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Abstract

Node misbehavior has attracted much research interest. However, much of the

focus of prior research is on detection of node misbehavior, and little work has

been done on counteracting that misbehavior. Those who do address this issue

lack robustness, flexibility, or feasibility for implementation on real hardware.

As the IEEE 802.11 standard’s medium access mechanism is decentralized,

stations can potentially refuse to abide by the standard and gain performance

benefit at the cost of the performance of compliant stations. In this thesis, we

study, extend, and implement a policing algorithm that has been previously

introduced for IEEE 802.11 b/g networks, and make it practically feasible

for implementation on real hardware. We provide proof that the extended

algorithm is robust and can effectively address the problem of policing IEEE

802.11 node misbehavior by eliminating the performance advantage for non-

compliant stations. We outline the domain of scenarios this algorithm can be

adapted to, and those it is not designed for.

To prove the effectiveness of the scheme in a real network, we implement it

on real wireless adapters using the OpenFWWF firmware, conduct a wide

range of experiments for different network scenarios. We provide results that

confirm the extended algorithm’s correct functionality for cases it is designed

to support. We also consider the results in light of newer features of IEEE

802.11 standard. We conclude that the extended policing algorithm can in fact

force stations to comply with the IEEE 802.11 standard (although some new

IEEE 802.11 features may impair its functionality) and its application does

not result in network degradation, and it is effective even under undesirable

network conditions.
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CHAPTER 1
Introduction

In this chapter, we discuss the motivations behind the work of this thesis and provide

an overview of the material presented in the following chapters.

1.1 Motivation

WLANs have attracted much research interest in recent years. This ranges

from models to analyze the performance of existing network protocols (e.g.

[1, 2]), to the experimentally evaluated modifications of standards (e.g. [3,

4]). The focus of this thesis is on Wi-Fi networks, not only from a theoretic

perspective, but also from a practical point of view. The term Wi-Fi is a

trademark used to denote any wireless local area network (WLAN) that is

based on the IEEE 802.11 standard [5].

One of the interesting subjects in IEEE 802.11 research is the study of node

misbehavior. The protocol used in the initial version of this standard is de-

signed to provide fair medium access to all users. 1 However, as we will see

later in Chapter 2, the decentralized nature of the channel access mechanism

used in the protocol clears the way for some greedy users to gain benefit by

cheating on the standard. With the wide availability of open-source wire-
1Though we will see in Section 3.2.1 that fairness itself is a complicated concept. Besides,

new features such as service differentiation prioritize some traffic, which means that the
medium is not shared among users in a fair manner.
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less drivers and firmware, this has become a real issue in IEEE 802.11-based

networks.

Different methods have been proposed to detect and mitigate the effects of

such misbehavior in the wireless network. One of these methods is the polic-

ing algorithm, introduced in Chapter 5. Proposed by Dangerfield et al. [6]

for IEEE 802.11 b/g networks, this algorithm has a few benefits over other

methods, namely (i) it is agnostic to the type of misbehavior: it only takes

into account the throughput, (ii) it provides a countermeasure against non-

compliance without dissociating the greedy stations, and (iii) it involves no

modification on the (possibly misbehaving) stations, or any message-passing

among stations and/or with the access point. The algorithm’s implementation

scope includes only the access point.

There are, however, shortcomings to the policing algorithm. The first problem

is when it comes to the measurement of the compliant throughput. In the

original work, this measure is assumed to be known. The second issue involves

the amount of penalty applied to non-compliant stations, which is only enough

to equalize the throughput of all stations, but not enough to mitigate the

channel degradation caused by the penalty. Thirdly, a station that is aware of

the policing algorithm might be able to play smart and gain benefit regardless.

There is yet another shortcoming to said algorithm, which is that it fails to

consider the more recent advancements in the IEEE 802.11 standard.

The main contribution of this thesis is to amend the policing algorithm and

address the said issues. We verify that we have addressed the challenges

above by showing that our estimator provides a satisfactory estimate of com-

pliant throughput, and that compliant stations achieve close to their expected

throughput when policing is applied.

We supplement analysis with experiments to show that non-compliant stations

with either constant or bursty traffic do not see a gain under the policing

scheme. We provide a series of experiments that test the performance of

the extended policing algorithm under different traffic types and conditions.

We use commercial off-the-shelf devices in our testbeds. These are the same

wireless adapters that come in your laptop or your desktop PC. The ability

of some of these devices to be reprogrammed enables us to use them as test

devices. Thus we can implement the policing algorithm (and possibly others)

2
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and put it to practice in a cost-effective setting.

1.2 Overview

We begin by providing a background of the IEEE 802.11 protocol in Chap-

ter 2. Details provided in this chapter will equip the reader with enough

information about IEEE 802.11 required for this work. The complete IEEE

802.11 standard and its amendments are far beyond the scope of this thesis.

Further, Chapter 3 provides a review of the literature around the subject, and

helps put the work in this thesis into perspective.

Chapter 4 covers the programmability of Broadcom BCM43xx-based wireless

cards, which are used extensively in this work. We describe how we reprogram

the cards and their Linux drivers to implement our algorithms. Online docu-

mentation on this highly flexible hardware is not sufficient for a beginner to

start implementing their ideas on it. Our main goal in Chapter 4 is to provide

this introduction and help the keen developer understand the architecture and

thus be able to reprogram the cards.

Further into the thesis, we tackle the problem of node misbehavior that can

occur in an IEEE 802.11 network as we mentioned in the previous section.

We introduce Dangerfield’s policing algorithm, and amend it to address its

shortcomings in Chapter 5. In Chapter 6 we implement the policing algorithm

on real hardware, and provide experimental results from our testbed where

the scheme is implemented at the access point.

Finally, in Chapter 7 we summarize what we talk about throughout the thesis

and discuss possible extensions to the present work.

1.3 Publications

The following journal publication was prepared and published in the course

of this doctorate:

P. Patras, H. Feghhi, D. Malone, and D. Leith, “Policing 802.11 MAC

Misbehaviours,” Mobile Computing, IEEE Transactions on, accepted

and to appear, pp. 1–15, 2015 [7]
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The following conference publications were also prepared and presented in the

course of this doctorate:

H. Feghhi, P. Patras, and D. Malone, “Practical node policing in 802.11

WLANs,” World of Wireless, Mobile and Multimedia Networks (WoW-

MoM), 2013 IEEE 14th International Symposium and Workshops on a,

pp.1,3, 4-7 June 2013 [8]

H. Feghhi, and D. Malone, “WiFo: A diagnostic tool for IEEE 802.11

MAC,” World of Wireless, Mobile and Multimedia Networks (WoW-

MoM), 2015 IEEE 16th International Symposium on a, pp.1,10, 14-17

June 2015 [9]

1.4 Resources

There are some resources available online for extra work generated during the

course of this doctorate, which the reader may find useful to refer to. The

following three videos are taken from a demo presented during WoWMoM 2013

for policing[8]. The description of each video describes the exact scenario for

the particular test case.

• Scenario 1: https://www.youtube.com/watch?v=UPPhnG4mNQc

• Scenario 2: https://www.youtube.com/watch?v=cyGrJdT3ERM

• Scenario 3: https://www.youtube.com/watch?v=eVnoYfafWZc

Below are the GitHub repositories for the diagnostic tool described in Ap-

pendix A:

• WiFo front-end: https://github.com/hessan/wifo

• WiFo back-end: https://github.com/hessan/wifoserver
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CHAPTER 2
IEEE 802.11 Background

This chapter provides a description of the IEEE 802.11 protocol and its aspects that

are relevant to the purpose of this thesis.

2.1 Introduction

Wireless Local Area Networks (WLANs) have become popular during the

past decade. The flexibility and the convenience they provide has made them

the dominant type of network for home users and nowadays you can find

them in many public places such as department stores, hotels, restaurants

and even public transport vehicles. For home users, getting stuck near a

network socket in order to surf the Internet has nearly become a myth. They

can now move around and surf with speeds comparable to wired internet. The

ease of installation adds to the value and popularity of these networks.

Today the dominant protocol for WLANs is IEEE 802.11 [5] which is main-

tained by the IEEE LAN/MAN Standards Committee (IEEE 802). Since its

original release in 1997, IEEE 802.11 has been developed and many amend-

ments have been introduced to the standard, such as IEEE 802.11b [10], IEEE

802.11g [11], IEEE 802.11e [12], and IEEE 802.11n [13]. We will provide details

on some of these amendments later in this chapter. The need for higher con-

nection speeds, efficiency, and increasingly larger numbers of users has been

the reason behind all the effort. In this chapter we will describe the IEEE
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802.11 protocol as background information for this thesis. We will cover the

basics, but the focus will be on what is relevant to our work.

