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Abstract

Protein±protein interactions are involved in many

metabolic pathways. This review will focus on the

role of such associations in CO2 assimilation

(Benson±Calvin cycle) and especially on the involve-

ment of a GAPDH/CP12/PRK complex which has

been identi®ed in many photosynthetic organisms

and may have an important role in the regulation of

CO2 assimilation. The emergence of new kinetic and

regulatory properties as a consequence of protein±

protein interactions will be addressed as well as

some of the questions raised by the existence of

these supramolecular complexes such as compos-

ition, function, and assembly pathways. The presence

and role of small intrinsically unstructured proteins

like the 8.5 kDa protein CP12, involved in the regula-

tion and/or assembly of these complexes will be

discussed.

Key words: Benson±Calvin cycle, CP12, glyceraldehyde-3-
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phosphoribulokinase, protein±protein interactions.

Introduction

It is now clear that, in vivo, enzymes bind to other proteins
in a highly speci®c manner to form more complex

structures and interact with many components of the cell,
such as the membrane. These organized structures have
been isolated from prokaryotic organisms and from many
organelles of eukaryotic cells, and are quite ubiquitous.
The evidence supporting the existence of multienzyme
complexes in sequential metabolic pathways is more
compelling for some pathways (e.g. glycolysis) than for
others (Srere, 1987). The term `metabolon' has been
introduced to describe supramolecular complexes of
sequential metabolic enzymes and structural components
(Srere, 1985). Recent experimental data clearly support the
existence of metabolons especially for the Krebs tri-
carboxylic acid cycle (Velot and Srere, 2000). In the cell,
proteins are packed together (Goodsell, 1991) and the mean
distance between them is lower than the mean diameter of a
protein (Srere, 1982). Thus, speci®c interactions between
them, requiring both spatial and electrostatic complemen-
tarities, are very likely to occur in vivo. Recently, global
studies on protein±protein interactions have been per-
formed on the yeast Saccharomyces cerevisiae by using
different methods, such as the TAP-tag (Tandem Af®nity
Puri®cation), protein arrays, two-hybrid, or surface plas-
mon resonance (Biacore) coupled to the identi®cation of
proteins by mass spectrometry. The TAP-tag method used
by Gavin et al. (2002) has identi®ed complexes of which
58% had never been observed before and 33% involved
proteins of unknown function (Gavin et al., 2002; Ho et al.,
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2002; Uetz et al., 2000). These studies also indicate that the
composition of these complexes in vivo may vary,
depending on physiological conditions. Thus, proteins are
not isolated but associate into dynamic complexes that may
themselves interact to create a network of complexes.
Predictions on the role of these higher order structures
show that they participate in many cellular functions
(Gavin et al., 2002; Kumar and Snyder, 2002). Only
recently, has the concept that metabolic pathways consist
of multienzymes, been applied to plants.

The frequency and the dynamic behaviour of macro-
molecular complexes trigger new questions as to their
composition, the cellular functions they are involved in
and the advantage of such complexes compared with
individual proteins. In recent years, the use of very
sensitive analytical techniques has also revealed the
presence of small proteins in macromolecular complexes.
These small proteins are found in a wide variety of
macromolecular complexes, such as pufX and the photo-
synthetic core complex of Rhodobacter sphaeroides
(Jungas et al., 1999; Francia et al., 2002), complexins
and SNARE complexes (Pabst et al., 2000, 2002), and IF1
and ATPase (Cabezon et al., 2000, 2001; Solaini et al.,
1997). The presence of such small proteins in higher order
structures raises questions about their role in the formation
and regulation of these complexes. One may also wonder
what signal in the protein triggers the association with
speci®c partners into stable or transitory complexes? Is it
possible to predict such signals? Are there conformational
changes upon the association of proteins to form higher
order structures? These questions have stimulated research
in this ®eld and the study of protein±protein interactions
now appears as one of the major issues for the years to
come. This review focuses on recent advances in this
domain and addresses speci®c aspects of the regulation
of the metabolic pathway responsible for carbon
dioxide assimilation, the so-called Benson±Calvin cycle,
via protein±protein interactions. Recent studies on a
glyceraldehyde-3-phosphate dehydrogenase/CP12/phos-
phoribulokinase complex involved in CO2 assimilation
will be emphasized, as it is considered to be a good model
to answer some of the questions mentioned above.

