
A Model Driven Approach for Refactoring
Heterogeneous Software Artefacts

Keith Dooley

A dissertation submitted in partial fulfilment

of the requirements for the degree of

Master of Science
at

Maynooth University.

Faculty of Science & Engineering, Department of Computer Science

February 2016

Head of Department: Dr. Adam C. Winstanley

Supervisors: Dr. Rosemary Monahan, Dr. James F. Power

Contents

1 Introduction 7
1.1 Motivation . 7

1.2 Thesis Statement . 8

1.3 Contributions . 9

1.4 Organisation of Dissertation . 10

2 Towards a Model Driven Approach to Refactoring 12
2.1 Research Questions . 12

2.2 Refactoring . 12

2.2.1 Refactoring Operations . 13

2.2.2 When to Refactor & Considerations for Developing a Refactoring Engine 16

2.2.3 Manual, Automated and Search–based Refactoring 17

2.3 Formal Specification & Design by Contract . 18

2.4 Model Driven Engineering . 20

2.4.1 Metamodel Hierarchy and Transformations 20

2.4.2 MDE Environments . 20

2.4.3 Domain Specific (Transformation) Languages 22

2.4.4 Modelling Java Programs . 23

2.5 Software Metrics . 23

2.5.1 Project Metrics . 24

2.5.2 Design Metrics . 24

2.5.3 Validation of Metrics . 25

2.5.4 Metric Tools . 25

2.5.5 Metrics to Identify Refactorings . 25

2.5.6 Summary . 26

3 RefDstl: A Language for Specifying and Scripting Refactorings 27
3.1 Use Cases . 27

3.2 Characteristics of a Good Programming Language 28

3.3 Design of a DSTL for Defining and Scripting Refactorings 29

3.3.1 Choosing a Suitable Paradigm . 30

3.3.2 Language Constructs . 31

3.4 RefDstl Implementation . 32

3.4.1 Parser Generators and Grammars . 33

CONTENTS 3

3.4.2 A Grammar for RefDstl . 33

3.4.3 Substituting RefDstl . 34

3.5 Defining a Standard Library of Java Refactorings 34

3.6 A Small Case Study . 34

3.7 Summary . 41

4 A Model Driven Framework to Interpret RefDstl Scripts 43
4.1 High–Level Overview of the RefDstl Interpreter Framework 43

4.2 Enriching the RefDstl Language via Script Handles 49

4.2.1 Embedding a New Handle . 49

4.2.2 Supporting Debugging in RefDstl Scripts 50

4.2.3 Checking Object Types . 50

4.2.4 Accessing the Program Model . 50

4.2.5 Accessing Old Variables . 51

4.3 Custom Transformations into the RefDstl Framework 51

4.4 Disadvantage of Our Approach . 52

4.5 Summary . 53

5 A Case Study on Automatically Refactoring ‘God’ Classes 54
5.1 Purpose of Experiment . 54

5.2 Summary of Approach . 55

5.3 Identifying a Corpus for the Experiment . 55

5.4 Content of the Qualitas Corpus . 56

5.5 An Analysis Tool for the Qualitas Corpus . 57

5.5.1 Persisting the Metadata . 58

5.5.2 Analysing the Classes . 58

5.6 Selecting Refactoring Candidates . 60

5.6.1 Creating the MoDisco Models . 60

5.7 An Extract Class Refactoring . 63

5.8 Results . 64

5.8.1 Predicting CBO . 64

5.8.2 Time Taken . 67

5.9 Discussion . 68

5.10 Summary . 69

6 Conclusion 70
6.1 Summary of Contributions . 70

6.2 Future Work . 71

Acronyms 72

A RefDstl Language Grammar for Xtext 74

B RefDstl Standard Library 80

List of Tables

4.1 The interface that must be implemented by a class to integrate it into the RefDstl

framework as a script handle. 50

4.2 The methods that must be implemented by the transformation interface. 52

5.1 Systems and number of versions provided in the Qualitas Corpus version 20130901e. 58

5.2 API for interacting with the clustering plugin. 63

List of Figures

1.1 An overview demonstrating how the components of the refactoring system pre-

sented in this dissertation interact. 11

2.1 This graph shows how the size of the Ant software system grows twelve–fold in

terms of lines–of–code between versions 1.1 and 1.8.4. 14

2.2 Primitive refactoring operations according to Opdyke (1992). 16

2.3 An example showing the four layers of the metamodel hierarchy. 21

3.1 A UML class diagram demonstrating a poorly designed system to be refactored. . 36

3.2 A UML class diagram that represents the system presented in Figure 3.1 refactored

to obtain maximum inheritance. 37

3.3 The UML class diagram from Figure 3.1 refactored for minimum methods per class. 40

3.4 The UML class diagram from Figure 3.1 refactored using the optimisations calcu-

lated by the Dearthóir tool. 42

4.1 An overview of the components in the RefDstl interpreter framework. 44

5.1 The number of classes per system. 57

5.2 An entity relationship diagram illustrating the main entities and attributes persisted

by the static analysis tool. Other entities, attributes and keys have been omitted

for simplicity. 59

5.3 SQL query to discover ‘God’ classes in all versions. 61

5.4 SQL query to discover classes for the study. 61

5.5 The percentage of ‘God’ classes for all versions of each of the software systems

in the corpus. 62

5.6 RefDstl sourcecode used to perform the extract class refactoring on an identified

‘God’ class. 65

5.7 Pearson’s correlation between the predicted CBO metric and the actual value . . . 66

5.8 The distribution of the original, predicted post refactoring and actual post refac-

toring CBO measurements for the software systems used in the study. 67

5.9 Pearson’s correlation between the size of the model being refactored and the time

taken to refactor the model in nanoseconds. 68

http://ant.apache.org

Abstract

Refactoring is the process of transforming a software system to improve its overall structure while

preserving its observable behaviour. Refactoring engines are normally used to perform these trans-

formations for efficiency and in order to avoid introducing behavioural changes into the program

due to human error. Although these engines do not verify that behaviour is preserved, it is widely

accepted that automated transformations are less likely to introduce errors in comparison to man-

ual refactoring. Despite the advantages provided by refactoring engines they fall foul of certain

weaknesses.

Here we hypothesise that Model Driven Engineering can be used to produce improved refac-

toring engines that are less vulnerable to those weaknesses. We develop a Domain Specific Trans-

formation Language for defining new composite refactorings from a set of built–in primitives and

to script their application. We also develop an interpreter for the language, effectively providing

an operational semantics, in the guise of an extensible transformation framework. We evaluate our

approach with a case study examining the correlation between actual and predicted measurements

of the Coupling Between Objects metric for classes that undergo the extract class refactoring. The

results show that our approach is promising.

Chapter 1

Introduction

This chapter presents the motivation for the research presented in this dissertation. It states explic-

itly our thesis and provides an overview of our contributions. It concludes with a ‘roadmap’ that

discusses the organisation of the remaining chapters.

1.1 Motivation
Opdyke (1992) presented refactoring as a methodical approach to improve the structure of a soft-

ware system’s source code while preserving its observable behaviour. It is often carried out by

developers as an intermediary process, so that adding new functionality to the system is less labo-

rious, or during preventative maintenance, so that the codebase remains comprehensible. Refactor-

ing is an inevitable process for software that often changes, such as what Lehman and Fernández-

Ramil (2006) categorise as ‘E’ type software. The process of refactoring involves applying struc-

tural transformations to the code and consists of two stages. The first stage is checking that a set of

conditions hold and the second stage is actually performing the transformation. The purpose of the

conditions is to ensure that the refactoring preserves the program’s behaviour. The set of condi-

tions applicable to a refactoring varies for each transformation and for the programming language

that is used to implement the system under refactoring. We call atomic transformations primitive

refactorings and when composed these form composite refactorings.1

Although manual refactoring is possible, and done often, it is generally accepted that it is

more susceptible to undesired side effects due to human error. Many of these cannot be detected

by the compiler so, although the system compiles, its behaviour will have changed. This leads

to unpredictable behaviour that is costly to debug and rectify. If the errors are not detected until

the system is released to the client then there may be other, potentially irreversible, consequences

such as data loss.

Refactoring engines support the refactoring process and offer a semi–automated approach.

Interaction between the developer and the refactoring engine is minimal. The developer guides

the engine regarding what refactoring to apply and where it is to be applied. There is no longer a

need for the developer to check that the necessary conditions are satisfied or that all the relevant

areas of the codebase are updated. Despite the benefits afforded by refactoring engines they fall

foul of these shortcomings, which we refer to throughout this dissertation as the four Is2:

1It will be clear from the context when we use the word refactoring to mean the activity of refactoring or a specific
transformation.

2These are numbered so later when we refer to I1, for example, we mean the first in this list.

1.2. THESIS STATEMENT 8

1. Inaccurate — The development of a complete and sound set (i.e. all conditions are consid-

ered and all conditions are correct) of refactoring preconditions is a non–trivial task and is

dependent on the programming language being refactored. This claim is supported by Brett

et al. (2007) who have shown that even the most widely used refactoring engines are sus-

ceptible to having overly weak or strong preconditions. There is no support for altering the

preconditions once the refactoring engine has been compiled so users cannot fix erroneous

conditions in ‘the field’.

2. Inextensible — Refactoring engines offer limited refactorings to the user. Users cannot de-

fine their own refactorings and save them for later application. Popular refactoring engines

offer only the primitive refactoring operations, which the user must compose time and time

again to perform more useful refactorings.

3. Inflexible — Most refactoring engines are capable of refactoring just a single software arte-

fact: source code. Nowadays this is no longer sufficient because software engineers work

in an environment that consists of multiple heterogeneous artefacts. For example, there are

artefacts that represent high level design documentation such as Unified Modelling Lan-

guage (UML) class diagrams and artefacts that might even be involved during the system’s

runtime, such as database or Extensible Markup Language schemata. These are often in-

terdependent and refactoring one requires changes to the others. Refactoring engines are

limited in their capabilities in this respect. Some refactoring engines, such as that provided

by the Eclipse IDE, are able to update some aspects of JavaDoc annotations while refactoring

Java source code. However they do little more beyond this.

4. Improvident — Ge and Murphy-Hill (2014) suggest some developers ignore refactoring

engines because they do not trust the changes refactoring engines make. We believe they

continue to refactor manually because it enables them to see changes being made stepwise.

This means that if the refactoring appears to be having a negative impact on other aspects

of the system the developer can change his or her course of action. Common refactoring

engines restrict the developer from doing this and changes are made irrespective of unde-

sired effects. For example, refactoring engines will allow a developer to stupidly move all

of a system’s functionality into a single class despite the fact this degrades the quality of the

system’s design.

Our thesis, outlined next, addresses these shortcomings.

1.2 Thesis Statement
We believe there is a need to research and implement ‘next generation’ refactoring engines that

are better suited for contemporary software engineering environments populated by heterogeneous

artefacts. This sets the stage for our thesis:

Improvements to current refactoring engines can be made through an approach that

ties together Model Driven Engineering (MDE) and formal methods (specifically De-

sign by Contract (DBC) 3) and encourages developers to define their own reusable
3We note that the term ‘design by contract’ is trademarked but we use it in this dissertation when referring to

approaches that share the same concepts.

1.3. CONTRIBUTIONS 9

and shareable libraries of refactorings.

We now briefly remark on the rationale for our thesis but delve into greater detail in Chapter 2.

MDE is an approach to software engineering where development is focussed on creating

shareable models represented in some core format, which can be converted via model transfor-

mations into other representations. This might include source code. This is in contrast to earlier

approaches where the goal is to represent classes of real world entities directly in source code. In-

terestingly, however, MDE has parallels with earlier Computer Aided Software Engineering (CASE)

approaches. In the CASE approach developers modelled a system using a visual language such as

UML and then forward engineered those models into source code. Changes made to the source

code would then be reflected in the UML diagrams. The purpose was to keep the documentation

and the code synchronised. The difference between MDE and CASE lies with CASE being only

concerned with two representations. The general approach being taken remains the same. That is

to say, there is a further step in the direction of developers working at higher levels of abstraction.

MDE is discussed in greater detail in the following chapter.

DBC is a methodology for code development that has been successfully used to improve

software reliability. Comparisons are commonly drawn between the approach taken in DBC and

transactions in the business world. In the DBC approach, there exists a contract between the client

who uses code in an arbitrary library and the provider of that library. The contract describes what

conditions the client is obliged to fulfil in order for the code in the library to execute correctly. The

correct execution of the code is also described in terms of conditions. The approach we propose

to refactoring requires that developers define their own refactorings and the conditions that must

be true about the structure of the program in order for the refactoring to be successfully applied.

We briefly discuss how this will be done when discussing our contributions in the next section but

a more in depth discussion is provided in the subsequent chapter.

1.3 Contributions
The work presented in this dissertation does not offer a complete solution to developing the next

generation refactoring engines. However, we make the following contributions in order to evaluate

our thesis. These are provided as prototype tools and a complete environment with the necessary

set up and configuration is available by installing the VirtualBox disk image stored on the elec-

tronic medium disseminated with this dissertation.

• RefDstl Language — We have developed a prototype DSTL that can be used to specify

and script refactorings on models of software systems in terms of a set of basic primitive

operations. The language and requisite tools, such as a parser and text editor with syntax

highlighting and content assist, are produced using MDE technologies. The notion of a DSTL

also has roots in MDE. Design by contract features heavily in the language. The language

targets the inaccuracy (I1) and inextensible (I2) shortcomings raised above. Although de-

veloping the necessary conditions is a difficult feat, we can at least give the end users the

opportunity to weaken or strengthen the conditions being checked by the refactoring engine

in ‘the field’ rather than having to look into the entire source code of the engine. Further-

more, refactorings written in the language can be saved to a script for later use.

1.4. ORGANISATION OF DISSERTATION 10

• RefDstl Transformation Framework — This framework serves as the interpreter for RefDstl

scripts. However, it is richer in capability than traditional interpreters. It is an extensible

framework that allows others to plug in their own transformations (which are driven by

refactorings) and allows artefacts other than source code to be refactored simultaneously.

We have provided two noteworthy plug–ins for the framework among others. The first

refactors the software system; it relies on the MoDisco4 metamodel for representing Java

systems. A model of the system under refactoring, conforming to the MoDisco metamodel,

is transformed during the refactoring. When the framework is equipped with just this trans-

formation then it behaves as a regular refactoring engine. The second plug–in enriches the

framework with a notion of code quality. It allows developers refactoring to include re-

quirements about the system’s code quality in their refactoring conditions. This tackles the

problem of improvidence (I4) described above. This plug–in uses the approach by McQuil-

lan (2011). We perform a model transformation from the MoDisco model to McQuillan’s

metrics metamodel. This happens in real time while the system model is being refactored.

We allow for plug–ins to be reasoned about in the refactoring conditions, which allows the

developer who defined the refactoring to prevent refactorings being applied where the qual-

ity of the system (determined by metric measurements) deteriorates. By allowing further

transformations to be plugged into the framework we permit flexibility. This addresses I3.

• Standard Library of Primitive Refactorings — We provide a standard library of primitive

refactoring operations based on the same described by Opdyke (1992). It does not directly

address the shortcomings addressed above but the need for it will become apparent later.

Figure 1.1 depicts a visualisation of how our framework operates. The portion developed by

us includes what is inside the box entitled ‘RefDstl Transformation Framework’ and the RefDstl

metamodel. We did not develop the MoDisco metamodel or contribute to the MoDisco project in

any way. The diagram shows that the process of refactoring begins with a Java software system

that is transformed into a model that conforms to the MoDisco metamodel. This can be done

within an Eclipse Integrated Development Environment (IDE) equipped with the MoDisco plug–

ins. The resulting model is then consumed by the RefDstl framework along with a script written in

the RefDstl scripting language that conforms to the RefDstl language metamodel. The framework

applies a sequence of transformations to the model of the system under refactoring. This yields one

or more resulting output models, the most important of which is probably the refactored system

that, again, conforms to the MoDisco metamodel. The refactored system can be transformed

back into Java source code using a model–to–text transformation. However, this is outside the

scope of this dissertation since we concern ourselves only with models that can be manipulated

algorithmically.

We discuss the implementation and evaluation of these components throughout the disserta-

tion. The ‘roadmap’ presented in the next section describes the structure of this document.

1.4 Organisation of Dissertation
The sequel is organised as follows:

4https://eclipse.org/MoDisco/

1.4. ORGANISATION OF DISSERTATION 11

Figure 1.1: An overview demonstrating how the components of the refactoring system presented
in this dissertation interact.

In Chapter 2, the necessary background material is provided. It addresses some of the as-

sumptions that have been made thus far including the relevance of refactoring in software engi-

neering circles. We also expand on our discussion of MDE and DBC. Furthermore, we discuss

an alternative approach to ensure software quality, i.e. software metrics. That chapter comes to

a conclusion with a discussion about how other researchers have used metrics to identify where

refactoring should occur. This is followed in Chapter 3 with a discussion regarding the imple-

mentation of the RefDstl language. We discuss potential use cases for the language as well as

language design goals. The implementation of the language is described and the chapter ends with

language examples and a brief summary of the RefDstl standard library. In Chapter 4, we discuss

the design and implementation of the RefDstl framework for interpreting RefDstl scripts as well

as how to develop plug–ins that expand its capabilities. We evaluate the efficacy of our approach

in Chapter 5 with a case study over a corpus of open–source Java software. Chapter 6 concludes

the dissertation with a summary of our findings and a promise to investigate further avenues of

research that arise from this body of work.

The appendices at the end contain supporting material. A list of acronyms is provided on page

71. In the electronic version of this document, the important terms and acronyms are hyperlinked

to their expanded form. Appendix A contains the grammar of the RefDstl language to resolve any

ambiguities concerning what is and is not a RefDstl program. Appendix B contains the full text of

the RefDstl standard library.

Chapter 2

Towards a Model Driven Approach to
Refactoring

In Chapter 1, we stated our thesis that MDE and DBC could be combined to address the shortcom-

ings of current refactoring engines that we termed the ‘four Is’. While our ultimate goal in this

dissertation is to demonstrate the validity of this thesis, there are three research questions that we

address prior to implementing a prototype sufficient for evaluation. We open this chapter by es-

tablishing those questions, which paves the way for the literature review that follows. This review

allows us to identify weaknesses concerning the state–of–the–art and prevents us reinventing the

wheel. The literature review covers the topics of: refactoring, DBC, MDE, and software metrics.

This chapter also affords us the opportunity to introduce nomenclature and definitions.

2.1 Research Questions
The following questions drive the remainder of this chapter and the answers form the rationale for

the implementation choices of our solution:

RQ1 What approaches have been taken to ensure that a system’s behaviour is preserved post

refactoring?

RQ2 What approaches have been taken to allow software engineers to define their own reusable

refactorings?

RQ3 What considerations are paid to the overall quality of a software system while refactoring?

The connection between these questions and the ‘four Is’ should be apparent. RQ1 is related

to I1, while RQ2 relates to I2. Both I3 and I4 are associated with RQ3.

We now examine the literature and begin with the topic of refactoring to address RQ1.

2.2 Refactoring
During its lifetime, a software system grows considerably to adopt and adapt to changing and new

requirements. Evidence supporting this claim is offered by the data illustrated in Figure 2.1, which

was collated from data gathered by Tempero et al. (2010). It shows that after passing twenty–three

versions the Ant1 software system grows twelve–fold from 20,832 to 255,690 lines of code. This

is not an isolated event. All but one of the fifteen systems considered in the data gathered by

1http://ant.apache.org

http://ant.apache.org

2.2. REFACTORING 13

Tempero et al. (2010) exhibits growth as it evolves. The ‘black sheep’ is JGraph2, which reduces

by an insignificant 176 lines of code.

Maintenance activities occur so frequently with software that it is estimated by Glass (2001)

that they account for between 40% — 80% of software costs. In order to minimise the time,

and consequently cost, of implementing changes in these rapidly growing systems it is highly

important that the code is comprehensible to the responsible engineers. Approaches to software

engineering can make writing comprehensible code quite a feat because many development ap-

proaches are iterative; from early approaches such as the spiral model by Boehm (1988) to more

recent approaches such as extreme programming by Beck (1999). These iterative processes result

in code being added repeatedly until the structure of the codebase begins to rot.

One solution to code rot is to engage in total productive maintenance (an idea admonished by

Martin (2003)) — the code should be re–worked frequently to improve its structure. This however

can result in regressions when defects are erroneously introduced. Refactoring is a methodical

activity for improving code structure during which, code transformations are applied. However,

these transformations are restricted to a set (called refactorings) that are widely believed to pre-

serve observable behaviour.

Recent literature concerning refactoring has focussed on automating approaches to refac-

toring: the development of algorithms for identifying regions of the code that require refactor-

ing, development and evaluation of refactoring engines that automatically apply refactorings and

search based refactoring techniques that view the task of finding the best refactoring candidate

as a search–space problem. Other work, closely related to RQ1, has focussed on proving the

correctness of refactoring operations with respect to the observable behaviour of the program.

These topics are surveyed in this section and an introduction to common refactoring operations is

presented.

2.2.1 Refactoring Operations

Refactoring operations are the transformations applied to source code to improve its structure with

the caveat that they preserve the observable behaviour of the program. Some of these operations

can be viewed as atomic, which we call ‘primitive’ or ‘elementary’ refactorings while more com-

plex and generally more useful molecular operations are known as ‘composite’ refactorings.

Primitive Operations & Behaviour Presentation
Primitive operations are the smallest atomic refactoring operations that can be applied to a pro-

gram. The original body of work published on refactoring by Opdyke (1992) specified twenty–

three primitives. These are listed in Figure 2.2. The intention of each should be self explanatory.

However, the method for applying each of these is dependent on the programming language being

refactored and how the program is represented. For example, if the program is represented as an

abstract syntax tree then the refactoring will be performed using tree manipulations.

Not all primitive operations are relevant to every language. For example, Java omits pointers

so the ‘convert instance variable to pointer’ refactoring is inapplicable. The operations were de-

scribed by Opdyke (1992) with conditions that must be met regarding the structure of the program

if the refactoring is to preserve behaviour. These are called preconditions. We draw attention

2http://www.jgraph.com

http://www.jgraph.com

2.2. REFACTORING 14

Figure 2.1: This graph shows how the size of the Ant software system grows twelve–fold in
terms of lines–of–code between versions 1.1 and 1.8.4.

to the fact that the preconditions vary depending on the programming language being refactored,

as do Mens et al. (2005). Furthermore, Mens et al. (2005) raise the point that it has never been

demonstrated for mainstream programming languages that these preconditions are sufficient to

guarantee that program behaviour is preserved for all refactorings. They claim that such a proof is

impossible and we refrain from accepting this as a challenge here.

There have been attempts made with some degree of success to show that refactoring object–

oriented specification languages (that have well defined semantics) does indeed preserve be-

haviour. For example, Carvalho Júnior et al. (2007) use CafeObj3 to prove the correctness of

extract, inline, and move method refactorings as well as self–encapsulate field in a sequential sub-

set of Java named Refinement Object–Oriented Language (ROOL). The purpose of (ROOL) is to

reason about ‘object–oriented programs and specifications’. They encode the rules of the grammar

3http://www.cafeobj.org

http://ant.apache.org
http://www.cafeobj.org

2.2. REFACTORING 15

of ROOL in CafeObj as well as the refactoring rules. CafeObj then ‘mechanises’ the refactoring

proofs via rewriting.

Garrido and Meseguer (2006) take a similar approach using the Maude4 algebraic rewriting

system by Clavel et al. (2003). They provide an equational semantics in Maude for three Java

refactorings and formal proofs for two: pull–up and push–down field.

Mens et al. (2005) use typed labeled graphs to represent programs and show how program

refactorings can be represented as graph transformations where it is possible to prove that refac-

torings exhibit properties such as access, update and call preservation.

Soares et al. (2010) take a less formal approach to demonstrating that refactoring preserves

behaviour. They developed the SafeRefactor tool. It performs a static analysis to identify methods

that have common signatures in both the source and target programs. It then generates test pro-

grams to test these common methods using the Randoop5 program and, if it finds any changes, it

reports that a behavioural change has occurred.

Overbey et al. (2016) extend their earlier work (Overbey and Johnson, 2011) and use an

approach to check behaviour preservation that they call ‘differential precondition checking’. They

concede that their approach is neither sound nor complete but they highlight that the core algorithm

used in their approach is language independent and could be abstracted into a library for use

in various refactoring engines. Unlike Soares et al. (2010), their approach allows for behaviour

preservation to be tested before the refactoring is performed. Their approach involves representing

the program under refactoring as a program graph (an idea borrowed from Mens et al. (2005)),

which they explain as an abstract syntax tree with extra edges to represent semantic information,

for example variable access. The refactoring is then simulated and an updated program graph is

produced. The semantic edges of the two graphs are then compared for expected differences. We

do not describe this further here but we believe that identifying what these differences should be

is one of the weaknesses to their approach.

From the literature, it appears that proving refactorings preserve behaviour is an unsolved

research problem. We believe that while this remains the case, refactoring engines should at least

move their conditions away from the core code of the engine and allow these conditions to be

altered by users ‘in the field’.

Composite Operations
As the name suggests, composite refactorings are formed by composing primitive refactorings.

For example, the extract class refactoring that features in the catalogue of refactorings by Fowler

(1999) consists of a composition of create class, move field and move method primitives.

It is obvious that if each of the primitive refactorings are guaranteed to preserve program be-

haviour then composing any of these also preserves behaviour. However, Mens and Tourwe (2004)

highlight work by Tokuda (2001) who describes certain compositions of refactorings as transac-

tional. Transactional refactorings are those that when composed constitute a valid refactoring but

if stopped at any point before completion then program behaviour would not be preserved and

would therefore be invalid. They provide an example that they call ‘delegate method across object

boundary’, which is the composition of a move method primitive and a create method accessor

4http://maude.cs.illinois.edu
5http://randoop.github.io/randoop/

http://maude.cs.illinois.edu
http://randoop.github.io/randoop/

2.2. REFACTORING 16

• Create empty class.

• Create member variable.

• Create member
function.

• Delete unreferenced
class.

• Delete unreferenced
variable.