Figure 2.1: Network protocol stack

Figure 2.1 demonstrates a simplified version of the network model described in

[14]. The top three layers are responsible for taking information to its rightful

destination for consumption, once it is transmitted successfully. The bottom

two layers are responsible for transmission and are involved in the IEEE 802.11

standard. In this thesis we are particularly interested in the MAC layer which

is a sublayer of the data link layer.

We use the term “frame” to refer to a transmission unit in the data link layer.

A frame is a small piece of data along with MAC-level headers. The structure

of a frame depends on the protocol used in the data-link layer. An IEEE

802.11 frame can be of three main types: data, management, or control.

A data frame contains the actual information that is to be carried. Con-

trol frames assist in the delivery of data frames; they administer access to

the wireless medium and provide MAC-layer reliability functions. Manage-

ment frames are used to provide services that are simple on a wired network;

for example, establishing the identity of a network station (STA)1 is easy on

a wired network because network connections require dragging wires from a

central location to the new workstation, but this requires an “association”
1The terms “node” and “station” are used to describe each user in a network, such as

a laptop or a mobile device.
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procedure in IEEE 802.11 and is carried out using the corresponding manage-

ment frames. We will describe the detailed structure of an IEEE 802.11 frame

later in Section 2.7.2.

2.2 Modes of Operation

IEEE 802.11 WLAN architecture provides a number of operational modes,

corresponding to different network topologies. This section provides a brief

description of the types of networks IEEE 802.11 supports.

2.2.1 Basic Service Set (BSS)

A basic service set consists of a set of wireless STAs connected to a central

node called the access point (AP), which could be connected to a wired net-

work. This mode of operation is commonly known as the infrastructure mode.

Coordination between the AP and the stations is managed through a special

kind of frame called beacon2. APs send beacon frames at regular intervals

(usually every 0.1 second). Timing synchronization is one of the applications

of beacon frames and is described in Section 2.7.1.3 A basic service set is

identified by a service set identifier (SSID), which is selected and advertised

by the access point.

2.2.2 Independent Basic Service Set (IBSS)

If there is no central node, and stations in a WLAN connect to each other in

a peer-to-peer fashion, the network is called an independent basic service set

(IBSS). The IBSS is the most basic type of IEEE 802.11 LAN. A minimum

IEEE 802.11 LAN may consist of only two STAs. This mode of operation is

possible when IEEE 802.11 STAs are able to communicate directly. Because

this type of IEEE 802.11 LAN is often formed without pre-planning, for only

as long as the LAN is needed, this type of operation is often referred to as an

ad hoc network. The SSID for an IBSS is determined by the node that starts

the network.
2Beacon is an example of management frames.
3They are also used for network identification and to broadcast network capabilities.
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2.2.3 Mesh Basic Service Set (MBSS)

A mesh BSS is an IEEE 802.11 LAN consisting of autonomous STAs. Inside

the mesh BSS, all STAs establish wireless links with neighbor STAs to mutu-

ally exchange messages. Further, using the multi-hop capability, messages can

be transferred between STAs that are not in direct communication with each

other over a single instance of the wireless medium. From the data delivery

point of view, it appears as if all STAs in a mesh BSS are directly connected

at the MAC layer even if the STAs are not within range of each other. The

multi-hop capability enhances the range of the STAs and benefits wireless

LAN deployments.

2.2.4 Extended Service Set (ESS)

An extended service set is a set of two or more interconnected BSSs that share

the same SSID. The ESS network appears the same to the link layer as an

IBSS network. STAs within an ESS may communicate and mobile STAs may

move from one BSS to another (within the same ESS) transparently. The

difference between an ESS and an MBSS is that, unlike an MBSS, an ESS

does not have access to a distribution system (DS), so different BSSs cannot

be located in disjointed areas.

2.3 Distributed Coordination Function

The MAC layer consists of a series of rules that determine how nodes should

access the medium and send information. How transmissions are physically

performed is the responsibility of the PHY layer. In this section we will de-

scribe the scheme used in the MAC layer in IEEE 802.11 networks. Before we

begin, two points are worth mentioning. First, when we talk about medium

or “carrier”, we simply mean the air (or any space that conducts electromag-

netic waves), since we are transmitting over the air via antennas and the air

is responsible for carrying our signals as wires would in a wired LAN. We may

also refer to the air as “channel” since the medium is split into different fre-

quency ranges and we usually use only one per network and this makes that

particular channel our medium. The second thing worth noting is that the
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radio transmission is half-duplex. This means that devices cannot send and

receive simultaneously: at any given time only one of these can be done.4

2.3.1 Carrier Sensing

The scheme used in the MAC layer is called Distributed Coordination Func-

tion (DCF), which employs a Carrier Sense Multiple Access with Collision

Avoidance (CSMA/CA) system. As the name suggests, the method depends

on carrier sensing. Carrier sensing is the act of observing the medium for

incoming signals. In CSMA/CA, whenever we have a frame to transmit, we

first sense the medium to make sure it is idle (i.e. nobody else is already

transmitting). One of the two situations will occur:

1. The channel is sensed idle and has been idle for more than a time interval

called DCF Inter-frame Space (DIFS)5: In this case the transmission

begins immediately.

2. The channel is sensed busy: In this case the station waits until the

channel is idle again for a DIFS period, and prepares for the exponential

backoff procedure.

In addition to physical carrier sensing, a complementary mechanism called the

Network Allocation Vector (NAV) is used in IEEE 802.11. NAV is a “virtual”

carrier sensing mechanism or, in other words, a logical abstraction which limits

the need for physical carrier sensing at the air interface to facilitate power

saving. The MAC layer frame headers contain a duration field that specifies

the transmission time required for the frame, during which time the medium

will be busy. The stations listening on the wireless medium read the duration

field and update their NAV, which is an indicator for a station on how long it

must defer from accessing the medium.
4If a radio transceiver can send and receive at the same time, it is called full-duplex.

Full-duplex radio has attracted attention like many areas of wireless networking, and there
has been great progress in this area. For instance, in [15] they propose a technique for
full-duplex radio using self-interference cancellation, and in [16] they design and prototype
a full-duplex Wi-Fi. However, the IEEE 802.11 standard is still based on half-duplex radio.

5This is in the original IEEE 802.11 MAC standard. Newer versions of the standard in-
troduce arbitration inter-frame space (AIFS) instead, which will be described in Section 2.4.
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Standard Slot Time (µs) SIFS (µs) DIFS (µs)
IEEE 802.11-1997 (FHSS) 50 28 128
IEEE 802.11-1997 (DSSS) 20 10 50
IEEE 802.11b 20 10 50
IEEE 802.11a 9 16 34
IEEE 802.11g 9 or 20 10 28 or 50
IEEE 802.11n (2.4 GHz) 9 or 20 10 28 or 50
IEEE 802.11n (5 GHz) 9 16 34

Table 2.1: DCF parameters for different IEEE 802.11 standards.

The NAV may be thought of as a counter that counts down to zero at a

uniform rate. When the counter is zero, it is an indication that the medium is

idle; when nonzero, the medium busy. The medium shall be determined to be

busy when the STA is transmitting. In IEEE 802.11, the NAV represents the

number of microseconds the transmitting STA intends to hold the medium

busy (maximum of 32,767 microseconds). Wireless stations are often battery

powered, so in order to conserve power the stations may enter a power-saving

mode. A station decrements its NAV counter until it reaches zero, at which

time it is awakened to sense the medium again.

2.3.2 Binary Exponential Backoff

The backoff procedure is the collision-avoidance mechanism of DCF. If nodes

in a network transmit at the same time, the signals overlap and the resulting

signal will be undecodable by the receiver or receivers. We call this situation

a “collision”. Collisions cause data to be lost, and lost information needs to

be retransmitted. Imagine a situation where a station is transmitting on the

channel. Let’s assume the scheme used by the stations to send as soon as they

see the channel idle. Using this scheme, all stations begin to transmit once

the currently-transmitting station has finished its transmission. This will lead

to a collision if there is more than one station with information to send. For

this reason, according to the standard, each station should wait for a random

period before sending, once the channel is sensed idle for a DIFS after a busy

period. DIFS here is a fixed amount of time (see Table 2.1 for more details).

This procedure is illustrated in Figure 2.2.

