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Abstract

Defining homologous genes is important in many evolutionary studies but raises obvious issues. Some of these issues are
conceptual and stem from our assumptions of how a gene evolves, others are practical, and depend on the algorithmic
decisions implemented in existing software. Therefore, to make progress in the study of homology, both ontological and
epistemological questions must be considered. In particular, defining homologous genes cannot be solely addressed
under the classic assumptions of strong tree thinking, according to which genes evolve in a strictly tree-like fashion of
vertical descent and divergence and the problems of homology detection are primarily methodological. Gene homology
could also be considered under a different perspective where genes evolve as “public goods,” subjected to various
introgressive processes. In this latter case, defining homologous genes becomes a matter of designing models suited to
the actual complexity of the data and how such complexity arises, rather than trying to fit genetic data to some a priori
tree-like evolutionary model, a practice that inevitably results in the loss of much information. Here we show how
important aspects of the problems raised by homology detection methods can be overcome when even more funda-
mental roots of these problems are addressed by analyzing public goods thinking evolutionary processes through which
genes have frequently originated. This kind of thinking acknowledges distinct types of homologs, characterized by distinct
patterns, in phylogenetic and nonphylogenetic unrooted or multirooted networks. In addition, we define “family resem-
blances” to include genes that are related through intermediate relatives, thereby placing notions of homology in the
broader context of evolutionary relationships. We conclude by presenting some payoffs of adopting such a pluralistic
account of homology and family relationship, which expands the scope of evolutionary analyses beyond the traditional,
yet relatively narrow focus allowed by a strong tree-thinking view on gene evolution.
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The meaning of scientific terms cannot and should

not remain fixed forever by the priority of the original

definition. This is simply because our experience con-

stantly outruns our terminology.

—Theodosius Dobzhansky (Dobzhansky 1955)

Defining Gene Families: A Central Complex
Task in Evolutionary Studies
Homology is acknowledged as an elusive concept, and yet
it is central to comparative evolutionary biology, underpins
phylogeny reconstruction (Felsenstein 2004) and develop-
mental biology (Brigandt 2003), and is used extensively in
ethology and psychology (Ereshefsky 2007). On the one
hand, we have ontological concepts of homology, and on

the other hand, practical homology definitions and the
relationship between these theoretical and operational
issues is a neglected area of evolutionary biology. In this
manuscript, we explore a plurality of ontological bases for
understanding homology in macromolecular sequences,
and by extension, we explore concepts and definitions of
gene family. The ontology—the study of what objects exist
and how they relate to one another—is an important
aspect of enquiry that is generally addressed before any
practical effort to apply this ontology. We contend that
a tree-thinking perspective has strongly influenced consid-
eration of what the ontological basis of homology might be
and has needlessly and unhelpfully constrained understand-
ing through the notion that homologs fit into neat gene-
alogical families that have evolved their differences
according to some underlying phylogenetic tree.
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It has long been recognized that sequence evolution is not
tree-like, in particular because of domain shuffling (Enright
et al. 1999; Marcotte et al. 1999; Portugaly et al. 2006). It has
also long been recognized that this non-tree–like evolution
results in a network of sequence relationships (Sonnhammer
and Kahn 1994; Park et al. 1997; Enright and Ouzounis 2000;
Heger and Holm 2003; Ingolfsson and Yona 2008; Song et al.
2008). However, for an almost equally long period of time, it
has been assumed that the right way to process this network
was to carve it into homologous parts by clustering (Tatusov
et al. 1997; Enright and Ouzounis 2000; Yona et al. 2000).
Relevant clusters have generally been considered to be gene
families with all members presenting full homology with one
another. Smaller relevant clusters have also been proposed by
identifying homologous domains, for example, families of
sequences presenting homology over their entire length but
frequently of smaller size than entire genes (Sonnhammer
and Kahn 1994; Park and Teichmann 1998; Apic, Gough,
Teichmann 2001b; Wuchty 2001; Enright et al. 2003; Song
et al. 2008). Both of these relatively local perspectives on
sequence relationships are familiar to most biologists.

Consequently, the task of defining gene families has been
generally delegated to software programs that search for clus-
ters or communities of phylogenetically related sequences.
Increasingly, with genomic data sets of genuinely enormous
sizes, the problem is considered best handled by such pro-
grams. And yet, the practice of placing genes into discrete
gene families seems somehow at odds with the existence of
domain databases (Corpet et al. 2000; Majumdar et al. 2009)
that clearly demonstrate the pervasive influence of non-
tree-like processes in molecular evolution (Levitt 2009). We
propose not to carve up this network but to analyze its local
(Sasson et al. 2003; Atkinson et al. 2009) and global structure
(Adai et al. 2004).

In the last 20 years, as public repositories of macromolec-
ular data have been greatly expanded, it has become increas-
ingly apparent that a tree-thinking perspective on molecular
evolution, while useful in many situations, is inadequate in a
broader context and is far short of universality (because for
instance, many, perhaps most genomes do not evolve solely
in a tree-like fashion). We address the fundamental meanings
of homology and its processual causes because, without pre-
cise insights into their meanings, we can only design algo-
rithms or methods of defining homologies and families that
carry caveats about the kinds of homologies that are being
prioritized.

Without wishing to be critical of the useful and important
work of others, it nonetheless seems unavoidable that we
must take examples from the literature to provide some
context. The TribeMCL (Enright et al. 2003) approach to de-
fining gene families illustrates the problem quite clearly. In
the manuscript describing the algorithm, analysis of a data-
base of 311,257 proteins is reported. Depending on the set-
tings of the software, 82,692 “families” could be identified, or
75,635 families or 60,934 families, with the entire automated
process taking ~14 h on a large computing cluster (Enright
et al. 2003). In this case, the “concept” of family was not
explicitly explored at an ontological level (though it built on

a general understanding of gene family at that time); there-
fore, the “definition” of a family was an operational one, based
on a setting in a software programme instead of exploring
evolutionary history and whether it might be simple or com-
plex. In this case, family definition is a uniformly applied rule
where one software option fits all. Here, we suggest that
alternatives to such simple approaches are desirable,
though perhaps more difficult to achieve. Similarly, while
we stress that the TribeMCL approach has proved to be of
enormous benefit, we argue that many important evolution-
ary events and types of family relationship can be missed if
this kind of approach is the only one that is taken.

A number of points should be made at this stage before
getting to the main argument of the article. In this article, we
specifically wish to discuss homology in the context of genes
and other genetic components, such as promoters and sub-
gene elements—what we term genetic goods (McInerney
et al. 2011). For such data, the notion of “homolog” and
“gene family” has been written about extensively, but there
is still no universally agreed consensus on what either of these
terms mean (Duret et al. 1994; Natale et al. 2000; Perriere et al.
2000; Tatusov et al. 2000; Dessimoz et al. 2012; Miele et al.
2012). Additionally, there are significant technical limitations
for the detection of homologies. Certain cutoffs are imposed
on any analysis, which leads to de facto homologies being
missed because the sequences no longer manifest a level of
similarity that is greater than expected by random chance.
Despite ambitious efforts to reduce this complication, it is
likely that large-scale underdetection of homologs is still a
problem (Weston et al. 2004; Noble et al. 2005). The argu-
ment therefore might be made that every sequence is possibly
homologous to every other sequence. That is to say, all extant
molecular sequences can trace their ancestry to a single nu-
cleotide that has evolved by duplication and mutation. This
idea is not better than the alternative hypothesis that they do
not all share common ancestry, because terminal transferase
enzymes that exist can generate DNA sequences in a tem-
plate-independent manner (Greider and Blackburn 1985).
Nonetheless, fundamental limitations for software programs
do not mean we cannot make progress in understanding
homology concepts and improve gene family classification.
Acknowledging a plurality of concepts will enhance practical
gene family classifications. In particular, we wish to acknowl-
edge that homologies are embedded within a wider set of
relationships that we call “family resemblances,” and this is
fundamentally different to the traditional notion of
homology.