• Delete member
function.

• Change class name.

• Change variable name.

• Change member
function name.

• Change type.

• Change access control
mode.

• Add function argument.

• Delete function
argument.

• Reorder function
arguments.

• Add function body.

• Delete function body.

• Convert instance
variable to pointer.

• Convert variable
references to function
calls.

• Replace statement list
with function call.

• Inline function call.

• Change superclass.

• Move member variable
to superclass.

• Move member variable
to subclass.

• Abstract access to
member variable.

• Convert code segment to
function.

• Move class.

Figure 2.2: Primitive refactoring operations according to Opdyke (1992).

primitive (which was not listed by Opdyke (1992) and demonstrates that his list is incomplete).

They provide a scenario that consists of a method a in class C, which is called by method b (also

in class C). Method a is to be moved to class D. However, the move method primitive would not

work in this situation because one of its preconditions requires that the method to be moved is not

being referenced by any other methods. However, suppose we ignore this condition and carry out

the refactoring along with the create method accessor refactoring. The program will be left in a

state with method a located in class D and a new method a′ in C, which is a delegate to the moved

method a. This constitutes a valid refactoring when performed as a whole.

Choosing the correct refactoring to apply, whether it is a simple primitive or a composed

sequence of primitives is a matter for the developer. Likewise, deciding when to refactor is also

a decision to be made by the developer. However, there are some subjective notions to guide

the developer along, such as code ‘smells’, which are discussed next. Software metrics also pro-

vide a more sensible approach. Their use is discussed in subsection 2.2.3 and more generally in

section 2.5.

2.2.2 When to Refactor & Considerations for Developing a Refactoring Engine
Developers take two contrasting approaches for deciding when to refactor (Murphy-Hill and

Black, 2008).

1. Developers who choose root canal refactoring restructure their source code after it has de-

cayed.

2. On the other hand, developers who opt for floss refactoring improve their code structure in

tandem with normal development activities.

Murphy-Hill et al. (2012) conclude that the latter is the favoured approach by developers.

2.2. REFACTORING 17

Both approaches rely on indicators that suggest when and what to refactor. These indicators are

referred to as ‘smells’ in the code. Fowler (1999) describes twenty–two such ‘smells’. These

include ‘feature envy’ where the code in one class has a high number of dependencies on data in

another class.

Tools known as ‘smell detectors’ have been developed to detect code ‘smells’, which can be

used to determine when and what to refactor.

Simon et al. (2001) create a visual ‘smell detector’6 to help developers identify move method,

move attribute and inline/extract class opportunities. They extended the Crocodile tool (a language

independent metrics tool) to show graphs where entities that are close according to a distance

metric are presented close in Euclidean space. Their tool does not actually perform the refactoring

but the refactoring should be performed manually on elements that are distant from each other.

Fokaefs and Tsantalis (2011) developed a plug–in for the Eclipse IDE named JDeodorant7.

It detects the ‘God’ class code ‘smell’ and suggests remedying refactorings. The authors have

used it to identify opportunities for applying the extract class composite refactoring, which is used

as a solution for eliminating the ‘God’ class ‘smell’ (where one class contains too much data or

behaviour). They evaluate the tool in an empirical study involving version 5.3 of JHotDraw. They

evaluated their approach using a ‘professional software quality assessor’. Although they do not

discuss what qualifies her/him with such a coveted title, s/he supported the suggested refactorings

by the tool and said that nine out of the sixteen tools suggested that refactoring improved the code

with respect to its comprehensibility.

Murphy-Hill and Black (2008) highlight that the problem with ‘smell detectors’, such as

JDeodorant, is that they are unsuitable for developers who choose to floss refactor. They argue

that because floss refactoring is an activity that is repeatedly done, tools that require explicit in-

teraction are less useful. They suggest seven habits of good ‘smell detectors’. The first of these

is availability: the tool should report ‘smells’ as early as possible and with as little involvement

as possible from the developer. They also support unobtrusiveness: the tool should work without

blocking the developer. They have implemented the tool ‘Ambient View’ that takes into consider-

ation these and the remaining five suggested good habits.

We next discuss automated approaches to refactoring beyond ‘smell detection’.

2.2.3 Manual, Automated and Search–based Refactoring
Investigations by Murphy-Hill et al. (2012) suggest that refactoring tools are under utilised. From

their study, they found that 89% of 145 refactorings (supported by tools) were performed man-

ually. The developers in this study were ‘toolsmiths’ who produce the refactoring tools so they

are unquestionably aware of the existence of appropriate aides. Manual refactoring can be car-

ried out by carefully following the steps laid out in refactoring catalogues such as Fowler (1999).

However, this approach is not recommended by us as manual refactoring has the potential to in-

troduce defects due to human error. For example, suppose in some method there exists a local

variable that shadows a global variable. If the developer renames that local variable in all but one

place then the program will compile and execute but will use the incorrect variable at some point.

We believe that refactoring should at the very least be done using refactoring tools such as the

6A misnomer perhaps but, nonetheless, an apt description.
7https://marketplace.eclipse.org/content/jdeodorant

https://marketplace.eclipse.org/content/jdeodorant

2.3. FORMAL SPECIFICATION & DESIGN BY CONTRACT 18

refactoring tool provided in the Eclipse IDE. Although these tools should be more reliable than

performing the refactoring steps manually, there are other automated approaches that can further

increase efficiency, for example, search based refactoring.

O’Keeffe and Ó Cinnéide (2006, 2008a,b) have developed a search based approach to refac-

toring and implemented the CODEIMP automated design improvement tool. It is inspired by Har-

man and Clark (2004) who consider software metrics as fitness functions. It takes a Java 1.4

program and performs a search of the space of applicable refactorings and refactors the Abstract

Syntax Tree according to the results. Moghadam and Ó Cinnéide (2011) later improved on this

work by updating CODEIMP to be applicable to Java 6 source code.

We believe this full level of automation might be a step too far for many developers. We settle

for a compromise that would allow for refactorings to be scripted. With this in mind, and also our

suggestion that conditions should be extracted from the core refactoring code, we take a look at

DBC. This relates to RQ2.

2.3 Formal Specification & Design by Contract
Safety critical systems require a level of rigour beyond the capabilities of traditional software test-

ing techniques such as those described by Myers et al. (2011). For this reason, rigorous approaches

to software development were introduced including Design by Contract.

In the formal specification approach to developing software, the system’s critical compo-

nents are modelled using specification languages such as the algebraic rewriting language Maude

(Clavel et al., 2003). Properties of the system can then be reasoned about rigorously. For example,

Listing 2.1 shows a specification written in Maude for a pelican–crossing8. The proofs at the end

of the script demonstrate the safety of the system in the sense that it will not signal pedestrians to

cross at the same time cars are instructed to proceed. It also demonstrates that the specification

provides both cars and vehicles an opportunity to go. However, fairness is not reasoned about.

Whilst Maude is described as an executable specification language, it is unlikely that it would be

used to implement real world software. This is particularly true in this example, since pelican

crossings would require an implementation language more suited for embedded systems, such as

‘C’. This creates a chasm between the specification and the implementation.

To address this issue, Meyer (1997) introduced Design by Contract (DBC). It allows for parts

of the program code to be annotated with statements that express the intent of the code. Static

analysis tools reason about the code with respect to the specification and can determine (in many

cases) if the implementation implies the specification. The specifications in DBC are commonly

referred to as contracts because they describe the obligations of both the client using the code and

of the developer who provides the code.

1 mod PELICAN−CROSSING i s
2 p r o t e c t i n g BOOL .
3

4 s o r t G l o b a l s .
5

6 vars C P : Bool .

8This is a translation of the specification written in the Event–B language and published in the Rodin handbook
(Jastram, 2014).

2.3. FORMAL SPECIFICATION & DESIGN BY CONTRACT 19

7

8 op i n v a r i a n t s : Bool Bool −> G l o b a l s [c t o r] .
9

10 c r l [s e t _ p e d s _ g o] : i n v a r i a n t s (C , P) => i n v a r i a n t s (C , t rue)
11 i f not C and not (P and C) .
12

13 c r l [s e t _ p e d s _ s t o p] : i n v a r i a n t s (C , P) => i n v a r i a n t s (C , f a l s e)
14 i f not (P and C) .
15

16 c r l [s e t _ c a r s _ g o] : i n v a r i a n t s (C , P) => i n v a r i a n t s (true , P)
17 i f not P and not (P and C) .
18

19 c r l [s e t _ c a r s _ s t o p] : i n v a r i a n t s (C , P) => i n v a r i a n t s (f a l s e , P)
20 i f not (P and C) .
21 endm
22

23 *** If the following search returns no results then we are given some assurance
24 *** that the system is safe. It is not an absolute guarantee , the search might
25 *** have timed out before finding a result for example.
26 search in PELICAN−CROSSING
27 : i n v a r i a n t s (f a l s e , f a l s e) =>∗ i n v a r i a n t s (true , t rue) .
28

29 *** If the following search returns non--empty results then we are guaranteed
30 *** that the specification allows for cars to have some opportunity to go.
31 search in PELICAN−CROSSING
32 : i n v a r i a n t s (f a l s e , f a l s e) =>∗ i n v a r i a n t s (true , f a l s e) .
33

34 *** If the following search returns non--empty results then pedestrians are
35 *** guaranteed to be given an opportunity to go.
36 search in PELICAN−CROSSING
37 : i n v a r i a n t s (f a l s e , f a l s e) =>∗ i n v a r i a n t s (f a l s e , t rue) .

Listing 2.1: A Maude specification for a pelican crossing system.

Contracts for specifying behaviour in object–oriented programming languages such as Java

(using JML by Leavens et al. (1999)) involve formalising:

• Preconditions — These constrain the values that may be passed as arguments to the method.

If the constraints are not held then the client cannot be guaranteed that the method will be-

have in the intended manner. Preconditions can be computed by working backward through

the program using Hoare logic (Hoare, 1969).

• Postconditions — These make guarantees about the result of methods. Postconditions are

only valid when the preconditions are met and are implied by the body of code in the method.

• Invariants — These are placed on classes or within loops. Invariants on loops exist only

to facilitate the theorem prover in proving that the loop behaves correctly. Class invariants

describe constraints about the state of the object at any time during its lifetime. Invariants

are not considered in the remainder of this dissertation.

We believe that DBC goes some way to address RQ2. However, we still require an approach

for representing programs being refactored. We believe that abstract syntax trees are too verbose

2.4. MODEL DRIVEN ENGINEERING 20

for this purpose and we identify MDE as a solution. We are further motivated by MDE because it

is also suitable for building a language to specify and script refactorings. We discuss MDE next.

2.4 Model Driven Engineering
The influence of modelling can be seen in many aspects of software engineering. At the high

level, management use (descriptive) models called processes to describe how teams of engineers

should structure their work activities. At a lower level, software engineers create models to ‘rep-

resent something by something else’ (Muller et al., 2012) such as classes to represent real world

concepts. The benefits are apparent. Models allow concepts to be communicated clearly between

developers or to serve as specifications for parts of a system to be implemented (we call these pre-

scriptive models). Model Driven Engineering (MDE) builds on the advantages of using models by

making the design and implementation of models the core activity of software engineering. MDE

practitioners hold the view that ‘everything is a model’ (Bézivin, 2005). But what is a model?

We accept the view expressed by Stachowiak (1973) (in German but translated in Muller et al.

(2012)) that a model is some thing based on an original for a specific purpose that captures only

the important properties that are relevant to that purpose.

It is often desirable to transform one model to another. This is done through a model–to–

model transformation. For example, suppose we have a UML class diagram, the ability to transform

this into a relational database schema, for example, or an XML schema is desirable. We might also

want to transform the same UML class diagram into ‘skeleton’ Java code. This can be done with

model–to–text transformations.

The success of modelling hinges on being able to describe models effectively. For this, the

Meta Object Facility (MOF) is used. We briefly describe the architecture of MOF next.

2.4.1 Metamodel Hierarchy and Transformations

In order to describe a model we require an appropriate language. The four layer metamodel

hierarchy exists to facilitate this. At the highest layer (M3) is the meta metamodel. It describes

the kind of things that can exist in the M2 layer. We can think of the M2 layer as the actual

language, for example, UML is located in this layer. In the M1 layer, we use the language of

M2 to describe things, for example we might describe some class diagram. The M0 layer contains

instances of what is described in M1. For example, it could be an object in the computer’s memory

that conforms to a class diagram described in M1. An object at M0 is not a Java class. A Java

class also exists at M1, and is expressed by the Java language at M2 which is an instance of the

grammar for Java at the M3 layer.

There is an interesting advantage to this hierarchy in that the M3 layer describes the minimal

requirements for any language to be able to express the lower layers. For example, consider the

example shown in Figure 2.3 (reproduced from (Nastov, 2013)). In this example, if the implemen-

tation language being used is powerful enough to express the concept of class at the M3 layer then

the language is sufficiently powerful to describe the notions in the lower layers. This is true due to

the ‘instance of’ relationship that crosses the boundaries of the layers.

However, having languages to describe models is pointless without concrete tools. MDE

environments have been developed for this reason. We discuss these next.

2.4. MODEL DRIVEN ENGINEERING 21

Figure 2.3: An example showing the four layers of the metamodel hierarchy.

2.4. MODEL DRIVEN ENGINEERING 22

2.4.2 MDE Environments
Frameworks have been developed specifically to accommodate MDE. The Eclipse Modelling

Framework (EMF) (Steinberg et al., 2009) has been developed by the Eclipse foundation. It al-

lows developers to build domain models either in Java, as XML schema definitions or as UML

class diagrams. The models are mapped to a core modelling format called Ecore. This centralised

model can be mapped to other model formats such as a generator model. The generator model can

be used to produce skeleton Java code, code for testing and a plugin for Eclipse which provides an

editor that has syntax highlighting and content assist.

Simulink by MathWorks9 is an alternative environment for working with models. It differs

from EMF with respect to its target audience. Simulink is suitable for engineers developing embed-

ded systems. It provides a block diagram environment that allows code generation and simulation

MathWorks. We do not mention more about it here as we are concerned with frameworks for

software engineers.

MDE has been used to implement languages for modelling specific domains. We call these

DSLs and discuss these next.

2.4.3 Domain Specific (Transformation) Languages
A domain specific language DSL is a language developed for a specific domain or task. The great-

est difference between a DSL and a general purpose language is the vocabulary used. The key-

words in a DSL will be words from the domain for which the DSL is designed. In a programming

language, keywords will refer to programming constructs. Familiar examples of DSLs include

the LATEX language used for document preparation. Although it is Turing complete, its intended

purpose is to describe the content and structure of articles, letters, presentation slides and other

publishings. The TIKZ package for LATEX (to produce diagrams such as Figure 5.2) is also a DSL

so, hence, we can have one DSL embedded inside another.

DSLs are classified as being either:

1. Internal — An internal DSL is one that is developed within an already existing programming

language. This is much the same as what traditionally have been called libraries but with a

very focussed purpose. For example, Thompson (2011) presents a simple DSL for geometric

manipulations of ASCII ‘art’ embedded in the Haskell10 language. Internal DSLs are simpler

to implement. For example, there is no need to implement a parser or interpreter for the lan-

guage. It also has the benefit that users of DSL are not required to learn a new programming

language syntax and can continue to use their preferred and familiar tool–chains (IDEs, text

editors, etc.). We could also consider XML schema definitions, or XSDs, as crude internal

DSLs since they describe sets of specific XML documents in XML.

2. External — External DSLs on the other hand are standalone languages, which come with

their own advantages. Users of these languages do not need to have experience working

with general programming languages. They only need an understanding of the domain in

which they are working. This is beneficial because they are isolated from what could be

obscure error messages while using general purpose languages. The implementation effort

9http://uk.mathworks.com/products/simulink/
10https://www.haskell.org

http://uk.mathworks.com/products/simulink/
https://www.haskell.org

2.5. SOFTWARE METRICS 23

however increases. The language designer must develop their own parser and supporting

tools such as an interpreter. However, language frameworks such as Xtext11 and MPS12

have been developed that relieve most of these burdens from the language designer.

Specific DSLs have been developed to transform models. For example, the Object Manage-

ment Group (OMG) (OMG, 2015) specify:

1. Query/View/Transformation Operational — QVTO is an imperative language specification

for transforming models. One implementation is ATL (Jouault et al., 2008). Although it

has imperative features it also can be used declaratively, so, it also adheres to the QVTR

specification.

2. Query/View/Transformation Relational — QVTR is a declarative language for performing

model transformations. It relies on pattern matching to perform the transformations. The

user describes a pattern that is matched on the input and this provides a rule for what the

output should be.

Both QVTO and QVTR offer a general approach for describing model transformations. How-

ever, in some circumstances one might want to constrain the transformations that can be applied

(as is the case with refactoring). We coin the term Domain Specific Transformation Language

(DSTL) to refer to languages that exist to apply transformations under constraints.

2.4.4 Modelling Java Programs

The MoDisco13 project has been created to help developers to modernise legacy software sys-

tems. MoDisco comes with a Java model in Ecore format for representing Java systems as well as

knowledge discoverers that can be used to transform existing Eclipse Java projects into MoDisco

models. It also comes with supporting tools such as a model browser for exploring the models

visually in the Eclipse IDE and transformations to produce UML diagrams.

In this section, we have seen that models provide a practical approach to represent software

source code and build languages (DSLs). It has also been employed in the area of software metrics,

which relates to RQ3. We discuss this next.

2.5 Software Metrics
All branches of engineering rely on measurement to provide meaningful feedback. This can be

used to assess quality or to make predictions (Meneely et al., 2012). Software engineering is no

exception. For example, a software engineering team developing a system might test for the mean

time between crashes. This can be used to evaluate the suitability of their product for specific

scenarios.

At a lower level, the engineering team might evaluate the quality of their design. This can

be used as an indicator to decide how easily the system can be maintained in the future. These

measurements might even form part of the contract between the engineering team and the client.

11https://eclipse.org/Xtext/
12https://www.jetbrains.com/mps/
13https://eclipse.org/MoDisco/

https://eclipse.org/Xtext/
https://www.jetbrains.com/mps/
https://eclipse.org/MoDisco/

2.5. SOFTWARE METRICS 24

Measurements could even be used as performance indicators that help management decide

how to attribute specific portions of the system’s implementation to specific engineers. For ex-

ample, management might identify certain engineers as being better at implementing algorithms

rather than object oriented design and vice versa. This trade off can be used to decide to whom

tasks should be assigned.

Software metrics come in two varieties: project metrics and design metrics. We discuss both

next before remarking on their validity and available suites developed for their use.

2.5.1 Project Metrics
Project metrics are high level metrics used to make management decisions. Examples include

those published by Lorenz and Kidd (1994):

• Average person days per class — Suppose management is estimating the cost of staffing a

new project and the high level design has already been completed so that management has

an estimate of the number of classes that will be needed by the new system. Management

can use data from previous projects to estimate the amount of time it will take to complete

the system.

• Number of scenario scripts — A scenario script is a use case that documents actions that

are performed, who they are performed by and who they affect. The number of use cases

will indicate the size of the application and consequently the length of time required to

implement it. Historical data is also required in this case.

Although we could devise project metrics to predict the time it would take developers to

improve a system’s structure, it is beyond the scope of this work and we do not address the issue

further.

2.5.2 Design Metrics
Design metrics are used to evaluate the quality of an implementation. Three aspects of the system

that are commonly measured include:

• Cohesion — Many software systems in existence are built using object–oriented languages

that require a system to be split into modules called classes. A well designed object oriented

system consists of classes that are semantically cohesive, i.e. each class represents just one

meaningful concept. For example, a cohesive implementation of a ‘person’ class might

have the person’s name, age, address and phone number, but when loosely related details

are added, such as bank account number and balance, then that class is no longer a cohesive

unit. Many metrics related to cohesion consider the relationships between the methods and

the attributes. A highly cohesive class should have methods that access a high number of

the attributes. The exception to this rule of course are accessor and mutator methods. The

literature contains a plethora of cohesion metrics that including the common LCOM metrics

(Chidamber and Kemerer, 1991, 1994; Hitz and Montazeri, 1995) as well as the TCC and

LCC metrics of Bieman and Kang (1995).

• Coupling — Coupling comes in two ‘flavours’. The afferent coupling of one class is a

measure of how dependent other classes are on it. High afferent coupling indicates that a

2.5. SOFTWARE METRICS 25

class’ interface is too public. On the other hand, and heavily related, is efferent coupling.

This is a measure of how tied one class is to another. If a class C has high efferent coupling

then it is considered to be poorly designed because it means that if the class or classes it

relies on change then those changes must be reflected in C. Various coupling measurements

have been proposed for this purpose including the CBO metric published by Chidamber and

Kemerer (1991).

• Complexity — Most software engineers would agree that a program consisting of just se-

quential lines of code without iterations or conditions is less likely to contain defects than

one with a high number of if–statements and loops. The rationale of course is that the

developer might have forgotten to include a condition for some special case or written an

incorrect guard on a loop. Programs with branches are said to be more complex than sequen-

tial programs. Various metrics have been developed to quantify how complex a program is.

For example, McCabe (1976) published the cyclomatic complexity metric.

2.5.3 Validation of Metrics

Meneely et al. (2012) acknowledge that software engineers and researchers do not have a formal

set of rules for what constitutes metric validation. They conducted a systematic literature review

and produced a list of forty–seven criteria identified from twenty papers that matched their crite-

ria. We do not repeat the criteria here but these range from a priori validation that requires the

author of the metric to hypothesise first what attribute being measured is statistically significant in

explaining some phenomenon. They also require that in order for the metric to be valid it must be

meaningful, in the sense that it allows for a manager or software engineer to make some decision

based on the value of the metric. They refer to this as actionability. A more obvious validation

criterion includes ‘definition validity’ which requires that the metric is stated correctly so that it

can be implemented. The original mathematical definition of the LCOM1 metric failed this criteria

as it always evaluated to zero.

2.5.4 Metric Tools

The MOOSE metrics suite14 is a metrics tool to help developers evaluate and browse their code.

Evaluation is supported through polymetric views including those described by Lanza et al. (2005).

MOOSE is not tied to a specific programming language. Programs are represented internally using

the FAMIX metamodel. Any language can be supported by providing a transformation from source

code in the language to FAMIX.

McQuillan (2011) also takes a model driven approach to calculate software metrics. She

developed a metamodel that describes the measurable components of a software system. This is

utilised by another metamodel, which defines the actual operations for calculating metric measure-

ments. These are annotated with OCL expressions15 that provide the operations with semantics.

We highlight the disparity between metric tools and note that the same metric can yield dif-

ferent results in different tools. This is due to tool developers interpreting the metric definitions

differently. This disparity has been confirmed in a study by Lincke et al. (2008).

14http://www.moosetechnology.org
15http://www.omg.org/spec/OCL/

http://www.moosetechnology.org
http://www.omg.org/spec/OCL/

2.5. SOFTWARE METRICS 26

Other than evaluating code quality, attempts have been made to use software metrics to iden-

tify where refactorings have occurred in subsequent versions of software. We discuss this interest-

ing usage briefly next.

2.5.5 Metrics to Identify Refactorings
Refactoring detection is an area of research that involves identifying where refactorings have oc-

curred in subsequent versions of software. The motivation for this research is to develop tools

that can show developers working on large open scale projects, for example, where their changes

have moved after code restructuring. A better approach would be for the refactoring engine to

record and replay the changes in front of the developer, similar to what Henkel and Diwan (2005)

achieve. However, their approach assumes that developers refactor with compatible refactoring

engines. We know this is not the case and point out that some developers still prefer to use text

editors such as Emacs16 rather than full IDEs with refactoring support.

Schneider et al. (2010) have evaluated the potential of using software metrics to identify

refactorings. Their hypothesis is that, between two classes, a small change in the Euclidean dis-

tance of fifty–four different metrics is likely to be the result of refactorings and larger changes

are likely to be the result of feature additions. They evaluated their approach using three versions

of the Struts web–framework. They concluded that metrics were not a promising approach for

determining if a change to code was a refactoring or not.

2.5.6 Summary
The purpose of this chapter has been to examine the literature to investigate the state–of–the–art

and to address the three research questions listed in section 2.1.

In response to RQ1, the literature states that in general it is not possible to prove that refac-

toring preserves observable behaviour for all refactorings (Mens et al., 2005). However, we have

identified some successful attempts to do so for formal specification languages with well defined

semantics. Less ‘water tight’ approaches have also been taken such as Soares et al. (2010) who

resorts to random testing. We believe that a better approach (for now) would be to allow engi-

neers using refactoring engines to alter preconditions or postconditions for refactorings easily in

the field. Thus any conditions they identify as being over or under specified can be corrected

immediately.

With regard to RQ2, very little effort has been made to allow developers to define their own

reusable refactorings. The more well known refactoring engines such as that provided by the

Eclipse IDE allow for refactorings to be composed but only manually. Larger refactorings cannot

be saved for later application. Furthermore, software source code appears to get a lot of attention

in refactoring circles but very little focus is placed on refactoring other artefacts such as UML

diagrams. We believe that a scriptable refactoring engine that considers alternative artefacts is

required to appease contemporary software engineering efforts.

In relation to RQ3 there is also very little consideration paid to overall quality while refactor-

ing. The exception being the work of O’Keeffe and Ó Cinnéide (2006, 2008a,b) whose CODEIMP

tool searches for the optimum refactoring to apply.

Clearly, there is scope for improvement with current generation refactoring tools. We believe

16https://www.gnu.org/software/emacs/

https://www.gnu.org/software/emacs/

2.5. SOFTWARE METRICS 27

by taking an MDE approach to refactoring we can develop a refactoring engine that can refac-

tor heterogeneous artefacts while paying consideration to quality as well as making it scriptable.

Moreover, we believe that we can even implement such a system using MDE principles. We begin

to do so in the next chapter as we develop a language to define and script refactorings.