The Benson±Calvin cycle and its regulation

The photochemical stage of photosynthesis corresponds to
the oxidation of a water molecule followed by an electron
transfer in the photosynthetic chain of the thylakoid
membrane. At the end of the electron transfer chain,
NADP is reduced into NADPH. The electron transfer is
also coupled with the translocation of protons through the
thylakoid membrane, responsible for the formation of a
proton gradient used by ATP synthase to synthesize ATP.
Both NADPH and ATP are then used during the second
stage of photosynthesis that corresponds to the CO2

assimilation or Benson±Calvin cycle. This metabolic
pathway is regulated by light and does not operate in the
dark (Leegood, 1990).

Phosphoribulokinase (PRK), ribulose bisphosphate
carboxylase/oxygenase (RubisCO), two enzymes speci®c
to this cycle, glyceraldehyde-3-phosphate dehydrogenase
(GAPDH), fructose-1,6-bisphosphatase (FBPase), and
sedoheptulose-1,7-bisphosphatase (SBPase) have been
considered as key enzymes because their regulation by
dark/light transitions is responsible for the regulation of the
cycle. Extensive in vivo analyses have been carried out to
study the role of these key enzymes in the regulation of the
Benson±Calvin cycle. Experiments using antisense rbcS to
decrease expression of ribulose bisphosphate carboxylase/
oxygenase have been reviewed previously (Stitt and
Schulze, 1994). The most important ®ndings are that, in
fairly low irradiance conditions, antisense plants with 40%
less RubisCO than the wild type, are capable of almost the
same rate of photosynthesis as the wild type. Nonetheless,
at high irradiance, or when plants are grown on limiting
inorganic nitrogen, RubisCO exerts more control. It was
also shown that, in plants with decreased RubisCO, the
amount of starch which is accumulated in the leaf, but not
mobilized for plant growth, was decreased, probably by
limiting `wastage' of carbohydrate. Water use ef®ciency
also decreased while the rate of transpiration and stomatal
conductance remained unchanged (Stitt and Schulze,
1994).

Recent analyses of transgenic plants also indicate that
GAPDH, PRK, and FBPase have little control over
photosynthetic carbon ®xation (Raines, 2003). The anti-
sense studies have revealed the importance of the levels of
individual enzymes in controlling primary carbon ¯ux and
allocation. However, reductions in the level of some
enzymes, for example, PRK and GAPDH, have little effect
on carbon ¯ux. The regulatory properties of these enzymes
allow reductions in protein levels to be compensated for by
increases in their activation state (Paul et al., 1995; Price
et al., 1995; Banks et al., 1999). The regulation of PRK and
GAPDH is certainly complex.

PRK and GAPDH, respectively, use ATP and NADPH
that have been synthesized during the ®rst stage of
photosynthesis. PRK catalyses the following reaction:

Ribulose 5-phosphate + ATP®Ribulose 1,5-
biphosphate+ADP

Chloroplast GAPDH uses NAD(P)H according to the
following equation:

1,3-biphosphoglyceric acid + NAD(P)H®glyceraldehyde
3-phosphate+NAD(P)

It also has the ability to use NAD(H) and thus contributes
to glycolysis, whose ®rst steps at least occur in the
chloroplast (Plaxton, 1996).
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The properties of isolated PRK (Miziorko, 2000) and
GAPDH (Baalmann et al., 1995) are well known, but many
questions remain as to their regulation and structure in
supramolecular complexes.