Homology Concepts and Homology
Definitions
The notion of homology has a long and rich history, starting
from before DNA was discovered. In 1868, Owen (1868)
wrote a now classic book summarizing his ideas on homolo-
gies of the vertebrate skeleton. Owen did not have an evolu-
tionary explanation for homology and interpreted the
homologies that he inferred as variants on some kind of
“archetype”—an ideal form of the organ that was constructed
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by a creator. In his book, Owen (1868) declared that there
were three different kinds of homology. Special homology
describes when two organs had the same connection to
the body and performed the same function. This meant
that the pectoral fin of a porpoise was homologous to the
pectoral fin of a fish, even though they were manifestly dif-
ferent otherwise. General homology referred to morphologi-
cal features or parts of features that were of “the same organ”
under every variety of form and function. Finally, serial
homology referred to organs that were repeated on the
body—bristles on the legs of a fly for instance. Owen’s chief
reason for writing this book seems to have arisen from his
frustration with his fellow scientists using the word “analog”
when they meant homolog.

Since then, within the field of morphology, the concept of
homology has been subject to substantial debate, much of
which can be seen as reflecting tensions between qualitative
comparative anatomy and quantitative phylogenetics on the
one hand, and causal and acausal accounts on the other.
Thus, there have been proposals to synonymize homology
with the cladistic concept of synapomorphy and accounts of
“biological homology” (Mindell and Meyer 2001) that seek to
accommodate new data from developmental biology on pat-
terning and differential gene expression by explicating the
notion of homology in terms of shared developmental path-
ways. The importance of ontogeny notwithstanding, of par-
ticular conceptual interest, is the notion of genetic piracy
(Roth 1988) in which homology of some morphological char-
acter persists despite the genetic basis of the trait changing
more or less completely over evolutionary time. These other
debates illustrate how new data and new understandings of
evolution often necessitate new usage of terms and clarifica-
tion of concepts and models.

When similar frustrations arose almost 140 years after
Owen’s work, a collection of prestigious scientists felt the
need to clarify the meaning of the word homology in molec-
ular sequence data (Reeck et al. 1987). Interestingly, this clar-
ification did not entertain the notion that different types of
homology may be required to handle molecular data, possibly
because to a certain extent, there was a general consensus on
the ontological concept of homology (corresponding to
Owen’s general homology) though a lack of consensus on
the practical identification of homologs. A reading of the
literature today would corroborate the feeling that the prac-
tical level seems to be the one at which the problems of
“defining” homologous genes lies, though in fact, the prob-
lems have much deeper ontological roots.

Walter Fitch commented that “homology [. . .] is indivis-
ible” (Fitch 2000). This sentiment is often used in the teaching
of evolutionary biology classes and indeed is often quoted.
However, Fitch (2000) also allowed for chimeric genes as one
exception to this general model. Thus, he wrote:

If the domain that is homologous to the low-den-

sity lipoprotein receptor constitutes 20% of entero-

kinase, then enterokinase is only 20% homologous

to that lipoprotein receptor, irrespective of its per-

cent identity. If at the same time, this common

domain were half of the lipoprotein receptor, the

receptor would be 50% homologous to the entero-

kinase. The homologies are not the same in both

directions if the proteins are of unequal length! This

is the only situation where “percent homology” has

a legitimate meaning and, even there, it is danger-

ous and better called, as Hillis has suggested, partial

homology.

In Fitch’s view, saying that two proteins were homologous
along part of their length was fraught with the potential for
misinterpretation. Therefore, the phrase “partial homology”
needs to be used with care and should only mean that “this
part (X%) of sequence 1 is homologous to that part (Y%) of
sequence 2.” In this case, some parts of sequences 1 and 2 do
have a common ancestor, but we are implicitly acknowledg-
ing that their last common ancestor is not also a common
ancestor of sequences 1 and 2 in their entirety. It would be a
mistake to consider such a change in phrasing merely as
a matter of rhetoric. Reeck et al. (1987) pointed out that a
precise definition of homology would indeed be “an unim-
portant semantic issue” if it did not “interfere with our think-
ing about evolutionary relationships.” At that time, in the late
1980s, the problem stemmed from the common interchan-
ging of the words “similarity” with “homology” (e.g., saying
that two sequences were 80% homologous when the authors
really meant that they were 80% similar in sequence). Reeck
et al. offered the solution that “homology should mean ‘pos-
sessing a common evolutionary origin’ and in the vast major-
ity of reports should have no other meaning.” Accordingly,
Fitch later offered the opinion that homology was “[. . .] an
abstraction, in that it is a relationship, common ancestry
[. . .]” (Fitch 2000). This last point, we feel, is particularly
important.

Thus, the consensus among molecular biologists became
that similarity was defined as quantitative by comparing the
sequences in question, but that homology was qualitative—
sequences are homologs or they are not. In fact, the majority
of the literature from that time to present day suggests that
homology is a term that specifically refers to genes or proteins
that manifest significant sequence similarity along the major-
ity of their length. Databases such as homologene (http://
www.ncbi.nlm.nih.gov/homologene, last accessed December
10, 2013) and COG (http://www.ncbi.nlm.nih.gov/COG/, last
accessed December 10, 2013) only contain genes that are
allowed to be in one family. Although we do not deny that
database entries of such sequences are likely or certain to be
homologs, sole focus on those kinds of evolving entities
(entries that trace their heredity to a single common ances-
tor) and the heuristic of requiring homologs to manifest near-
or full-length significant sequence similarity has clearly re-
sulted in biases and information loss, as has been demon-
strated (Sonnhammer and Kahn 1994; Park et al. 1997; Enright
and Ouzounis 2000; Heger and Holm 2003; Ingolfsson and
Yona 2008; Song et al. 2008). Even if we had a universally
agreed definition of the gene (Epp 1997), it remains much
more complicated to decide what might be a gene family.
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Gene length can vary from dozens of nucleotides (the short-
est human gene is 252 nucleotides in length) to several hun-
dreds of thousands of nucleotides. Genes evolve by point
mutation, legitimate and illegitimate recombination, exon
shuffling, fusion, fission, invasion by selfish mobile elements,
domain replacement, and so forth. Is a gene that has a trans-
poson inserted into the middle no longer considered to be a
member of this family? If a gene loses an exon and is now
quite different in length from other members, then is it no
longer considered to be a member of this family? In other
words, our current knowledge of the diversity of evolutionary
processes means that the generally agreed upon concept of
homology needs revision and clarification, and other con-
cepts such as family resemblance need to be introduced.