Chapter 3

RefDstl: A Language for Specifying and
Scripting Refactorings

In this chapter, we take our first stride towards developing the RefDstl system: we develop the

RefDstl language for specifying and scripting refactorings. We begin with a brief discussion re-

garding use cases for the language and who we anticipate will use it. We discuss these issues in

order to steer the language’s design, which we subsequently discuss. This includes choosing a lan-

guage paradigm and developing the abstract and concrete syntax. The semantics of the language

is not discussed, although, it should be self explanatory. The implementation of an interpreter is

described in Chapter 4 that effectively provides an operational semantics. As the chapter comes to

an end, we introduce our standard library of primitive refactoring operations, written in the RefD-

stl language, and we also provide a small example on using the language to refactor classes from

a fictitious video game.

3.1 Use Cases
We develop a language that can be used to define new refactorings through the composition of a

set of primitives provided in a standard library. The language also allows for the application of the

refactorings to be scripted using embedded commands that instruct the interpreter regarding what

system is to be refactored.

The primary arena where we envisage this language being used is in software production envi-

ronments. For example, in industry different organisations have their own coding guidelines such

as that all class attributes must be self–encapsulated (i.e. access to attributes should be through

the accessor and mutator methods even in the body of the class where the attributes are defined).

Different developers usually have their own style of programming that can conflict with the organ-

isation’s guidelines. The developer could manually check that their code meets the guidelines but

this is tedious and not a productive use of time. Instead, the organisation could write a script in

RefDstl with refactorings that corrects non–conforming code (such as applying the self encapsu-

late field refactoring). While many refactoring engines can already perform a self encapsulate field

refactoring they require the user to work through a graphical interface. Our scripting language al-

lows for a higher degree of automation. We concede that our language is not sufficiently powerful

to describe all coding guidelines. In particular, lower level guidelines that describe the structure

of the text are not possible with RefDstl. For example, it would not be possible to specify that

a space must occur between each operator and its operands or that chain brackets are ‘lined up’.

3.2. CHARACTERISTICS OF A GOOD PROGRAMMING LANGUAGE 29

We point the reader interested in such low level changes to the work on ‘delta oriented program-

ming’ by Schaefer et al. (2010). We believe their approach could be easily extended with regular

expressions that would allow these lower level changes to be performed.

We believe this language also has potential for use in academic circles. For example, con-

sider the research area of refactoring detection. Dig et al. (2006) and others identify refactorings

that have occurred between subsequent versions of software. Their motivation is to allow devel-

opers to see where their code contributions go after a program undergoes refactoring. However,

the associated tools that each of these researchers develop implement different metamodels for

internally describing refactorings. We view this situation as unsatisfactory. It is difficult for the

outputs of the different tools to be automatically compared. It also prevents users from harnessing

the power of multiple tools. They should be able to merge results to provide more accurate or

complete results. The language that we present here offers a solution. Although the language is

text based, which might be cumbersome to have a machine produce, it has an underlying Ecore

metamodel. We suggest that researchers could programmatically instantiate that metamodel and

a general model–to–text transformation be provided to transform the model into a textual RefDstl

script.

Of course, nobody will use our language if it is not ‘good’. We discuss the properties of

‘good’ programming languages next.

3.2 Characteristics of a Good Programming Language
We have identified the following properties that a programming language should have in order

for it to gain acceptance. We bear these in mind in the subsequent sections as we discuss our

implementation of the RefDstl language.

• Easy to learn — When faced with a new programming language, a programmer evaluates if

the gains from learning how to utilise the language effectively outweight the initial learning

cost. A language that is easier to learn has a higher chance of being adopted when in com-

petition with more difficult alternatives. Clearly, we should aim to make RefDstl simple to

increase its chances of adoption. RefDstl has a higher opportunity of adoption if it follows a

simple design. To obtain insight into what makes one programming language easier to learn

over others, we looked toward the area of computer science education. A study by Milne

and Rowe (2002) involved a questionnaire of second year students in the process of learning

C++ at the University of Dundee as well as academic staff teaching programming languages

from around the United Kingdom. They concluded that the programming constructs that

students find most difficult to understand relate to what is happening in the machine’s mem-

ory during execution. Although students will probably learn to adapt by the end of their

studies, we bear their conclusions in mind and suggest that the source of the problem is

students having to grasp the concept of mutable state of program variables unlike variables

more familiar to them from mathematics.

• Ease of use — A programming language should have a clear and consistent semantics that

allows the developer to produce programs or scripts with no side affects. This is in line

with guidelines developed by Karsai et al. (2009), who advocate that (domain specific)

3.3. DESIGN OF A DSTL FOR DEFINING AND SCRIPTING REFACTORINGS 30

languages should be consistent and have a defined purpose; if a feature does not contribute

to that purpose then it should be removed.

• Power of expression — Languages should be powerful in expression to allow programmers

to succinctly describe their objective. RefDstl must at the very least be capable of describing

primitive and composite refactorings and also allow describing where the refactorings are

to be applied. Ideally, the language should allow for the developer to easily specify multiple

locations where refactoring is to be applied. This is in contrast to graphical approaches to

refactoring where the developer has to select each location for application individually.

• Tool support — Tool support for a programming language is as important as the language

itself. Good tools aide developers to complete tasks quicker, which can lower development

costs. For a general purpose programming language, the bare minimum that should be pro-

vided is a compiler or interpreter. This is true of some domain specific languages as well,

including RefDstl. Some DSLs require tools to transform programs in the DSL to general

purpose languages. For example, SQL queries can be turned into ‘C’ calls in order to evalu-

ate them. In addition, tools that help to resolve programming errors by providing feedback

to the programmer or help to make the code more comprehensible are also desirable. Debug-

gers, for example, allow the programmer to step through the program to identify points in

the program where unexpected behaviour occurs. The development of a debugger for RefD-

stl is beyond the scope of this work. However, we do provide an editor that offers syntax

highlighting and content assist in the Eclipse IDE as well as an execution environment.

3.3 Design of a DSTL for Defining and Scripting Refactorings
The following cascading stages form a framework for designing and implementing new program-

ming languages. We address each of these in turn while discussing the creation of the RefDstl

language in the subsections that follow.

1. Choosing a suitable paradigm for the language — The paradigm of a language defines its

high level design principles. For example, does the programming language place emphasis

on objects or actions? The chosen paradigm influences how the language is expressed in

text, i.e. its syntax. For example, if the language permits objects then the language must

allow a way of defining/instantitating objects.

2. Defining a syntax of the language — The syntax defines the structure of the language. For

example, what are the keywords of the language and what order must they be composed to

form valid ‘sentences’. The syntax of a language is expressed as a grammar that consists

of production rules. The grammar file is then input to a parser generator, which produces

a parser. The parser is essentially a language recogniser: It accepts only those inputs that

conform to the grammar specification. The syntax chosen is naturally dependent on the

constructs available in the language.

3. Specifying a semantics of the language — The elements of the language’s syntax must

have an explicit meaning. For example, a common question arises in language design

3.3. DESIGN OF A DSTL FOR DEFINING AND SCRIPTING REFACTORINGS 31

when invoking methods/procedures/functions in the language, that is, how are the argu-

ments passed? They could be passed by value or by reference, for example. The language

might even offer syntax that allows the programmer to switch between the two.

4. Implementing an execution environment — Once the semantics of the language have been

defined then software for interpreting the language must be developed. Alternatives include

producing compilers, which transform the source code program into an executable that is

usually a binary executed directly on the machine or an intermediate file that is executed on

a virtual machine, which is the case with Java or the .NET family of languages.

3.3.1 Choosing a Suitable Paradigm
There are various programming paradigms in existence such as imperative/declarative or object–

oriented/procedural. Programming languages can even fall into multiple paradigms.

• Imperative — These programming languages usually include low level constructs that allow

the programmer to explicitly control the behaviour of the underlying hardware. For example,

they might have the concepts of variables and assignments to manipulate the state of the

machine, branching statements that allow the machine to move from one state to another

when certain conditions are met, or iterative constructs that move the machine through a

sequence of states repeatedly until other conditions are met. The languages that find most

use today are imperative in nature, such as ‘C’, C++, and Java.

• Declarative — These are higher level languages and programmers specify what they want

done rather than how they want it done. SQL is, perhaps, the most widely used declara-

tive programming language that is used for data definition and manipulation in relational

database systems. Declarative languages can be quicker to program with and often require

fewer lines of code. This is especially true when designed for domain specific purposes,

such as the case with SQL. Consider how an SQL query that joins two tables would need

to be written in ‘C’ with a loop that populates some data structure with the Cartesian prod-

uct of the two tables followed by a loop that iterates through the structure to remove rows

where the appropriate columns do not match under conditions. General purpose declarative

programming languages also exist such as Haskell. The productivity gains that come with

using declarative languages often come at the cost of expressibility. For example, often de-

velopers will find it easier to describe an algorithm imperatively using variables (rather than

bindings that appear in declarative languages such as Haskell), loops and if statements.

• Object–Oriented — In the Object–Oriented (OO) paradigm, the focus of development is on

writing reusable modules of code called classes. A class is a container for data which is

stored in variables called fields (or attributes) and methods which operate on that data. A

good class is highly cohesive, i.e. each method in the class reads from or writes to a high

proportion of the class’ fields. It is also loosely coupled: it depends very little on other

classes and allows other classes to depend very little on it.

• Procedural — Procedural programming places the focus of development on writing proce-

dures of code, which are grouped lists of instructions. Procedural languages heavily contrast

3.3. DESIGN OF A DSTL FOR DEFINING AND SCRIPTING REFACTORINGS 32

with OO languages in that the procedural languages place emphasis on actions to be done

rather than on the data.

In choosing a paradigm for RefDstl, we decided to take a balanced approach by providing

a language that allows the programmer to declaratively describe what refactorings to apply but

enriching it with a ‘for’ looping construct to permit repetition in the language and a conditional

‘if’ construct. It would have been possible for us to provide a ‘map’ and ‘filter’ function, which are

suitable alternatives and more the ‘norm’ in declarative languages but our choice is driven by what

we believe is most familiar to the target end users. It would be possible to implement different

variants of RefDstl following different paradigms so that a user could choose the paradigm most

familiar to them. Our reliance on MDE technology (discussed in section 3.4) to implement RefDstl

means that the same interpreter could have been used to interpret scripts written in all of the

variants by performing model–to–model transformations to some ‘baseline’ paradigm.

3.3.2 Language Constructs
We discuss the constructs provided by RefDstl in this section, which allows us to develop an

appropriate syntax later in section 3.4.

• Modularisation via libraries of procedures — For the obvious benefit of code re–use, we

implemented the concept of ‘libraries’ into the language. Each script is itself a module that

is uniquely identifiable based on its location in the file system. This path is the script’s

identifier that can be used to import it. Unlike other programming languages that include

visibility control features (such as private methods in Java) that permit for elements of a

module to marked as hidden to external modules, all elements of a script are visible to

any other script importing it. A script is imported by using the ‘imports’ keyword at the

beginning of the script. Multiple scripts can be imported by writing imports statements one

line after the other.

• Modularisation of scripts via procedures — We believe in the guidelines of structured pro-

gram that advocate structuring code into blocks called procedures that perform one well

defined task. RefDstl supports the notion of procedures for this purpose. Procedures are

exactly that; they are not functions. A procedure never returns a value.

• Preconditions and Postconditions — Following the practices of design by contract, RefDstl

allows for procedures to be annotated with pre– and post– conditions, which are expres-

sions that can reason about the program being refactored in its representation as a MoDisco

model. Plugins can be developed for RefDstl that provide hooks (which we call script han-

dles), which further enhances what can be reasoned about in these conditions. We have

incorporated a plugin with a hook that allows the conditions to reason about the program

represented as an instance of the metrics metamodel developed by McQuillan (2011).

These conditions serve a dual purpose. The first is that they ensure the refactoring primitive

operations work correctly. It might seem unusual to ensure the correctness of primitive

operations in a script rather than in the transformation engine but this provides a benefit. As

agreed by Overbey and Johnson (2011), the formulation of refactoring conditions is actually

the most difficult part of developing a refactoring engine.

3.4. REFDSTL IMPLEMENTATION 33

By separating the conditions from the code, it makes it convenient to debug overly strong

preconditions (as they can be commented out). A standard library of refactorings is provided

with the RefDstl system so the end user will be unaware of this. The second purpose is that

it allows RefDstl end users to define their own refactorings with their own conditions, that

can be used to verify the correctness of the refactorings with respect to properties that they

specify.

Unlike some implementations of DBC, RefDstl does not provide syntax that would allow

for the total correctness of the program to be verified. It only permits checking for ‘partial

correctness’. This means that we are limited to verifying if the program completes then the

conditions are guaranteed to have held. We make no guarantee that the script will finish

executing. To add total correctness to the language, we would need to include loop vari-

ants1. Pre and postconditions are simple boolean formulae built using the familiar boolean

connectives as well as existential or universal quantifiers.

• Procedure Invocation — Within the body of a procedure, the user must have a way to invoke

other procedures and pass parameters. We provide the ‘call’ keyword for this purpose.

• Branching — The language provides branching constructs to the user. We limit this to ‘if’

statements without ‘else’ blocks. ‘Else’ blocks could be easily added at a later point but

during the development of the standard library of refactorings (in Appendix B) their inclu-

sion was found to be unnecessary. The language currently includes the necessary boolean

operations to work around this if it poses difficulties to the user.

For the sake of maintaining consistency in the language, we permit the same format in ‘if’

conditions for describing guards as is used in the formulae in pre and post conditions. This

means that guards in RefDstl can be more expressive than guards in other languages, such

as Java 7, which do not permit quantification in conditional guards.

• Iteration — The language also provides an iteration construct for looping over collections

of primitive refactoring instructions.

• Refactoring primitives — These statements manipulate the program under refactoring, such

as renaming fields, methods etc.

3.4 RefDstl Implementation
Up until now when discussing the language’s syntax we have been referring to the ‘concrete’

syntax, i.e. what the programmer types as a program. This is too high level and cumbersome to

translate by compilers or understand by interpreters. So an alternative, simpler view of the syntax

is used. This is known as the abstract syntax, which Völter et al. (2013) refers to as a ‘data structure

that holds the core information of the program’.2 The abstract syntax forgets the insignificant parts

of the program. For example, it drops characters that are used as delimiters such as whitespace (to

1In contrast to loop invariants that describe a property of the program’s state that is true upon each iteration of the
loop, a loop variant is a value that must decrease upon each iteration.

2We believe the data structure is a representation of the abstract syntax and not the abstract syntax itself but that
distinction bares no consequence here.

3.4. REFDSTL IMPLEMENTATION 34

separate terms), semi–colons (often used to separate statements) or brackets (to create precedence

in complex expressions). These can be omitted without losing the meaning of the program because

they only serve as hints to the lexer (which separates the terms in the program text) and the parser

as to what parts of the program have a higher level of precedence. The output from a parser is

a parse tree with typed nodes. Interpreting or compiling the program involves traversing the tree

to generate machine code instructions or interpreting the nodes of the tree and performing some

action on a virtual machine (as is done by an interpreter).

In this section, we discuss our use of the Xtext language framework for developing RefDstl.

3.4.1 Parser Generators and Grammars

A parser generator is a tool that takes as input a specification of the concrete syntax and produces

as output the code for a parser. When compiled this can be used to parse programs that fully meet

the language specification. Moreover, if the parser is provided with input that does not conform

to the specification of the language then it will halt before it finishes parsing the program. ‘User

friendly’ parsers also provide feedback to help the programmer to locate the problem with their

program such as line number or character the parser realised a problem had occurred.

With traditional parser generators, like JavaCC3, it is the language designer’s responsibility

to write the classes that represent the abstract syntax. He or she must also embed code into the

concrete language specification that builds up the abstract syntax tree as the parser reads through

the program text. This is done by placing code snippets inside the grammar specification.

More recent language frameworks have been developed that make it easier to develop lan-

guages (specifically DSLs). These make it easier and less time consuming to develop languages

because they automatically derive the abstract syntax based on the grammar of the language.

3.4.2 A Grammar for RefDstl

Grammars specify the syntax of programming languages. They are regularly provided in Extended

Backus–Naur form (EBNF). In Backus Naur Form (BNF), a grammar consists of these components

(Aho et al., 2006):

• Terminal symbols — These are keywords and other symbols in the language such as sym-

bols for built in operators, brackets and braces for describing lists or grouping statement or

symbols to denote separation of statements such as semi–colons.

• Non–terminals — A non–terminal is a variable in the grammar that is associated to a pro-

duction rule. There must be exactly one non–terminal to mark the beginning of the grammar.

• Production rules — A production rule is a mapping from a non–terminal to a sequence of

terminals or non–terminals. The mapping is non–deterministic as a non–terminal can be

mapped to more than one sequence. The rule is divided into a head and a body. What is on

the left of the rule is known as the head and the body is on the right.

EBNF extends BNF by allowing elements of regular expressions to appear in production rules.

This does not make BNF more powerful but it is a convenience.

3https://javacc.java.net

https://javacc.java.net

3.5. DEFINING A STANDARD LIBRARY OF JAVA REFACTORINGS 35

The full grammar for the RefDstl language is presented in Appendix A. We used this gram-

mar to generate a parser and metamodel for the RefDstl language with Xtext. Auxiliary tools such

as a plug–in editor for Eclipse were also produced.

3.4.3 Substituting RefDstl
There is an additional and somewhat subtle benefit from using the Xtext toolset to develop our

language. That is to say that when an Xtext grammar file is compiled it produces an Ecore meta-

model. The parser that Xtext also produces builds instances of this metamodel that represent the

parsed language. However, the metamodel is readily available for use by tools. We propose that

researchers and developers who work on tools that involve building in–memory models of refac-

torings or indeed serialising them to a file should use our metamodel. This allows those researchers

and developers to take advantage of some of MDE’s main benefits, i.e. tool re–use and portability.

There is a downside however to instantiating the metamodel programmatically, i.e. the metamodel

can be instantiated in a way that would never be possible using text input to the generated parser.

3.5 Defining a Standard Library of Java Refactorings
We have thus far described the goals and design guidelines for RefDstl. With those goals in

mind we described a list of constructs required and specified the syntax of the language. We now

provide a standard library of refactorings, which we use in the sample scripts used in the following

section. The code that makes up the standard library is presented in Appendix B. It shows how

to use the language, in particular how to make procedure calls and write preconditions over the

model representing the program being refactored. All of the primitive refactoring instructions that

the language offers are covered in the library; they are in the bodies of the numerous procedures.

On the surface, it might seem unusual that we wrap the instructions of our language inside

procedures that we encourage others to use. The reason for this is that the instructions do not have

any preconditions associated with them. The interpreter will execute the instructions regardless

of the state of the program being refactored. The only way in RefDstl to annotate the instructions

with preconditions is by placing them inside procedures as we have done. Users of RefDstl can

freely replace our library with their own if they find ours to be insufficient for their needs. It is

worth noting that our library does not come with any postconditions. These can be included by

either editing the library itself or by extending it. We omitted postconditions as we were trying to

adhere to the primitive refactorings given by Fowler (1999).

3.6 A Small Case Study
In this section, we use RefDstl to repeat a small case study performed by O’Keeffe and Ó Cinnéide

(2003).

A UML class diagram for the original design of a fictitious video game is shown in Figure 3.1.

At the top of the class hierarchy is the Weapon class with a private attribute called power that

is accessible to the five child classes via the public getPower method. Its immediate children,

MissileWeapon and MeleeWeapon, both have an attribute called range. We might say that these

two child classes exhibit the ‘duplicate code smell’. The re–course here would be to ‘pull up’

the range field and the getRange method to the Weapon class to aim for the design presented in

Figure 3.2. O’Keeffe and Ó Cinnéide (2003) call this maximising inheritance.

3.6. A SMALL CASE STUDY 36

The RefDstl script for performing this refactoring is listed in Listing 3.1. At the beginning

of the script, we import the standard library of refactoring primitives, which were discussed in the

previous section. The next two lines instruct the interpreter about what model is to be refactored

and where the resulting MoDisco model of the refactored system is to be persisted. The declara-

tion of the main procedure follows. This is where the script begins its execution. It must be at the

top of the script following the input/output directives. In this script, the main procedure delegates

its task to a procedure called safeRefactor. This delegation may seem wasteful but the main

procedure cannot be annotated with pre or post conditions so placing the refactoring instructions

inside another procedure allows us to work around this. Future versions will remove this restric-

tion. Note that in the RefDstl scripts that the tilde symbol is used in postconditions to mean ‘the

version of this class prior to the refactoring’.

The definition of safeRefactor declares six preconditions identifiable by the requires

keyword. All of these preconditions serve a similar purpose: to ensure that only existing classes

are refactored. If any of the classes do not exist then the interpreter will halt executing the script.

The preconditions take advantage of the $utils script handle that has a method provided named

classExists. It returns a boolean value to indicate if a class by a particular fully qualified name

is declared in the project undergoing refactoring. Other, more interesting, preconditions are anno-

tated on the procedures that are defined in the standard library of refactorings (see Appendix B)

and used in this script. Those preconditions are not repeated in Listing 3.1 since the purpose of

the standard library is to minimise repetition of preconditions.

The definition of safeRefactor declares twelve postconditions that are indicated by the

ensures keyword. These reason about the available methods and methods inherited metrics,

which are calculated using the am and mi operations from the McQuillan (2011) metrics meta-

model that is accessed using the $metrics script handle. The first postcondition4 states that the

Weapon class will inherit the same amount of methods when the getRange method is pulled up.

Following this, we state that MissileWeapon and MeleeWeapon will inherit more methods after

the refactoring. This is to be expected since we are pulling a method from each of these classes

and locating it in the Weapon class. The classes Bow, Javelin and Sword continue to inherit the

same number of methods. We then reason about the available methods. Naturally the Weapon

class will have more methods available after the refactoring because the getRange method will

be then declared in it. The classes that inherit from Weapon either directly or indirectly will have

the same number of methods available after the refactoring since they will be able to access the

getRange method from their parent classes.

1 imports " s t a n d a r d _ l i b r a r y . r e f d s l "
2

3 in " m o d e l _ o r i g i n a l / model_java2kdm . xmi "
4 out " m a x _ i n h e r i t a n c e / model_java2kdm . xmi "
5

6 main () {
7 c a l l s a f e R e f a c t o r ()
8 }
9

10 /**

4A discussion covering how these are implemented, in particular ‘old’ variables, is reserved until subsection 4.2.5.

3.6. A SMALL CASE STUDY 37

Weapon

- power : Int

+ getPower() : Int

MissileWeapon

- range : Int

+ getRange() : Int

MeleeWeapon

- range : Int

+ getRange() : Int

Bow Javelin Sword

Figure 3.1: A UML class diagram demonstrating a poorly designed system to be refactored.

11 * Performs a pull up refactoring on the getRange procedure
12 * and range field.
13 *
14 * It also ensures that the metric values are changed appropriately.
15 */
16 proc s a f e R e f a c t o r ()
17 r e q u i r e s $ u t i l s . c l a s s E x i s t s (" Weapon ")
18 r e q u i r e s $ u t i l s . c l a s s E x i s t s (" Miss i leWeapon ")
19 r e q u i r e s $ u t i l s . c l a s s E x i s t s (" MeleeWeapon ")
20 r e q u i r e s $ u t i l s . c l a s s E x i s t s ("Bow")
21 r e q u i r e s $ u t i l s . c l a s s E x i s t s (" J a v e l i n ")
22 r e q u i r e s $ u t i l s . c l a s s E x i s t s (" Sword ")
23 ensures $ m e t r i c s . mi ($ u t i l s . f i n d C l a s s (" Weapon ")) == $ m e t r i c s . mi ($ u t i l s .

f i n d C l a s s ("~Weapon "))
24 ensures $ m e t r i c s . mi ($ u t i l s . f i n d C l a s s (" Miss i leWeapon ")) > $ m e t r i c s . mi ($ u t i l s .

f i n d C l a s s ("~ Miss i leWeapon "))
25 ensures $ m e t r i c s . mi ($ u t i l s . f i n d C l a s s (" MeleeWeapon ")) > $ m e t r i c s . mi ($ u t i l s .

f i n d C l a s s ("~MeleeWeapon "))
26 ensures $ m e t r i c s . mi ($ u t i l s . f i n d C l a s s ("Bow")) == $ m e t r i c s . mi ($ u t i l s . f i n d C l a s s ("

~Bow"))
27 ensures $ m e t r i c s . mi ($ u t i l s . f i n d C l a s s (" J a v e l i n ")) == $ m e t r i c s . mi ($ u t i l s .

f i n d C l a s s ("~ J a v e l i n "))
28 ensures $ m e t r i c s . mi ($ u t i l s . f i n d C l a s s (" Sword ")) == $ m e t r i c s . mi ($ u t i l s . f i n d C l a s s

("~Sword "))
29 ensures $ m e t r i c s . am ($ u t i l s . f i n d C l a s s (" Weapon ")) > $ m e t r i c s . am ($ u t i l s . f i n d C l a s s

("~Weapon "))
30 ensures $ m e t r i c s . am ($ u t i l s . f i n d C l a s s (" Miss i leWeapon ")) == $ m e t r i c s . am ($ u t i l s .

f i n d C l a s s ("~ Miss i leWeapon "))
31 ensures $ m e t r i c s . am ($ u t i l s . f i n d C l a s s (" MeleeWeapon ")) == $ m e t r i c s . am ($ u t i l s .

f i n d C l a s s ("~MeleeWeapon "))
32 ensures $ m e t r i c s . am ($ u t i l s . f i n d C l a s s ("Bow")) == $ m e t r i c s . am ($ u t i l s . f i n d C l a s s ("

~Bow"))

3.6. A SMALL CASE STUDY 38

33 ensures $ m e t r i c s . am ($ u t i l s . f i n d C l a s s (" J a v e l i n ")) == $ m e t r i c s . am ($ u t i l s .
f i n d C l a s s ("~ J a v e l i n "))

34 ensures $ m e t r i c s . am ($ u t i l s . f i n d C l a s s (" Sword ")) == $ m e t r i c s . am ($ u t i l s . f i n d C l a s s
(" ~Sword "))

35 {
36 c a l l r e f a c t o r F i e l d ()
37 c a l l r e f a c t o r M e t h o d ()
38 }
39

40 /**
41 * This performs the pull up field refactoring on the range field
42 * range from classes MissileWeapon and MeleeWeapopn.
43 */
44 proc r e f a c t o r F i e l d () {
45 c a l l m o v e F i e l d T o S u p e r c l a s s (range , Miss i leWeapon)
46 c a l l d e l e t e F i e l d (range , MeleeWeapon)
47 }
48

49 /**
50 * This pulls up the getRange method from MissileWeapon and MeleeWeapon.
51 */
52 proc r e f a c t o r M e t h o d () {
53 c a l l moveMethodToSuperc lass (getRange , Miss i leWeapon)
54 c a l l d e l e t e M e t h o d (getRange , MeleeWeapon)
55 }
56

Listing 3.1: A RefDstl script that performs the pull up refactoring on the range field and
getRange method for the MissileWeapon and MeleeWeapon classes presented in Figure 3.1.