Redox regulation of the Benson±Calvin cycle

The redox state of the key enzymes of the Benson±Calvin
cycle is regulated by 12 kDa proteins, thioredoxins. Two
isoforms (m and f) of thioredoxins are found in
chloroplasts and have a high level of amino acid sequence
similarity. Their active sites have a consensus sequence
(WC(G/P)PC) (Jacquot et al., 2002). By contrast, no
consensus amino acid sequence motif has been found on
target proteins.

The redox state of thioredoxins is also regulated by dark/
light transitions. Their reduction is mediated by reduced
ferredoxin, produced during the ®rst stage of photosyn-
thesis, and a speci®c enzyme, the ferredoxin-thioredoxin
reductase. Other reducing agents such as dithiothreitol
(DTT) or b-mercaptoethanol are often used in vitro to
simulate the effects of thioredoxins. In vitro studies have
shown that the effect of thioredoxins may be further
modulated by other metabolites, such as NADPH, ATP,
Mg2+, or substrates (Faske et al., 1995; Wolosiuk et al.,
1993).

Experiments performed on isolated PRK have demon-
strated that this enzyme is inactive in its oxidized form. Its
reduction by thioredoxin and DTT leads to its activation.
Alkylation and site-directed mutagenesis studies have
shown the existence of a regulatory disulphide bridge in
this enzyme (Brandes et al., 1996; Porter and Hartman,
1988). Higher plant GAPDH and FBPase have also been
shown to be regulated by thioredoxins and redox transi-
tions (Balmer et al., 2001; Jacquot et al., 1997; Li et al.,
1994; Qi et al., 2001; Sparla et al., 2002).

Regulation by other physiological parameters

Other parameters change in the chloroplast during dark/
light transitions and may play a role in the regulation of the
Benson±Calvin cycle. The pH of the stroma most probably
increases from 7 to 8 upon dark to light transitions (Heldt
et al., 1973; Werdan et al., 1975). Accordingly, it has been
found that the optimum pH of most enzymes involved in
the Benson±Calvin cycle is close to 8 (Heldt et al., 1973).
The proton translocation across the membrane also causes
the movement of a counter-ion, Mg2+, whose concentration
in the stroma has been shown to increase upon dark to light
transitions. CO2 assimilation seems to be regulated by the
concentration of this cation (Portis and Heldt, 1976).

Finally, dark/light transitions are also responsible for
changes in the concentration of metabolites such as ATP,
NADP(H), phosphoglyceric acid (PGA), and NAD(H).
However, it is extremely dif®cult to obtain accurate

measurements of the in vivo concentrations of metabolites.
In addition, their distribution within the stroma is probably
not homogeneous. They may be more concentrated in
some parts, while almost absent in other parts of the
stroma. One must therefore be extremely cautious when
interpreting the regulation of enzymes by metabolites.

Speci®c regulatory mechanisms for RubisCO

Extensive study of the regulation of RubisCO (see the
review of Houtz and Portis, 2003) has shown that, under
steady-state conditions, its activity is regulated by vari-
ations in its activation state rather than by ¯uctuations in
substrate concentration, ribulose bisphosphate (RuBP).
In vivo, carbamylation of the residue Lys 101 permits the
binding of the catalytically essential divalent metal (Mg2+).
Both carbamylation and an increase in activity are required
when irradiance increases. The activation of RubisCO is
mediated by the stromal protein Rubisco activase (Portis,
1992; Portis et al., 1995) which acts by removing the
otherwise inhibitory sugar phosphates, RuBP, and in some
plants, 2-carboxyarabinitol 1-phosphate. Rubisco activase
is a member of the ATPases associated with diverse
cellular activities (AAA+) protein family that constitutes a
wide variety of proteins with chaperone-like functions. It is
a nuclear-encoded chloroplast protein that usually consists
of two isoforms generated by alternative splicing of a pre-
mRNA. These two isoforms differ only at the carboxyl
terminus. The activity of Rubisco activase is regulated by
the ADP/ATP ratio and the larger isoform is regulated
through thioredoxin f. The presence of two Cys residues
found only in the larger isoform is responsible for this
activation (Zhang and Portis, 1999). RubisCO, therefore,
can be regulated via the activase in response to light
intensity. The major mechanism for compensation of a
decrease in the amount of RubisCO in transgenic plants is
an increase in the RubisCO activation state, presumably
involving Rubisco activase (Stitt and Schulze, 1994).