Recently, there has been an increased focus on the prob-
lems that domain shuffling in particular has created for efforts
to distinguish orthologs and paralogs from sequences that
appear to be orthologous and paralogous, when in fact
they are not. Strictly speaking, two genes are orthologous
when they are found in different species and can trace a
direct lineage back to a single genomic locus in a common
ancestor. It can be expected that the sequence in this
common ancestor was not significantly different in domain
architecture to the orthologs we observe today—though it is
not clear how different is too different. Paralogs can trace
their most recent common ancestor to a duplication event,
again with the expectation that the most recent common
ancestor will have had a similar structure. However, in the
event that two genes or proteins look similar because they
have been independently assembled through domain shuf-
fling, they will not fulfill these criteria. In such cases, the word
“Epaktolog” has been suggested to reflect similarity that is a
consequence of independently “imported” domains (Nagy,
Bányai, et al. 2011; Nagy, Szláma, et al. 2011). Specifically,
the authors “[. . .] refer to proteins that are related to each
other only through acquisition of the same type of mobile
domains as epaktologs” (Nagy, Bányai, et al. 2011). This is an
important consideration, and to date we do not have a rig-
orous analysis of known proteins to understand the extent to
which similar proteins are in fact epaktologs and not ortho-
logs or paralogs. However, we argue here that there are ad-
ditional important relationships beyond those found in
epaktologs (see later).

The most widely used method of allocating genes to a gene
family is the Markov Clustering Algorithm (MCL) (Enright
et al. 2002), which simulates flow through a network of se-
quence similarity and cuts the network at those places where
flow is most restricted. A sequence similarity network is com-
posed of nodes and edges, with the nodes representing gene
or protein sequences and the edges representing some mea-
sure of similarity between the sequences. In practice, only
“significant” levels of sequence similarity are represented at
all, and these significant similarities are likely to represent
homologous relationships because they are too similar to
have arisen by random chance. Examples of such networks
are given in figures 2, 4, and 5 and will be discussed later in this
article. The idea behind the clustering approaches such as
MCL is that unimportant relationships as defined by small,

common, promiscuous domains can be safely deleted, leaving
the more important relationships, and these can be used to
define families. This approach is hugely successful, garnering
well in excess of 1,500 citations at the time of writing. The
authors have been careful to say that this method should be
used with care, and indeed, appropriate usage of MCL for
conservative analyses of particular kinds of homologs is ex-
pected to result in few if any errors. However, an ontological
premise for this method is that a gene can only belong to one
homologous family—the method explicitly does not allow a
gene to belong to more than one family. This is because it is
assumed that either there are “natural” discrete families and
the relative strength of association between a gene and its
family will emerge from the analysis or that some relation-
ships are more important than others and the minor rela-
tionships can be dismissed as relatively unimportant.
Although the philosophy of the approach (clearly influenced
by the underlying assumption that gene evolution might be
tree-like and takes place independently in different families)
has not been explored extensively in the literature, we will
argue that the effect of this algorithm is to principally enforce
a tree-based viewpoint on gene families. This introduces per-
sistent issues in homology definition that can best be over-
come by first adopting more realistic starting assumptions on
how genes evolve, second by adopting new concepts of ho-
mology, and third by adjusting our methods accordingly.

Defining Homologs Meets Different Kinds
of Problems
The lack of agreement in how to define homologs (Fitch 2000;
Enright et al. 2003; Li et al. 2003; Wong and Ragan 2008;
Majumdar et al. 2009; Dessimoz et al. 2012; Miele et al.
2012) reflects the historical ideas concerning homology and
the attempt to fit notions that were developed for one pur-
pose (morphological systematics and comparative anatomy)
to data that are only obliquely related to this purpose. The
first evolutionary character matrices (Abel 1910; Tillyard
1919) were rectangular consisting of M rows � N columns.
Most phylogenetic software programs today require such
rectangular matrices, and if the sequence data do not fit
into a matrix, then the user has two choices—either add
characters to represent “missing” data or prune the data
until it becomes rectangular (Capella-Gutierrez et al. 2009).
Therefore, there is an implicit assumption that data matrices
should look like this and an explicit requirement that the data
is made to look this way. Given that discussions of the pruned
parts of alignments rarely make their way into the final man-
uscript, we have no clear idea how often these nonconform-
ing data sets arise as a result of introgression and gene family
membership that involves more than one family.

Additionally, focusing on different aspects of sequence re-
lationships, that is, the homology of entireties or of parts,
leads to different inferences of relationships and, conse-
quently, to a lack of consensus. The reality is of course that
different parts of a gene sequence might have different his-
tories, so an honest appraisal of homology might require a
more radical view of homology than is traditional. Recently,
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Song et al. (2008) offered a good example of this when they
asserted the restrictive caveat that homologous genes must
be descended from a common ancestor that had the same
multidomain structure as contemporary sequences. Two
genes that share a single domain and whose common ances-
tor had quite a different structure are not considered to be
homologous in their model. The distinction between the two
different kinds of evolutionary trajectory is of course impor-
tant; however, it does seem to confuse the notion of homol-
ogy being the concept of relationship through common
ancestry, irrespective of how subsequent introgressive
events have changed the overall domain neighbourhood. It
is quite likely that what Song et al. (2008) call domain sharing
but not homology is what Fitch (2000) and Hillis (1994)
would call partial homology. Though it is perfectly reasonable
to say that convergently remodeled proteins with similar
structures cannot be true orthologs or paralogs, they are ho-
mologs, nonetheless.

Three Homology Models
In terms of homology concept and delineating homology
groupings, a fundamental problem lies in the a priori model
that we apply to our approach. Here we define three sets of
models, and we discuss how these models can affect notions
of homology. First, we have “strong tree thinking” (STT). This
perspective sees that the important, perhaps only, relation-
ships are those that have arisen along a diversifying phyloge-
netic tree, and events such as residue substitution and small
indel events account for the changes between sequences.
A phylogenetic tree, we emphasize, allows no introgressive
events (Bapteste et al. 2012). STT is useful when analyzing sets
of homologs that have a tree-like history and is generally seen
in the analysis of nonrecombining orthologs to determine
species relationships (Doherty et al. 2012) or nonrecombining
paralogs to understand duplication events (e.g., Feuda et al.
2012). Next, we define “phylogenetic network thinking”
(PNT) where legitimate recombination events are allowed,
and these turn a phylogenetic tree into a phylogenetic web
(Huson and Scornavacca 2011) relating closely related se-
quences without affecting homology relationships. PNT is
extremely useful for analyzing legitimate recombination
(Huson and Bryant 2006) and understanding incongruence
in gene or genome histories. Finally, we have “goods thinking”
(GT) that sees evolutionary history as being characterized by
the vertical and horizontal transmission of genetic goods,
allowing introgressive evolutionary events (e.g., legitimate
and illegitimate recombination events, fusion, fission, etc.)
and depicting relationships between sequences in a more
pluralistic manner (McInerney et al. 2011; Bapteste et al.
2012). GT is the least conservative perspective and is the
main focus of this manuscript. Its biological implications are
potentially huge because it has been proposed that introgres-
sion of domains has resulted in the evolution of various sig-
naling systems (Apic and Russell 2010) and a correlation has
been suggested between the prevalence of proteins with
multidomain architectures and organismal complexity
(Apic, Gough, Teichmann 2001a). Indeed, a modest increase
in number of domains allows for numerous novel genetic

interactions, thus a small increase in genes sharing goods
could be largely sufficient to construct complex hosts
(Koonin et al. 2002).