Weapon

- power : Int
- range : Int

+ getPower() : Int
+ getRange() : Int

MissileWeapon MeleeWeapon

Bow Javelin Sword

Figure 3.2: A UML class diagram that represents the system presented in Figure 3.1 refactored
to obtain maximum inheritance.

3.6. A SMALL CASE STUDY 39

This design is not much better. It means every class has a larger than necessary interface.

Software engineers generally try to decrease the size of the interface to reduce the risk of afferent

coupling. It provides them with leverage to be able to eliminate one or more of the methods

without having to consider the ramifications for client code. To minimise the interface offered by

the classes we aim for the design presented in Figure 3.3 and provide a RefDstl script for doing so

in Listing 3.2. The structure of this script differs to Listing 3.1 in that we now use the for construct

in the definition of the buryMethod procedure. It repeatedly applies the push down refactoring to

send an entity to the lowest level of a class hierarchy.

1 imports " s t a n d a r d _ l i b r a r y . r e f d s l "
2

3 in " m o d e l _ o r i g i n a l / model_java2kdm . xmi "
4 out " min_methods / model_java2kdm . xmi "
5

6 main () {
7 c a l l s a f e R e f a c t o r ()
8 }
9

10 /**
11 * Safely pulls up the range field into the Weapon class and pushes down
12 * the getPower and getRange methods.
13 *
14 * It also ensures that the metric measurements for the available methods and

methods inherited
15 * measurements update appropriately.
16 */
17 proc s a f e R e f a c t o r ()
18 r e q u i r e s $ u t i l s . c l a s s E x i s t s (" Weapon ")
19 r e q u i r e s $ u t i l s . c l a s s E x i s t s (" Miss i leWeapon ")
20 r e q u i r e s $ u t i l s . c l a s s E x i s t s (" MeleeWeapon ")
21 r e q u i r e s $ u t i l s . c l a s s E x i s t s ("Bow")
22 r e q u i r e s $ u t i l s . c l a s s E x i s t s (" J a v e l i n ")
23 r e q u i r e s $ u t i l s . c l a s s E x i s t s (" Sword ")
24 ensures $ m e t r i c s . mi ($ u t i l s . f i n d C l a s s (" Weapon ")) == $ m e t r i c s . mi ($ u t i l s .

f i n d C l a s s ("~Weapon "))
25 ensures $ m e t r i c s . mi ($ u t i l s . f i n d C l a s s (" Miss i leWeapon ")) < $ m e t r i c s . mi ($ u t i l s .

f i n d C l a s s ("~ Miss i leWeappn "))
26 ensures $ m e t r i c s . mi ($ u t i l s . f i n d C l a s s (" MeleeWeapon ")) < $ m e t r i c s . mi ($ u t i l s .

f i n d C l a s s ("~MeleeWeapon "))
27 ensures $ m e t r i c s . mi ($ u t i l s . f i n d C l a s s ("Bow")) < $ m e t r i c s . mi ($ u t i l s . f i n d C l a s s ("~

Bow"))
28 ensures $ m e t r i c s . mi ($ u t i l s . f i n d C l a s s (" J a v e l i n ")) < $ m e t r i c s . mi ($ u t i l s .

f i n d C l a s s ("~ J a v e l i n "))
29 ensures $ m e t r i c s . mi ($ u t i l s . f i n d C l a s s (" Sword ")) < $ m e t r i c s . mi ($ u t i l s . f i n d C l a s s (

"~Sword "))
30 ensures $ m e t r i c s . am ($ u t i l s . f i n d C l a s s (" Weapon ")) < $ m e t r i c s . am ($ u t i l s . f i n d C l a s s

(" ~Weapon "))
31 ensures $ m e t r i c s . am ($ u t i l s . f i n d C l a s s (" Miss i leWeapon ")) < $ m e t r i c s . am ($ u t i l s .

f i n d C l a s s ("~ Miss i leWeappn "))
32 ensures $ m e t r i c s . am ($ u t i l s . f i n d C l a s s (" MeleeWeapon ")) < $ m e t r i c s . am ($ u t i l s .

f i n d C l a s s ("~MeleeWeapon "))

3.6. A SMALL CASE STUDY 40

33 ensures $ m e t r i c s . am ($ u t i l s . f i n d C l a s s ("Bow")) == $ m e t r i c s . am ($ u t i l s . f i n d C l a s s ("
~Bow"))

34 ensures $ m e t r i c s . am ($ u t i l s . f i n d C l a s s (" J a v e l i n ")) == $ m e t r i c s . am ($ u t i l s .
f i n d C l a s s ("~ J a v e l i n "))

35 ensures $ m e t r i c s . am ($ u t i l s . f i n d C l a s s (" Sword ")) == $ m e t r i c s . am ($ u t i l s . f i n d C l a s s
(" ~Sword "))

36 {
37 c a l l r e f a c t o r F i e l d ()
38 c a l l r e f a c t o r M e t h o d ()
39 }
40

41 /**
42 * This performs the pull up field refactoring on the field:
43 * range from classes MissileWeapon and MeleeWeapopn.
44 */
45 proc r e f a c t o r F i e l d ()
46

47 {
48 c a l l m o v e F i e l d T o S u p e r c l a s s (range , Miss i leWeapon)
49 c a l l d e l e t e F i e l d (range , MeleeWeapon)
50 }
51

52 /**
53 * The getPower method will be moved to the lowest levels in
54 * the inheritance hierarchy.
55 */
56 proc r e f a c t o r M e t h o d () {
57 c a l l buryMethod (getPower , Weapon)
58 c a l l buryMethod (getRange , Miss i leWeapon)
59 c a l l buryMethod (getRange , MeleeWeapon)
60 }
61

62 /**
63 * The bury method refactoring sends a method to the
64 * lowest classes in the inheritance hierarchy.
65 */
66 proc buryMethod ($methodName , $ c l a s s) {
67 i f ($ c l a s s . i s P a r e n t ()) {
68 c a l l moveMethodToSubclass ($methodName , $ c l a s s)
69

70 f o r ($ c l s in $ c l a s s . c h i l d r e n ()) {
71 c a l l buryMethod ($methodName , $ c l s)
72 }
73 }
74 }
75

Listing 3.2: A RefDstl script that performs a pull up refactoring on the range field and a
push down refactoring on the getPower method until it is at the lowest level of the inheritance

hierarchy.

Although this is an improvement, a problem remains. In this design, Sword now has access

3.6. A SMALL CASE STUDY 41

Weapon

power : Int
range : Int

MissileWeapon MeleeWeapon

Bow

+ getPower() : Int
+ getRange() : Int

Javelin

+ getPower() : Int
+ getRange() : Int

Sword

+ getPower() : Int
+ getRange() : Int

Figure 3.3: The UML class diagram from Figure 3.1 refactored for minimum methods per class.

to a method called getRange. A MeleeWeapon should not have a concept of range. We perform

a final refactoring on this design to correct this and aim for the design shown in Figure 3.4, which

is yielded by the RefDstl script in Listing 3.3. This is the optimised design according to search

based approach to refactoring by O’Keeffe and Ó Cinnéide (2003).

1 imports " s t a n d a r d _ l i b r a r y . r e f d s l "
2

3 in " m o d e l _ o r i g i n a l / model_java2kdm . xmi "
4 out " o p t i m i s e d / model_java2kdm . xmi "
5

6 main () {
7 c a l l s a f e R e f a c t o r ()
8 }
9

10 /**
11 * Safely pulls up the range field and removes the getRange method
12 * from the MeleeWeapon class.
13 *
14 * The metric measurements are also check to ensure they are updated

appropriately.
15 */
16 proc s a f e R e f a c t o r ()
17 r e q u i r e s $ u t i l s . c l a s s E x i s t s (" Weapon ")
18 r e q u i r e s $ u t i l s . c l a s s E x i s t s (" Miss i leWeapon ")
19 r e q u i r e s $ u t i l s . c l a s s E x i s t s (" MeleeWeapon ")
20 r e q u i r e s $ u t i l s . c l a s s E x i s t s ("Bow")
21 r e q u i r e s $ u t i l s . c l a s s E x i s t s (" J a v e l i n ")
22 r e q u i r e s $ u t i l s . c l a s s E x i s t s (" Sword ")
23 ensures $ m e t r i c s . mi ($ u t i l s . f i n d C l a s s (" Weapon ")) == $ m e t r i c s . mi ($ u t i l s .

f i n d C l a s s ("~Weapon "))

3.6. A SMALL CASE STUDY 42

24 ensures $ m e t r i c s . mi ($ u t i l s . f i n d C l a s s (" Miss i leWeapon ")) == $ m e t r i c s . mi ($ u t i l s .
f i n d C l a s s ("~ Miss i leWeappn "))

25 ensures $ m e t r i c s . mi ($ u t i l s . f i n d C l a s s (" MeleeWeapon ")) == $ m e t r i c s . mi ($ u t i l s .
f i n d C l a s s ("~MeleeWeapon "))

26 ensures $ m e t r i c s . mi ($ u t i l s . f i n d C l a s s ("Bow")) == $ m e t r i c s . mi ($ u t i l s . f i n d C l a s s ("
~Bow"))

27 ensures $ m e t r i c s . mi ($ u t i l s . f i n d C l a s s (" J a v e l i n ")) == $ m e t r i c s . mi ($ u t i l s .
f i n d C l a s s ("~ J a v e l i n "))

28 ensures $ m e t r i c s . mi ($ u t i l s . f i n d C l a s s (" Sword ")) < $ m e t r i c s . mi ($ u t i l s . f i n d C l a s s (
"~Sword "))

29 ensures $ m e t r i c s . am ($ u t i l s . f i n d C l a s s (" Weapon ")) == $ m e t r i c s . am ($ u t i l s .
f i n d C l a s s ("~Weapon "))

30 ensures $ m e t r i c s . am ($ u t i l s . f i n d C l a s s (" Miss i leWeapon ")) == $ m e t r i c s . am ($ u t i l s .
f i n d C l a s s ("~ Miss i leWeappn "))

31 ensures $ m e t r i c s . am ($ u t i l s . f i n d C l a s s (" MeleeWeapon ")) < $ m e t r i c s . am ($ u t i l s .
f i n d C l a s s ("~MeleeWeapon "))

32 ensures $ m e t r i c s . am ($ u t i l s . f i n d C l a s s ("Bow")) == $ m e t r i c s . am ($ u t i l s . f i n d C l a s s ("
~Bow"))

33 ensures $ m e t r i c s . am ($ u t i l s . f i n d C l a s s (" J a v e l i n ")) == $ m e t r i c s . am ($ u t i l s .
f i n d C l a s s ("~ J a v e l i n "))

34 ensures $ m e t r i c s . am ($ u t i l s . f i n d C l a s s (" Sword ")) < $ m e t r i c s . am ($ u t i l s . f i n d C l a s s (
"~Sword "))

35 {
36 c a l l r e f a c t o r F i e l d ()
37 c a l l r e f a c t o r M e t h o d ()
38 }
39

40 /**
41 * This performs the pull up field refactoring on the field:
42 * range from classes MissileWeapon and MeleeWeapopn.
43 */
44 proc r e f a c t o r F i e l d () {
45 c a l l m o v e F i e l d T o S u p e r c l a s s (range , Miss i leWeapon)
46 c a l l d e l e t e F i e l d (range , MeleeWeapon)
47 }
48

49 /**
50 * This will remove the getRange method from the MeleeWeapon
51 * class.
52 */
53 proc r e f a c t o r M e t h o d () {
54 c a l l d e l e t e M e t h o d (getRange , MeleeWeapon)
55 }
56

Listing 3.3: A RefDstl script that performs a pull up refactoring on the range field and a
push down refactoring on the getPower method until it is at the lowest level of the inheritance

hierarchy.

3.7. SUMMARY 43

Weapon

- power : Int
range : Int

+ getPower() : Int

MissileWeapon

+ getRange() : Int

MeleeWeapon

Bow Javelin Sword

Figure 3.4: The UML class diagram from Figure 3.1 refactored using the optimisations calcu-
lated by the Dearthóir tool.

3.7 Summary
This chapter described a language to define and script software refactorings. The language was

built using the Xtext language framework. It not only produced supporting tools for the language,

such as a parser and Eclipse IDE integration, but it also provided a metamodel that can be in-

stantiated by other researchers working in the area of refactoring. This metamodel allows for

compatibility between tools. We also provided a standard library of primitive refactoring oper-

ations. These are used in our evaluation of RefDstl in Chapter 5. In the following chapter we

discuss implementing an interpreter for the language in the form of an extensible framework that

can refactor various kinds of software artefacts beyond the usual limits of source code.

Chapter 4

A Model Driven Framework to Interpret
RefDstl Scripts

In the previous chapter, we discussed the syntax and implementation of the RefDstl language for

specifying and scripting refactorings. We now focus on developing a framework for interpreting

those scripts. We begin by describing its high level design and identify the various components that

collectively form its architecture. In the latter part of this chapter, we describe how the framework

can be extended with additional model transformations so that it is relevant for refactoring many

heterogeneous artefacts rather than just source code. We also describe how the RefDstl language

can be enriched with the notion of ‘script handles’.

4.1 High–Level Overview of the RefDstl Interpreter Framework
Figure 4.1 presents a UML component diagram illustrating the main components of the RefDstl

framework. We have omitted the classes inside these components from the diagram for the sake

of simplicity. We describe the general purpose of each of these components and how they interact

before giving a more detailed discussion about each in turn.

We saw in Chapter 3 that the RefDstl language permits modularity by allowing scripts to

be split into multiple files. However, before a RefDstl script can be executed those files must

be ‘linked’ together so that procedures defined in external libraries, for example, can be resolved.

The ScriptManager component facilitates this need. Once a script has been linked then execution

is ready to commence. The ScriptManager relies on the InstructionInterpreter interface

provided by the Controllers component to initiate execution.

The Controllers component contains multiple classes, which are each responsible for

interpreting specific constructs and instructions provided by the RefDstl language. However,

the controllers delegate most of their work. For example, the controller responsible for in-

voking procedures delegates the task of maintaining the environment (i.e. the mapping of val-

ues to variables) to the Environment component, which it accesses through the Stack in-

terface. Furthermore, the task of interpreting the pre and post conditions on procedures is

delegated to the ConditionEvaluator component through the Interpreter interface. The

ConditionEvaluator component evaluates the truthness of boolean formulae. The ‘heavy lift-

ing’ required to perform model transformations is delegated to to the Transformations compo-

nent, which is accessed via the CompositeTransformation interface. The Transformations

component contains multiple classes, each of which understand how to load, transform and persist

4.1. HIGH–LEVEL OVERVIEW OF THE REFDSTL INTERPRETER FRAMEWORK 45

different (or heterogeneous) model types. The ScriptHandles component is also called upon by

classes in the Controllers component. It provides utility methods that can be used in RefDstl

scripts to enrich the language with features that are otherwise unavailable, for example, outputting

messages to log files or the console.

We now elaborate on the details of each of these components.

ScriptManagerScriptManager

ControllersControllers

TransformationsTransformations ScriptHandlesScriptHandles

ConditionEvaluatorConditionEvaluator EnvironmentEnvironment

InstructionInterpreter

CompositeTransformation Handle

Interpreter Stack

Figure 4.1: An overview of the components in the RefDstl interpreter framework.

Script Manager
The script manager has a similar purpose to a ‘linker’ used with traditional compiled soft-

ware. It loads RefDstl scripts and inspects them for import statements. For example, the

code snippet in Listing 4.1 shows a RefDstl script importing the code from a library called

my_refactorings.refdsl. An import is equivalent to taking the procedures defined in the im-

ported script and appending them to the bottom of the importing script. Of course an imported

script, such as my_refactorings.refdsl, might also have its own import statements. These are

recursively resolved until no more imports remain. Circular dependencies between imports should

be avoided and the current implementation of RefDstl is unable to detect these. In a situation

where one script and a subsequently imported script share a procedure with the same name then

the procedure that was loaded the earliest is used. Parameter types are not used as part of the

procedure’s signature; thus, overloaded procedures are unsupported and will result in a runtime

error.

1 imports " m y _ r e f a c t o r i n g s . r e f d s l "
2

3 in " some_model . xmi "

4.1. HIGH–LEVEL OVERVIEW OF THE REFDSTL INTERPRETER FRAMEWORK 46

4 out " s o m e _ m o d e l _ r e f a c t o r e d . xmi "
5

6 /**
7 * Script begins execution in main.
8 */
9 main () {

10 . . .
11 }

Listing 4.1: An example showing the syntax used to import one RefDstl script into another.

Controllers
Once a script has been fully loaded, it begins to execute. For each of the different refactoring

instructions (create class, move field etc.) we implemented a controller. Controllers also exist that

are specific to aspects of the RefDstl language, such as procedure calls.

The controllers responsible for interpreting refactoring instructions are mundane delegates.

They merely extract the parameters for the refactoring instruction (such as the new name for a

class in a ‘create class’ instruction) from the script and resolve any variables to their values us-

ing the Environment component. They then pass the parameters to the appropriate method in

CompositeTransformation singleton object in the Transformations component. This repeats

the message to all of the transformation classes registered in the framework, such as the transfor-

mation for refactoring the MoDisco model of the system or the transformation responsible for the

metrics model of the system.

Other controllers that are specific to RefDstl language constructs have more interesting and

involved activities. For example, the MainInt class in the Controllers component is responsible

for beginning execution of the script. It attempts to locate the main procedure in the refactoring

script and begins to execute the list of instructions in the body. Since a controller only knows

how to interpret one type of instruction, it dispatches everything that it does not understand to

the general instruction controller, named InstructionInt. This controller inspects the name of

the actual type of the instruction and by using Java’s reflection capabilities it instantiates a new

instance of the correct controller to perform the interpretation and further delegation occurs.

The ConditionalStatementInt is responsible for interpreting conditional if statements in

the language. Guards on conditional statements use the same syntax as expressions in pre and post

conditions so the interpretation of the guard is delegated to the conditions evaluator (discussed

below). If the guard evaluates to true then ConditionalStatementInt evaluates the body of the

condition through further use of delegation. Otherwise, it does nothing. For example, Listing 4.2

presents a procedure that will rename a class declaration to Bar if its name is currently Foo. The

procedure takes as input a class declaration and the conditional statement inside the body of the

procedure uses a guard to determine if the name of the passed class declaration is named Foo (in

which case the guard evaluates to boolean true). If the guard is true then $possibleFoo will be

renamed otherwise no action is taken.

1 /**
2 * This method will rename a class called Foo to Bar.
3 * Otherwise it does nothing.
4 */

4.1. HIGH–LEVEL OVERVIEW OF THE REFDSTL INTERPRETER FRAMEWORK 47

5 renameFooToBar ($ p o s s i b l e F o o) {
6 i f ($ p o s s i b l e F o o . getName () . e q u a l s (Foo)) {
7 c a l l r enameClas s ($ p o s s i b l e F o o , Bar)
8 }
9 }

Listing 4.2: An example showing the syntax used to describe a conditional statement in RefDstl.

The LoopingStatementInt is responsible for performing a sequence of instructions over a

collection. It extracts the object expression from the loop statement header. It delegates the task of

interpreting this to the ObjectExpressionInt. The ObjectExpressionInt returns the result of

the expression, which the LoopingStatementInt casts to an instance of a collection. Trying to

loop over anything other than a collection is an obvious error. The LoopingStatementInt iterates

over each member of the collection. During each iteration, it maps the current element to a vari-

able name (determined by the script) in the environment (described later) and then executes each

instruction in the loop body. In Listing 4.3, for example, we iterate over all of the classes in the

project under refactoring and create an instance variable for logging. The ObjectExpressionInt

evaluates $utils.allClasses() to a collection and the LoopingStatementInt binds each

member of this collection to the variable named $cls during each iteration. The body of the

loop is applied to the bound variable during each iteration, which in this case creates the variable

for logging.

1 /**
2 * This loop will add a variable for logging to each class.
3 */
4 f o r ($ c l s in $ u t i l s . a l l C l a s s e s ()) {
5 c a l l c r e a t e F i e l d (LOG, publ ic , $ c l s . getName () , " j a v a . u t i l . Logger ")
6 }

Listing 4.3: An example showing how to iterate in RefDstl.

The ObjectExpressionInt evaluates object expressions. These begin with a variable fol-

lowed by a cascade of method calls. The parameters to these method calls can also be other object

expressions. For example, in Listing 4.4 there are two object expressions that we use to compare

two class names for equality. The first object expression to be executed is the nested expres-

sion $clsTwo.getName(). The ObjectExpressionInt locates the variable $clsTwo from the

environment and then using Java’s reflection mechanism invokes the getName() method. The

resulting object is then cached. Next, ObjectExpressionInt locates the object assigned to the

variable $clsOne and invokes the getName() method on it before, finally, evaluating the cascaded

method equals(...). The earlier cached result is passed as a parameter. The result of all object

expressions is an object; the actual type such as String is unneeded.

1 $c l sOne . getName () . e q u a l s ($clsTwo . getName ())

Listing 4.4: An example object expression in RefDstl.

ProcedureCallInt handles RefDstl call instructions. In the case where no arguments are

being passed with the procedure call this is simply a case of searching the script for the procedure

with the same name and then proceeding to have Controller interpret each of the statements in

4.1. HIGH–LEVEL OVERVIEW OF THE REFDSTL INTERPRETER FRAMEWORK 48

the procedure’s body in turn. However, prior to executing the body ProcedureCallInt requests

that the environment create a new frame on the stack, which is later destroyed when the procedure

is finished executing. The purpose of the frame is to provide scope to the variables. Without frames

the instructions in the body of a procedure would be able to read the parameters of the invoking

procedure. This could lead to unusual behaviour. Once the procedure is finished executing the

frame is destroyed for efficient memory usage. The ProcedureCallInt class is also responsible

for placing the arguments on the stack frame. This is achieved by getting the names of the parame-

ters that the procedure being called expects and the variable names or values of the arguments that

are being provided. If the size of the argument list does not match the parameter list then an error

is raised. Otherwise, on the frame created for the procedure call, each ith argument is mapped to

each ith variable name. The procedure’s body is then executed using, once again, more delegation.

Transformations
Model transformations are the primary motivation for this framework. There are no technical re-

strictions on the kind of models that can be transformed. However, the framework is intended to be

used with transformations that are driven by refactoring instructions. The actual act of transform-

ing the model is not required to be done via Java as we have done in our provided transformations.

Developers extending the framework can choose to have the transformation conducted by calling

out to an ATL script, for example. We believe this flexibility is a benefit of our framework.

We provide two transformations with the framework. The first is MoDiscoTransformation.

If the framework is equipped with just this transformation then it behaves as any regular refactor-

ing engine. Its responsibility is to transform MoDisco models that are representations of the Java

system being refactored. It also provides a handle named $project in scripts. This can be used

in the same way as variables in the RefDstl language. We do not go into detail about how this

transformation actually refactors models. However, we point out a distinguishing feature that dis-

tinguishes the framework from other refactoring engines. The preconditions that most refactoring

engines would check prior to the transformation are not embedded in the Java code that performs

the transformations. Instead, the transformation assumes that the conditions have already been

verified prior to the request to perform the transformation. In other words, the conditions must be

expressed in the refactoring script in pre and post conditions on procedures. This is not to suggest

that decoupling the conditions from the transformation make them easier to formulate but we do

believe it makes it easier to correct erroneous conditions in the field. Also it is more convenient to

add new transformations.

The second transformation we provide is the MetricsTransformation. The idea behind

this is based on the work of McQuillan (2011) but the implementation provided here is our own.

In this transformation, we maintain a representation of the system using McQuillan’s measurement

metamodel. The measurement metamodel contains a view of the measurable aspects of the sys-

tem that are used by McQuillans metrics metamodel. The metrics metamodel contains definitions

of a variety of metrics as OCL expressions. When these expressions are evaluated they provide

a numeric value. This transformation also provides a ‘script handle’ called $metrics. This is

significant because it means that measurement values can be reasoned about in pre and postcondi-

tions written in scripts. In other words, RefDstl allows the script developer to define refactorings

that will only be applied in the case where the quality of the software undergoing refactoring is

4.1. HIGH–LEVEL OVERVIEW OF THE REFDSTL INTERPRETER FRAMEWORK 49

improved.

Condition Evaluator

From the RefDstl code examples previously shown, it is clear that there is a disparity between the

syntax used to express pre and post conditions and the syntax used to describe refactoring opera-

tions. The disparity exists as a result of a language design choice to use a syntax for the conditions

that would be familiar to programmers who have experience expressing pre and post conditions in

other languages such as Spec#. However, this syntax is unsuitable to describe refactoring opera-

tions so we devised a declarative style reminiscent of SQL. It could be said that our language is

really two languages in one and we held this in mind during the framework’s design. For the sake

of modularity, we placed the conditions evaluator into a separate component for this reason. The

interpreter for evaluating conditions is called ConditionInt. Other than this class, the component

contains one condition evaluator for each of the five levels of operator precedence in the RefDstl

language. The ConditionInt delegates any condition to be evaluated to the interpreter class at

the correct precedence.

Environment

Environment is responsible for maintaining state during script execution. It does this by providing

a stack interface to clients. The stack is used much in the same way as in assembly programming to

maintain local variables and for passing parameters to procedures. However, our implementation

allows the client to explicitly create and destroy frames (which is done prior to a procedure call

and immediately after). This prevents erroneous access of variables that are out of scope. Our

environment does not need to provide a heap to store objects. Objects in RefDstl are just Java

objects; hence they ‘live’ on the heap maintained by the JVM. When a reference to one of the

objects is no longer on one of the stack frames maintained by Environment then that object can

no longer be accessed so the object is garbage collected.