The time after each busy period is divided into discrete time-slots. The slot

time is also a fixed duration, although it can be different for different protocol
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Figure 2.2: Distributed coordination function: random backoff (top) and ac-
knowledgements (bottom) are illustrated in this figure.

amendments (see Table 2.1). The initial backoff procedure can be described

as follows:

1. Choose a random integer w in the range [0, CWmin) which is the number

of time-slots the node will wait.

2. Start a count-down decrementing w for each time-slot.

3. If the channel becomes busy, freeze the count-down until it is idle again

for at least a DIFS period.

4. When w reaches zero, transmit the frame.

Contention Window (CW) is the size of the window from which we choose

the random number. It is originally set to CWmin. Despite random backoff

being performed by all stations, the chances of collision are not eliminated. A

collision is an indication of a crowded channel. In such case, stations repeat

the backoff procedure, but this time in a window of [0, 2CWmin).

11



2.3. Distributed Coordination Function

This trend continues and each time a collision occurs, CW is doubled until

a maximum of CWmax. There is also a limit on the number of retries, after

which the frame will be considered lost and the failure reported back to the

host machine. We will describe this in more detail in Section 2.3.4. On a

successful attempt, the value of CW is reset to its original value CWmin.

The scheme described here reduces the likelihood of a collision. We call this

scheme “binary exponential backoff” (BEB). The default values for CWmin and

CWmax are different for different IEEE 802.11 protocols. For IEEE 802.11b

for example, CWmin is 31 and CWmax is 1023. For IEEE 802.11a and IEEE

802.11g, CWmin is 15 and CWmax is 1023.

2.3.3 Acknowledgements (ACKs)

Now that we know how stations coordinate their transmissions to avoid col-

lisions, one important question remains unanswered. Since stations have a

half-duplex radio system (as we mentioned earlier), then how can they know

whether their transmissions have been successful if they cannot listen to the

channel for colliding signals? The answer is also part of the DCF. For this very

reason, each data frame from a sender should be followed by another frame

called an acknowledge frame (ACK) from the receiver.6 After a station sends

a frame, it starts listening to the channel almost immediately. The receiver

should normally send an ACK, after a period of time called SIFS following the

completion of the received frame. SIFS is smaller than DIFS so other stations

will not view the channel as free before the ACK is sent. If the sending station

does not receive an ACK in a timely manner, it takes this as an indication

that the receiver has not received the frame due to a collision or channel noise,

and it starts the exponential backoff.

2.3.4 RTS/CTS Mechanism

RTS/CTS is an additional method to provide virtual carrier sensing in CS-

MA/CA to overcome the problem described later in Section 2.6.2. A node

wishing to send data initiates the process by sending a Request to Send (RTS)

frame. The destination node replies with a Clear To Send (CTS) frame. Any

other node receiving the RTS or CTS frame should refrain from sending data

for a given time (solving the hidden node problem). The amount of time the
6Not to be confused with ACKs in the transport layer.
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node should wait before trying to get access to the medium is included in both

the RTS and the CTS frame. Since RTS/CTS are actual frames and introduce

overhead to the medium, they are typically not used unless the packet size

exceeds a certain threshold. If the packet size that the node wants to transmit

is larger than the threshold, the RTS/CTS handshake is triggered; otherwise,

the data frame is sent immediately.

This mechanism reduces the chances of collision when stations cannot all hear

one another (see Section 2.6.2), and the need for retransmission is diminished.

We mentioned in Section 2.3.2 that there is a limit on the number of retries

for a single frame. This number is different when the RTS/CTS mechanism

is used. The retry limit for transmissions that do not use this mechanism is

called the “short retry limit”, and its default value is 7. The limit for when

the RTS/CTS mechanism is used is called the “long retry limit”, the default

value of which is 4.

The effectiveness of the RTS/CTS mechanism is debated in the literature. In

[17] they investigate the effectiveness of this mechanism in ad-hoc networks

and show that in some situations it cannot function well. [18, 19] show that

the RTS/CTS mechanism is not as effective as expected in different network

scenarios and in some cases it is even worse than CSMA.

2.4 Enhanced Distribution Channel Access

IEEE 802.11e [12] introduces a new coordination function: the Hybrid Co-

ordination Function (HCF). Figure 2.3, taken from IEEE 802.11 standard

specification [20], depicts where HCF resides in the IEEE 802.11 architec-

ture. Within the HCF, there are two methods of channel access, similar

to those defined in the legacy IEEE 802.11 MAC: HCF Controlled Channel

Access (HCCA) and Enhanced Distributed Channel Access (EDCA). Both

EDCA and HCCA define Traffic Categories (TCs). For example, emails could

be assigned to a low-priority class (category), and Voice over Wireless LAN

(VoWLAN) could be assigned to a high priority class.

With EDCA, high-priority traffic has a higher chance of being sent than low-

priority traffic, which is achieved through the choice of contention parameters.

The protocol used is called TCMA, which is a variation of CSMA/CA using a
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Figure 2.3: IEEE 802.11 MAC architecture; taken from [20]

shorter arbitration inter-frame space (AIFS)7 for higher priority frames. The

exact values depend on the physical layer that is used to transmit the data. It

is defined by the formula AIFSN [AC]×σ+SIFS, where the AIFSN depends

on the AC (see Table 2.3) and σ denotes slot time.

EDCA also provides contention-free access to the channel through Transmit

Opportunity (TXOP). A TXOP is a period of time when a station has the

right to initiate frame exchange sequences onto the wireless medium without

contention. A TXOP is defined by a starting time and a maximum duration.

The TXOP is either obtained by the STA by successfully contending for the

channel or assigned by the hybrid coordinator. The use of TXOPs reduces the

problem of low rate stations gaining an inordinate amount of channel time in

the legacy IEEE 802.11 DCF MAC [21]. A TXOP time interval of 0 means it

is limited to a single MAC service data unit (MSDU) or MAC management

protocol data unit (MMPDU).

Priority levels in EDCA are called Access Categories (ACs). The CWmin and

CWmax can be set according to the traffic expected in each AC, as shown in

Table 2.2. Their effective values are calculated from the aCWmin and aCW-

max values that are defined for each physical layer supported by IEEE 802.11e.

For a typical of aCWmin=15 and aCWmax=1023, the resulting values are as

as shown in Table 2.3.
7AIFS replaces DIFS in EDCF. Its value varies for each access category (AC).
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AC CWmin CWmax

Background (AC_BK) aCWmin aCWmax

Best Effort (AC_BE) aCWmin aCWmax

Video (AC_VI) aCW min+1
2

− 1 aCWmin

Voice (AC_VO) aCW min+1
4

− 1 aCW min+1
2

− 1

Table 2.2: Calculation of Contention Window boundaries

AC CWmin CWmax AIFSN Max TXOP
Background (AC_BK) 15 1023 7 0
Best Effort (AC_BE) 15 1023 3 0
Video (AC_VI) 7 15 2 3.008ms
Voice (AC_VO) 3 7 2 1.504ms

Table 2.3: Default EDCA Parameters for each AC in IEEE 802.11e

EDCA access parameters (AIFS, CWmin/CWmax, and TXOP) are set in each

STA in advance. They are also broadcast by the AP through beacon frames.

Upon reception of a beacon, the STA updates its EDCA parameters and uses

them to transmit frames. Thus the AP can control the EDCA parameters of

STAs that it is handling. There are also scenarios in which the data needs to

be protected from other data of the same class. Admission Control in EDCA

addresses these type of problems. The AP publishes the available bandwidth

in beacons. Clients can check the available bandwidth before adding more

traffic.

2.5 Additional Features

Each amendment to the IEEE 802.11 standard introduces new methods to

improve its performance and usability. In this section we introduce some of

the additional features in IEEE 802.11g [11], IEEE 802.11e [12], and IEEE

802.11n[13].

2.5.1 Block Acknowledgements (BA)

PHY level data rate improvements do not increase user level throughput be-

yond a point because of IEEE 802.11 protocol overheads, such as inter-frame
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spacing, PHY level headers, and ACKs. Frame aggregation is a process of

packing multiple MSDUs or MPDUs together to reduce the overheads and av-

erage them over multiple frames, thereby increasing the user level data rate.

Two types of aggregation are defined: (i) Aggregation of MAC service data

units (MSDUs) at the top of the MAC (referred to as MSDU aggregation or

A-MSDU), and (ii) Aggregation of MAC protocol data units (MPDUs) at the

bottom of the MAC (referred to as MPDU aggregation or A-MPDU).