Going back to Reeck et al. (1987) important definition
according to which “homology should mean ‘possessing a
common evolutionary origin’ and in the vast majority of re-
ports should have no other meaning,” we want to stress that a
fundamental issue stems from the interpretation of the word
“a” in the quoted sentence. Traditionally, evolutionary biolo-
gists have used the word “a” in the STT sense (O’Hara 1997)
or the PNT sense and judge that it means “one.” For both of
these perspectives, the definition of homology can only mean
that homologs must trace back to a single common ancestor
without gene remodeling by sharing of DNA from other lin-
eages. According to these perspectives, the community of
descent that unites complete genes with complete genes
corresponds to the objects such as the branches on phyloge-
netic trees or networks when these structures have been
constructed from genes that are homologous along their
entire length (Li et al. 2003) and where the genes have not
been remodeled by illegitimate recombination throughout
their history. This is probably the most commonly under-
stood definition of homology, and it is certainly the focus
of many software tools and algorithmic developments.
Embracing this perspective (STT/PNT homology concept), a
standard operational criterion (STT/PNT homology defini-
tion) for homology is, for instance, that homology extends
for at least, say, 70% or 90% of the length of the two genes
being examined.

However, if we interpret a in GT sense; McInerney et al.
2011), “a common ancestor” means “at least one” ancestor in
common with other proteins. Then, our concept of homology
is quite different and allows us to analyze a greater number of
evolutionary events and relationships, though we must be
much more careful about what we say about these evolving
entities. So far, this GT perspective has not been explored
much. The concept of homology has usually been described
in terms of just the STT/PNT viewpoint—rather than the GT
viewpoint—and software and databases have been geared
toward the analysis of homologs defined under the aegis of
the STT/PNT concept.

Instead of the traditional, narrower view of homology, we
advocate that the pluralistic account of evolutionary pro-
cesses and thus a pluralistic interpretation of the term “a”
in Reecks et al.’s definition is now scientifically most fruitful,
because it results in definitions of GT-style homologs and
family resemblances that can encompass a greater variety
of our empirical observations on sequence structures and is
a better fit to our observations on the processes responsible
for sharing of genetic “parts,” at the molecular level, in evo-
lution. Indeed, STT/PNT expectations for how homologs
should look have resulted in practical definitions of homology
that have often restricted how we have viewed gene, genome,
and protein evolution, have affected the software and data-
bases that have been developed to analyze genomic data,
have affected the ways in which we think we should analyze
macromolecular sequence data and may have frequently suc-
ceeded in blinding us to many crucial evolutionary events. For
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instance, a recent publication (Miele et al. 2012) that deals
with finding homologs from an exhaustive comparison of all
macromolecular sequences in a data set against all other se-
quences in that data set starts with an opening line in the
“motivation” section of the abstract thusly: “Proteins can be
naturally classified into families of homologous sequences
that derive from a common ancestor.” The manuscript
then goes on to describe a very promising method for clus-
tering protein sequences into groups that manifest extensive
similarity along almost their entire length. This clearly is a
STT/PNT view of protein evolution, where a family is defined
in explicit, though narrow terms and all segments of sequence
are expected to descend from one same common ancestor,
not many ancestors. While being a completely legitimate way
of thinking about some protein relationships, the complexity
of the majority of data falls outside this narrow framework,
and we advocate that additional homology concepts can
provide an augmented view of protein evolution.

Homology Concepts That Do Not Assume
Tree-Like Evolution
Is there a homology concept that fits the data better than the
STT/PNT concept and could it conceivably reduce the likeli-
hood of overly restrictive and potentially incorrect inferences
occurring? We think that the most efficient way to ameliorate
the risk of error and to really account for evolutionary rela-
tionships between sequences is to realize where the most
fundamental problem lies. Most algorithms would run quickly
if genetic data had genuinely evolved in a tree-like way. In fact,
no sophisticated algorithm would be necessary at all, as the
gene families could be easily parsed from an all-versus-all gene
similarity search and, assuming the search was sensitive
enough, they would naturally fit into their respective families.
However, real data have experienced more complex evolu-
tionary processes (Nagy, Bányai, et al. 2011; Nagy, Szláma,
2011).

We propose that methods for defining homologous genes
(gene families) that require homology to extend along most
of the sequence (Miele et al. 2012) might be described by the
search for “tribes” of proteins. We choose the word tribes,
because this is the original meaning for the word phylogeny
(from the Greek Phylos meaning “tribe” and Genis meaning
“origin”; Sapp 2009). Therefore, such tribes of sequences are
likely to be amenable to phylogenetic tree or network con-
struction using standard software currently available
(Felsenstein 2004; Huson and Scornavacca 2011). We note
that this fits well with the objective of such programs as
TribeMCL (Enright et al. 2003).

In continuing with the etymology of the word phylogeny,
we wish to point out, however, that tribes are known to split
and merge with other tribes, to subsume, and to be sub-
sumed. Although analyzing homology along the entire
length of a sequence is somewhat akin to a tribal origin anal-
ysis (a phylogenetic analysis of that tribe), it is by no means
the only way that we can look at homology. We might con-
sider that at one extreme there are tribes of sequences that
are mostly isolated “closed” tribes (fig. 1, Family A) but that

there are also tribes that are more “open” in terms of tribal
mergers and divisions (fig. 1, Family B; Boucher and Bapteste
2009). In the case of Family B, it would be standard practice to
split the family into four tribes to carry out phylogenetic
analyses, thereby missing out the context in which the
entire family has evolved. These open tribes are not readily
analyzed using current phylogenetic methods, because the
components of some of the sequences have separate origins
and separate roots (in our toy example, the black, blue, yellow,
and red gene parts all have separate roots). In other words,
evolution has frequently occurred through introgression
(Bapteste et al. 2012) with genes and parts of genes acting
as goods (McInerney et al. 2011) that can be shared, such that
a homology concept that only accommodates STT/PNT is
likely to be incomplete as a basis for categorizing and describ-
ing the evolutionary histories (Bapteste et al. 2012). To dem-
onstrate this, we explore the assumptions and expectations of
STT/PNT.

Building on the historical role of morphology in the study
of homology, STT/PNT considers either a complete organ or a
significant part of an organ. This perspective has some con-
sequences for the breadth and depth of analyses that can be
carried out. The first consequence is that the organ should be
clearly defined as a 1:1 correspondence. In contrast, most new
genes are constructed from existing parts; fusions of genes,
promoters, introns, exons, and motifs are common (Levitt
2009; Bapteste et al. 2012). This means that different parts
of proteins can be expected to have different evolutionary
histories. The different parts of a protein-coding gene might
themselves be homologs of one another and may have arisen
by tandem duplication or introgression of previously spatially
separated DNA sequences (Bapteste et al. 2012). Even within
morphology, it has been recognized that partial homologies
offer a much broader view of evolution (Sattler 1984).