Supramolecular complexes of the
Benson±Calvin cycle

The idea that the enzymes involved in this metabolic
pathway are not randomly distributed in the chloroplast
stroma, but interact to give multienzyme complexes, has
been forwarded because some of these proteins, for
example, PRK and GAPDH, could not be easily isolated
by conventional puri®cation methods, such as ion
exchange, gel ®ltration, and af®nity chromatographies
and co-puri®es with other enzymes of the Benson±Calvin
cycle. In addition, different authors have isolated multi-
enzyme complexes from pea and spinach with varying
compositions (Giudici-Orticoni et al., 1992; Gontero et al.,
1988, 1993, 1994; MuÈller, 1972; Sainis and Harris, 1986;
Sainis and Jawali, 1994; Sainis et al., 1989), which may be
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linked to their dissociation during the puri®cation proced-
ure. Hence, smaller complexes may be considered as sub-
complexes of higher order structures. Strikingly, Clasper
et al. (1991) and, more recently, Scheibe et al. (2002) have
isolated a PRK/GAPDH complex in spinach leaves, which
is also found in green algae such as Chlamydomonas
reinhardtii (Avilan et al., 1997b; Wedel and Soll, 1998),
Scenedesmus obliquus (Nicholson et al., 1987; O'Brien
et al., 1976), and in the cyanobacterium Synechocystis
PCC6803 (Wedel and Soll, 1998). This complex may,
therefore, correspond to the core complex of a super-
complex involved in CO2 assimilation.

Lately, a small 8.5 kDa protein, named CP12, has also
been identi®ed in most of these complexes (spinach, pea,
tobacco, C. reinhardtii, and Synechocystis) (Pohlmeyer
et al., 1996; Wedel and Soll, 1998; Wedel et al., 1997).

Organization of the Benson±Calvin cycle in
C. reinhardtii

Immunolocalization studies on C. reinhardtii have shown
that phosphoribose isomerase (PRI), PRK, phosphoglyce-
rate kinase (PGK), GAPDH, and FBPase co-localize and
are located near the thylakoid membrane. Enzymes of the
Benson±Calvin cycle in this green alga thus seem to be
organized in supramolecular complexes, as the Benson±
Calvin cycle of higher plants (SuÈss et al., 1995).

In the laboratory, Avilan et al. (1997b) have isolated a
460 kDa complex that seemed to be composed of two
homodimers of PRK and two homotetramers A4 of
GAPDH. Wedel and Soll (1998) have shown that this
complex also had a third 8.5 kDa protein, CP12. Attempts
by the laboratory to reveal the presence of this protein by
immunochemical methods failed, until the complex was
studied by MALDI-TOF mass spectrometry, ®nally show-
ing that the complex isolated by Avilan et al. (1997b) was
the same as that found by Wedel and Soll (1998). In higher
plants, chloroplast GAPDH is present as an A2B2 tetramer.
The B subunit carries a C-terminal extension responsible
for the oligomerization of higher plant chloroplast GAPDH
into an A8B8 regulatory form (Baalmann et al., 1996; Li
et al., 1994). In green algae such as C. reinhardtii and
Scenedesmus obliquus, GAPDH is only present as an A4

homotetramer. Interestingly, CP12 shares sequence homo-
logies with the C terminal extension of the B subunit of
GAPDH (Pohlmeyer et al., 1996), that contains two
cysteine residues believed to be involved in the redox
regulation of this enzyme (Baalmann et al., 1995; Qi et al.,
2001; Sparla et al., 2002).