All variables that can be declared by RefDstl programmers have local scope. These can be

accessed anywhere in the body of the procedure or in the conditions annotated on the procedure.

Variables can also be declared as part of forall or exists constructs in conditions. These are

only available in the body of the condition. The same applies to variables declared in the guard

of if constructs. In loop constructs, variables can be declared in the header. These are available

anywhere in the body of the loop construct including inside the bodies of any nested constructs.

There are certain variables that are global. These are provided by ‘script handles’ (discussed later).

For example, the MoDiscoTransformation provides a handle called $project that allows users

to reason about the program that is being refactored. Although local and global variables are

accessed and modified the same way, there is one major distinction in how they need to be treated

in post conditions on procedures. In post conditions, it will be necessary to talk about the state of

global variables prior to the procedure being executed so that conditions can be written to ensure

that the model was refactored correctly. The environment supports features to enable this. It allows

a deep copy to be made of a frame and of the objects/values in that frame. To access the old values,

RefDstl programmers can use this syntax: old($someGlobalVar) to gain access to the value

of $someGlobalVar prior to the procedure being executed. Local variables cannot be reassigned

in the RefDstl language so they have no ‘old’ state.

4.2. ENRICHING THE REFDSTL LANGUAGE VIA SCRIPT HANDLES 50

Script Handles
The ScriptHandles component contains extension points for the RefDstl language. Other than

when the RefDstl framework ‘starts up’, and registers each of the handles with the Environment

component, the other components are unaware of its existence. Each script handle simply becomes

another global variable. We discuss how script handles are developed in the next section.

4.2 Enriching the RefDstl Language via Script Handles
Script handles are one of the extension points on offer to developers extending the basic function-

ality of the RefDstl framework. They can be included to either provide additional features in the

language or as a substitute for ‘macros’ so that common expressions can be expressed succinctly.

For example, Listing 4.5 shows how a script handle we included can be used to reduce the number

of lines of code required to reason over all of the classes in the system being refactored. Without

this script handle, we would have to use just the methods provided by the MoDisco representation

of the system under refactoring, as shown in Listing 4.6.

1 r e q u i r e s f o r a l l $ c l s in $ u t i l s . a l l C l a s s e s () : (. . .)

Listing 4.5: Writing a precondition that uses the utility method in the $utils handle for
convenience.

1 r e q u i r e s f o r a l l $cu in $ p r o j e c t . g e t C o m p i l a t i o n U n i t s () : f o r a l l $ c l s in $cu .
g e t T y p e s () : $ i n s t a n c e . Of ($ c l s , C l a s s D e c l a r a t i o n) −> (. . .)

Listing 4.6: Pure RefDstl code for universally quantifying over all the classes in a system

In this section, we discuss how developers can integrate their own script handles into the

framework. We then briefly describe four of the script handles that we developed. Note that script

handles are accessed via variables that are treated as global by the environment.

4.2.1 Embedding a New Handle
Embedding a new script handle into RefDstl involves following these steps:

1. Create a Singleton Class — The steps involved for creating a singleton class are described

by Metsker and Wake (2006). Roughly speaking it involves providing a default constructor

with a private access modifier so that instances of the class can only be created from inside

the class. The class also contains a reference to an object (having the same type as the class)

which is marked static and private and is initialised at declaration. This ensures that only

one object with that class’s type can ever exist. The object can be accessed from outside the

class by creating a static method (normally called instance()).

2. Implement the interface presented in Table 4.1 — The script handle must implement this

interface so that the framework registers it correctly. The getHandleName method should

return a String object. This will be the name of the variable that RefDstl script program-

mers use to access the script handle. getHandleObject() returns an instance of object.

This should be the singleton object that is created as a part of enforcing the singleton design

pattern. The class is free to contain any other methods. Methods that are declared public

can be accessed in the script using the script handle.

4.2. ENRICHING THE REFDSTL LANGUAGE VIA SCRIPT HANDLES 51

Method Name Purpose

getHandleName This provides the name of the handle that can be accessed through the con-
ditions. It is the responsibility of the person writing the script handle to
make sure that the handle name is not already in use.

getHandleObject This should return the instance of the handler class.

Table 4.1: The interface that must be implemented by a class to integrate it into the RefDstl
framework as a script handle.

3. Register the handle in the framework — The script handle can be registered in the frame-

work by modifying the constructor of the class MachineStack to include a line such as

Listing 4.7. The MachineStack will then include a variable on every stack frame that

points to the script handle’s instance using its provided variable name. In the current im-

plementation of RefDstl, there is no convenient way to determine what script handles are

used in some script. In a future version, the interpreter could perform a static analysis of the

script prior to execution to look for undeclared variables. Any undeclared variables could

be suggested to be required script handles. However, this is not a guarantee as the script’s

author may have just misspelled a declared variable.

We discuss the script handles we implemented next.

1 s c r i p t H a n d l e s . add (U t i l s . i n s t a n c e ()) ;

Listing 4.7: Java code that is used to register the utils script handle object with the RefDstl
framework

4.2.2 Supporting Debugging in RefDstl Scripts
There are no debugging tools currently available for RefDstl scripts nor is there any native support

for I/O in the language. For this reason, we introduced a crude form of debugging by developing

a script handle that allows tagged messages to be written to the console and can also be processed

by the Log4J system1.

The plug–in can be accessed by using the $debug handle. It offers a method named print

that takes a message to display or a tag followed by a message. A tag should be any of the Log4J

levels such as trace, debug, error, fatal, warn or info. Depending on the tag, the debug message

will be output at the most appropriate Log4J level and to the configured logger.

4.2.3 Checking Object Types
While writing the standard library of primitive refactoring operations we found that it was useful

to be able to test the type of objects. For this purpose, we provided the instance script handler.

It contains a method called of which accepts two parameters. The first argument should be an

object and the second should be a string that is a type name. The method will test if the object is

an instance of that type name and return the result as a boolean.

4.2.4 Accessing the Program Model
The model of the system can be accessed using the $project handle. This allows for full

access to the project under refactoring’s MoDisco representation. Any methods provided by

1http://logging.apache.org/log4j/2.x/

http://logging.apache.org/log4j/2.x/

4.3. CUSTOM TRANSFORMATIONS INTO THE REFDSTL FRAMEWORK 52

the Java class implementation of MoDisco are available. For example, users can call the

getCompilationUnits method to get the list of Java files in the project being refactored.

4.2.5 Accessing Old Variables
As discussed previously, global variables require two states to be maintained during the execution

of a procedure in order to support postconditions: the state prior to execution and the post state. In

a postcondition expression, the post value of the variable can be expressed by using the variable

name — no special syntax is needed. However, the value of the variable prior to execution requires

extra syntax. We provide this by using a script handle. The handle offers a single method called

valueOf which takes a string object as a parameter. It reads the value for that variable from the

frozen frames of the MachineStack and returns the value.

4.3 Custom Transformations into the RefDstl Framework
Users can integrate their own transformations into the framework by creating a singleton class that

implements the ITransformation interface. The methods of this interface are documented in

Table 4.2.

The user can create transformations for any type of representation that they choose but it is

expected that all representations loaded during the execution of a script are just different views

of the same model. However, there is no necessity for them to have been generated from some

common core model.

We offer no guidance here regarding how to write the actual transformation code; this will

depend very much on the representation the transformation is intended to refactor.

Method Name Meaning

nop In situations when a RefDstl programmer would like for a procedure,

conditional or looping body to be empty they use a nop instruction.

Transformations are not required to perform any action when a nop in-

struction is encountered.

save A transformation is expected to have a reference to some model rep-

resentation. The transformation should implement the save method to

persist that model to a file or otherwise.

deleteClass The script encountered a delete class instruction. The transformation

should update the model representation by removing the class and any

references to it.

deleteField A delete field instruction was executed. The transformation should

delete the field from its representation and any references to it.

createClass A request to create a new class was encountered in the script. The model

representation should create a new unreferenced class with the specified

parameters.

renameClass The script contained a rename class instruction. The transformation

should modify the model by finding the class with the old name and

update it with the new name.

createField A new and unreferenced field should be created in a specified class.

4.4. DISADVANTAGE OF OUR APPROACH 53

createMethod The transformation should create a new unreferenced method in the

model representation.

deleteMethod The transformation should search the model for a method with a specific

signature and delete it as well as any associated references.

renameField The field with a specific name should be found and its name updated to

the name provided by the parameters.

changeMethodName The model transformation should find a method with a particular name

and signature and update its name.

changeFieldType The type of an existing field should be changed by the transformation.

changeMethodType The return type of an existing method should be changed in the repre-

sentation held by the transformation.

changeMethodModifier The access modifier of a method should be modified in the representa-

tion maintained by the transformation.

changeFieldModifier An existing field should have its access modifier updated by the trans-

formation.

addMethodArgument An existing method should be modified so that a new argument appears

in its signature.

deleteMethodArgument An existing method should have its signature augmented so that a spec-

ified parameter is deleted.

reorderMethodArgument The signature should be rewritten so that the arguments to a method are

reordered.

changeSuperclass An existing class should have its superclass changed from the current

class to the specified one.

moveFieldToSuperclass A field should be moved by the transformation from a subclass up the

inheritance hierarchy into a superclass.

moveField The transformation should relocate a field from the class that it is cur-

rently defined in to a new class.

moveFieldToSubclass A copy of an existing field should be moved by the model transforma-

tion from the class it is currently located in to each of the subclasses.

moveMethod A method should be moved from one class to another.

moveMethodToSuperclass A method should be moved from a class to its superclass.

moveMethodToSubclass A method should be moved from a class to its subclass.

Table 4.2: The methods that must be implemented by the transformation interface.

4.4 Disadvantage of Our Approach

The powerful extensibility of our framework is also its biggest disadvantage. RefDstl scripts that

will execute on one person’s installation might not work on another installation. We propose in

the future to provide a mechanism to load script handles and transformations dynamically so that

the dependencies of a script can be bundled with the script.

4.5. SUMMARY 54

4.5 Summary
In this chapter, we presented the architecture of the RefDstl framework and identified the ‘key’

components. We emphasised how users may extend this framework using two approaches. The

first involves creating script handles that enrich the scripting language with additional function-

ality, for example, interacting with the user via the console. The second involved incorporating

additional model transformations, which are the primary reason the framework is capable of work-

ing on a variety of heterogeneous artefacts.

This chapter in conjunction with Chapter 3 concludes our discussion on the implementation

of the RefDstl system2. In Chapter 5, we concentrate on evaluating the efficacy of the system as

well as the accuracy of the model transformation used to refactor MoDisco models representing

Java systems.

2By ‘system’, we mean the language and the framework.

Chapter 5

A Case Study on Automatically Refactoring
‘God’ Classes

Up to this point, we have provided the motivation for a DSTL to script refactorings and to define

new composite refactorings. We presented the syntax of the RefDstl language and described how

the system can be extended with custom model representations and transformations.

Now we focus our attention on evaluating the efficacy of our approach and our prototype im-

plementation. We do this by performing a case study on a collection of ‘God’ classes selected from

a corpus of Java software. At a low level, the study shows that: 1. RefDstl can be used to remove

the ‘God’ class ‘smell’ using the extract class refactoring, and, 2. RefDstl can be used to measure

coupling between Java classes. From a higher level, however, it is shown that RefDstl is suitable

in practical environments to refactor ‘real world’ sized software and in academic environments as

an extensible framework to evaluate research hypotheses.

5.1 Purpose of Experiment
In order to demonstrate the efficacy of RefDstl, we aim to show that it has the following qualities:

• Expressibility — We show that RefDstl is capable of expressing refactorings on a scale on

par with what would be required by professionals and academics alike.

• Efficiency — Although our current implementation is only a prototype, it must be capable of

performing real world refactorings in a reasonable amount of time. We follow the direction

of Simon et al. (2001) who state that a refactoring engine should be able to perform the

refactoring quicker than an experienced engineer performing it manually. Quantitative data

is collected during the study and presented here that shows the time taken to perform the

refactorings.

These objectives imply the following criteria should be considered when choosing the refac-

toring to be used in this study.

• The refactoring should resolve a ‘naturally’ occurring symptom of ‘code rot’. This criterion

helps to serve as evidence that RefDstl is useful in ‘real world’ situations.

• The refactoring should affect multiple different entities in the system, i.e. classes, methods

and fields. It should also involve multiple refactoring primitives. This ensures that the

range of refactoring instructions provided by RefDstl are broad enough to handle reasonably

5.2. SUMMARY OF APPROACH 56

complex refactorings. It also allows us to consider the time taken by RefDstl to perform a

reasonably large refactoring.

With this criteria in mind, we examined the literature and discovered that as classes age they

become less cohesive; they effectively become ‘God’ classes. The literature discusses approaches

to address the issue. For example Simon et al. (2001) use distance metrics to present visualisations

to software engineers as a guide of where to apply refactorings. However, we believe RefDstl

provides better opportunities, which are the focus of this study. We use RefDstl to automatically

remove the ‘God’ class ‘smell’ from a selection of classes and explore the impact on the CBO

metric (Chidamber and Kemerer, 1994) as well as its predictor by Chaparro et al. (2014). We also

examine the time it takes to perform the refactoring. We discuss how the study was conducted

next.

5.2 Summary of Approach
We use the following sequential activities identified by Mens and Tourwe (2004) as the basis for

our approach. These include:

1. Identifying refactoring opportunities — Mens and Tourwe (2004) assume that the refactor-

ing is being conducted by a software engineer working on their own project. However, in

this case study we also have the additional step of selecting systems to be the subjects of the

experiment. Once identified, we then identify classes that exhibit the ‘God’ class ‘smell’

using an analysis tool that is developed in section 5.5.

2. Choosing a refactoring to apply — We intentionally look for ‘God’ classes in this study.

Consequently, the refactoring to apply is predetermined to be the extract class refactoring.

3. Ensuring the program behaviour is preserved — It is the responsibility of the programmer

writing the RefDstl refactoring script to ensure that that pre and post conditions for the

refactoring are sufficient to preserve program behaviour.

4. Apply the refactoring — The RefDstl refactoring engine applies the extract class refactoring

script to MoDisco models that represent the system under refactoring. These models contain

the ‘God’ classes. We do not do this manually.

5. Assess the effect of refactoring on quality characteristics of software — We investigate the

impact of extract class on the CBO metric. We examine if the post CBO measurement of the

class under refactoring can be predicted.

6. Maintain consistency with other software artefacts — This does not form a part of our study.

However, it should be noted for all other artefacts that are representable by a model that these

can be manipulated by the RefDstl engine during refactoring.

We discuss the first of these activities next.

5.3 Identifying a Corpus for the Experiment
Ideally this study would be carried out on commercial software systems. However we note that

more often than not commerical code is proprietary and industry is unwilling to share their code

5.4. CONTENT OF THE QUALITAS CORPUS 57

to maintain their competitive advantage. In experiments where commercial code has been used,

the researchers are normally subjected to non–disclosure agreements that oftentimes require they

do not name the product or further disseminate the code, for example in the study by Barker and

Tempero (2007). This poses a problem for researchers where the subject of the experiments should

be made available so that the experiment can be repeated and that fair comparisons can be made

later with other studies. As an alternative we use a corpus of open source software. We also

choose to restrict ourselves to using Java source code because we only have access to a MoDisco

knowledge discoverer for transforming Java into MoDisco models.

We have identified the following potential sources to use in the experiment. Blackburn et al.

(2006) proposed the DeCapo benchmark suite, which is described as ‘set of open source, real

world applications with non-trivial memory loads’. Although it is primarily a suite of previously

calculated and verified benchmarks and measurements (such as object–oriented metrics) the soft-

ware systems that the measurements were taken from can be downloaded using the Ant1 script in

the source–code distribution. However, we choose not to use this suite since it is an older corpus

than the Qualitas Corpus, which we discuss next.

Tempero et al. (2010) provide the curated Qualitas Corpus as three distributions: The r distri-

bution provides the most recent version of a large collection of software systems. The e distribu-

tion is the evolutionary version. It provides fewer systems but each of the systems is provided with

multiple versions. The f distribution completes the corpus with systems and versions that appear

in neither of the other two distributions. We select the e distribution for this experiment as it is

suitably large and fits the requirements for our evolutionary study. The following section provides

a summary of the contents of the corpus and describes its size. We note that there exists multiple

releases of the corpus that come with later releases of software with substitutions made for systems

that are no longer actively maintained. From this point on, we refer to version 20130901e when

discussing the Qualitas Corpus.

The Qualitas Corpus has gained acceptance among other researchers such as the following.

Fontana et al. (2012) perform a study on the affects of individual code ‘smells’ on different design

metrics. Griffith et al. (2014) examine the relationship between technical debt estimation models

and quality models. Al-Mutawa et al. (2014) examine whether all circular dependencies should be

considered as ‘undesirable’. De Roover et al. (2013) augment the Qualitas Corpus in the form of

Quaatlas so that it is more suitable for studies concerning API usage. Arcelli et al. (2015) use the

corpus to discover what refactoring tools are easiest and most useful for removing code ‘smells’.

5.4 Content of the Qualitas Corpus
We briefly remark on the contents of the Qualitas Corpus in order to provide a sense of the size of

this study. The corpus is disseminated as a split tape archive file, which is approximately 16.75GB

in its unpacked state and 66.41GB in its decompressed installed state. It contains fifteen different

systems from different domains. These are listed in Table 5.1 along with the number of versions

of each system included. In total there are 579 versions of software and 3,320,594 Java classes

(which are distributed across the various systems as shown by Figure 5.1). A variety of systems

offers a degree of certainty that projects have disjoint sets of developers working on them. If the

1http://ant.apache.org

http://ant.apache.org

5.5. AN ANALYSIS TOOL FOR THE QUALITAS CORPUS 58

projects were developed by the same developers then the corpus would be unsuitable for certain

types of studies such as those sensitive to developer habits. This includes the study presented here.

Figure 5.1: The number of classes per system.

The corpus contains the binaries and source code for each system as well as a summary of the

corpus content and a summary of each project (i.e. metadata). Each project summary includes:

• A listing of the classes in the project and the location of each of those classes.

• A count of the number of lines of code in each source file and non–commented lines of

code.

• An indicator determining whether each class is public or private and top level or nested.

Clearly not all of the classes provided with the corpus have the ‘God’ class ‘smell’ and some

processing is required to identify the relevant classes. We develop an analysis tool for this purpose

in the next section.

5.5 An Analysis Tool for the Qualitas Corpus
We develop a tool for analysing the content of the Qualitas Corpus. Its purpose is to perform two

activities.

• It produces a relational model of the Qualitas Corpus metadata. This allows us to query the

contents of the corpus easily and efficiently using SQL, rather than writing several ad hoc

programs to process the files which is the default format for the corpus metadata. It also

5.5. AN ANALYSIS TOOL FOR THE QUALITAS CORPUS 59

System Name No. of Versions Included

Ant 23
Antlr 22
ArgoUML 16
Azureues 63
Eclipse SDK 52
Freecol 32
Freemind 16
Hibernate 115
JGraph 39
JMeter 24
JStock 31
Jung 23
JUnit 24
Lucene 36
Weka 63

Table 5.1: Systems and number of versions provided in the Qualitas Corpus version 20130901e.

allows us to succinctly describe what subjects were used for the case study as an SQL query,

rather than providing a long list of class and system version names.

• It performs an analysis of the classes in the system. The results of this analysis are persisted

to the relational database and stored close to the metadata for later querying.

5.5.1 Persisting the Metadata
The Qualitas Corpus metadata is mapped using a text processing program written in Java to the

simplified relational model shown in the entity–relationship diagram presented in Figure 5.2. This

is implemented using the PostgreSQL2 database system.

5.5.2 Analysing the Classes
Analysing software source code involves one of the following analysis approaches:

• Static — This approach involves analysing the code without executing it and is suitable in

situations where either the compiled binary or just the source code are available.

• Dynamic — Dynamic analysis involves executing the program. Some binary analyses can

be conducted without needing access to the source code, for example, analysing the time

taken by a program to finish executing. However, other more involved analyses require that

the code is instrumented before being executed. For example, suppose we want to generate

a list of the methods that are called during the execution of a program with unknown inputs.

Dynamic analyses can be slower because of the time that it takes to execute the program

undergoing analysis.

We chose to incorporate static analysis into the tool. At the core of the analysis tool is an

iterator that goes through each of the classes provided in the corpus. For efficiency reasons, it

2http://www.postgresql.org

5.5. AN ANALYSIS TOOL FOR THE QUALITAS CORPUS 60

Systemname timestamp

contains

System Versionsystem version name

exists as

System Entry

fully qualified name

is distributed

binary locationsource location

in source package

lines of code

contains contains

Attributename Method name

Figure 5.2: An entity relationship diagram illustrating the main entities and attributes persisted
by the static analysis tool. Other entities, attributes and keys have been omitted for simplicity.

5.6. SELECTING REFACTORING CANDIDATES 61

is designed to iterate over the classes stored in a Jar file sequentially. This has been done for

efficiency because it means that a Java archive file only needs to be loaded and searched for Java

class files once. While iterating over the classes, the actual analysis occurs. This requires using

a library to analyse the classes. Two libraries were considered for this purpose: ASM (Bruneton

et al., 2002) and BCEL 3.

ASM works on the level of source code. It follows the visitor design pattern so developers

define actions to occur when nodes of a particular type are encountered. This is similar to the

SAX streaming API for parsing XML. However, it also offers a less memory efficient but more

user friendly DOM style interface that allows the developer to ‘pull’ what they want from a tree

structure of the program.

We opted however to use BCEL. It works at the lower byte–code level (although the byte–code

does not need to be executed). BCEL of course requires that the program being analysed can be

compiled. However, as mentioned earlier, the corpus provides the system binaries so this was not

a problem. BCEL has an advantage over ASM in that some analyses are simpler. For example, with

BCEL, we can search for patterns of bytecode so we can easily find all field accesses or mutations

in a class.

Our static analysis computes class level metric measurements (TCC, WMC, ATFD) and saves

the results to the database.

One might wonder why we developed a separate analysis tool for calculating these metrics

rather than employing the RefDstl system. We could have used RefDstl for this purpose. However,

initial experimentation showed that RefDstl would have been too slow to calculate the metrics for

the three million classes in the corpus.

5.6 Selecting Refactoring Candidates
Our goal is to select the ‘God’ classes from the Qualitas corpus. However, we will choose only

classes that appear in every version of a system distributed with the corpus and are ‘God’ classes

throughout. This provides a degree of certainty that what we select are actually ‘God’ classes and

not ‘borderline’ that could be reclassified due to a minor change occurring in some version.

To assess which of classes are ‘God’ classes, we use the criteria described by Lanza et al.

(2005). They define a strategy for finding instances of the ‘God’ class ‘disharmony’ using these

requirements:

• access to foreign data (ATFD) (Lanza et al., 2005) metric is greater than a few, and,

• weighted method per class (WMC) (Chidamber and Kemerer, 1994) metric is very high, and,

• tight class cohesion (TCC) (Bieman and Kang, 1995) metric is less than a third.

For the values ‘greater than a few’, we use the value 1, for very high we use 25%. This is in

line with the values given in Marinescu (2004). The query to identify ‘God’ classes that appear in

every version of a system is presented in Figure 5.3.

3http://commons.apache.org/proper/commons-bcel/

5.6. SELECTING REFACTORING CANDIDATES 62

1 CREATE VIEW g o d _ c l a s s e s _ a l l _ v e r s i o n s AS
2 SELECT T . ∗ , s y s t e m _ e n t r y .∗
3 FROM (SELECT se . system_name , se . f u l l y _ q u a l i f i e d _ n a m e
4 FROM s y s t e m _ e n t r y se
5 WHERE se . t c c < 0 . 3 3
6 AND se . a t f d > 1
7 AND se . wmc > 25
8 AND se . system_name <> ’ e c l i p s e ’
9 GROUP BY se . system_name , se . f u l l y _ q u a l i f i e d _ n a m e

10 HAVING count (s e . f u l l y _ q u a l i f i e d _ n a m e) = (SELECT count (sv . ∗)
11 FROM s y s t e m _ v e r s i o n sv
12 WHERE sv . system_name
13 = se . system_name
14 GROUP BY sv . system_name)
15) T
16 JOIN s y s t e m _ e n t r y USING (system_name , f u l l y _ q u a l i f i e d _ n a m e) ;

Figure 5.3: SQL query to discover ‘God’ classes in all versions.

1 SELECT ∗
2 FROM g o d _ c l a s s e s _ a l l _ v e r s i o n s
3 WHERE s y s t e m _ v e r s i o n _ v e r s i o n IN (SELECT ∗
4 FROM max_ver s ion)
5 AND system_name IN (’ a n t ’ , ’ a rgouml ’ , ’ f r e e m i n d ’ , ’ j g r a p h ’ , ’ j m e t e r ’ ,
6 ’ j s t o c k ’ , ’ j ung ’ , ’ j u n i t ’ , ’ l u c e n e ’ , ’ weka ’)
7 AND s y s t e m _ v e r s i o n _ v e r s i o n NOT IN (’ argouml −0 .16 .1 ’ , ’ argouml −0 .18 .1 ’ ,
8 ’ f r eemind −0 .6 .7 ’ , ’ weka−3.4 ’ ,
9 ’ weka−3 .4 .12 ’)

10 AND l e v e l = ’ Top Leve l P u b l i c ’
11

Figure 5.4: SQL query to discover classes for the study.

This dataset had to be later narrowed down to the dataset given by the query in Figure 5.4.

This was due to either the systems being too large to analyse (Eclipse) or being unable to generate

models for those projects (which is discussed later).

5.6.1 Creating the MoDisco Models
A two stage process was involved to produce the MoDisco models for the projects in the Qualitas

corpus:

1. We wrote a Java program that converted each system version in the corpus into a valid

Eclipse project with the correct classpath settings. The classpath settings were created using

the data pulled from the analysis tool described earlier.