The second consequence of STT/PNT-based explanations
of homology is that the notion of homology being indivisible
is easy to understand—two organs/genes are either homologs
or they are not. The problem we have with molecular se-
quence data is that we now know that a great number of
molecular sequences are related to a great many other mo-
lecular sequences with varying amounts of structural (e.g.,

FIG. 1. Two extremes of family evolution. Family A is a closed family
shown to evolve according to a strict tree-like process, Family B is an
open family that evolve by horizontal and vertical evolutionary pro-
cesses. Its members display family resemblances, as they can be con-
nected through intermediates and relationships of GT homology (see
main text).
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domain content) similarity (Adai et al. 2004; Halary et al. 2010;
McInerney et al. 2011; Bapteste et al. 2012; Alvarez-Ponce et al.
2013). Consider the thought experiment where we have four
proteins (see table 1), each protein has two domains and we
have four domains in total. Gene1 has domains A and B,
Gene2 has domains B and C, Gene3 has domains C and D,
and Gene4 has domains A and D. All four proteins have
particular kinds of relationships to the others that cannot
be described by an “all or nothing” model. This problem af-
fects both the homology concept and the homology defini-
tion. We will refer to this thought experiment when dealing
with real data in “case 4” later.

Current STT/PNT thinking does not address most of the
issues we have just raised, because, being founded on an as-
sumption of tree-like evolution, it produces a bias against the
detection of introgressive processes. Relied upon exclusively, it
prevents us from investigating those non-tree-like evolution-
ary events and relationships that could be revealed through
a more pluralistic view of homology. In the following three
examples, we use a standard set of analytical tools to dem-
onstrate how our views of what constitutes a homologous
family are influenced by the use of such heuristic approaches.
We use BlastP (Altschul et al. 1997) and then pass the data
through the MCL software (Enright et al. 2002) using default
parameters.

Case 1: A Ten-Gene Data Set from Four Enteric
Bacterial Genomes

In this case, we analyze data from four enteric bacterial ge-
nomes—one Escherichia coli, one Salmonella, one Yersinia,
and one Shigella genome (data available as supplementary
information S1, Supplementary Material online, Case1.aln).
Homologous proteins with a helix-turn-helix motif are
found ten times in these four genomes using a standard sim-
ilarity search algorithm (Altschul et al. 1997). However, these
genes are short and quite variable. Short gene length reduces
the possibility that Blast can detect significant sequence sim-
ilarity. Figure 2 depicts the gene similarity network that can be
constructed from this gene family when an all-versus-all Blast
analysis is carried out with a cutoff e-value of 10�6. As can be
seen, not all genes show significant sequence similarity with
all other genes according to this analysis. However, using
Clustal Omega (Sievers et al. 2011), the alignment shown in
figure 2 can be produced, and using FastTree with the default
parameters (Price et al. 2010), the tree shown in figure 2 can
be produced from that alignment. The Blast network also
shows an analysis of what happens if the MCL software
(Enright et al. 2002) is used to identify homologs with the
default inflation value set at 2.0. MCL cuts this graph into
three tribes. The color coding of the sequences on the Blast
graph, the alignment, and the phylogenetic tree reflects how
MCL would carve up the data. The STT/PNT proposition is
that a gene family would be characterized by all members of
the gene family recognizing all other members in a similarity
analysis. This does not happen, so MCL divides up the gene
family into three tribes. In these tribes, all members recognize
all other members.

One of the features of note in this alignment is that the
proteins are quite variable in length, and indeed, this is likely
to be part of the reason why Blast does not produce a com-
pletely connected component where all sequences show sig-
nificant similarity to all other sequences. The four sequences
shaded in brown contain a conserved 18-amino acid stretch
that has either been gained by these sequences or lost in the

Table 1. An Illustration of Four Hypothetical Genes That Manifest a
History of Introgressive Processes.

NOTE.—Each gene consists of two domains, the colors are the same for homologous
domains.

Box 1.
Term Meaning

Homologs Having a relationship through descent from at least one common ancestor

Family resemblance Having an evolutionary relationship through intermediate sequences and common descent

Clique A subgraph in a network where every member of the subgraph is connected to all other members

STT Strong tree thinking: A perspective that sees homology statements as valid when the homologs have
evolved down the branches of a bifurcating phylogenetic tree

PNT Phylogenetic network thinking: A perspective that sees homology statements as valid when the homologs
have evolved through tree-like processes, but allowing for some homologous recombination, thereby
making a phylogenetic network.

GT Goods thinking: A perspective that sees homology relationships encompass illegitimate recombination,
fusion, and fission of evolving entities in addition to vertical descent. Gene evolution is expected at
times to be very complex and involve merging of evolving entities.

N-rooted fusion networks A new kind of network that depicts rooted networks with at least one fusion node and at least two
roots.

TRIBES Homologs that have a 1:1 correspondence in terms of being homologous for most or all their length.

TribeMCL One of the most successful approaches to finding communities in networks of gene similarity.
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others. In addition, there is considerable length variation at
the N- and C-termini of the sequences.

In the analysis of this alignment of sequences, an STT/PNT
perspective will be faced with a conundrum. The four
sequences at the bottom of the alignment, identified by the
brown taxon labels on the alignment, brown nodes on the
network, and brown tip labels in the tree, have an 18-amino
acid stretch that is clearly homologous among these four
sequences and is absent in the other six sequences.
Although the sequences clearly manifest homologous rela-
tionships, should this process of insertion or deletion occur
frequently, then descendants of these sequences might not
contain any amino acid residues homologous to the residues
that exist today. As a thought experiment, imagine if we dis-
covered a series of proteins that differed from each other by
the presence or absence of small domains, eventually leading
to a collection of sequences where at the two extremes of this
series we have proteins that do not share any domains (as in
table 1). Then, both the STT and PNT perspectives would say
that these proteins at the extremes do not have a relationship
through common ancestry, whereas a GT perspective would
say that they do. A GT model for homology that we could
designate as the “open tribes” or family resemblance model
would better accommodate this kind of situation, which we
show later in this manuscript to be a very common situation.

Case 2: A Set of Orthologs from Closely Related
Yeast Species

The Candida Gene Order Browser (CGOB) database (http://
cgob.ucd.ie, last accessed December 11, 2013) is a carefully
curated data set of 13 yeast (mostly Candida) genomes that
have been aligned so that any particular gene can act as a
“focus point,” and all its orthologs (if present) are presented

to the viewer as pillars and their neighbors are also visible (see
Fitzpatrick et al. 2010 for details). Figure 3a shows an example
from this database. Open reading frame 19.2962 from the
genome of Candida albicans is the focus gene and its ortho-
logs are displayed underneath it. On the left and the right of
this gene are two genes that are strongly conserved in all
species. Orthology is easily recognized in these neighbors
using standard analyses of similarity. In the pillar that is in
focus (the orf19.2962 pillar) are 11 orthologs of this gene, with
the ortholog being absent in the genome of C. lusitaniae.
Figure 3b shows a network representation of the all-versus-
all database search for this set of orthologs. The nodes in
green produce a significant Blast hit when compared with
orf19.2962. As can be seen, only three genes produce a signif-
icant result. The other orthologs are included in the network
only as a consequence of the full analysis of Blast searches.
Applying MCL to this data set results in six Blast hits (state-
ments of homology) being discarded and consequently splits
the data into two communities. In standard phylogenomic
analyses, this set of orthologs that are weakly conserved in
sequence but strongly conserved in genomic location might
be analyzed as though they are two separate families, when in
fact by any reasonable criterion, they should be analyzed as a
single, albeit quite variable, family.