A-MPDU aggregation requires the use of block acknowledgements, or Block

ACKs. This feature was first introduced in IEEE 802.11e [12] as an optional

feature, and later was enhanced and made mandatory in IEEE 802.11n[13].

Using this feature, instead of sending an ACK for every single MPDU, a

single ACK is sent for a group of MPDUs. A block acknowledgement (BA) can

support up to 1024 data units (fragments). There are two types of Block Acks:

immediate, and delayed. With Immediate Block ACK, the BA is required after

the receipt of Block ACK Request (BAR) whereas with Delayed Block ACK,

the BAR itself is acknowledged (by the recipient) with a simple ACK frame

and the BA is sent later on separately which is also acknowledged (by the

originator).

2.5.2 No ACK

One of the QoS features of IEEE 802.11e is the QoSNoAck service class. In

QoS mode, service class for frames to send can have two values: QosAck

and QosNoAck. Frames with QosNoAck are not acknowledged. This avoids

retransmission of highly time-critical data. But note that a station cannot be

sure if a QosNoAck frame was successfully transmitted.

2.5.3 Direct Link Setup

Direct link setup (DLS) allows direct station-to-station frame transfer within

a BSS. This is designed for consumer use, where station-to-station transfer

is more commonly used. DLS provides an avenue for devices to perform

consumer station-to-station functions while simultaneously connected to an

enterprise WLAN.
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2.6 Challenges for the MAC

In this section we describe the challenges that the MAC layer in a WLAN

faces. The IEEE 802.11 protocol overcomes these challenges to some extent,

but some can still be kept in mind when implementing new algorithms on top

of IEEE 802.11.

2.6.1 RF Link Quality

On a wired Ethernet, it is reasonable to transmit a frame and assume that the

destination receives it correctly if there is no collision. Moreover, collisions can

be detected explicitly. Radio links are different, especially when frequencies

used are unlicensed ISM bands. The devices must assume that noise and

interference will exist and work around these problems. The designers of

IEEE 802.11 considered ways to work around the radiation from microwave

ovens and other RF sources. In addition to the noise, multipath fading may

also lead to situations in which frames cannot be transmitted because the

node moves into a dead spot.

To overcome this problem, the IEEE 802.11 DCF uses acknowledgements and

if any part of the transfer fails, the frame is considered lost. Acknowledgements

were explained in Section 2.3.3. This transaction is necessary since the link is

not reliable and the frame might be lost during transmission.

Radio link quality also influences the speed at which a network can operate.

Good quality signals can carry data at a higher rate. Available data rates for

different IEEE 802.11 protocols are listed in Table 2.4. Signal quality degrades

with range, which means that the data transmission speed of an IEEE 802.11

station depends on its location relative to the AP and the noise relative to

signal strength. Stations must implement a method for determining when to

change the data rate in response to changing conditions. Furthermore, the

complete collection of stations in a network must manage transmissions at

multiple speeds.

There are many rate adaptation algorithms introduced in the literature. An

old example is ARF [23], which decreases the rate on two consecutive trans-

mission failures, and increases it after receiving 10 ACKs without failure. It

also has a probing packet after each increase, the failure of which causes an

instant step-back. This is meant to prevent false-positives. Another example
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802.11
protocol

Freq.
(GHz)

Bandwidth
(MHz)

Data rate per
stream (Mb/s)

Modulation

— 2.4 20 1, 2 DSSS, FHSS

a
5

20
6, 9, 12, 18, 24, 36,
48, 54

OFDM
3.7

b 2.4 20 1, 2, 5.5, 11 DSSS
g 2.4 20 6, 9, 12, 18, 24, 36,

48, 54
OFDM,
DSSS

n 2.5/5
20 7.2, 14.4, 21.7, 28.9,

43.3, 57.8, 65, 72.2
OFDM

40 15, 30, 45, 60, 90,
120, 135, 150

Table 2.4: Available rates and modulation schemes for different IEEE 802.11
protocols. For detailed information regarding modulation, see [22].

is SampleRate [24], which chooses the rate with the smallest average packet

transmission time, including loss recovery time. A good feature of this al-

gorithm is that it chooses a random rate every 10th packet to measure its

performance, therefore it never gets stuck in a low rate. A variation of Sam-

pleRate is called Minstrel [25], which is used in Linux drivers. It gathers

statistics from transmitted frames and calculates a probability of success for

each frame. It also spends a particular percentage of frames “looking around”

(i.e. randomly trying other rates) to gather statistics. This percentage is usu-

ally 10%. The distribution of lookaround frames is also randomized somewhat

to avoid any potential “strobing” of lookaround between similar nodes.

2.6.2 The Hidden Node Problem

In Ethernet networks, stations depend on the reception of transmissions to

perform the carrier sensing functions. Wires in the physical medium distribute

signals to network nodes. Wireless networks have fuzzier boundaries and nodes

might not be all interconnected as they would be in a wired network. Take a

look at Figure 2.4. In this figure, node 2 can communicate with both nodes

1 and 3, but something prevents nodes 1 and 3 from communicating directly.

This could be due to an obstacle or simply because they are far away from each

other. We call node 3 a “hidden” node from node 1’s perspective. As they do

not hear each other on the channel, CSMA/CA may fail to hear transmissions

and therefore it is highly probable that their transmissions will overlap each
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other, and node 2 cannot make sense of any of the transmissions.

Collisions resulting from hidden nodes may be hard to detect in wireless net-

works because, as mentioned before, wireless transceivers are generally half-

duplex. To prevent collisions, IEEE 802.11 allows stations to use RTS/CTS

signals to clear out an area. This mechanism was explained in Section 2.3.4.

Figure 2.4: The hidden node problem: Node 1 cannot directly communicate
with node 3, so it will not be able contend properly with it.

2.6.3 The Exposed Node Problem

From the same characteristic of a wireless network that is described in Sec-

tion 2.6.2, another problem might arise, and that is the situation depicted in

Figure 2.5. In this figure, nodes 2 and 3 are in each other’s range, but they

are not in the same network, or at least they do not intend to send to each

other. Node 2 is transmitting to node 1, while node 3 intends to transmit

to node 4. However, once node 2 begins transmission, node 3 should wait

because it hears something on the channel. But the truth is that if node 3

also starts transmitting, there will be no collision since it is not in the range

of node 1, and similarly node 2 is not in the range of node 4. Therefore both

transmissions could be received correctly by their corresponding destination

nodes even if sent at the same time, but this scenario would not arise because

nodes 2 and 3 are “exposed” to each other’s signals.

There has been interest in mitigating this effect in the literature. In [26]

they study both the hidden node and the exposed node problems and provide

schemes to remove or mitigate the effects. The exposed node problem is spe-

cially critical in ad-hoc networks and there are works like [27] that specifically

focus on this kind of network.
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Figure 2.5: The exposed node problem: node 2 is transmitting to node 1 and
node 3 wants to transmit to node 4.

The IEEE 802.11 RTS/CTS mechanism could help solve the exposed node

problem as well, only if the nodes are synchronized and packet sizes and

data rates are the same for both transmitting nodes. When a node hears

an RTS from a neighboring node, but not the corresponding CTS, that node

can deduce that it is an exposed node and is permitted to transmit to other

neighbors. If the nodes are not synchronized (or if their packet sizes or the

data rates are different) the problem may occur that the sender will not hear

the CTS or the ACK during the transmission of data of the second sender.

2.7 Under the Hood

In this section we will describe in detail a few things related to the standard.

Knowing these details will help the reader have a better understanding of the

technicality behind some implementations discussed in later chapters.

2.7.1 Timing in IEEE 802.11 MAC

Since we are using the timing mechanism in IEEE 802.11 broadly in our im-

plementations, we will briefly describe it here. As already discussed, time

between transmissions is slotted in the IEEE 802.11 standard. In order for

stations to operate correctly, the time slots for all stations should be aligned.

This can be tricky since each station uses different hardware and has a differ-

ent distance from other stations. So we need a way of synchronizing the time

stations see.
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Timing Synchronization Function (TSF) is specified in the IEEE 802.11 wire-

less local area network (WLAN) standard to fulfill timing synchronization

among users. The TSF keeps the timers for all stations in the same Basic Ser-

vice Set (BSS) synchronized. All stations maintain a local TSF timer. Each

station maintains a TSF timer with modulus 264 counting in increments of

microseconds.