2. With each system version in the form of an Eclipse project, we could produce MoDisco

models. The MoDisco plugin for Eclipse comes with knowledge discoverers to do this.

However, out of the box, these are designed to be interacted with manually. We developed a

plugin for Eclipse that performed the knowledge discovery and saved the MoDisco models

without human interaction. In total, it takes longer than six hours for the plugin to convert

every project (ignoring the Eclipse SDK). The time spent developing the plugin paid for

itself considering we had to generate the models three times before we were left with a

5.7. AN EXTRACT CLASS REFACTORING 63

Figure 5.5: The percentage of ‘God’ classes for all versions of each of the software systems in
the corpus.

reasonable number of models. We did not produce the models correctly the first two times

because the classpath settings for the projects were initially incorrect. On our third attempt

we managed to produce 458 valid models out of 579 systems. The large majority of the

systems we could not produce models for were the hibernate system. We therefore excluded

all hibernate systems from our study along with certain versions of the other systems. The

dataset that was actually used for the study is given by the query in Figure 5.4.

In the two following sections, we discuss our protocol for deciding how to split an incohesive

class as well as the RefDstl extract class script for performing the extraction.

5.7 An Extract Class Refactoring
Applying an extract class refactoring to an incohesive class involves moving elements of the in-

cohesive class to a newly created class. This is accomplished using a series of move field and

method refactorings as well as create class refactorings. However, deciding what fields and meth-

ods to move automatically involves using algorithms such as those used in social network analysis

like the Girvan–Newman algorithm (Cassell et al., 2009; Girvan and Newman, 2002) or from the

area of machine learning using algorithms such as k–means. The algorithm we used is as follows:

1. For every method in the class that is being automatically refactored, we create a cluster to

contain that method.

2. We iteratively check each cluster against the other clusters to determine if the clusters should

be merged. We say that two clusters should be merged if greater than half of the methods in

5.7. AN EXTRACT CLASS REFACTORING 64

Method Name Parameters Description

cluster Class name This method will cluster the class with the fully qualified
name specified in the input paramaters. The method always
returns true so it can be used safely within a pre or post con-
dition expression.

fieldToClass A field. Returns the name of the class where the field should be
moved.

methodToClass A method. Provides the name of the class to which the method should be
moved.

Table 5.2: API for interacting with the clustering plugin.

the two clusters are similar. Two methods are considered similar if at least half of their field

accesses are to the same fields.

3. After the clusters in the previous step converge, we then turn to allocating the fields to the

clusters. Each field is assigned to the cluster that uses that field the most.

We implemented this algorithm in a script handle for the RefDstl framework since the RefDstl

language has no way of expressing the algorithm otherwise. The API for using the handle is shown

in Table 5.2.

A RefDstl script was created automatically for each of the classes to be refactored and iden-

tified in our dataset. An example of one of the scripts is shown in Figure 5.6. It shows the main

procedure calling another to perform the extract class refactoring. This delegation is necessary

since main does not support pre or post conditions.

The precondition is used to arrange the class elements into cohesive units: this is done using

the call to the clusterClass method.

The first postcondition is used to calculate the CBO metric for the original class post refactor-

ing. The formula for calculating the CBO value for a class is given in Equation 5.1. In words, it

is a count of the number of classes a class c is coupled with. The last postcondition calculates the

predicted value for CBO. This is done using the CBO predictor function by Chaparro et al. (2014),

which we modified to take into account multiple extract class refactorings being performed at

once. The formula is shown in Equation 5.2. It says that the CBO value for a class that has under-

gone an extract class refactoring should be equal to its original value plus n which is a count of the

number of classes that were extracted less the number d which is a count of the classes coupled to

by the extracted methods but not used by the original class. In the original formula proposed by

Chaparro et al. (2014), n has the constant value of one.

CBO(c) = |ccoupled | (5.1)

CBOp(cs) =CBOb(cs)+n−d (5.2)

The results of applying the clustering algorithm to the classes that were selected for refactor-

ing are discussed next, which includes comparing the actual CBO measurements to their predicted

counterparts.

5.7. AN EXTRACT CLASS REFACTORING 65

1 in ‘ model_java2kdm . xmi ’
2 o u t ‘ model_out . xmi ’
3

4 main ()
5 {
6 c a l l measureAndSubver t (‘ o rg . apache . t o o l s . a n t . D i r e c t o r y S c a n n e r ’)
7 }
8

9 p roc measureAndSubver t ($ o r i g i n a l G o d C l a s s)
10 r e q u i r e s $ c l u s t e r e r . c l u s t e r C l a s s ($ u t i l s . f i n d C l a s s ($ o r i g i n a l G o d C l a s s))
11 e n s u r e s $debug . p r i n t T o F i l e (‘ / Use r s / k e i t h / Desktop / m e t r i c s . t x t ’ , ‘ a n t ’ , ‘ an t

−1 .8 .4 ’ , ‘ o rg . apache . t o o l s . a n t . D i r e c t o r y S c a n n e r ’ , $ r i p e . cbo ($ u t i l s .
f i n d C l a s s (‘ o rg . apache . t o o l s . a n t . D i r e c t o r y S c a n n e r ’)))

12 ensures $debug . p r i n t T o F i l e (‘ / Use r s / k e i t h / Desktop / m e t r i c s _ p r e d . t x t ’ , ‘ o rg .
apache . t o o l s . a n t . D i r e c t o r y S c a n n e r ’ , ‘ a n t ’ , ‘ an t −1 .8 .4 ’ , $ r i p e . c b o P r e d i c t e d (
$ u t i l s . o l d C l a s s (‘ o rg . apache . t o o l s . a n t . D i r e c t o r y S c a n n e r ’) , $ u t i l s . f i n d C l a s s
(‘ o rg . apache . t o o l s . a n t . D i r e c t o r y S c a n n e r ’)))

13 {
14 f o r ($ e x t r a c t e d C l a s s N a m e in $ c l u s t e r e r . c l a s s e s ()) {
15 i f (~ $ e x t r a c t e d C l a s s N a m e . e q u a l s ($ o r i g i n a l G o d C l a s s) {
16 c a l l c r e a t e C l a s s ($ e x t r a c t e d C l a s s N a m e)
17 }
18 }
19

20 f o r ($method in $ u t i l s . f i n d C l a s s ($ o r i g i n a l G o d C l a s s) . ge tMethods ()) {
21 i f (~ $ o r i g i n a l G o d C l a s s . e q u a l s ($ c l u s t e r e r . methodToClass ($method)) {
22 c a l l makeMethodPubl ic ($method . getName () , $method . ge tParamTypes () ,

$ o r i g i n a l G o d C l a s s)
23 c a l l moveMethod ($method . getName () , $method . ge tParamTypes () ,

$ o r i g i n a l G o d C l a s s , $ c l u s t e r e r . methodToClass ($method))
24 }
25 }
26

27 f o r ($ f i e l d in $ u t i l s . f i n d C l a s s ($ o r i g i n a l G o d C l a s s) . g e t F i e l d s ()) {
28 i f (~ $ o r i g i n a l G o d C l a s s . e q u a l s ($ c l u s t e r e r . f i e l d T o C l a s s ($ f i e l d)) {
29 c a l l m a k e F i e l d P u b l i c ($ f i e l d . getName () , $ o r i g i n a l G o d C l a s s)
30 c a l l moveFie ld ($ f i e l d . getName () , $ o r i g i n a l G o d C l a s s , $ c l u s t e r e r . f i e l d T o C l a s s (

$ f i e l d))
31 }
32 }
33

34 f o r ($ e x t r a c t e d C l a s s N a m e in $ c l u s t e r e r . c l a s s e s ()) {
35 i f (~ $ e x t r a c t e d C l a s s N a m e . e q u a l s ($ o r i g i n a l G o d C l a s s) {
36 c a l l c r e a t e F i e l d ($ e x t r a c t e d C l a s s N a m e . toLowerCase () , ‘ p r i v a t e ’ ,

$ o r i g i n a l G o d C l a s s , $ e x t r a c t e d C l a s s N a m e)
37 }
38 }
39 }

Figure 5.6: RefDstl sourcecode used to perform the extract class refactoring on an identified
‘God’ class.

5.8. RESULTS 66

5.8 Results

We discuss the results of the case study from two angles: the correlation between the actual CBO

of the measured class post refactoring and the correlation between the the time taken to perform

the refactoring and the size of the system being refactored.

5.8.1 Predicting CBO

Figure 5.7 summarises the results of the case study. The x–axis represents the predicted value of

the CBO metric while the actual value is shown along the y–axis. The diagonal blue line shows a

linear model produced from the data. Ideally, there would exist a perfect correlation between the

actual measurement and the predicted measurement. This would result in a slope of 1, i.e. when

the x value increases by a single unit then the y value increases by an equal amount. The slope

presented here is 0.6843. There are two reasons why we might have fallen short of 1. The first

reason are potential flaws in our implementation. For example, the refactoring transformations

that were implemented in the interpreter could have coding defects due to human error that is

typical when developing any software system. Secondly, the predictor function is inaccurate. We

note that in their evaluation, Chaparro et al. (2014) tested this particular CBO predictor function

by having two postgraduate students perform between five and ten refactorings on two software

systems. When the predicted and actual CBO measurements were compared for the two systems

just 63% of the measurements were completely accurate.

Figure 5.7: Pearson’s correlation between the predicted CBO metric and the actual value .

We can further measure how close the predicted value correlates with the actual value using

5.8. RESULTS 67

Pearson’s correlation coefficient, which is given by the cor function in the R language4 for statis-

tical computing. In our results, the coefficient is 0.939. A perfect correlation would yield a value

of 1 but nonetheless this value shows high correlation.

We note that there are some clear outliers in this data. The most apparent is due to the class

‘org.yccheok.jstock.gui.MainFrame’ in ‘jstock-1.0.7c’. Its actual value after refactoring is 66 but

its predicted value is 144. Further investigation, which involved reading the source code of that

class, would suggest that we are not handling the case correctly where class attributes are accessed

using the this Java keyword.

We remark on the distribution of the CBO measurements as shown by the three ‘box–and–

whisker’ plots in Figure 5.8. In each plot, the ‘whiskers’ at the top and bottom of the plot represent

the range of values (discarding the outliers shown as red coloured points in the figure). The thick

black band inside each of the coloured boxes represents the median for that dataset while the be-

ginning and end of each box represents the first and third quartiles for each dataset respectively. A

perfectly distributed dataset would see the median located half way between the ‘whiskers’ while

the first and third quartiles would be at the 25% and 75% marks. What’s interesting, however, is

how the plots compare to each other. We can see that the predicted values are generally higher than

the original values. The outliers have higher values and the first quartile is at a higher value. We

would expect this to be the case because for each class that undergoes an extract class refactoring

it gains a newly created field that references the extracted class. In contrast, the actual values tend

to be lower than the predicted values. The actual outliers have lower values and the quartiles are

also lower. We have no rationale to explain this. However, it suggests the presence of a ‘bug’ in

our implementation: most likely we are not considering some class usages. These would increase

the value of d in Equation 5.2 and hence reduce the predicted values.

We do not compare our results with those from the study by Chaparro et al. (2014). Doing

this would be meaningless for the following reasons:

• We did not use the same dataset. Those authors restrict themselves to ArgoUML5 and

aTunes6 (although they do not specify what version of each). On the other hand we use

classes from a wider range of projects, including ArgoUML.

• We did not use the same measurement tool.

• We measured different representations of the systems (for example, the transformation for

turning Java code into MoDisco models may have some bugs.)

5.8.2 Time Taken
As shown in Figure 5.9, there also exists a strong correlation (0.981) between the time taken to

perform the refactoring and the size of the model. This supports the idea that most of the time

spent by the refactoring engine goes toward loading the model to be refactored and writing it back

to disk after refactoring. There is some small variation in the time taken to refactor models of

different sizes. However, the greatest variation is around seven seconds. We consider this to be

4http://www.r-project.org
5http://argouml.tigris.org
6http://www.atunes.org

5.9. DISCUSSION 68

Figure 5.8: The distribution of the original, predicted post refactoring and actual post refactoring
CBO measurements for the software systems used in the study.

negligible and bear in mind that these timings reflect ‘wall time’ and not ‘CPU time’ so slight

variations might be caused by the operating system switching to background processes during the

refactoring etc.

Overall the time taken to perform the refactorings was sixteen minutes. We do not believe

that a developer could perform these 134 refactorings in this amount of time: deciding how to

refactor just one ‘God’ class would probably take a developer as long.

We note that in this study we used Java code to calculate the CBO metric and its predicted

counterpart. We had tried to use the metrics transformation also provided with RefDstl but we

found that this was too slow (approximately six minutes to do one refactoring). The slowdown

is due to having to transform every class to the metrics metamodel rather than just the needed

classes. Future versions of RefDstl will address this weakness.

5.9 Discussion
We believe our case study shows that RefDstl is a suitable system for targeting the ‘four Is’ that

were identified in Chapter 1:

1. The correlation between CBO and the predicted value for CBO suggests that our implemen-

tation has some degree of accuracy. If there were no correlation then this would suggest

that either the prediction model is wrong or the implementation is flawed. However, given

the results it would require a coincidence to get this correlation. A refined implementation

should yield better results still.

5.10. SUMMARY 69

Figure 5.9: Pearson’s correlation between the size of the model being refactored and the time
taken to refactor the model in nanoseconds.

2. We used RefDstl to define a new composite refactoring that can be reused and shared in a

library. This demonstrates that our approach affords flexibility to refactoring unlike many

mainstream refactoring engines.

3. Our framework is extensible since it considered CBO metrics during the refactoring and can

be adapted to consider other metrics or representations.

4. RefDstl had the foresight to know which fields and methods to move. This is dissimilar to

other ‘blind’ refactoring engines that merely follow the (mis–)guidance of developers who

could make incorrect decisions.

5.10 Summary
In this chapter, we have presented a case study of refactoring 134 ‘God’ classes from the Qualitas

Corpus. We refactored the classes automatically using an algorithm that we embedded into the

RefDstl system. We evaluated our approach by comparing the CBO measurements post refactoring

with predicted values. The high correspondence between the values provided some guarantee

(although not absolute) about the accuracy of our refactoring system and the time measurements

show the feasibility of our approach when considering time.

In the final chapter that follows we conclude this dissertation with a reflection of what has

been achieved and how. We also remark on how this work might be expanded in the future.

Chapter 6

Conclusion

In this chapter, we highlight the contributions that have been made in this dissertation and we

discuss topics that merit exploration in future work.

6.1 Summary of Contributions
Refactoring is the methodical approach to restructuring a software system such that its observable

behaviour remains unchanged (Opdyke, 1992). In Chapter 1 and Chapter 2, we recognised the

importance of refactoring engines in the refactoring process. However, we highlighted that these

are susceptible to four recurrent weaknesses that we named the ‘four Is’.

I1 referred to inaccuracy, which is when the conditions required for a refactoring to be applied

are defined too strongly or weakly by the refactoring engine. In Chapter 2, we saw that attempts

have been made to formally demonstrate that refactorings preserve behaviour for OO specifica-

tion languages and for a small set of Java refactorings. However, the approaches taken by those

researchers can only demonstrate that conditions are not weak. They cannot demonstrate that con-

ditions are overly strong. We proposed that, until this issue is resolved rigorously, that it would

be better if refactoring engines placed their conditions away from the transformation code so that

conditions could be altered in ‘the field’. For this reason, we developed the RefDstl language in

Chapter 3. It can be used to specify new composite refactorings (using a DBC style) from provided

primitive operations. The language also addresses I2 because the defined refactorings can be saved

to scripts for later application.

With regard to I3, we implemented a framework for interpreting RefDstl scripts. It has been

carefully designed so that additional transformations can be easily integrated. Each additional

transformation is capable of refactoring a different type of artefact (although all artefacts should

be different representations of the same model) and we provided two transformations for demon-

stration purposes: one to actually refactor models of Java systems and one for transforming the

system under refactoring into a measurement metamodel developed by McQuillan (2011). By per-

mitting additional transformations and allowing extension points called ‘script handles’, we allow

RefDstl programmers to reason about different aspects or views of the system under refactoring in

their refactoring pre and post conditions. This means that the RefDstl framework is not improv-

ident like traditional refactoring engines (I4). It allows users to reason about the quality of the

software during refactoring (which we demonstrated at the end of Chapter 3).

We evaluated the efficacy and, to a degree, the accuracy of our prototype implementation

in Chapter 5. We showed how RefDstl could be used to automatically improve the structure of

6.2. FUTURE WORK 71

‘God’ classes using a script handle that calculates the CBO value for the class under refactoring.

The accuracy of our transformations was shown by checking the correlation between the actual

CBO values post refactoring and the predicted values using a predictor function given by Chaparro

et al. (2014). We explained that this was not a ‘water tight’ approach but a sensible heuristic. The

predictor function could be incorrect and thus we would have achieved a low correlation anyway.

However, it would require coincidence for either the predictor function or our transformations to

be incorrect and to still achieve the high correlation that we did (0.939 using Pearson’s correlation

coefficient).

Also, as a starting point for those eager to use RefDstl, we have contributed a standard library

of primitive refactoring operations in Appendix B. It was used in the examples throughout this

dissertation.

Finally, we also want to highlight that our approach to developing the RefDstl language

equips us with a reusable metamodel of the primitive refactorings described by Opdyke (1992).

This can be used by researchers in areas beyond what has been described in this dissertation.

Now, having summarised our model driven approach for refactoring heterogeneous software

artefacts, we briefly remark on avenues available for future work.

6.2 Future Work
In future work, we will take a different approach to tackle the problem of showing that refactoring

preserves a program’s behaviour. For Java programs equipped with JML specifications, we will

integrate a transformation for JML annotations into the RefDstl framework. This will mean that

when JML annotated programs are refactored that their specifications will also be refactored in

tandem. By using theorem provers, we could then show that the specification of a program before

refactoring is equivalent to the specification after refactoring.

For programs that are not annotated with specifications, we will offer an approach that allows

users to reason about the structural properties of the software. We will develop the MoDisco

metamodel in the Gallina language used by the Coq theorem prover1 as a collection of structures2.

We will integrate a transformation into the RefDstl framework that converts the system being

refactored into instances of those structures (effectively a MoDisco to Gallina transformation).

This would allow users to reason about the structure of their systems; for example, they could

prove that all references to a renamed entity are preserved after refactoring.

Finally, we will enrich the interpreter with the capability to calculate the weakest precondition

for any RefDstl procedure. This can be done using Dijkstra’s Weakest Precondition Calculus but

it would require that loop invariants are added to the RefDstl language.

1https://coq.inria.fr
2Similar to structs in ‘C’ or classes in Java.

https://coq.inria.fr

Acronyms

ASCII American Standard Code for Information Interchange.

AST Abstract Syntax Tree.

ATFD Access to Foreign Data.

ATL Atlas Transformation Language.

BNF Backus Naur Form.

CASE Computer Aided Software Engineering.

CBO Coupling Between Objects.

DBC Design by Contract.

DSL Domain Specific Language.

DSTL Domain Specific Transformation Language.

EMF Eclipse Modelling Framework.

IDE Integrated Development Environment.

JML Java Modelling Language.

LCC Loose Class Cohesion.

LCOM Lack of Cohesion of Methods.

MDE Model Driven Engineering.

MOF Meta Object Facility.

MPS Meta Programming System.

OMG Object Management Group.

OO Object–Oriented.

ACRONYMS 73

QVTO Query View Transformation Operational.

QVTR Query View Transformation Relational.

SQL Structured Query Language.

TCC Tight Class Cohesion.

TIKZ Tikz ist kein Zeichenprogramm.

UML Unified Modelling Language.

WMC Weighted Methods Per Class.

XML Extensible Markup Language.

XSD XML Schema Definition.

Appendix A

RefDstl Language Grammar for Xtext

1 grammar i e . pop . r e f d s l . RefDsl
2

3 h i dd en (WS, ML_COMMENT, SL_COMMENT)
4

5 import " h t t p : / / www. e c l i p s e . o rg / emf / 2 0 0 2 / Ecore " as e c o r e
6

7 g e n e r a t e r e f D s l " h t t p : / / www. pop . i e / r e f d s l / RefDsl "
8

9 R e f a c t o r i n g S c r i p t :
10 r e q u i r e s += I mp or t ∗
11 (’ i n ’ p r o j e c t = STRING) ?
12 (’ o u t ’ o u t p u t = STRING) ?
13 (main = Main) ?
14 r e f a c t o r i n g s += P r o c e d u r e ∗ ;
15

16 Im po r t :
17 ’ i m p o r t s ’ f i l e = STRING ;
18

19 /* Procedures. */
20 Main :
21 ’ main ’ ’ (’ ’) ’
22 ’ { ’
23 i n s t r u c t i o n s += (R e f a c t o r i n g I n s t r u c t i o n | C o n d i t i o n a l S t a t e m e n t |

P r o c e d u r e C a l l | L o o p i n g S t a t e m e n t) +
24 ’ } ’ ;
25

26 P r o c e d u r e :
27 ’ p roc ’ name=ID_PART ’ (’ (a rgumen t s = P a r a m e t e r L i s t) ? ’) ’
28 (’ r e q u i r e s ’ p r e c o n d t i o n s += C o n d i t i o n 1) ∗
29 (’ e n s u r e s ’ p o s t c o n d i t i o n s += C o n d i t i o n 1) ∗
30 ’ { ’
31 i n s t r u c t i o n s += (R e f a c t o r i n g I n s t r u c t i o n | C o n d i t i o n a l S t a t e m e n t |

P r o c e d u r e C a l l | L o o p i n g S t a t e m e n t) +
32 ’ } ’ ;
33

34 P r o c e d u r e C a l l :
35 ’ c a l l ’ name=ID_PART ’ (’ args = Argumen tL i s t ? ’) ’ ;
36

37 C o n d i t i o n a l S t a t e m e n t :

A. REFDSTL LANGUAGE GRAMMAR FOR XTEXT 75

38 ’ i f ’ ’ (’ c o n d i t i o n = C o n d i t i o n 1 ’) ’ ’ { ’
39 i n s t r u c t i o n s +=(R e f a c t o r i n g I n s t r u c t i o n | C o n d i t i o n a l S t a t e m e n t | P r o c e d u r e C a l l

| L o o p i n g S t a t e m e n t) +
40 ’ } ’ ;
41

42 L o o p i n g S t a t e m e n t :
43 ’ f o r ’ ’ (’ i d =VID ’ i n ’ (c o l l e c t i o n = O b j e c t E x p r e s s i o n) ’) ’ ’ { ’
44 i n s t r u c t i o n s += (R e f a c t o r i n g I n s t r u c t i o n | C o n d i t i o n a l S t a t e m e n t |

P r o c e d u r e C a l l | L o o p i n g S t a t e m e n t) + ’ } ’ ;
45

46 R e f a c t o r i n g I n s t r u c t i o n : { R e f a c t o r i n g I n s t r u c t i o n }
47 a c t i o n =(C r e a t e C l a s s
48 | C r e a t e F i e l d
49 | Crea teMethod
50 | D e l e t e C l a s s
51 | D e l e t e F i e l d
52 | De le teMethod
53 | ChangeClassName
54 | ChangeFieldName
55 | ChangeMethodName
56 | ChangeFie ldType
57 | ChangeMethodType
58 | ChangeMethodModif ie r
59 | C h a n g e F i e l d M o d i f i e r
60 | AddMethodArgument
61 | Dele teMethodArgument
62 | ReorderMethodArguments
63 | C h a n g e S u p e r c l a s s
64 | M o v e F i e l d T o S u p e r c l a s s
65 | MoveF ie ldToSubc la s s
66 | MoveMethodToSuperclass
67 | MoveMethodToSubclass
68 | MoveField
69 | MoveMethod
70 | NoOp) ;
71

72 /* Create syntax. */
73 C r e a t e C l a s s :
74 ’ c r e a t e ’ (a c c e s s o r = A c c e s s o r) ? ’ c l a s s ’ name= (ID_PART | FULL_ID | VID) (’ w i th ’

’ s u p e r c l a s s ’ superName =(ID_PART | FULL_ID | VID)) ? ;
75

76 C r e a t e F i e l d :
77 ’ c r e a t e ’ (a c c e s s o r = A c c e s s o r) ? (s t a t i c = ’ s t a t i c ’) ? ’ f i e l d ’ name =(ID_PART | VID)

’ i n ’ ’ c l a s s ’ u n i t =(ID_PART | FULL_ID | VID) ’ o f ’ ’ t y p e ’ type =(FULL_ID |
ID_PART | VID) ;

78

79 Crea teMethod :
80 ’ c r e a t e ’ (a c c e s s o r = A c c e s s o r) ? (s t a t i c = ’ s t a t i c ’) ? ’ method ’ name =(ID_PART | VID

) ’ i n ’ ’ c l a s s ’ u n i t =(ID_PART | FULL_ID | VID) (’ t a k i n g ’ ’ [’ args =
J a v a P a r a m e t e r L i s t ’] ’) ? (’ r e t u r n i n g ’ re turn =(FULL_ID | ID_PART | VID)) ? ;

81

82 /* Delete syntax. */

A. REFDSTL LANGUAGE GRAMMAR FOR XTEXT 76

83 D e l e t e C l a s s :
84 ’ d e l e t e ’ ’ c l a s s ’ name =(FULL_ID | ID_PART | VID) ;
85

86 D e l e t e F i e l d :
87 ’ d e l e t e ’ ’ f i e l d ’ name =(ID_PART | VID) ’ i n ’ ’ c l a s s ’ u n i t =(FULL_ID | VID |

ID_PART) ;
88

89 Dele teMethod :
90 ’ d e l e t e ’ ’ method ’ name =(ID_PART | VID) ’ i n ’ ’ c l a s s ’ u n i t =(FULL_ID | VID |

ID_PART) ;
91

92 /* Change syntax. */
93 ChangeClassName :
94 ’ rename ’ ’ c l a s s ’ oldName =(FULL_ID | VID | ID_PART) ’ t o ’ newName=(FULL_ID |