We used the CGOB database to explore how often the
standard Blast approach to detecting orthology would fail to
detect de facto orthologs. The CGOB contains 6,548 orthol-
ogy pillars that obviously contain two or more orthologs. Of
these, 707 contain at least one ortholog that would be missed
in an all-against-all Blast search of the database. They have
been manually included in orthology pillars based on synteny
and weak Blast hits. This constitutes ~10.8% of CGOBs orthol-
ogy pillars, where on the basis of Blast alone, the orthologs

FIG. 3. Analysis of a family of divergent orthologs in Candida and close relatives. (a) A view of three pillars from the CGOB database showing
orthologous genomic locations for 13 organisms, with gene names as per the CGOB database. The focus gene (orf19.2962) is colored in white, the three
orthologs that are identified in a standard Blast search are colored in green, and the other orthologs are colored in orange if they are identified in the
Blast search as a “hit” but not a significant hit an the gene is colored red if no hit was returned. (b) A sequence similarity network constructed using
Cytoscape (Shannon et al. 2003) based on the pattern of significant Blast hits from an all-versus-all search. Dashed lines indicate where the MCL
algorithm splits the data into two partitions.

509

A Pluralistic Account of Homology . doi:10.1093/molbev/mst228 MBE
 at M

aynooth U
niversity on Septem

ber 14, 2016
http://m

be.oxfordjournals.org/
D

ow
nloaded from

 

While 
goods-thinking
``
''
-
http://cgob.ucd.ie
http://cgob.ucd.ie
dataset
thirteen 
`
'
)
(
)
one 
on 
 there
ise
andida
(
)
BLAST
BLAST
dataset
BLAST
,
yse
yse
BLAST
BLAST
BLAST
approximately 
BLAST
http://mbe.oxfordjournals.org/


would be split into more than one family. Naturally, we an-
ticipate that this figure will increase substantially as we move
toward examining organisms that are more distantly related
than a group of closely related Ascomycota. Many or most
“unknown” proteins could or should be placed into existing
families, were it not for the limitations on computational
tools and—very specifically—approaches.

Case 3: N-Rooted Networks

Figure 4 presents the results of two analyses of proteins that
have likely experienced a gene fusion. This gene fusion is
clearly seen in figure 4a, which is a sequence similarity net-
work based on Blast searches. There are in fact two maximal
cliques (completely connected subgraphs that do not exist
exclusively within the vertex set of a larger clique) in this
network. The collection of three genes on the left of the
network and the three genes in the middle of the network
collectively form a clique. In addition, the three genes in the
center of the network and the seven genes on the right also

form a clique. The three genes on the left and the seven genes
on the right are not directly connected to each other. This
kind of graph topology strongly suggests a gene fusion or
fission event. In this example, we are going to assume that
the three genes in the middle clique are derived fusion genes
and not ancestral (note that the following will be true for any
genuine product of gene fusion even if this specific network is
not).

One set of proteins (the three genes on the left in fig. 4a)
are members of the COG1123 family as defined in the COG
database (Tatusov et al. 2000) and they function as ATP-
binding proteins. The second family of seven genes on the
right belong to COG0842 and function as ABC-2 type trans-
porters. The fusion genes are bifunctional ATP-binding and
transport proteins. For this analysis, we aligned the fusion
proteins (a total of three proteins) separately with the
COG1123 proteins (a total of three proteins in this family,
resulting in a six-sequence alignment), and separately, we
aligned the three fusion proteins with the seven members
of COG0842. These two alignments were merged into a

FIG. 4. An example of a data set that cannot fit onto a conventional phylogenetic tree diagram. The sequence similarity network displays the significant
similarity results from a Blast search of the collection of proteins against one another. The tree on the left is the tree recovered from a concatenated data
analysis and rooted arbitrarily on the internal branch separating the COG1123 proteins from the rest. The network on the right is what we call an
N-rooted network (in this case N = 2, so it is a two-rooted network).
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single alignment (available in supplementary information S1,
Supplementary Material online) and two analyses were car-
ried out.

The first analysis is seen in figure 4b, left tree. This tree was
constructed from a complete alignment of the data, with
missing parts padded out in the alignment using gap charac-
ters. The resulting tree is manifestly incorrect from two per-
spectives. First, COG1123 and COG0842 should have two
different roots because they have two different origins, yet
this diagram depicts a single origin of the entire tree. Second,
there is no rooting of this tree that can depict the fusion event
properly. This is because this representation—a tree—is not
how the data have arisen. A fusion event is accurately repre-
sented by a node with an in-degree of two, and standard
phylogenetic trees do not contain such nodes. The network
on the right of figure 4b is an accurate representation of how
the data have arisen. In this case, the N-terminal end of the
fusion proteins were aligned to the COG1123 sequences (re-
sulting in a six-sequence alignment) and the C-terminus por-
tions of the fusion proteins were aligned to COG0842. The
FastTree software (Price et al. 2010) was used to construct
two maximum likelihood trees from the data, and then these
trees were midpoint rooted and merged manually using the
Adobe Illustrator software (naturally, there is more than one
way to generate such a graph, but for illustration purposes, we
chose this method). The resulting network, which we call an
N-rooted fusion network, is a more accurate representation of
the evolutionary history of these sequences. The two roots
of the network are indicated, and the approximate location of
the fusion event is indicated using the black dot. We note that
this is an ad hoc placement of the fusion event—future work
can focus on methods for accurately investigating the loca-
tion of a fusion node. We cannot rule out the possibility or
indeed likelihood that the genes described here are in fact
related through some ancient undetectable community of
descent. This would mean that, for the two-rooted network
in figure 4b, we would simply be leaving out the edges of the
network that would unite the two root edges further back in
time, turning this two-rooted network into a more classic
phylogenetic network, as expected in PNT. Of course, it is
also possible that these two roots would join other kinds of
families that would join other kinds of families and so forth,
consistent with GT. Thus, although this simple example has
two root nodes (it is a two-rooted fusion network), large
multidomain proteins probably need to have their evolution-
ary history represented by 3-, 4-, or N-rooted networks, as
indicated by our next example.

Is it possible that COG1123 and COG0842 are indeed
homologous in the PNT sense, but this homology cannot
be detected? As we have said earlier and as seen in Cases 1
and 2, there is a severe technical limitation that means that
many homologies are not detected. This affects our homology
definitions more than our homology concepts. Even if there is
deep, undetected homology of the PNT variety between
these two groups of genes, N-rooted networks are useful for
providing a more complete picture of evolutionary
relationships.