Studies of the GAPDH/CP12/PRK complex

The complex described above is relatively simple com-
pared with most higher plant complexes, as it is made up of
only two enzymes and a small protein. This composition

facilitates site-directed mutagenesis programmes to iden-
tify the residues involved in protein±protein interactions.
Site-directed mutagenesis coupled to in vitro reconstitution
experiments enables the characterization of chimeric
complexes, since the oxidized partners are able spontan-
eously to reconstitute a complex in vitro, which is quite
similar to the native state (Gontero et al., 2001; Lebreton
et al., 1997b).

The GAPDH/CP12/PRK complex is dissociated by
reducing agents such as DTT, which enables the puri®ca-
tion of isolated PRK and a sub-complex of GAPDH and
CP12, also called native GAPDH (Avilan et al., 1997b).
The kinetic properties of PRK and GAPDH, both embed-
ded within the complex and as individual enzymes, have
been analysed (Lebreton and Gontero, 1999; Lebreton
et al., 1997b; Graciet et al., 2003b)

Studies on the complex have shown that PRK within the
complex is active. The progress curve of the reaction
catalysed by the PRK embedded in the complex displays a
lag, which corresponds to the dissociation of the complex.
If this complex is ®rst incubated in the reaction mixture
lacking the substrates of PRK, then no lag is observed
when the reaction is started by adding the substrates
(Lebreton et al., 1997b).

Studies on PRK kinetics in this system suggest a model
that links the activity of PRK to the dissociation of the
complex. The equation that may be derived from the model
®ts the experimental results best, only if one assumes (as
postulated in the model) that both the free PRK released
upon dissociation of the complex and the bound PRK of
this complex are active. If only the free PRK is assumed to
be active, the ®t is biased. One may therefore measure the
reaction rate catalysed by the bound PRK of the complex
by monitoring the reaction rate immediately after mixing
this complex with its substrates in a suitable reaction
medium. The active oxidized form of PRK that has just
been released by the dissociation of the complex in the
assay mixture is not stable, for it slowly loses its activity
and becomes identical to the stable, almost inactive, form.
This recently dissociated PRK is thus considered as a
metastable form of the enzyme and its conformation
changes have been characterized by ¯uorescence spec-
troscopy (Lebreton et al., 1997b). Hence, there are three
different forms that have different conformations and
activities: the stable enzyme, the enzyme bound to
GAPDH/CP12 sub-complex, and the metastable free
enzyme. Each of these three forms exists under both
oxidized and reduced states which differ in their Km and
kcat values (Fig. 1; Table 1) (Lebreton and Gontero, 1999;
Lebreton et al., 1997b).

Mixing the stable, oxidized, and almost inactive, PRK
with GAPDH/CP12 results in the formation of the bi-
enzyme complex and in the increase of the catalytic
activity of PRK (Avilan et al., 1997b). From these data it
seems that GAPDH/CP12 may give an instruction to PRK
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and, as a consequence of their interaction, an increase of
activity of PRK is observed.

Moreover, the metastable PRK which is released just
after dissociation of the complex and whose activity and
conformation evolve with time is very active compared
with the stable isolated PRK (Table 1). This high activity
has been linked to an imprinting exerted on PRK by
GAPDH/CP12. This imprinting lasts even after dis-
sociation of PRK from the GAPDH/CP12 sub-complex,
as if the enzyme kept the memory of the conformation it
had in the complex before slowly relapsing into the stable,
isolated, inactive form. A possible explanation for the
higher activity of metastable PRK compared with the same
enzyme associated with GAPDH/CP12 is that the catalytic
activity requires an important mobility of the enzyme
which is favoured if it is in a free state.