VID | ID_PART) ;
95

96 ChangeFieldName :
97 ’ rename ’ ’ f i e l d ’ oldName =(ID_PART | VID) ’ t o ’ newName=(ID_PART | VID) ’ i n ’ ’

c l a s s ’ u n i t =(FULL_ID | VID | ID_PART) ;
98

99 ChangeMethodName :
100 ’ rename ’ ’ method ’ oldName =(ID_PART | VID) ’ t o ’ newName=(ID_PART | VID) ’ i n ’ ’

c l a s s ’ u n i t =(FULL_ID | ID_PART | VID) ;
101

102 ChangeFie ldType :
103 ’ change ’ ’ t y p e ’ ’ o f ’ ’ f i e l d ’ name =(FULL_ID | ID_PART | VID) ’ i n ’ ’ c l a s s ’ u n i t

=(FULL_ID | ID_PART | VID) ’ t o ’ newType =(FULL_ID | VID | ID_PART) ;
104

105 ChangeMethodType :
106 ’ change ’ ’ t y p e ’ ’ o f ’ ’ method ’ name =(ID_PART | VID) ’ i n ’ ’ c l a s s ’ u n i t =(FULL_ID

| ID_PART | VID) ’ t o ’ newType =(FULL_ID | VID | ID_PART) ;
107

108 ChangeMethodModif ie r :
109 ’ make ’ ’ method ’ name =(ID_PART | VID) (’ w i th ’ ’ a r g s ’ ’ [’ args =

J a v a P a r a m e t e r L i s t ’] ’) ? ’ i n ’ ’ c l a s s ’ u n i t =(FULL_ID | VID | ID_PART)
110 newModi f ie r = A c c e s s o r ;
111

112 C h a n g e F i e l d M o d i f i e r :
113 ’ make ’ ’ f i e l d ’ name =(ID_PART | VID) ’ i n ’ ’ c l a s s ’ u n i t =(FULL_ID | ID_PART |

VID) newModi f ie r = A c c e s s o r ;
114

115 AddMethodArgument :
116 ’ add ’ ’ a rgument ’ a r g = J a v a P a r a m e t e r ’ t o ’ ’ method ’ name =(ID_PART | VID) (’ w i th ’

’ a r g s ’ ’ [’ args = J a v a P a r a m e t e r L i s t ’] ’) ?
117 ’ i n ’ ’ c l a s s ’ u n i t =(FULL_ID | VID | ID_PART) ;
118

119 DeleteMethodArgument :
120 ’ d e l e t e ’ ’ a rgument ’ a r g =(ID_PART | VID) ’ from ’ ’ method ’ name =(ID_PART | VID)

(’ w i th ’ ’ a r g s ’ ’ [’ args = J a v a P a r a m e t e r L i s t ’] ’) ?
121 ’ i n ’ ’ c l a s s ’ u n i t =(FULL_ID | VID | ID_PART) ;
122

123 ReorderMethodArguments :

A. REFDSTL LANGUAGE GRAMMAR FOR XTEXT 77

124 ’ p l a c e ’ ’ a rgument ’ a r g =(ID_PART | VID) ’ i n ’ ’ method ’ name =(ID_PART | VID) ’
wi th ’ ’ a r g s ’ ’ [’ args = J a v a P a r a m e t e r L i s t ’] ’ ’ b e f o r e ’ s u c c e s s o r =(ID_PART |
VID) ’ i n ’ ’ c l a s s ’ u n i t =(FULL_ID | VID | ID_PART) ;

125

126 C h a n g e S u p e r c l a s s :
127 ’ c l a s s ’ u n i t =(FULL_ID | ID_PART | VID) ’ e x t e n d s ’ n e w S u p e r c l a s s =(FULL_ID | VID

| ID_PART) ;
128

129 /* Move syntax. */
130 M o v e F i e l d T o S u p e r c l a s s :
131 ’move ’ ’ f i e l d ’ name =(ID_PART | VID) ’ from ’ u n i t =(FULL_ID | VID | ID_PART) ’ up

’ ;
132

133 MoveFie ldToSubc la s s :
134 ’move ’ ’ f i e l d ’ name =(ID_PART | VID) ’ from ’ u n i t =(FULL_ID | VID | ID_PART) ’

down ’ ;
135

136 MoveMethodToSuperclass :
137 ’move ’ ’ method ’ name =(ID_PART | VID) (’ w i th ’ ’ a r g s ’ ’ [’ args =

J a v a P a r a m e t e r L i s t ’] ’) ? ’ from ’ u n i t =(FULL_ID | VID | ID_PART) ’ up ’ ;
138

139 MoveMethodToSubclass :
140 ’move ’ ’ method ’ name =(ID_PART | VID) (’ w i th ’ ’ a r g s ’ ’ [’ args =

J a v a P a r a m e t e r L i s t ’] ’) ? ’ from ’ u n i t =(FULL_ID | VID | ID_PART) ’down ’ ;
141

142 MoveField :
143 ’move ’ ’ f i e l d ’ name =(ID_PART | VID) ’ from ’ u n i t =(FULL_ID | VID | ID_PART) ’ t o

’ new_un i t =(FULL_ID | VID | ID_PART)
144 ;
145

146 MoveMethod :
147 ’move ’ ’ method ’ name =(ID_PART | VID) ’ from ’ u n i t =(FULL_ID | VID | ID_PART) ’

t o ’ new_un i t =(FULL_ID | VID | ID_PART)
148 ;
149

150 NoOp :
151 name = ’ nop ’
152 ;
153

154 /* Helpers. */
155 A c c e s s o r :
156 v a l u e =(’ p u b l i c ’ | ’ p r i v a t e ’ | ’ p r o t e c t e d ’ | ’ d e f a u l t ’) ;
157

158 /*
159 * Contracts.
160 */
161 C o n d i t i o n 1 :
162 l e f t = C o n d i t i o n 2 o p e r a t o r = ’−> ’ r i g h t = C o n d i t i o n 1
163 | l e f t = C o n d i t i o n 2 o p e r a t o r = ’== ’ r i g h t = C o n d i t i o n 1
164 | l e f t = C o n d i t i o n 2 o p e r a t o r = ’~= ’ r i g h t = C o n d i t i o n 1
165 | l e f t = C o n d i t i o n 2 o p e r a t o r = ’> ’ r i g h t = C o n d i t i o n 1
166 | l e f t = C o n d i t i o n 2 o p e r a t o r = ’< ’ r i g h t = C o n d i t i o n 1

A. REFDSTL LANGUAGE GRAMMAR FOR XTEXT 78

167 | l e f t = C o n d i t i o n 2 o p e r a t o r = ’>= ’ r i g h t = C o n d i t i o n 1
168 | l e f t = C o n d i t i o n 2 o p e r a t o r = ’<= ’ r i g h t = C o n d i t i o n 1
169 | h i g h e r = C o n d i t i o n 2 ;
170

171 C o n d i t i o n 2 :
172 o p e r a t o r = ’ f o r a l l ’ i d =VID ’ i n ’ c o l l e c t i o n = O b j e c t E x p r e s s i o n ’ : ’ l e f t =

C o n d i t i o n 1
173 | o p e r a t o r = ’ e x i s t s ’ i d =VID ’ i n ’ c o l l e c t i o n = O b j e c t E x p r e s s i o n ’ : ’ l e f t =

C o n d i t i o n 1
174 | h i g h e r = C o n d i t i o n 3 ;
175

176 C o n d i t i o n 3 :
177 l e f t = C o n d i t i o n 4 o p e r a t o r = ’ / \ \ ’ r i g h t = C o n d i t i o n 3
178 | l e f t = C o n d i t i o n 4 o p e r a t o r = ’ \ \ / ’ r i g h t = C o n d i t i o n 3
179 | h i g h e r = C o n d i t i o n 4 ;
180

181 C o n d i t i o n 4 :
182 o p e r a t o r = ’~ ’ l e f t = C o n d i t i o n 4
183 | h i g h e r = C o n d i t i o n 5 ;
184

185 C o n d i t i o n 5 :
186 ’ (’ b r a c k e t e d = C o n d i t i o n 1 ’) ’
187 | a r g = O b j e c t E x p r e s s i o n
188 | c o n s t a n t = L o g i c a l C o n s t a n t
189 | s c a l a r =STRING ;
190

191 /*
192 * Parameters.
193 */
194

195 J a v a P a r a m e t e r :
196 type = (FULL_ID | ID_PART | VID) name = (FULL_ID | ID_PART | VID)
197 ;
198

199 J a v a P a r a m e t e r L i s t :
200 p a r a m e t e r s += J a v a P a r a m e t e r (’ , ’ p a r a m e t e r s += J a v a P a r a m e t e r) ∗
201 ;
202

203 P a r a m e t e r :
204 name = VID
205 ;
206

207 P a r a m e t e r L i s t :
208 p a r a m e t e r s += P a r a m e t e r (’ , ’ p a r a m e t e r s += P a r a m e t e r) ∗
209 ;
210

211 /*
212 * Arguments.
213 */
214

215 Argument :

A. REFDSTL LANGUAGE GRAMMAR FOR XTEXT 79

216 c o n s t a n t = ID_PART | v a r i a b l e = VID | l o g i c a l = L o g i c a l C o n s t a n t | e x p r e s s i o n
= O b j e c t E x p r e s s i o n | s t r i n g = STRING

217 ;
218

219 Argumen tL i s t :
220 a rgumen t s += Argument (’ , ’ a rgumen t s += Argument) ∗
221 ;
222

223 O b j e c t E x p r e s s i o n :
224 base = VID (c a l l s += O b j e c t E x p r e s s i o n M e t h o d I n v o c a t i o n) +
225 ;
226

227 O b j e c t E x p r e s s i o n M e t h o d I n v o c a t i o n :
228 ’ . ’ methodName = ID_PART ’ (’ (a rgumen t s = Argumen tL i s t) ? ’) ’
229 ;
230

231 L o g i c a l C o n s t a n t :
232 v a l u e =("TRUE" | "FALSE") ;
233

234 /* Terminal definitions. */
235

236 t e r m i n a l VID r e t u r n s e c o r e : : E S t r i n g : ’ $ ’ ID_PART ;
237

238 //terminal ID returns ecore::EString : ’^’?(’a’..’z’|’A’..’Z’|’_’) (’a’..’z’|’
A’..’Z’|’_’|’0’..’9’)*((’.’)(’a’..’z’|’A’..’Z’|’_’) (’a’..’z’|’A’..’Z’|’_
’|’0’..’9’)*)*;

239

240 t e r m i n a l FULL_ID r e t u r n s e c o r e : : E S t r i n g : ID_PART+ (’ . ’ ID_PART∗) + ;
241

242 t e r m i n a l ID_PART r e t u r n s e c o r e : : E S t r i n g : ’ ^ ’ ? (’ a ’ . . ’ z ’ | ’A’ . . ’Z ’ | ’ _ ’) (’ a ’ . . ’ z ’
| ’A’ . . ’Z ’ | ’ _ ’ | ’ 0 ’ . . ’ 9 ’) ∗ ;

243

244 //terminal INT returns ecore::EInt: (’0’..’9’)+;
245

246 t e r m i n a l STRING :
247 ’ " ’ (’ \ \ ’ . /* ’b’|’t’|’n’|’f’|’r’|’u’|’"’|"’"|’\\’ */ | ! (’ \ \ ’ | ’ " ’)) ∗

’ " ’ |
248 " ’ " (’ \ \ ’ . /* ’b’|’t’|’n’|’f’|’r’|’u’|’"’|"’"|’\\’ */ | ! (’ \ \ ’ | " ’ ")) ∗

" ’ "
249 ;
250

251 t e r m i n a l ML_COMMENT : ’ /∗ ’ −> ’ ∗ / ’ ;
252

253 t e r m i n a l SL_COMMENT : ’ / / ’ ! (’ \ n ’ | ’ \ r ’) ∗ (’ \ r ’ ? ’ \ n ’) ? ;
254

255 t e r m i n a l WS : (’ ’ | ’ \ t ’ | ’ \ r ’ | ’ \ n ’) + ;
256

257 t e r m i n a l ANY_OTHER: . ;

Listing A.1: Grammar definition for RefDstl

Appendix B

RefDstl Standard Library

1 /**
2 * This file is the standard library of refactorings for the RefDstl system
3 * when being used to refactor Java programs.
4 *
5 * Essentially these are CRUD operations over a model of Java programs.
6 */
7

8 /*
9 * CReate operations.

10 */
11

12 /**
13 * Creates a new class with no members and no superclass.
14 *
15 * $className - The name of the class to create.
16 */
17 proc c r e a t e C l a s s ($className)
18 r e q u i r e s $ u t i l s . c l a s s D o e s N o t E x i s t ($className)
19 {
20 c r e a t e c l a s s $className
21 }
22

23 /**
24 * Creates a new class with no members but with a given superclass.
25 *
26 * $className - The name of the class to create.
27 * $superClassName - The name of the class’ superclass.
28 */
29 proc c r e a t e C l a s s W i t h S u p e r ($className , $superClassName)
30 r e q u i r e s f o r a l l $ c l s in $ u t i l s . a l l C l a s s e s ()
31 : ~ $ c l s . g e t F u l l y Q u a l i f i e d N a m e () . e q u a l s ($className)
32 r e q u i r e s e x i s t s $ c l s in $ u t i l s . a l l C l a s s e s ()
33 : $ c l s . g e t F u l l y Q u a l i f i e d N a m e () . e q u a l s ($superClassName)
34 {
35 c r e a t e c l a s s $className with s u p e r c l a s s $superClassName
36 }
37

38 /**
39 * Creates a new field in a class.

B. REFDSTL STANDARD LIBRARY 81

40 *
41 * $fieldName - The name of the field to create.
42 * $className - The fully qualified name of the class where the field is to be

created.
43 * $typeName - The type of the field.
44 */
45 proc c r e a t e F i e l d ($f ie ldName , $ a c c e s s o r , $className , $typeName)
46 r e q u i r e s e x i s t s $ c l s in $ u t i l s . a l l C l a s s e s ()
47 : $ c l s . g e t F u l l y Q u a l i f i e d N a m e () . e q u a l s ($className)
48 r e q u i r e s e x i s t s $ c l s in $ u t i l s . a l l C l a s s e s ()
49 : $ c l s . g e t F u l l y Q u a l i f i e d N a m e () . e q u a l s ($className)
50 −> f o r a l l $ f l d in $ c l s . g e t F i e l d s ()
51 : ~ $ f l d . getName () . e q u a l s ($ f i e ldName)
52 {
53 c r e a t e f i e l d $f ie ldName in c l a s s $className of type $typeName
54 }
55

56 /**
57 * Creates a new static field in a class.
58 *
59 * $fieldName - The name of the field to create.
60 * $className - The fully qualified name of the class where the field is to be

created.
61 * $typeName - The type of the field.
62 */
63 proc c r e a t e S t a t i c F i e l d ($f ie ldName , $ a c c e s s o r , $className , $typeName)
64 r e q u i r e s e x i s t s $ c l s in $ u t i l s . a l l C l a s s e s ()
65 : $ c l s . g e t F u l l y Q u a l i f i e d N a m e () . e q u a l s ($className)
66 r e q u i r e s e x i s t s $ c l s in $ u t i l s . a l l C l a s s e s ()
67 : $ c l s . g e t F u l l y Q u a l i f i e d N a m e () . e q u a l s ($className)
68 −> f o r a l l $ f l d in $ c l s . g e t F i e l d s ()
69 : ~ $ f l d . getName () . e q u a l s ($ f i e ldName)
70 {
71 c r e a t e s t a t i c f i e l d $f ie ldName in c l a s s $className of type $typeName
72 }
73

74 /**
75 * Creates a void method in a class with the given argument list.
76 *
77 * $methodName - The name of the method to create.
78 * $className - The fully qualified name of the class where the method is to be

created.
79 * $arguments - The arguments to the method.
80 * $returnType - The type of the value returned by the method.
81 */
82 proc c r e a t e M e t h o d ($methodName , $className , $arguments , $ r e t u r n T y p e)
83 r e q u i r e s e x i s t s $ c l s in $ u t i l s . a l l C l a s s e s ()
84 : $ c l s . g e t F u l l y Q u a l i f i e d N a m e () . e q u a l s ($className)
85 r e q u i r e s f o r a l l $ c l s in $ u t i l s . a l l C l a s s e s ()
86 : $ c l s . g e t F u l l y Q u a l i f i e d N a m e () . e q u a l s ($className)
87 −> (f o r a l l $mtd in $ c l s . ge tMethods ()
88 : ~ $ u t i l s . s i g n a t u r e M a t c h e s ($mtd , $a rgumen t s))

B. REFDSTL STANDARD LIBRARY 82

89 {
90 c r e a t e p u b l i c method $methodName in c l a s s $className /*taking [$arguments]

*/ r e t u r n i n g $ r e t u r n T y p e
91 }
92

93 /**
94 * Creates a void method in a class with the given argument list.
95 *
96 * $methodName - The name of the method to create.
97 * $className - The fully qualified name of the class where the method is to be

created.
98 * $arguments - The arguments to the method.
99 */

100 proc c rea t eVo idMethod ($methodName , $className , $a rgumen t s)
101 r e q u i r e s e x i s t s $ c l s in $ u t i l s . a l l C l a s s e s ()
102 : $ c l s . g e t F u l l y Q u a l i f i e d N a m e () . e q u a l s ($className)
103 r e q u i r e s f o r a l l $ c l s in $ u t i l s . a l l C l a s s e s ()
104 : $ c l s . g e t F u l l y Q u a l i f i e d N a m e () . e q u a l s ($className)
105 −> (f o r a l l $mtd in $ c l s . ge tMethods ()
106 : ~ $ u t i l s . s i g n a t u r e M a t c h e s ($mtd , $a rgumen t s))
107 {
108 c r e a t e p u b l i c method $methodName in c l a s s $className /*taking [$arguments]

*/
109 }
110

111 /**
112 * Update operations.
113 */
114

115 /**
116 * Renames a class.
117 *
118 * $oldName - The current name of the class.
119 * $newName - The new name of the class.
120 */
121 proc r enameCla s s ($oldName , $newName)
122 r e q u i r e s f o r a l l $ c l s in $ u t i l s . a l l C l a s s e s ()
123 : ~ $ c l s . g e t F u l l y Q u a l i f i e d N a m e () . e q u a l s ($newName)
124 {
125 rename c l a s s $oldName to $newName
126 }
127

128 /**
129 * Renames a field.
130 *
131 * $oldName - The current name of the field.
132 * $newName - The new name for the field.
133 * $className - The name of the class where the field is declared.
134 */
135 proc r e n a m e F i e l d ($oldName , $newName , $className)
136 r e q u i r e s f o r a l l $ c l s in $ u t i l s . a l l C l a s s e s ()
137 : $ c l s . g e t F u l l y Q u a l i f i e d N a m e () . e q u a l s ($className)

B. REFDSTL STANDARD LIBRARY 83

138 −> (f o r a l l $ f l d in $ c l s . g e t F i e l d s ()
139 : ~ $ f l d . g e t I d e n t i f i e r () . e q u a l s ($newName))
140 {
141 rename f i e l d $oldName to $newName in c l a s s $className
142 }
143

144 /**
145 * Renames a method.
146 *
147 * $oldName - The current name for the method.
148 * $newName - The desired new name for the method.
149 * $className - The name of the class where the method is currently located.
150 */
151 proc renameMethod ($oldName , $newName , $className)
152 r e q u i r e s f o r a l l $ c l s in $ u t i l s . a l l C l a s s e s ()
153 : $ c l s . g e t F u l l y Q u a l i f i e d N a m e () . e q u a l s ($className)
154 −> (f o r a l l $mtd in $ c l s . ge tMethods ()
155 : ~$mtd . getName () . e q u a l s (newName))
156 {
157 rename method $oldName to $newName in c l a s s $className
158 }
159

160 /**
161 * Changes the type of a field.
162 *
163 * $fieldName - The name of the field whose type is to change.
164 * $newType - The new type for the field.
165 * $className - The name of the class where the field is declared.
166 */
167 proc c h a n g e F i e l d T y p e ($f ie ldName , $newType , $className)
168 r e q u i r e s f o r a l l $ c l s in $ u t i l s . a l l C l a s s e s ()
169 : $ c l s . g e t F u l l y Q u a l i f i e d N a m e () . e q u a l s ($className)
170 −> (f o r a l l $ f l d in $ c l s . g e t F i e l d s ()
171 : $ f l d . g e t I d e n t i f i e r () . e q u a l s ($ f i e ldName)
172 −> $ f l d . e C r o s s R e f e r e n c e s () . i sEmpty ())
173 {
174 change type of f i e l d $f ie ldName in c l a s s $className to $newType
175 }
176

177 /**
178 * Changes the return type of a method.
179 *
180 * $methodName - The name of the method to change.
181 * $newType - The new return type for the method.
182 * $className - The name of the class where the method is defined.
183 */
184 proc changeMethodType ($methodName , $newType , $className)
185 r e q u i r e s f o r a l l $ c l s in $ u t i l s . a l l C l a s s e s ()
186 : $ c l s . g e t F u l l y Q u a l i f i e d N a m e () . e q u a l s ($className)
187 −> f o r a l l $mtd in $ c l s . ge tMethods ()
188 : $mtd . getName () . e q u a l s ($methodName)
189 −> $mtd . e C r o s s R e f e r e n c e s () . i sEmpty ()

B. REFDSTL STANDARD LIBRARY 84

190 {
191 change type of method $methodName in c l a s s $className to $newType
192 }
193

194 /**
195 * Changes the access modifier on a method to public.
196 *
197 * $methodName - The name of the method to be given the public access modifier.
198 * $args - The arguments that form the method’s signature.
199 * $className - The name of the class where the method is defined.
200 */
201 proc makeMethodPubl ic ($methodName , $a rgs , $className)
202 r e q u i r e s TRUE
203 {
204 make method $methodName in c l a s s $className p u b l i c
205 }
206

207 /**
208 * Changes the access modifier on a method to private.
209 *
210 * $methodName - The name of the method to be given the private access modifier

.
211 * $args - The arguments that form the method’s signature.
212 * $className - The name of the class where the method is defined.
213 */
214 proc makeMethodPr iva te ($methodName , $a rgs , $c lassName)
215 r e q u i r e s f o r a l l $ c l s in $ u t i l s . a l l C l a s s e s ()
216 : $ c l s . g e t F u l l y Q u a l i f i e d N a m e () . e q u a l s ($className)
217 −> f o r a l l $mtd in $ c l s . ge tMethods () :
218 $mtd . getName () . e q u a l s ($methodName) −> $mtd .

e C r o s s R e f e r e n c e s () . i sEmpty ()
219 {
220 make method $methodName in c l a s s $className p r i v a t e
221 }
222

223 /**
224 * Changes the access modifier on a method to protected.
225 *
226 * $methodName - The name of the method to be given the protected access

modifier.
227 * $args - The arguments that form the method’s signature.
228 * $className - The name of the class where the method is defined.
229 */
230 proc makeMethodPro tec ted ($methodName , $a rgs , $className)
231 r e q u i r e s f o r a l l $ c l s in $ u t i l s . a l l C l a s s e s ()
232 : $ c l s . g e t F u l l y Q u a l i f i e d N a m e () . e q u a l s ($className)
233 −> f o r a l l $mtd in $ c l s . ge tMethods () :
234 $mtd . getName () . e q u a l s ($methodName) −> $mtd .

e C r o s s R e f e r e n c e s () . i sEmpty ()
235 {
236 make method $methodName in c l a s s $className p r o t e c t e d
237 }

B. REFDSTL STANDARD LIBRARY 85

238

239 /**
240 * Changes the access modifier on a method to default.
241 *
242 * $methodName - The name of the method to be given the default access modifier

.
243 * $args - The arguments that form the method’s signature.
244 * $className - The name of the class where the method is defined.
245 */
246 proc makeMethodDefaul t ($methodName , $a rgs , $className)
247 r e q u i r e s f o r a l l $ c l s in $ u t i l s . a l l C l a s s e s ()
248 : $ c l s . g e t F u l l y Q u a l i f i e d N a m e () . e q u a l s ($className)
249 −> f o r a l l $mtd in $ c l s . ge tMethods () :
250 $mtd . getName () . e q u a l s ($methodName) −> $mtd .

e C r o s s R e f e r e n c e s () . i sEmpty ()
251 {
252 make method $methodName in c l a s s $className d e f a u l t
253 }
254

255 /**
256 * Changes the access modifier on a field to public.
257 *
258 * $fieldName - The name of the field to become public.
259 * $className - The name of the class where the field is located.
260 */
261 proc m a k e F i e l d P u b l i c ($f ie ldName , $className)
262 r e q u i r e s TRUE
263 {
264 make f i e l d $f ie ldName in c l a s s $className p u b l i c
265 }
266

267 /**
268 * Changes the access modifier on a field to private.
269 *
270 * $fieldName - The name of the field to be marked as private.
271 * $className - The name of the class where the field is declared.
272 */
273 proc m a k e F i e l d P r i v a t e ($f ie ldName , $className)
274 r e q u i r e s f o r a l l $ c l s in $ u t i l s . a l l C l a s s e s ()
275 : $ c l s . g e t F u l l y Q u a l i f i e d N a m e () . e q u a l s ($className)
276 −> f o r a l l $ f l d in $ c l s . g e t F i e l d s () :
277 $ f l d . getName () . e q u a l s ($ f i e ldName) −> $ f l d .

e C r o s s R e f e r e n c e s () . i sEmpty ()
278 {
279 make f i e l d $f ie ldName in c l a s s $className p r i v a t e
280 }
281

282 /**
283 * Changes the access modifier on a field to protected.
284 *
285 * $fieldName - The name of the field which should have its access modifier

changed.