Case 4: Composite Genes in the Genomes of 15
Eukaryotes

The single connected component shown in figure 5 illustrates
the value of GT (McInerney et al. 2011) in the study of
homology. To generate this figure, we have used sequences
from a total of 15 eukaryotic genomes (see supplementary
information S1, Supplementary Material online). The total
number of genes was 199,592. A similarity network was con-
structed from this data set using the BlastP program (Altschul
et al. 1997) with the cutoff set to an e-value threshold of
1e�10. We searched through this network for composite
genes, using the program FusedTriplets.py (Jachiet et al.
2013) and a verification test at 1e�20 threshold. Thus, a
gene C is identified as composite if there are two component
genes A and B such that: A and C are similar, with an e-value
less than 1e�20; B and C are similar with an e-value less than
1e�20. In addition, A and B Blast matches on C do not
overlap, and A and B are not similar, with an e-value greater
than 1e�10. Next, we looked for multicomposite genes,
which is the name we give to composite genes whose com-
ponent genes (A and B) are themselves composites.

The similarity network has a giant connected component
(GCC). This GCC contains 41.4% of the nodes (82,702) and
more than 90% of the edges (8,826,323). It is very dense, with a
mean degree of 200. This makes it impossible to visualize with
Cytoscape (Shannon et al. 2003) or Gephi (Bastian et al. 2009).

Interestingly, we have a situation for this relatively small
data set of just 15 genomes, where we can find a chain of
significant sequence similarity between any two pairs of genes
for almost half of the genes in the network. Under the con-
ventional homology concept, the distant homology between
any pair of dissimilar sequences is only retrieved by a chain of
homologous intermediates with entire length similarities. An
alternative GT-based explanation is that sequences with dif-
ferent ancestors recombine to create intermediate sequences
that share partial homology with both of their ancestral se-
quences. Figure 5 illustrates that this alternative explains most
of this pattern in the data. This is the situation that is outlined
in table 1. In this case, we do not suggest that we alter the
meaning of homology so extensively that sequences that have
no ancestor–descendent relationship to one another are still
considered homologous. Instead, homologous relationships
are those where descent from at least one common ancestor
has occurred and family resemblance relationships
(Wittgenstein 2009) are those where a path of significant
similarity can be found through a graph like we see in
figure 5 that links the two sequences.

Composite sequences as identified by FusedTriplets
(Jachiet et al. 2013) uncover this kind of nontransitive rela-
tionship that may result from nonhomologous recombina-
tion, domain shuffling, gene fusion, or indeed fission events.
Most of the represented communities—and almost all of the
largest and central communities—contain at least a small
proportion of such composite sequences. A total of 24% of
the sequences in the GCC contain a composite signature
(which explains the yellowish look of the result), to be com-
pared with the 6% proportion of composite sequences for the
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FIG. 5. GCC from all-against-all BlastP search of 15 eukaryotic genomes. Nodes represent communities as identified using a single pass of the Louvain
algorithm. Node area representing size of community and edge thickness is the square root of the number of edges connecting two nodes, with the
exception of the largest edge that has its size represented by a thickness five times smaller (corresponding to 220,000 edges instead of the actual
1,100,00). Nodes on the left diagram are colored according to the proportion of composite genes in the community (from green = 0% to purple = 100%).
Subnetworks of four communities are displayed around the figure. These communities have been chosen along the range of composite proportion
(from light green to light red) to illustrate the variety of community structures. Nodes from these insets are colored in green for noncomposite
sequences, yellow for composite sequences, and red for multicomposite sequences, that is, composites sequences whose component genes are
themselves composites. See supplementary figure S1 (Supplementary Material online) for a pie chart representation of the proportion of noncomposite,
composite, and multicomposite genes in each community.
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rest of the network (outside the GCC). Furthermore, some
composite sequences also tend to recombine, with 10% of
sequences identified as multicomposite sequences in the
GCC. The structure of the GCC (and of some communities)
exhibits large cycles without chords (holes), which also pro-
vides evidence of multiple introgressive events in the history
of these proteins. This demonstrates the extent to which we
can see non-tree-like evolution in many places in this data set.

Phylogenetic software tools or methods have not tackled
the evolution of composite molecular sequences, despite the
pervasiveness of introgression. The complex, yet real relation-
ships between remodeled genes remains a blind spot for most
analyses, because most analyses are performed at a much
more local scale after the clustering steps. It is not clear
why this perspective is the one usually adopted, because
there are several databases of multidomain proteins
(Majumdar et al. 2009), and a high level of interest in how
domains combine (Sonnhammer and Kahn 1994; Park and
Teichmann 1998; Enright et al. 1999; Marcotte et al. 1999;
Apic, Gough, Teichmann 2001b; Wuchty 2001; Enright et al.
2003; Portugaly et al. 2006; Song et al. 2008). However, the
dominant concept of STT homology, the focus on tree think-
ing as the prism through which we should view evolutionary
histories, has undoubtedly played a role.

A Pluralistic Account of Homology
The concept of homology is defined as “descent from a
common ancestor.” However, unless we include situations
where the number of ancestors is greater than one, then it
is necessary to ignore many real relationships—at the
moment, this is a very common situation. The standard clas-
sifications of homologs place them into the category of ortho-
log (originating as a consequence of speciation), paralog
(created by gene duplication), xenolog (created by horizontal
gene transfer of an entire sequence), or ohnolog (created by
whole genome duplication), all of whom are divergent events
that are expected to appear under the standard concept of
homology and are adequately analyzed using phylogenetic
trees or phylogenetic networks. In contrast, the merger of
two evolving entities (Bapteste et al. 2012) is not expected
under a tree-thinking perspective and the standard concept
of homology. Very little software has been developed to take
account of this kind of process, and indeed, where software
has been developed to analyze introgressive events, the re-
sulting homologs have been described as not being homologs
at all (Song et al. 2008).

Evolutionary biologists might wish to know about the evo-
lution of more complex gene families, for example, the origins
of entire connected components in a gene network and not
just members of the same tribe. Alternatively, it might not be
interesting to carry out such a broad-scale analysis and in-
stead a narrower focus on a closed family or a subset of
members of an open tribe is desired. If the latter, is it possible
to clearly articulate why this subset of evolutionary events are
the only ones to be studied? We do not say that this is an
invalid thing to do—far from it, but it is necessary to be clear a
priori why this is the only kind of evolutionary event that is to
be studied when a more pluralistic account of evolutionary

processes is possible. Gene evolutionary analyses and phylo-
genetic analyses are not the same thing (Bapteste et al. 2009).
Complete reliance upon only full-length homologs in phylo-
genetic analysis has the potential to censor our understanding
of nature (see Dagan [2011] for instance). The pervasive con-
tribution of introgression is a strong incentive to develop
tools to handle data created by such events.