On a commercial level, industry vendors assume the IEEE 802.11 TSF’s syn-

chronization to be within 25 microseconds. Timing synchronization is achieved

by stations periodically exchanging timing information through beacon frames.

Each station in the network adopts the received timestamp if it is later than

the station’s own TSF timer. We introduced beacon frames in Section 2.1.

All stations in the IBSS adopt a common value, normally noted as aBeacon-

Period, that defines the length of beacon intervals or periods. This value,

established by the station that initiates the IBSS, defines a series of Target

Beacon Transmission Times (TBTTs) exactly aBeaconPeriod time units apart.

Time zero is defined to be a TBTT.

2.7.2 Frame Format and Types

Throughout this thesis we will be discussing the implementation of different

tweaks and algorithms on IEEE 802.11 hardware and sometimes we will need

to identify frames and/or modify their information. For this reason we will

discuss IEEE 802.11 frame formats here briefly. A MAC frame contains all in-

formation needed to successfully land a piece of information on its destination

within the WLAN. Figure 2.6 shows the structure of an IEEE 802.11 frame.

The second diagram shows the three main sections of a frame.

The first diagram in Figure 2.6 corresponds to the PHY header. While we are

more interested in the MAC layer, there are some useful points regarding the

PHY level headers which we will discuss briefly here. The first component of

the PHY header is called the preamble. To put it simply, preamble is a signal

used to synchronize transmission timing. In other words it is used as a series

of transmission criteria to be understood as “somebody is about to transmit

data”. There are two different kinds of preamble used in IEEE 802.11, the

details of which are not in the scope of this thesis. Legacy IEEE 802.11 uses

a 128-bit SYNC in the preamble; this is called a long preamble. IEEE 802.11b
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Figure 2.6: IEEE 802.11 frame format. The length of SYNC is different for
short and long preambles.

and IEEE 802.11g also use an optional short preamble which has a 56-bit

SYNC.8

The PLCP header has some extra information about the frame that is about to

be transmitted. For our applications, the most important field in the PLCP

header is the LENGTH field, which determines the size of the frame. The

value is the number of microseconds required to transmit the remainder of the

frame, excluding the PHY header. For more detailed information regarding

PLCP header and the preamble, see [22] (section 18.2.3).

The part of the frame that is covered in the MAC layer is the MAC Protocol

Data Unit (MPDU). The structure of MPDU is shown in the middle diagram

in Figure 2.6. The first part of the MPDU is Frame Control. It contains

information about the type and some characteristics of the frame. The in-

formation contained in this field is shown in the bottom diagram. The most

important fields in Frame Control are the type and subtype fields. These to-

gether determine the nature of the frame. For example, beacon frames have

a management type, and a beacon subtype.

The next two bytes are reserved for the Duration ID field. This field can take

one of three forms: Duration, Contention-Free Period (CFP), and Association
8For example, IEEE 802.11g is required to support both short and long preambles.
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To DS From DS Address 1 Address 2 Address 3 Address 4
0 0 Destination Source BSSID N/A
0 1 Destination BSSID Source N/A
1 0 BSSID Source Destination N/A
1 1 Receiver Transmitter Destination Source

Table 2.5: Meanings of different IEEE 802.11 address fields based on DS flags

ID (AID).

An IEEE 802.11 frame can have up to four address fields. Each field can carry

a MAC address and what they refer to depends on whether the frame is being

forwarded through the DS. Table 2.5 shows the address each field holds in

different scenarios.

The Sequence Control field is a two-byte section used for identifying message

order as well as eliminating duplicate frames. The first 4 bits are used for the

fragmentation number and the last 12 bits are the sequence number.

An optional two-byte Quality of Service control field was added with 802.11e.

The Frame Body field is the main information that is delivered. Its size

varies from 0 to 2304 bytes plus any overhead from security encapsulation and

contains information from higher layers.

The Frame Check Sequence (FCS) is the last 4 bytes in the standard IEEE 802.11

frame. Often referred to as the Cyclic Redundancy Check (CRC), it allows for

an integrity check of retrieved frames. As frames are about to be sent the FCS

is calculated and appended. When a station receives a frame it can calculate

the FCS of the frame and compare it to the one received. If they match, it is

assumed that the frame was not distorted during transmission. For detailed

information regarding the FCS field and the CRC algorithm used, see [22]

(section 7.1.3.7).

2.8 Summary

IEEE 802.11 is the dominant protocol for WLANs. It allows stations to

communicate either in infrastructure mode, where all stations communicate

through a central node called the AP, or ad-hoc mode, where stations trans-

mit information to their neighbors as well as forwarding messages for other
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stations.

For the MAC layer, the IEEE 802.11 standard uses a method called DCF

which is based on CSMA/CA. The DCF ensures that different nodes in a

network can contend for channel access and all have fair chances of accessing

the channel and transmitting data. The collision avoidance mechanism in

DCF employs a binary exponential backoff mechanism. Stations originally

back off a random amount of time before sending, in order to avoid collisions.

They double their backoff windows each time their transmissions fail.

IEEE 802.11e enhances the mechanism by introducing HCF. With HCF, sta-

tions can contend in different ways according to the priority of their traffic,

adding Quality of Service (QoS) capabilities to the protocol.

Wireless MAC protocols face several challenges, the most basic one of which

is link quality. It is not as straightforward in a wireless medium to transmit

frames correctly as it is in a wired network. The second problem is called the

“Hidden Node Problem”, caused when two stations communicate with a third

party but they are not in each other’s range. In this case, they would not pause

their backoff and transmission and collisions would occur. The third problem

is called the “Exposed Node Problem”, which happens when a station can

practically transmit a frame to a second station, but its transmissions keep

being delayed because of received signals from a third party, even though

simultaneous transmission would not cause any harm (because receivers are

not hearing the other sender’s signals).
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CHAPTER 3
Related Work

In this chapter we will discuss state of the art in the area we focus on in this thesis.

3.1 Introduction

The main focus of this thesis is to practically implement a form of traffic

shaping that is used to prevent selfish behavior in an IEEE 802.11 network.

This has different aspects, which include misbehavior detection and preven-

tion, protocol manipulation, and traffic shaping. In this chapter we discuss

what has been done before in each of these areas, and how the work in this

thesis relates to them. The focus will mainly be on IEEE 802.11, but other

technologies will also be looked at briefly where relevant.

3.2 Fairness and Compliance

Fairness is an important subject when it comes to resource allocation. In

wireless networks and IEEE 802.11 in particular, fairness has received special

attention, an old example of which is the proposed framework by Nandagopal

et al. [28] for modeling fairness models. As mentioned in said paper, achieving

fairness in the wireless medium is inherently more complicated than the wired

version because of its location-dependent contention, inaccurate state esti-

mates, and decentralized control. Besides, there is always a trade-off between

channel utilization and fairness [29], although some work aims to alleviate this
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by designing new variations of the DCF [30]. Other examples of works that fo-

cus on resource scheduling in wireless networks include the paper by Jamshaid

et al. [31] where they use a rate-based centralized scheduling techniques to

enforce max-min fairness (see Section 3.2.1). In this section we first discuss

different notions of fairness that have been introduced in the literature, and

how they are used. Then we move on to defining how fairness compares to

standard compliance.

3.2.1 Notions of Fairness

Fairness can have different, sometimes conflicting, definitions depending on

how it is measured and where it is applied. The DCF is designed to give equal

chances to all stations to transmit frames, and it is proven to provide this

degree of fairness in the long term [32]. When we hear fairness in computer

networks, the first thing that comes to mind is throughput fairness, which

means stations being able to send the same amount of data in a given time.

This is a notion of fairness used in works such as that of Lee et al. [33]

where they adjust contention window parameters to achieve fair bandwidth

allocation. But this notion is not always desirable. For instance, with multi-

rate networks, stations employing lower bitrates take more time on the medium

than stations with higher bitrates.

If we take time as the resource that needs to be shared between stations,

we come to the notion of airtime fairness [34][35]. The reason airtime is

commonly considered is that it is proven that in a multi-rate DCF network,

the network saturation throughput corresponds to the saturation throughput

of the station with the lowest bitrate [21]. In other words, such a station

will drag the performance of other stations down. That is why airtime is

an important measure. Joshi et al. [36] propose a protocol called time-fair

CSMA (TFCSMA) in which the contention window of each station is adjusted

in a decentralized manner to ensure airtime fairness. Tinnirello et al. take a

different approach, and use TXOP [37] to achieve temporal fairness. These

methods rely on the fact that airtime fairness does not imply throughput

fairness: stations with higher bitrates can send more data in the same period

of time.