Conversely, PRK may be expected to exert an imprint-
ing effect on the GAPDH/CP12 sub-complex. Such an
effect has been demonstrated and it affects the catalysis of
GAPDH with NADH or NADPH as cofactors by decreas-
ing the energy barrier of these reactions by 3.860.5 and

1.360.3 kJ mol±1, respectively. This effect was quanti®ed
using the statistical thermodynamic theory mentioned
below. With regard to CP12, its association with GAPDH
is responsible for changes in the kinetic parameters of
GAPDH, probably due to conformation changes (Graciet
et al., 2003b).

These associations also result in the modi®cation of the
regulatory properties of the enzymes. When PRK and
GAPDH are within the complex, they are regulated by
NADP(H), but not when they are in stable isolated states
(Graciet et al., 2002). The activities of the metastable PRK
and GAPDH, that correspond to the forms released just
after dissociation of the complex upon dilution and that
slowly evolved into the stable forms, have been measured.
The activities of the metastable PRK and GAPDH from the
complex preincubated with NADP(H) are different from
those of the metastable enzymes released from the
untreated complex. NADP increases PRK and NADPH-
GAPDH activities and decreases NADH-GAPDH activity;
NAD(H) has no effect. NADPH slightly activates PRK and
inhibits GAPDH using NADH. As a consequence of

Fig. 1. Model explaining the origin of the metastable forms of PRK and native GAPDH. The inserted tables illustrate the different kinetic
parameters obtained for different forms of PRK and GAPDH. It was not possible to characterize the kinetic parameters of GAPDH included in the
complex as its dissociation was too fast in the presence of its substrates (Graciet et al., 2002). The dissociation of the complex results in the
appearance of metastable forms that relapse into stable forms. Some of the kinetic parameters of these metastable forms have been characterized
(see Table 1). The standard errors (SE) on all parameters were less than 10%. Kinetic parameters for PRK are from Lebreton and Gontero (1999).
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NADP(H) binding, the imprinting effects of these two
enzymes on each other are modi®ed. Thus, incubation with
NADP increases the energy barrier of the NADH-GAPDH
dependent reaction by 1.860.2 kJ mol±1 and decreases that
of the reaction catalysed by PRK by 360.2 kJ mol±1 and
GAPDH using NADPH by 1.260.3 kJ mol±1 (Graciet et al.,
2002). These same metabolites have been shown to
regulate an oligomeric 600 kDa form of GAPDH in
spinach (Baalmann et al., 1996; Wolosiuk and Buchanan,
1976) that is absent from C. reinhardtii.

As the Benson±Calvin cycle is redox-regulated, the
activation of oxidized PRK, either free or as part of a
complex, by reduced thioredoxin was studied. Reduced
thioredoxin may act on PRK either within the complex or
in the free states (stable or metastable forms). However,
the time required to activate the enzyme as part of the
complex is shorter than the one required to activate the free
forms. Moreover, this time is similar to the induction time
of the Benson±Calvin cycle upon dark±light transitions.
With regard to GAPDH, incubation of a crude extract from
C. reinhardtii with dithiothreitol increased GAPDH activ-
ity 3-fold (Li et al., 1994). Surprisingly, the same increase
in NADPH-dependent activity is obtained for GAPDH
when it is part of the complex, but not for the individual
enzyme. A titration of the thiol groups of GAPDH in the
complex reveals 4 SH groups, whatever the redox state of
the complex, while each PRK monomer in the oxidized
complex has one disulphide bridge that is disrupted upon
reduction. These results show that the modulation of

GAPDH activity is not linked to disulphide reduction, but
to heterologous interactions. The regulation of PRK may
thus modulate the activity of GAPDH via a `domino-like'
effect (Lebreton et al., 2003).

Protein±protein interactions are responsible for kinetic
and conformational changes that may last, even after
dissociation of the supramolecular structure. Such changes
have also been shown to occur upon association of the
proteins. As directly demonstrated by cryo-electron
microscopy, GAPDH and PRK undergo important con-
formational changes upon association, compared with the
enzymes in their isolated state (Mouche et al., 2002).

