost of instruments, but 
it is conceivable that once reference mass spectra have 
been expanded so that all clinically relevant species are 
included in mass spectrum databases, other culture-
dependent biochemical testing and differentiation 
assays will become obsolete.

Future perspective
The incidence of invasive fungal disease will continue 
to rise with the growing numbers of patients with an 
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Figure 8. Matrix-assisted laser desorption ionization mass patterns demonstrating that three different genera, three different 
species within one genus, and two strains within one species can be distinguished. 
Reproduced with permission from Bruker Daltonics GmbH (Germany). 
Please see color figure at www.futuremedicine.com/doi/full/10.2217/bmm.13.129
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impaired immune state associated with the manage-
ment of malignancy, organ transplantation, autoim-
mune and inflammatory conditions. This and the 
significant morbidity and mortality associated with 
this disease is resulting in an improved awareness of 
this problem and will accelerate the pursuit of robust, 
rapid, simple and cheap diagnostic procedures that 
allow the best practice in patient management. This 
is going to affect the availability of new biomarkers 
as well as new or improved methods for their earlier 
detection not just in blood or serum, but in BALs, 
urine and possibly exhaled breath. GM is likely to be 
used progressively with BALs, rather than with serum 
as its sensitivity is higher. The future role of the BDG 
assay is uncertain, although its high negative-predictive 
value may results in its use in carefully designed care 
pathways in specialist centers. There will be progress 
in the ability to diagnose with more accuracy lesions 
detected by CT scans and lateral flow devices and 
siderophore detection offer huge promise. The practi-
cal value of PCR remains to be determined, with the 
potential for detection of contamination a major issue; 
variants such as the PEA/PLA will potentially turn 
out to be more useful. Together, these innovations will 
gradually replace the more traditional diagnostic pro-

cedures, although histopathology and culture-based 
methods will remain important methods for investi-
gating the new species of pathogenic Aspergillus that 
continue to be discovered.
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