A popular measure for fairness is Jain’s fairness index [38]. If xi is the amount
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of the desired resource allocated to i, then Jain’s index is defined as

J (x1, x2, . . . , xn) =
(
∑n

i=1 xi)2

n ·∑n
i=1 xi

2

which equals to 1 when all stations get the same amount of the desired re-

source, and less than 1 if they don’t. 1
n

is the worst value this index can

get (e.g. when one station gets all resources). It is worth noting that Jain’s

fairness index does not take the absolute level of achieved throughput into ac-

count. For instance, all stations getting 0.1 Mb/s is “better” than one getting

10 Mb/s and the rest getting 1 Mb/s as far as this index is concerned. In

other words, it does not indicate efficient resource utilization.

Another notion of fairness that has applications far beyond IEEE 802.11 net-

works is max-min fairness [39]. A resource allocation is max-min fair if and

only if it is feasible (i.e. possible in the network) and an attempt to increase

the allocation of any participant necessarily results in the decrease in the al-

location of some other participant with an equal or smaller allocation. The

resource in question is usually airtime or bitrate in wireless networks. Exam-

ples of works on max-min fairness are [40] and [41] propose methods to achieve

max-min fairness in a decentralized way in terrestrial wireless ad-hoc networks

and underwater sensor networks respectively. This fairness measure does not

have the limitation of Jain’s fairness index, and ensures optimal utilization of

resources.

As far as multi-rate networks are concerned, there is another notion of fairness,

introduced by Kelly [42], and studied in more recent works (e.g. [43][44]). In

this notion, a utility function ui(xi) is defined for each station, where xi is the

rate at which the station i sends. The goal is then to maximize the sum of all

utilities, given network constraints, for instance:

max∑
xi=c

∑

ui(xi)

A special case of utility fairness is called proportional fairness, which is studied

for IEEE 802.11 [45, 46] as well as earlier technologies such as Aloha [47]. The

(marginal) utility here is proportional to the bitrate the station already has.

The notion is based on the idea that the satisfaction of a station that is sending

at 11 Mb/s with additional 1 Mb/s will be less than that of a station sending
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at 1 Mb/s, because the bitrate of the latter would be doubled. In practice,

u(xi) = log(xi) is often used.

Proportional fairness can also be described in terms of cost: the utility function

is inversely proportional to the energy cost of sending at the given bitrate. A

newer example application of proportional fairness is described by Haiyang et

al. [48], where they use a higher layer scheduler in conjunction with IEEE

802.11’s rate control mechanisms to provide proportional fairness for DASH

(Dynamic Adaptive Streaming over HTTP).

Not all mentions of fairness correspond to sophisticated utility fairness notions.

What works, such as the paper by Jiang et al. [26] and the original policing

algorithm [6], often consider fairness is throughput fairness, as described in

the first paragraph of this section.

3.2.2 Short-term Fairness

Although much of the work in fairness focuses on long-term fairness, short-

term fairness is also of great importance, specially when it comes to real-time

applications; and this importance has been long recognized in the literature

[49]. IEEE 802.11 medium access mechanism is designed to provide fair access

to the channel in the long term. However, short-term fairness is not guaranteed

by the DCF [50] [51] (though Vlachou et al. [52] show that IEEE 802.11

provides more short-term fairness than the similar access protocol IEEE 1901

when the number of stations is less than 15).

Many methods and schemes have been introduced to achieve short-term fair-

ness in IEEE 802.11 networks. An example is iBEB by Almotairi et al. [53],

which employs an inverse exponential backoff mechanism, meaning that it

starts from the maximum backoff window and reduces the contention window

by half on each collision. They prove that their method improves short-term

fairness. An obvious downside of this method is low channel utilization, and

that is due to the large initial contention window of 511.

Kim et a. [54] introduce another method called renewal access protocol (RAP),

which is a simplified version of the DCF with fixed contention window and

an a priori backoff distribution. They achieve high short-term fairness and

optimal channel utilization through the choice of this distribution.
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Another method for achieving fairness especially in the short term is oppor-

tunistic scheduling [55], which is used mainly for cellular networks. It was first

introduced by Knopp and Humblet [56]. In a pure opportunistic approach,

the scheduler always chooses the user in the best channel condition to use the

resources. Opportunistic scheduling depends on the multiuser diversity due

to random wireless channel impairments such as fading and multipath.

3.2.3 Fairness and Service Differentiation

Different stations in a wireless network have different needs. Take the differ-

ence between a voice call, and a file download as an example. Delay is less

tolerable in a voice conversation than it is for a file download, while frame

loss is better tolerated [57]. Since IEEE 802.11e, service differentiation was

introduced to the protocol, making it possible for different types of traffic to

be treated according to their specific requirements. Fairness in this case can

be more complicated to define and achieve, as it is no longer the question of

throughput or airtime fairness among different nodes, but also among different

traffic classes [58][59].

Bottigliengo et al. propose a method [60] to guarantee fairness in the presence

of service differentiation. Their method combines contention window adapta-

tion and transmission opportunity (TXOP) to guarantee quality of service for

flows of the same class. Qiang et al. use distributed scheduling at both the

AP and stations to achieve quality of service for each traffic class while main-

taining fairness among different classes [61]. AS-MAC [58] is another method

that simultaneously provides the absolute priority and successful transmission

time fairness

We will further discuss the impact of service differentiation on fairness in

Chapter 5 as we see the implications it has for the policing algorithm.

3.2.4 Standard Compliance

The original IEEE 802.11 standard is designed to give equal chances to all

stations to access the channel. However, the protocol is a decentralized one,

and stations can choose not to comply. Giri et al. describe some examples

of non-compliance and their effects [62], and Guang et al. introduce a model

[63] to compute the saturation throughput under both normal case and the
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case with the existence of selfish nodes. The fairness that is achieved by the

standard is only possible if all stations implement it correctly, so standard

compliance is closely tied with airtime and throughput fairness: if one station

maliciously takes up more channel time, it takes the opportunity away from

compliant stations (see Section 3.3 for experimental work on this subject).

In this thesis the focus is on standard compliance rather than fairness. The

idea is to enforce a compliant behavior while trusting the standard to provide

fair channel access. This can sometimes come at the price of lower channel

utilization but better throughput for compliant stations, so linking indirectly

to the trade-offs in max-min and utility fairness.

3.3 Node Misbehavior

The main contribution of this work, as described in Chapter 5, is the im-

plementation and experimental analysis of a misbehavior detection system,

and a method for determining the correct behavior. What we mean here by

misbehavior is non-compliance with standard, as described in the previous sec-

tion. Node misbehavior has received much attention in the literature, mainly

because of the decentralized nature of the IEEE 802.11 protocol, which ex-

poses it to selfish behavior. It can happen when users selfishly manipulate

their channel access parameters to gain a performance advantage. This can

severely degrade the performance of the users that abide by the standard

[64, 65]. Availability of open-source drivers such as MadWifi [66], and even

open-source firmware for some Wi-Fi adapters [67] makes this a real, rather

than theoretical, issue.

Research has proven that said issue is not limited to malicious users. Gior-

dano et al. [68] evaluate maximum achievable goodput using theory, simu-

lations, and experimental analysis. They find differences between different

IEEE 802.11b wireless adapters, and deviations from expected goodputs. In

[69], they take a step further and measure access parameters of different wire-

less card using a probe cards, and find the source of performance differences

between them to be in the MAC layer. Bianchi et al. [70, 71, 72] run ex-

periments with different wireless adapters and measure contention parameters

used by each of them and show that off-the-shelf adapters have deferring be-

havior, which sometimes deviates from standard, and that the unfairness in
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a heterogeneous wireless network is due to the protocol implementation on

different cards rather than environmental factors.

3.3.1 Types of Misbehavior

Although the focus of this work is on cheating via contention parameters,

there are various other kinds of attacks on IEEE 802.11 that are worthy of

consideration. In this section we go through some of these attacks and the

literature around them. Some of these attacks aim to degrade the performance

of the whole network without any gain for the misbehaving station, while

others seek benefit at the cost of the performance of others. The focus of this

thesis is on the latter, while also ignoring security and privacy attacks, which

are themselves subjects of broad research, which is not directly relevant to

this work.