Protein±protein interactions and information
transfer

As mentioned above, association between enzymes may
result in the change of their properties as enzymes may
store some energy upon association. Kinetic studies have
led to the development of a thermodynamic theory by
J Ricard and coworkers to explain the origin of the energy
required to generate these modi®cations (Ricard et al.,
1994, 1998). This theory states that an information transfer
between PRK and GAPDH occurs within the GAPDH/
CP12/PRK complex and it may be quanti®ed. Imprinting
effects have emerged from this theory, but they imply the
dissociation of the complex and the existence of
metastable forms of the enzymes, that have different
kinetic properties and probably different conformations
compared with the same enzyme in the complex or under
an isolated state. The imprinting of GAPDH on PRK has
been demonstrated and quanti®ed in the GAPDH/CP12/
PRK complex from C. reinhardtii (Lebreton and Gontero,
1999; Lebreton et al., 1997a, b). PRK also exerts an
imprinting on GAPDH, which is responsible for the
decrease of the kinetic barriers of the reactions catalysed
by GAPDH. Thus, protein±protein interactions are respon-
sible for kinetic and conformational changes that may last,
even after dissociation of the supramolecular structure.
Many examples in the literature illustrate the emergence of
novel functions as a consequence of protein±protein
interactions such as the plasminogen-streptokinase, the
Ras-GTPase activating protein, and the prions, to cite but a
few (Ricard et al., 1998).

Nature of protein±protein interactions and
supramolecular complex assembly

The gene coding for PRK of Chlamydomonas reinhardtii
has been isolated, cloned and expressed in E. coli. The
recombinant protein may form, with native GAPDH (or
GAPDH/CP12 sub-complex), a complex, which is appar-
ently kinetically indistinguishable from that extracted from
Chlamydomonas cells. A C. reinhardtii mutant (12-2B)
previously isolated and shown to bear a R64C mutation in

Table 1. Kinetic parameters of the metastable forms of PRK
and GAPDH

The metastable forms were obtained from the complex after dilution.
It was shown that the conversion (characterized by a dissociation rate
constant, k*) of the PRK embedded into the complex into the
dissociated metastable form is 10-fold faster under reducing
conditions than under oxidizing conditions (k* is about 0.1 min±1 for
the oxidized complex and 1 min±1 for the reduced one) (Lebreton and
Gontero, 1999). For GAPDH, this rate constant is too fast and has
not been determined. The values of Km for NAD(P)H have also not
been characterized for this form. The standard errors (SE) on all
parameters were less than 10%. Kinetic parameters for PRK are from
Lebreton and Gontero (1999). Kinetic parameters for GAPDH are
from Lebreton et al. (2003).

Km (mM) kcat (s±1)

Oxidized PRK
Ru5P 30 112.6
ATP 46 113

Reduced PRK
Ru5P 94 1200
ATP 51 1205

Reduced GAPDH
BPGA (NADPH constant) 262 650
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PRK has been studied (Roesler et al., 1992; Salvucci and
Ogren, 1985). Avilan et al. demonstrated that the mutation
of this residue impaired the interaction of PRK with
GAPDH to form the GAPDH/CP12/PRK complex (Avilan
et al., 1997a). Whereas the R64A and R64E mutant PRKs
are unable to form a complex with GAPDH, the R64K
mutant does, although only slightly.