It would be absurd to suggest that all the genes in figure 5
are homologs of one another (in the traditional sense); how-
ever, it is clear that there are relationships that can be ex-
plored that are outside what is conventionally expected of
homologs. Going back to our earlier thought experiments
with four genes and four domains, with each gene having
two domains (see table 1), these genes will form a ring struc-
ture in a network analysis (a situation we see repeatedly in the
empirical data used to construct fig. 5). We can clearly see
that Gene1 has partially homologous relationships with
Gene2 and Gene4. Likewise, Gene2 has partially homologous
relationships with Gene3 and Gene1. Gene3 has partially ho-
mologous relationships with Gene4 and Gene2. Gene4 has
partially homologous relationships with Gene1 and Gene3.
We can also say that Gene1 and Gene3 have a family resem-
blance relationship that is only evident because of the pres-
ence of intermediates. Gene2 and Gene4 also have a family
resemblance relationship. This is to say that they are not
related through common ancestry but through intermediate
gene sequences that show a line of common ancestry. In the
vernacular form, it might be said that they are related through
marriage (a union of their relatives). In terms of network
analyses, two nodes that are directly connected to one an-
other on a network are homologs (shortest path length of 1),
while two nodes that are connected with a shortest path
length that is greater than 1 can be considered to have a
family resemblance (whose origin can be explored: do they
display STT/PNT homology that is no longer detectable by
Blast? Are they made of components that are shared within
an open tribe?, etc.). Thus, molecular data are complex, with
pairs of genes that have only one last common ancestor and
other pairs that have more than one last common ancestor.

By stating a pluralistic concept of homology, emphasizing
the possibility of both partial homology and linkages that lead
to family resemblances between pairs of sequences in the
absence of any direct homology (partial or complete), we
wish to offer some ways to deal more inclusively with a
greater range of homologies and similarities in sequences.
For the most part, such pluralistic homology relationships
have been depicted using connected components in se-
quence similarity networks (Dagan et al. 2008; Dagan and
Martin 2009; Dagan 2011; Kloesges et al. 2011; Bapteste
et al. 2012; Jachiet et al. 2013; also, see figs. 2–5 in this man-
uscript). However, in this article, we have also introduced the
idea of using N-rooted fusion networks as an additional
means of analyzing such data. Thus, a combination of gene
similarity networks and N-rooted fusion networks could pro-
vide a more inclusive analysis and visualization approach with
the ability to deal with multiple (>1) multiple sequence align-
ments, generating multiple phylogenetic trees or networks
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that can be fused together to reflect evolutionary histories
more realistically.

The timing of fusions could be estimated using, for in-
stance, maximum likelihood or Bayesian approaches, by ref-
erence to a fossil record or some such external timing. Relative
or absolute timescales for fusion events can place them in the
context of environmental change, for instance. Currently,
estimating historical dates is restricted to ramifications on
bi- or multifurcating phylogenetic trees (e.g., Tamura et al.
2012). However, the amount of introgression we see in
figure 5 suggests the presence of large-scale introgressive
events whose timing and context are poorly understood.

Enzymatic properties and how they change can be
mapped onto these new structures, and the frequency of
“emergent” properties (Fani et al. 2007) or shifts in selective
pressures on individual amino acids can be estimated with
respect to N-rooted fusion networks. Currently, tracing func-
tional evolution is most often carried out by mapping traits
onto phylogenetic trees of full-length homologs (e.g., see
Feuda et al. 2012 and also Adai et al. 2004). The hotly debated
“ortholog conjecture” states that orthologs are more similar
in function despite being in different species, compared with
paralogs that are to be found in the same species (Nehrt et al.
2011; Altenhoff et al. 2012; Chen and Zhang 2012). Sequence
similarity network and N-rooted fusion networks offer the
possibility of tracing functional evolution in a much more
inclusive manner. We can ask whether functional variation
and family resemblance are strongly or weakly linked and
whether there are patterns that can emerge from such an
analysis. Because there are many constraints on the kinds of
genetic goods that can be joined together (see e.g., the con-
tent of the fusionDB database that clearly shows patterns of
fusions are not random), a “family resemblance conjecture,”
for instance, would suggest that nonhomologous sequences
that have a closer family resemblance relationship are more
similar in function than sequences that lack or have a more
distant family resemblance relationship.

Adjusting our models to the data may well demonstrate
whether there are as-yet unknown barriers to introgression,
whether gene fusion occurs at different rates at different
times and in different contexts and whether there are pre-
ferred routes for introgression and preferred partners.
Although it is well known that homology relationships
strongly suggest functional similarities, analysis of networks
could reveal additional functional connections through the
analysis of extended family resemblances (Bapteste et al.
2012). It has already been shown that additional evolutionary
information can be obtained by the analysis of extended gene
similarity networks (Alvarez-Ponce et al. 2013; Jachiet et al.
2013); however, there are further analyses that can be carried
out.

In figures 2–4, we show that a rush to “atomize” evolu-
tionary relationships and to only use a conservative perspec-
tive when analyzing homologies can completely blind us to
interesting evolutionary events. Similarity network analyses
can be used not only to understand recombination and fu-
sion but also to find if there are transitive homology state-
ments that can be made (Alvarez-Ponce et al. 2013). Distant

homologies may be recognized through intermediate
sequences, so if GeneX and GeneY manifest homology
along a particular region and GeneY and GeneZ manifest
homology along the same region, then even if a tool such
as Blast cannot directly detect the homology between GeneX
and GeneZ, we can use the network information to assign
homology, even though our standard software tools might
not see this homology.

Concluding Remarks
At this stage, we know much more about evolutionary rela-
tionships than we did 26 years ago when Reeck et al. (1987)
felt the need to clarify the terminology. It is now much clearer
that fusion and fission (Snel et al. 2000; Kummerfeld and
Teichmann 2005; Pasek et al. 2006; Durrens et al. 2008;
Jachiet et al. 2013) of (parts of) molecules is a frequent process
and a significant source of genetic and genomic novelty. The
consequent muddying of gene-level relationships affect se-
quence relationships to a point that justifies proposition of
an extended notion of evolutionary relationships and of what
constitutes a gene family. Overlooking of introgressive pro-
cesses is causing considerably fewer evolutionary events to be
appraised than would be the case if family relationships were
defined more broadly. For this reason, future notions about
homology should be explicit about the kind of homologous
relationship that is observed—the model must be informed
by the data and not just assumed at the cost of excluding
massive amounts of data. Recognizing different homology
and family resemblance concepts (STT, PNT, and GT) is
useful and important. In other words, any operational defini-
tion of homology must be pragmatically oriented. Under that
condition, reconsidering how we define relationships be-
tween genes may open the door to a new biology.

To conclude, adopting a more pluralistic view of homology
entails that a number of methodological issues need to be
resolved. Proteins or genes must be allowed to be a member
of more than one family. Sequence similarity that is due to
extensive remodeling (e.g., Epaktology [Nagy, Bányai, et al.
2011; Nagy, Szláma, et al. 2011]) must be distinguished
from similarity that is not due to remodeling. Methods for
assessing the importance of family resemblance relationships
need to be developed—whether such family resemblances
are relevant for function, for instance, or whether they are
not. Statistically robust approaches for constructing N-rooted
networks need to be developed in addition to methods for
timing introgressive events on these structures. The analysis
of connected component topological features must be devel-
oped so that we can understand the relationship between
topology, protein function, and evolutionary history.
Embedding phylogenetic trees or networks into networks of
gene sharing can allow a far greater level of detail in assessing
evolutionary histories.

Supplementary Material
Supplementary information S1 and figure S1 are available at
Molecular Biology and Evolution online (http://www.mbe.
oxfordjournals.org/).
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