B. REFDSTL STANDARD LIBRARY 86

286 * $className - The name of the class where the field is located.
287 */
288 proc m a k e F i e l d P r o t e c t e d ($f ie ldName , $className)
289 r e q u i r e s f o r a l l $ c l s in $ u t i l s . a l l C l a s s e s ()
290 : $ c l s . g e t F u l l y Q u a l i f i e d N a m e () . e q u a l s ($className)
291 −> f o r a l l $ f l d in $ c l s . g e t F i e l d s () :
292 $ f l d . getName () . e q u a l s ($ f i e ldName) −> $ f l d .

e C r o s s R e f e r e n c e s () . i sEmpty ()
293 {
294 make f i e l d $f ie ldName in c l a s s $className p r o t e c t e d
295 }
296

297 /**
298 * Changes the modifier on a field to default access.
299 *
300 * $fieldName - The field to make default.
301 * $className - The name of the class where the field is declared.
302 */
303 proc m a k e F i e l d D e f a u l t ($f ie ldName , $className)
304 r e q u i r e s f o r a l l $ c l s in $ u t i l s . a l l C l a s s e s ()
305 : $ c l s . g e t F u l l y Q u a l i f i e d N a m e () . e q u a l s ($className)
306 −> f o r a l l $ f l d in $ c l s . g e t F i e l d s () :
307 $ f l d . getName () . e q u a l s ($ f i e ldName) −> $ f l d .

e C r o s s R e f e r e n c e s () . i sEmpty ()
308 {
309 make f i e l d $f ie ldName in c l a s s $className d e f a u l t
310 }
311

312 /**
313 * Adds an argument to a method.
314 *
315 * $argName - The name for the new argument.
316 * $argType - The type of the new argument.
317 * $methodName - The name of the method where the new argument is to be added.
318 * $className - The name of the class where the method is located.
319 */
320 proc addMethodArgument ($argName , $argType , $methodName , $className)
321 r e q u i r e s f o r a l l $ c l s in $ u t i l s . a l l C l a s s e s ()
322 : $ c l s . g e t F u l l y Q u a l i f i e d N a m e () . e q u a l s ($className)
323 −> f o r a l l $mtd in $ c l s . ge tMethods ()
324 : $mtd . getName () . e q u a l s ($methodName)
325 −> f o r a l l $p in $mtd . g e t P a r a m e t e r s ()
326 : ~$p . getName () . e q u a l s ($argName)
327 {
328 add argument $argType $argName to method $methodName in c l a s s $className
329 }
330

331 /**
332 * Removes an argument from a method.
333 *
334 * $argName - The name of the argument to delete.
335 * $methodName - The name of the method to delete.

B. REFDSTL STANDARD LIBRARY 87

336 * $className - The name of the class where the method is currently located.
337 */
338 proc de le teMethodArgument ($argName , $methodName , $className)
339 r e q u i r e s f o r a l l $ c l s in $ u t i l s . a l l C l a s s e s ()
340 : $ c l s . g e t F u l l y Q u a l i f i e d N a m e () . e q u a l s ($className)
341 −> f o r a l l $mtd in $ c l s . ge tMethods ()
342 : $mtd . getName () . e q u a l s ($methodName)
343 −> f o r a l l $p in $mtd . g e t P a r a m e t e r s ()
344 : $p . getName () . e q u a l s ($argName)
345 −> $p . e C r o s s R e f e r e n c e s () . i sEmpty ()
346 {
347 d e l e t e argument $argName from method $methodName in c l a s s $className
348 }
349

350 /**
351 * Reorders the arguments to a method by moving one argument in front of the

other.
352 *
353 * $methodName - The name of the method that should have its arguments

rearranged.
354 * $predecessor - The argument that should be closest to the head in the list

of arguments.
355 * $successor - The argument that should be closest to the tail in the list of

arguments.
356 * $className - The class where the method is currently located.
357 */
358 proc r eo rde rMethodArgumen t s ($methodName , $ p r e d e c e s s o r , $ s u c c e s s o r , $c lassName)
359 r e q u i r e s TRUE
360 {
361 p l a c e argument $ p r e d e c e s s o r in method $methodName with args [ARTYPE ARGNAME

] b e f or e $ s u c c e s s o r in c l a s s $className
362 }
363

364 /**
365 * Changes the superclass that a subclass currently extends.
366 *
367 * $subclass - The class whose parent class is to be changed.
368 * $superclass - The new class that $subclass extends.
369 */
370 proc c h a n g e S u p e r c l a s s ($ s u b c l a s s , $ s u p e r c l a s s)
371 r e q u i r e s f o r a l l $ c l s in $ u t i l s . a l l C l a s s e s ()
372 : $ c l s . g e t F u l l y Q u a l i f i e d N a m e () . e q u a l s ($className)
373 −> $ c l s . e C r o s s R e f e r e n c e s () . i sEmpty ()
374 {
375 c l a s s $ s u b c l a s s ex tends $ s u p e r c l a s s
376 }
377

378 /**
379 * Moves a field one step up the inheritance hierarchy.
380 *
381 * $fieldName - The name of the field to move up the inheritance hierarchy.
382 * $className - The name of the class where the field is currently located.

B. REFDSTL STANDARD LIBRARY 88

383 */
384 proc m o v e F i e l d T o S u p e r c l a s s ($f ie ldName , $className)
385 r e q u i r e s f o r a l l $ f l d in $ u t i l s . f i n d C l a s s ($className) . g e t F i e l d s ()
386 : $ f l d . getName () . e q u a l s ($ f i e ldName) −> ($ f l d . i sUnused () \ / ~ $ f l d .

i s P u b l i c ())
387 {
388 move f i e l d $f ie ldName from $className up
389 }
390

391 /**
392 * Moves a field one step down the inheritance hierarchy.
393 *
394 * $fieldName - The name of the field to move.
395 * $className - The name of the class where the field is currently located.
396 */
397 proc m ov eF ie ld T oS ub c l a s s ($f ie ldName , $className)
398 r e q u i r e s f o r a l l $ c l s in $ u t i l s . a l l C l a s s e s ()
399 : $ c l s . g e t F u l l y Q u a l i f i e d N a m e () . e q u a l s ($className)
400 −> f o r a l l $ f l d in $ c l s . g e t F i e l d s () :
401 $ f l d . getName () . e q u a l s ($ f i e ldName) −> $ f l d .

e C r o s s R e f e r e n c e s () . i sEmpty ()
402 {
403 move f i e l d $f ie ldName from $className down
404 }
405

406 /**
407 * Moves a method from a class to its superclass.
408 *
409 * $methodName - The name of the method to move.
410 * $className - The name of the class where the method is currently located.
411 */
412 proc moveMethodToSuperc lass ($methodName , $className)
413 r e q u i r e s $ u t i l s . f indMethod ($className , $methodName) . i sUnused () \ / $ u t i l s .

f indMethod ($className , $methodName) . i s P u b l i c ()
414 {
415 move method $methodName from $className up
416 }
417

418 /**
419 * Moves a method from a class to its subclass.
420 *
421 * $methodName - The name of the method to move.
422 * $className - The class where that method is currently located.
423 */
424 proc moveMethodToSubclass ($methodName , $className)
425 r e q u i r e s f o r a l l $ c l s in $ u t i l s . a l l C l a s s e s ()
426 : $ c l s . g e t F u l l y Q u a l i f i e d N a m e () . e q u a l s ($className)
427 −> f o r a l l $mtd in $ c l s . ge tMethods () :
428 $mtd . getName () . e q u a l s ($methodName) −> $mtd .

e C r o s s R e f e r e n c e s () . i sEmpty ()
429 {
430 move method $methodName from $className down

B. REFDSTL STANDARD LIBRARY 89

431 }
432

433 /**
434 * Moves a field from one class to another.
435 *
436 * $fieldName - The name of the field to move.
437 * $fromClass - The class where the field is currently located.
438 * $toClass - The class where the field is to be moved.
439 *
440 * requires $utils.findClass($fromClass).getField($fieldName).isUnused();
441 * requires ~$utils.fieldExists($toClass , $fieldName)
442 */
443 proc moveFie ld ($f ie ldName , $f romClass , $ t o C l a s s)
444 r e q u i r e s ~ $ u t i l s . f i e l d E x i s t s ($ t o C l a s s , $ f i e ldName)
445 {
446 move f i e l d $f ie ldName from $ f r o m C l a s s to $ t o C l a s s
447 }
448

449 /**
450 * Moves a method by name from one class to another.
451 *
452 * Note: ALL methods with the name will be moved. This does not take the
453 * remainder of the method signature into account.
454 *
455 * $methodName - The name of the method to move.
456 * $fromClass - The class where the method is currently located.
457 * $toClass - The class where the method is currently located.
458 */
459 proc moveMethod ($methodName , $f romClass , $ t o C l a s s)
460 r e q u i r e s $ u t i l s . f i n d C l a s s ($ f r o m C l a s s) . ge tMethod ($methodName) . i sUnused ()
461 r e q u i r e s ~ $ u t i l s . m e t h o d E x i s t s ($ t o C l a s s , $methodName)
462 {
463 move method $methodName from $ f r o m C l a s s to $ t o C l a s s
464 }
465

466 /*
467 * Delete operations.
468 */
469

470 /**
471 * Deletes a class by name.
472 *
473 * $className - The name of the class to delete from the project.
474 */
475 proc d e l e t e C l a s s ($className)
476 r e q u i r e s f o r a l l $ c l s in $ u t i l s . a l l C l a s s e s () :
477 (f o r a l l $mtd in $ c l s . ge tMethods () : $mtd . e C r o s s R e f e r e n c e s () . i sEmpty ())
478 / \ (f o r a l l $ f l d in $ c l s . g e t F i e l d s () : $ f l d . e C r o s s R e f e r e n c e s () . i sEmpty ())
479 {
480 d e l e t e c l a s s $className
481 }
482

B. REFDSTL STANDARD LIBRARY 90

483 /**
484 * Deletes an unused field from a class.
485 *
486 * $fieldName - The name of the field to delete.
487 * $className - The name of the class where the field is declared.
488 */
489 proc d e l e t e F i e l d ($f ie ldName , $className)
490 r e q u i r e s $ u t i l s . f i n d F i e l d ($className , $f i e ldName) . i sUnused ()
491 {
492 d e l e t e f i e l d $f ie ldName in c l a s s $className
493 }
494

495 /**
496 * Deletes an unused method from a class.
497 *
498 * $methodName - The name of the method to delete.
499 * $className - The name of the class to delete.
500 */
501 proc d e l e t e M e t h o d ($methodName , $className)
502 r e q u i r e s $ u t i l s . f indMethod ($className , $methodName) . i sUnused ()
503 {
504 d e l e t e method $methodName in c l a s s $className
505 }

Listing B.1: Standard Library for RefDstl

Bibliography

Aho, A. V., Lam, M. S., Sethi, R., and Ullman, J. D. (2006). Compilers: Principles, Techniques,

and Tools. Addison-Wesley, 2nd edition.

Al-Mutawa, H. A., Dietrich, J., Marsland, S., and McCartin, C. (2014). On the Shape of Circular

Dependencies in Java Programs. In Australasian Software Engineering Conference, pages 48–

57, Sydney. IEEE.

Arcelli, F., Mangiacavalli, M., Pochiero, D., and Zanoni, M. (2015). On Experimenting Refac-

toring Tools to Remove Code Smells. In Scientific Workshop Proceedings of the International

Conference on Agile Software Development, Helsinki. ACM.

Barker, R. and Tempero, E. (2007). A Large-Scale Empirical Comparison of Object-Oriented

Cohesion Metrics. In Asia-Pacific Software Engineering Conference, pages 414–421, Aichi.

IEEE.

Beck, K. (1999). Extreme Programming Explained: Embrace Change. Addison-Wesley, Boston,

1st edition.

Bézivin, J. (2005). On the Unification Power of Models. Software & Systems Modeling, 4(2):171–

188.

Bieman, J. and Kang, B. K. (1995). Cohesion and Reuse in an Object-Oriented System. In

Symposium on Software Reusability, pages 259–262, New York. ACM.

Blackburn, S. M., Garner, R., Hoffmann, C., Khan, A. M., McKinley, K. S., Bentzur, R., Diwan,

A., Feinberg, D., Frampton, D., Guyer, S. Z., Hirzel, M., Hosking, A., Jump, M., Lee, H., Moss,

J. E. B., Phansalkar, A., and Stefanovi, D. (2006). The DaCapo Benchmarks : Java Benchmark-

ing Development and Analysis. In Object-Oriented Programming Systems, Languages, and

Applications, pages 169–190, Portland. ACM.

Boehm, B. W. (1988). A Spiral Model of Software Development and Enhancement. IEEE Com-

puter, 21(5):61–72.

Brett, D., Digg, D., Garcia, K., and Marinov, D. (2007). Automated Testing of Refactoring En-

gines. In European Software Engineering Conference and the Symposium on the Foundations

of Software Engineering, pages 9–10, Cavtat. ACM.

Bruneton, E., Lenglet, R., and Coupaye, T. (2002). ASM: A Code Manipulation Tool to Implement

Adaptable Systems. In Adaptable and Extensible Component Systems.

Carvalho Júnior, A., Silva, L., and Cornélio, M. (2007). Using CafeOBJ to Mechanise Refactoring

Proofs and Application. Electronic Notes in Theoretical Computer Science, 184:39–61.

Cassell, K., Andreae, P., Groves, L., and Noble, J. (2009). Towards Automating Class-Splitting

Using Betweenness Clustering. In International Conference on Automated Software Engineer-

ing, pages 595–599, Auckland. ACM/IEEE.

BIBLIOGRAPHY 92

Chaparro, O., Bavota, G., Marcus, A., and Penta, M. D. (2014). On the Impact of Refactoring

Operations on Code Quality Metrics. In International Conference on Software Maintenance

and Evolution, pages 456–460, Victoria. IEEE.

Chidamber, S. R. and Kemerer, C. F. (1991). Towards a Metrics Suite for Object-Oriented De-

sign. In Object Oriented Programming Systems Languages and Applications, pages 197–211,

Phoenix. ACM.

Chidamber, S. R. and Kemerer, C. F. (1994). A Metrics Suite for Object Oriented Design. IEEE

Transactions on Software Engineering, 20(6):476–493.

Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., and Talcott, C. (2003).

The Maude 2.0 System. Rewriting Techniques and Applications, LNCS 2706:76–87.

De Roover, C., Lammel, R., and Pek, E. (2013). Multi-Dimensional Exploration of API Usage. In

International Conference on Program Comprehension, pages 152–161, San Francisco. IEEE.

Dig, D., Comertoglu, C., Marinov, D., and Johnson, R. (2006). Automated Detection of Refac-

torings in Evolving Components. In European Conference on Object-Oriented Programming,

chapter 24, pages 404–428. Springer, Berlin.

Fokaefs, M. and Tsantalis, N. (2011). JDeodorant: Identification and Application of Extract Class

Refactorings. In International Conference on Software Engineering, pages 1037–1039, Hon-

olulu. ACM.

Fontana, F. A., Ferme, V., and Spinelli, S. (2012). Investigating the Impact of Code Smells Debt

on Quality Code Evaluation. In International Workshop on Managing Technical Debt, pages

15–22, Zurich. IEEE.

Fowler, M. (1999). Refactoring: Improving the Design of Existing Code. Addison-Wesley, Boston.

Garrido, A. and Meseguer, J. (2006). Formal Specification and Verification of Java Refactor-

ings. In International Workshop on Source Code Analysis and Manipulation, pages 165–174,

Philadelphia. IEEE.

Ge, X. and Murphy-Hill, E. (2014). Manual Refactoring Changes with Automated Refactoring

Validation. In International Conference on Software Engineering, pages 1095–1105, Hyder-

abad. ACM.

Girvan, M. and Newman, M. E. J. (2002). Community Structure in Social and Biological Net-

works. National Academy of Sciences of the United States of America, 99(12):7821–7826.

Glass, R. (2001). Frequently Forgotten Fundamental Facts about Software Engineering. IEEE

Software, 18(3):112–111.

Griffith, I., Reimanis, D., Izurieta, C., Codabux, Z., Deo, A., and Williams, B. (2014). The

Correspondence Between Software Quality Models and Technical Debt Estimation Approaches.

In International Workshop on Managing Technical Debt, pages 19–26, Victoria. IEEE.

Harman, M. and Clark, J. (2004). Metrics are Fitness Functions Too. In International Software

Metrics Symposium, pages 58–69, Chicago. IEEE.

Henkel, J. and Diwan, A. (2005). CatchUp! Capturing and Replaying Refactorings to Support

API Evolution. Proceedings. 27th International Conference on Software Engineering, 2005.

ICSE 2005., pages 0–9.

Hitz, M. and Montazeri, B. (1995). Measuring Coupling and Cohesion In Object-Oriented Sys-

tems. Angewandte Informatik, 50:1–10.

BIBLIOGRAPHY 93

Hoare, C. A. R. (1969). An Axiomatic Basis for Computer Programming. Communications of the

ACM, 12(10):576–580.

Jastram, M. (2014). Rodin: User’s Handbook. CreateSpace Independent Publishing Platform.

Jouault, F., Allilaire, F., Bézivin, J., and Kurtev, I. (2008). ATL: A Model Transformation Tool.

Science of Computer Programming, 72(1-2):31–39.

Karsai, G., Krahn, H., Pinkernell, C., Rumpe, B., Schindler, M., and Völkel, S. (2009). Design

Guidelines for Domain Specific Languages. In Workshop on Domain-Specific Modeling at

Object Oriented Systems and Languages, Orlando. ACM.

Lanza, M., Marinescu, R., and Ducasse, S. (2005). Object-Oriented Metrics in Practice. Springer.

Leavens, G. T., Baker, A. L., and Ruby, C. (1999). JML: A Notation for Detailed Design. In Kilov,

H., Rumpe, B., and Harvey, W., editors, Behavioural Specifications for Business and Systems,

chapter 12, pages 175–188. Kluwer.

Lehman, M. and Fernández-Ramil, J. C. (2006). Software Evolution. In Madhavji, N. H.,

Fernández-Ramil, J., and Perry, D. E., editors, Software Evolution and Feedback: Theory and

Practice, chapter 1, pages 7–37. John Wiley & Sons.

Lincke, R., Lundberg, J., and Löwe, W. (2008). Comparing Software Metrics Tools. In Interna-

tional Symposium on Software Testing and Analysis, pages 131–142, Seattle. ACM.

Lorenz, M. and Kidd, J. (1994). Object-Oriented Software Metrics: A Practical Guide. Prentice-

Hall.

Marinescu, R. (2004). Detection Strategies: Metrics-Based Rules for Detecting Design Flaws. In

International Conference on Software Maintenance, pages 350–359, Chicago. IEEE.

Martin, R. C. (2003). Agile Software Development: Principles, Patterns, and Practices. Prentice

Hall.

McCabe, T. J. (1976). A Complexity Measure. IEEE Transactions on Software Engineering,

2(4):308–320.

McQuillan, J. A. (2011). Using Model Driven Engineering to Reliably Automate the Measurement

of Object-Oriented Software, PhD Dissertation. Maynooth University.

Meneely, A., Smith, B., and Williams, L. (2012). Validating Software Metrics: A Spectrum of

Philosophies. ACM Transactions on Software Engineering and Methodology, 21(4):1–28.

Mens, T. and Tourwe, T. (2004). A Survey of Software Refactoring. IEEE Transactions on

Software Engineering, 30(2):126–139.

Mens, T., Van Eetvelde, N., Demeyer, S., and Janssens, D. (2005). Formalizing Refactorings

with Graph Transformations. Journal of Software Maintenance and Evolution: Research and

Practice, 17(4):247–276.

Metsker, S. J. and Wake, W. C. (2006). Design Patterns in Java. Addison-Wesley, 2nd edition.

Meyer, B. (1997). Object-Oriented Software Construction. Prentice Hall, 2nd edition.

Milne, I. and Rowe, G. (2002). Difficulties in Learning and Teaching Programming - Views of

Students and Tutors. Education and Information Technologies, 7(1):55–66.

Moghadam, I. H. and Ó Cinnéide, M. (2011). Code-Imp: A Tool for Automated Search-Based

Refactoring. In Workshop on Refactoring Tools, pages 41–44, Honolulu. ACM.

Muller, P.-A., Fondement, F., Baudry, B., and Combemale, B. (2012). Modeling modeling mod-

eling. Software & Systems Modeling, 11(3):347–359.

BIBLIOGRAPHY 94

Murphy-Hill, E. and Black, A. P. (2008). Seven Habits of a Highly Effective Smell Detector. In

International Workshop on Recommendation Systems for Software Engineering, pages 36–40,

Atlanta. ACM.

Murphy-Hill, E., Parnin, C., and Black, A. P. (2012). How We Refactor, and How We Know It.

IEEE Transactions on Software Engineering, 38(1):5–18.

Myers, G. J., Sandler, C., and Badgett, T. (2011). The Art of Software Testing. Wiley Publishing,

3rd edition.

Nastov, B. (2013). Grammar and Graphical Concrete Syntaxes Generator Assistant for Domain

Specific Modelling Languages, M.Sc. Dissertation. Montpellier II.

O’Keeffe, M. and Ó Cinnéide, M. (2003). A Stochastic Approach to Automated Design Improve-

ment. In Principles and Practice of Programming in Java, pages 16–18, Kilkenny. ACM.

O’Keeffe, M. and Ó Cinnéide, M. (2006). Search-Based Software Maintenance. In European

Conference on Software Maintenance and Reengineering, Bari. IEEE.

O’Keeffe, M. and Ó Cinnéide, M. (2008a). Search-Based Refactoring : An Empirical Study.

Journal of Software Maintenance, 20(5):345–364.

O’Keeffe, M. and Ó Cinnéide, M. (2008b). Search-based Refactoring for Software Maintenance.

Journal of Systems and Software, 81(4):502–516.

OMG (2015). Meta Object Facility (MOF) 2.0 Query/View/Transformation Specification. Tech-

nical report.

Opdyke, W. F. (1992). Refactoring Object-Oriented Frameworks, Ph.D. Dissertation. University

of Illinois at Urbana-Champaign.

Overbey, J. L. and Johnson, R. E. (2011). Differential Precondition Checking: A Lightweight,

Reusable Analysis for Refactoring Tools. In Automated Software Engineering, pages 303–312,

Oread. IEEE/ACM.

Overbey, J. L., Johnson, R. E., and Munawar, H. (2016). Differential Precondition Checking:

A Lightweight, Reusable Analysis for Refactoring Tools. Automated Software Engineering,

23(1):77–104.

Schaefer, I., Bettini, L., Bono, V., Damiani, F., and Tanzarella, N. (2010). Delta-oriented Program-

ming of Software Product Lines. Software Product Lines: Going Beyond, 6287 LNCS:77–91.

Schneider, J.-G., Vasa, R., and Hoon, L. (2010). Do Metrics Help to Identify Refactoring? In

Workshop on Software Evolution and International Workshop on Principles of Software Evolu-

tion, pages 3–7, Antwerp. ACM.

Simon, F., Steinbruckner, F., and Lewerentz, C. (2001). Metrics Based Refactoring. In Conference

on Software Maintenance and Reengineering, pages 30–38, Lisbon. IEEE.

Soares, G., Gheyi, R., Serey, D., and Massoni, T. (2010). Making Program Refactoring Safer.

IEEE Software, 27(4):52–57.

Stachowiak, H. (1973). Allgemeine Modelltheorie. Springer.

Steinberg, D., Budinsky, F., Paternostro, M., and Merks, E. (2009). EMF: Eclipse Modeling

Framework 2.0. Addison-Wesley, 2nd edition.

Tempero, E., Anslow, C., Dietrich, J., Han, T., Li, J., Lumpe, M., Melton, H., and Noble, J. (2010).

The Qualitas Corpus: A Curated Collection of Java Code for Empirical Studies. In Asia Pacific

Software Engineering Conference, pages 336–345, Sydney. IEEE.

BIBLIOGRAPHY 95

Thompson, S. (2011). Haskell: The Craft of Functional Programming. Addison-Wesley, 3rd

edition.

Tokuda, L. (2001). Evolving Object-Oriented Designs with Refactorings. Automated Software

Engineering, 8:89–120.

Völter, M., Benz, S., Dietrich, C., Engelmann, B., Helander, M., Kats, L., Visser, E., and

Wachsmuth, G. (2013). DSL Engineering Designing, Implementing and Using Domain-Specific

Languages. CreateSpace Independent Publishing Platform.

	Introduction
	Motivation
	Thesis Statement
	Contributions
	Organisation of Dissertation

	Towards a Model Driven Approach to Refactoring
	Research Questions
	Refactoring
	Refactoring Operations
	When to Refactor & Considerations for Developing a Refactoring Engine
	Manual, Automated and Search–based Refactoring

	Formal Specification & Design by Contract
	Model Driven Engineering
	Metamodel Hierarchy and Transformations
	MDE Environments
	Domain Specific (Transformation) Languages
	Modelling Java Programs

	Software Metrics
	Project Metrics
	Design Metrics
	Validation of Metrics
	Metric Tools
	Metrics to Identify Refactorings
	Summary

	RefDstl: A Language for Specifying and Scripting Refactorings
	Use Cases
	Characteristics of a Good Programming Language
	Design of a dstl for Defining and Scripting Refactorings
	Choosing a Suitable Paradigm
	Language Constructs

	RefDstl Implementation
	Parser Generators and Grammars
	A Grammar for RefDstl
	Substituting RefDstl

	Defining a Standard Library of Java Refactorings
	A Small Case Study
	Summary

	A Model Driven Framework to Interpret RefDstl Scripts
	High–Level Overview of the RefDstl Interpreter Framework
	Enriching the RefDstl Language via Script Handles
	Embedding a New Handle
	Supporting Debugging in RefDstl Scripts
	Checking Object Types
	Accessing the Program Model
	Accessing Old Variables

	Custom Transformations into the RefDstl Framework
	Disadvantage of Our Approach
	Summary

	A Case Study on Automatically Refactoring `God' Classes
	Purpose of Experiment
	Summary of Approach
	Identifying a Corpus for the Experiment
	Content of the Qualitas Corpus
	An Analysis Tool for the Qualitas Corpus
	Persisting the Metadata
	Analysing the Classes

	Selecting Refactoring Candidates
	Creating the MoDisco Models

	An Extract Class Refactoring
	Results
	Predicting cbo
	Time Taken

	Discussion
	Summary

	Conclusion
	Summary of Contributions
	Future Work

	Acronyms
	RefDstl Language Grammar for Xtext
	RefDstl Standard Library