Protein±protein association is a process that is harder to
simulate than ligand±protein association, as both interact-
ing molecules are large and will, in general, have complex
shapes and charge distributions (Sheinerman et al., 2000).
In order to study the nature of the protein±protein
interactions within the GAPDH/CP12/PRK complex,
heterologous expression systems have been developed
for the two other partners, GAPDH and CP12 (Graciet
et al., 2003a, b). The role of CP12 in the assembly pathway
of the GAPDH/CP12/PRK complex has been investigated,
as no complex could ever be reconstituted in vitro using
isolated native PRK and recombinant GAPDH (devoid of
CP12). Reconstitution assays show that oxidized CP12, in
addition to modifying GAPDH kinetic properties and,
probably, conformation, also acts as a linker in the
assembly of the GAPDH/CP12/PRK complex (Graciet
et al., 2003b). The presence of two disulphide bridges in
oxidized CP12 seems to be essential for complex recon-
stitution. The lack of overall organization and the great
¯exibility of oxidized CP12 observed by nuclear magnetic
resonance and circular dichroism are in good agreement
with the role of this protein as a linker. Its behaviour

resembles that of `intrinsically unstructured proteins' or
`IUPs' (Dyson and Wright, 2002; Tompa, 2002; Wright
and Dyson, 1999), often involved in protein±protein
interactions. The ¯exibility of these IUPs as well as that
of CP12, favours the binding of partners. In many cases, it
has been shown that partly disordered conformations
provide ¯exibility and adaptability. Both characteristics
explain why these IUPs may be functionally important for
the properties of biological macromolecules (Namba,
2001).

Data obtained from surface plasmon resonance binding
experiments and in vitro reconstitution assays suggest a
model for the assembly process (Fig. 2). The ®rst step in
the assembly is the association of CP12 with GAPDH, with
a dissociation constant (Kd) close to 0.44 nM. This
association is followed by a change of the conformation
of GAPDH. This GAPDH/CP12 complex then binds PRK
with a Kd close to 60 nM to form half-a-complex, de®ned
as one unit. This unit dimerizes to give the native complex
composed of two dimers of PRK, two tetramers of GAPDH
and, probably two monomers of CP12 (Fig. 1) (Graciet
et al., 2003b).

The formation of this complex may be a prerequisite for
ef®cient light activation of the enzymes and subsequent
docking of the other enzymes of the Benson±Calvin cycle
as the use of immunoelectron cryomicroscopy reveals that,
in addition to PRK and GAPDH, phosphoribose isomerase,
RubisCO, FBP aldolase, sedoheptulose bisphosphatase,
nitrite reductase, ferredoxin NADP oxidoreductase, and

Fig. 2. Model describing the assembly process of GAPDH/CP12/PRK complex of Chlamydomonas reinhardtii. The dissociation constants (Kd)
were obtained using surface plasmon resonance (Graciet et al., 2003a). The inserted table corresponds to kinetic parameters of the stable GAPDH.
The standard errors (SE) on all parameters were less than 10%. Kinetic parameters are from Graciet et al. (2003b) and the assembly pathway of
the GAPDH/CP12/PRK complex is from Graciet et al. (2003a).
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ATP synthase are also found (SuÈss et al., 1995), and also as
higher supramolecular complexes have been described
(Anderson et al., 1995; Gontero et al., 1988).

Conclusion

Transitory or stable interactions between proteins play
extremely diverse functions in the cell's life, from signal
transduction to an optimal and ®ne regulation of metabolic
pathways. A better understanding of the biological roles of
these supramolecular complexes would be facilitated by
the study of `simple' models. The work on a CO2-
assimilating GAPDH/CP12/PRK complex isolated from
the green alga Chlamydomonas reinhardtii enables the
diverse roles of protein±protein interactions in supramo-
lecular complexes, as mentioned above, to be dealt with.
Nonetheless, many questions regarding the existence,
composition, and dynamics of the GAPDH/CP12/PRK
complex in vivo remain to be answered. Is the composition
of this complex the same whatever the physiological
conditions? Are there physiological factors that trigger
dissociation or association events? Can this complex be
considered as the core of a bigger supramolecular
complex, other enzymes having the possibility to dock to
this core complex? The study of this complex and other
complexes, although far from being trivial will clearly help
in the understanding of how metabolic pathways are
regulated.
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