3.3.1.1 Cheating on Contention Parameters

These series of attacks are very popular among researchers. The main reason is

that they are easiest to implement, and often most effective. In these attacks,

the associated station refuses to use the EDCA parameter settings broadcast

through the beacon frame (or the standard contention parameters for older

versions of the IEEE 802.11). Hoang et al. propose a model to estimate

the impact of this kind of misbehavior [73]. Many misbehavior detection

algorithms focus on these attacks (e.g. [64] [6][74]). We will discuss them in

further detail later. Possible attacks of this nature include: choosing a smaller

CWmin, choosing CWmax = CWmin, using a large TXOP time, and using a

small AIFS value, which can be equal to the previous attack if chosen small

enough. Example attacks presented in Chapter 5 are of this type.

3.3.1.2 Carrier Sensing Attack

Carrier sensing is a foundation of IEEE 802.11. Stations need to sense a

clear channel before they can begin to transmit. In reality, there is always

something on the channel, including noise, and clear channel is a relative

definition. Stations in an IEEE 802.11 network use a clear channel assessment

(CCA) threshold for received signal power below which they consider the

channel idle. A misbehaving station can increase its CCA threshold and thus
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get an advantage over other stations [75]. Pelechrinis et al. employ frequency

hopping to counteract this type of misbehavior [76].

3.3.1.3 Jamming Attacks

A malicious node can intentionally cause collisions either to degrade the net-

work’s performance or to gain advantage over other stations using so called

“selective jamming” [77] where the attacker targets specific frame types. Both

motives have been studied in the literature [78], and possible methods have

been devised to counteract jamming. For example, DeBruhl et al. [79] and

Konorski [80] use game theoretical methods to find optimal strategies of both

the jammer, and the victim (sender), for cases where the motive of the attack-

ers is to gain benefit. The focus of this work, is on the same motive.

An IEEE 802.11 sender needs an ACK to confirm successful reception of its

frame. An attacker can simply send signals to jam the receiver’s ACK mes-

sages, and thus degrade the performance of the sender by causing it to double

its contention window [81] [64]. A similar approach would be to jam CTS

frames after hearing RTS [64]. We can even extend this to jamming associ-

ation requests, which prevents any station from connecting to the AP, this

leaving the attacker alone in the channel.

3.3.1.4 Upper Layer Attacks

Some attacks in wireless networks target a layer higher than the one they

are performed. Jamming attacks, for instance, are performed in the physical

layer, but they use information from the MAC layer to jam the right signals.

This idea can be taken further, and to higher layers. For example, an at-

tacker can jam TCP ACKs and greatly affect the TCP’s congestion control

and thus the sender’s performance [64].1 An attack on the application layer

is also suggested in the aforementioned work by Raya et al.. Video streaming

software uses adaptive compression/encoding to conform to different band-

widths. If an attacker causes a compression fallback, it can benefit from the

extra bandwidth.
1For this attack to be effective, all MAC-level retries of a TCP ACK must be jammed,

which could be expensive for the attacker in terms of power consumption.
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3.3.1.5 Packet Forging Attacks

Previously we described the jamming of TCP ACKs. An attacker can be

smart, and rather than jamming, it can forge legitimate-looking packets and

gain benefit. A similar attack would be to forge TCP ACKs when the packet

has not been received correctly [82]. These false ACKs have a negative impact

on network’s operation, and are hard to detect.

This kind of attack can also target the MAC layer. For example, flooding

RTS/CTS handshakes on the channel causes other stations to wait longer

than they should, which gives the attacker more chances to access the channel

[82]. In the same work, Rachedi et al. also introduce another variation of

these attacks, which is sending forged beacons. The idea is to send beacons

with the wrong TSF time in an Ad-Hoc network to desynchronize stations.

3.3.1.6 Denial of Service (DoS)

Denial of service attacks are a common threat in computer networking, and

go way beyond IEEE 802.11. The victim of DoS attacks are usually servers

with multiple clients, and the goal of the attacker is to reduce service quality

by keeping the server busy. Different kinds of DoS attacks include bandwidth

depletion attacks [83][84][85] which flood the server with control, data pack-

ets, or requests, and resource depletion attacks which misuse protocol-related

packets to confuse communication parties [86]. Different methods have been

proposed to counteract DoS attacks, including swarm networks [87], TCP

probing [88], and probabilistic approach [89], which are all described and eval-

uated by Robinson et al. [90].

A form of DoS attacks in IEEE 802.11 is achieved by modifying the duration

field (see 2.7.2) of a sent packet to a large value. This causes other stations

to wait for the whole period, which gives the attacker more time to transmit

[91]. Partial deafness [92] is another form of DoS attacks, which is designed

to degrade the network performance in Ad-Hoc networks. In this attack, the

attacker refuses to send ACKs for received packets for enough times to cause a

rate fallback. Then, combined with the performance anomaly of IEEE 802.11b

networks [21], the network throughput is degraded. This of course depends

on the rate control algorithm used.
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3.3.2 Protection Provided by the Standard

IEEE 802.11 provides an encryption mechanism called Wi-Fi Protected Access

version 2 (WPA2) which, beside protection against eavesdropping, can disable

some of the attacker types we mentioned before. Packet forging and jamming

attacks, especially those targeting higher layers, depend on the ability to read

and analyze packet contents. With such encryption in place, those attackers

will not be able to operate, or their efficacy will be impaired. However, attacks

on the MAC and physical layers, such as contention parameter tweaking and

carrier sensing attacks will still be effective, and that is one reason they are

the most popular among research community.

3.3.3 Misbehavior Detection

In order to prevent or take action against node misbehavior, we first need to be

able to identify misbeaving nodes. Although protocols are flexible, they have

set rules for how the medium can be accessed (e.g. [12]). So, theoretically

we can have an estimate of how each station should perform given specific

set of QoS-related and channel parameters. The literature is no stranger to

misbehavior detection. Many of the papers described in the previous section

propose methods to detect the specific kinds of misbehavior they cover. In

this section the focus will be on the most prominent and easy-to-implement

form of misbehavior, which is the modification of contention parameters and

backoff behavior.

Many of the proposed schemes [93, 94, 95, 96] use statistical methods to iden-

tify misbehaving stations, and mainly focus on back-off distribution as the

only random component of CSMA/CA. Szott et al. for instance [96] use a

chi-square test on backoff values to detect non-compliant behavior. In [97] the

receiver dictates backoff value to the sender, and then counts backoff values

and compares them with the expected value with a threshold. The reason for

the threshold is that channel conditions have an effect on the performance of

each station, and a fixed value cannot be assumed. They also propose some

modifications to the IEEE 802.11 protocol which allows a form of message

passing between stations to facilitate detection. This could be a downside,

because in a real network, modifying all stations is not usually desirable or

possible.
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There are two main issues with the latter approach; (i) it requires modifica-

tions to the standard, namely changing from a decentralized binary exponen-

tial backoff (BEB) to a dictated backoff mechanism. (ii) there are edge-cases,

such as hidden terminals, which cause misdiagnosis. They propose to address

the latter using RTS/CTS: the receiver only considers a slot to be busy when

it has overheard an RTS/CTS frame. While this eliminates the original prob-

lem, it adds another, which is the possibility for senders to pose as hidden

terminals and gain advantage.

DOMINO [64] and the method proposed by Serrano et al. [98] on the other

hand do not involve a distributed implementation. They reside in or near the

access point and run statistical tests to measure the amount of deviation of sta-

tions’ behavior from the standard. DOMINO’s target statistics include AIFS,

backoff time, NAV, and retransmissions. The advantage of this algorithm is

the great insight it has over the stations’ behavior. However, DOMINO does

have some blind spots. An example of such a blind spot is again the existence

of hidden terminals, which causes false positives for misbehavior. Although

they propose a method to alleviate this problem, some extent of the effect is

inevitable given the statistics they use.

Radosavac et al. [99] use a sequential probability ratio test (SPRT) [100] to sta-

tistically detect cheating on backoff behavior. They recognize their weakness

in the case when the sender and the receiver collude to gain benefit. Another

example of methods of this sort is the one proposed by Toledo et al. [101],

which uses statistical analysis of idle slots to identify non-compliant station.

All said methods (including DOMINO) use an “observer” station to measure

packet interarrivals. For this reason, they suffer from the effects of interference

and poor channel conditions, as they need to gather as much information as

they can, and this gets harder as channel conditions degrade. The method

introduced by Yanxia et al. [102] can be implemented so as to avoid this

problem for AP-based networks.

Dangerfield et al.’s policing algorithm [6] also uses statistics for misbehavior

detection, but the only metric it uses is throughput. While throughput equal-

ity is one type of fairness, it is not well suited for detecting misbehavior, as

different stations may have different throughput values depending on packet

size, traffic access categories, etc. In this work we extend this algorithm to use
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attempt rate, which is more closely related to the station’s behavior. Regard-

less of the statistic used, the simplistic approach of the algorithm makes it

agnostic to the type of misbehavior, and robust to the effect of hidden nodes,

and channel conditions. The reason is that it only focuses on the final and

concrete information available on the access point rather than possibly lossy

information gathered through observing the channel. However, the same sim-

plistic approach opens the algorithm to cases such as the existence of QoS,

where detection can be impacted by the indeterministic mix of contention

parameters.

Cardenas et al. introduce a method [103] to ensure backoff randomness in ad

hoc networks, and detect those deviating from it. The benefit here is that

channel conditions don’t affect the detection mechanism. However, like some

of the methods mentioned above, it needs message passing between stations.

Another shortcoming of their method compared to methods such as DOMINO

is that it requires at least one honest party in every transmission pair (either

the sender or the receiver) while DOMINO does not need that, as the observer

does not participate in the network. Another method is proposed by Djahel

et al. [104] for MANETs, which solves this problem of colluding stations

by having each station monitor all transmissions in its vicinity in case of a

degradation in its own throughput.

3.3.4 Traffic Shaping

Traffic shaping is the practice of regulating network data transfer to assure a

certain level of performance [105] or quality of service (QoS) [106]. This can

be through delaying packets or even dropping them as described in Chapter 5.

Works on this subject often attack the problem of increased residential user-

to-user traffic [107] [108], and they commonly use traffic shaping against bulk

flows such as peer-to-peer file-sharing networks [106].

Traffic shaping has also received attention in regard to IEEE 802.11. Vollero et

al. [109] use frame dropping to manage traffic to ensure quality of service for

multimedia communications. The same principle in different works [110, 111]

to mitigate the effect of the performance anomaly of IEEE 802.11b networks

[21]. This technique is also one of the building blocks of the policing algorithm

[6] introduced, where it is used as a countermeasure against stations that do
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not comply with the IEEE 802.11 standard. Frames from greedy nodes are

dropped just enough to reduce its throughput to that of a compliant station.

3.4 Policing

While much work has been done on misbehavior detection in IEEE 802.11,

only a limited number of proposals address counteracting greedy actions, and

these suffer from significant practical drawbacks. For instance, [103] requires a

reputation management system to prevent MAC layer misbehavior. Shi et al.

introduce a modified version of the DCF where the back-off value is dictated

by the receiver [112], but it does not go any further than this “prevention”

scheme that in fact cannot be enforced in practice. Kyasanur et al.’s method

goes a step further [97] with a penalty system, but a cross-layer interaction is

assumed in it to enable higher layers to restrict the traffic that non-compliant

clients generate. The penalty system involves assigning larger backoff values

to the receiver. Obviously this does not necessarily lead to compliance, but

can serve as a warning to the non-compliant station, and if it continues its

non-compliant behavior, the receiver may stop responding to its RTS frames.

We previously mentioned Djahel et al.’s method [104] as a detection algorithm

in MANETs. They also propose a countermeasure. Once a non-compliant sta-

tion is detected in a network, a special warning message is broadcast by the

receiver which, beside warning the non-compliant station, notifies all neigh-

bors to monitor its behavior. If the misbehavior persists beyond that, all

neighbors begin punishing the station by not responding to its RTS messages,

and refusing to relay any control message sent by the misbehaving node.

Both of the above methods employ a penalty system in which non-compliant

stations are removed from the network completely. This form of black-and-

white punishment suffers from a major drawback: false alarms can have a

severe effect on network performance. In the latter method they try to allevi-

ate this by introducing an accuracy factor, which is an small arbitrary value

removed from the interarrival time.

Giri et al. use a collective approach to disincentivize non-compliance [62].

In their scheme, all compliant stations estimate the level of misbehavior of

the selfish node, and try to replicate that misbehavior as a reaction response.

This method effectively disarms misbehaving nodes. However, aggressive non-

37



3.5. Experimental Evaluation

compliance could choke the network should all stations employ it. PAS [74]

takes a similar approach. However, they prove their algorithm is stable (by

conducting a Lyapunov stability analysis) and does not suffer the instability

caused by constantly increased punishments.

The policing algorithm [6] uses a different method against non-compliance. In

their method, it is assumed that we know the throughput of a compliant sta-

tion at all times. Using that value, they calculate the level of misbehavior of all

nodes, and employ a penalty system in which the punishment is proportional

to the severity of misbehavior. The penalty is inflicted by not acknowledging

received frames with a probability proportional to the aggressiveness of the

selfish node. An obvious shortcoming in their method is that we usually don’t

know the compliant throughput, as it depends highly on channel conditions.

The other drawback is that it depends on ACKs, and with new IEEE 802.11

features such as No ACK, this method could be less effective.

The work in this thesis refines the scheme from [6], looking at implementation

challenges, adapting the scheme to be resistant to a wider range of misbehav-

iors, and showing how to estimate compliant throughput.

3.5 Experimental Evaluation

Experimental evaluation of wireless networks has become an essential part of

wireless research. The main reason is that, while mathematical models that are

based on standards [1, 113, 114] provide excellent tools to predict the behavior

of a network, they do not fully represent real networks. The reason is that there

are many factors that alter the expected behavior of a network, many of which

are often ignored or are just too complex to incorporate in a model. The more

obvious examples are issues like neighboring wireless networks that interfere

with each other, and reflection of electromagnetic waves from nearby walls.

Although some models such as [2] try to incorporate some characteristics of

real networks, but many factors are inevitably missing even from these models.

The concept of implementing ideas on radio hardware is not new. Software-

defined radio (SDR) has been used to implement many theoretical ideas and

processes in recent years (e.g. [16]). SDR is a radio communication system

where components that have been typically implemented in hardware are in-

stead implemented by means of software, which means total customizability
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of the radio system. The problem with SDR devices, however, is that those

with operating frequency ranges covering Wi-Fi frequencies are often very ex-

pensive. The use of commercial off-the-shelf wireless adapters in experimental

research is relatively newer, but it is getting more and more popular. This

is partly due to widely-available open-source device software [115]. Examples

of existing work include the work by Cardenas et al. [93], where they eval-

uate previously proposed schemes including DOMINO [64] and SPRT-based

schemes [103] by using experimental results from off-the-shelf devices to con-

firm the correctness of their theoretical analysis. There is a wide range of

other experimental work, from rate adaptation schemes [3, 4], to the paper by

Raman et al. [116] where they introduce and experimentally evaluate a new

MAC protocol suitable for long-distance multi-hop links. Another example

is the method proposed by Palletta et al. [117] to measure the saturation

throughput of commercial IEEE 802.11 access points. They then use it on

common devices such as the Ericsson A11d and Cisco Air 1200.

The flexibility of programmable Wi-Fi hardware has furthered their applica-

tions to those beyond IEEE 802.11. There are works that have taken advan-

tage of the carrier sensing in those devices for applications such as cognitive

radio [118] or detecting non-Wi-Fi sources of interference [119].

Although real implementation of algorithms is rewarding in terms of proof of

concept, it is not completely straightforward. It is widely understood in the

research community that debugging an implementation can take many hours.

Most of the available tools and approaches e.g. [120, 121] focus on protocol

level monitoring, and less on other interactions. At the end of this thesis we

show a tool for testing and debugging IEEE 802.11 hardware (Appendix A)

developed and used during this research, which shows an ongoing divergence

between the IEEE 802.11 standard and operational hardware. Read said ap-

pendix for further details.

3.6 Discussion and Conclusion

This work is built upon the policing algorithm introduced by Dangerfield et

al. [6], which is a misbehavior detection and penalty scheme. Many detection

algorithms have been introduced in the literature. There are three reasons

for this choice to build on in the present thesis. First, this method does not
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modify the protocol and does not need any modification for stations, or any

message-passing. Second, it focuses on the detection of the performance of the

non-compliant station, rather than detecting the type of misbehavior, which

makes it flexible towards different types of misbehavior. Third, it introduces

a penalty system which is proportional the the greediness of misbehaving

stations.

The policing algorithm assumes we know the compliant throughput at all

times, which is not the case. In this thesis we introduce a method to estimate

the compliant throughput in any given channel condition. We also refine the

algorithm and explains its possible problems and shortcomings.

The other contribution of this work is experimental evaluation of the policing

algorithm. The implementation of methods and algorithms on real hardware

has recently received much attention. By implementing the policing algorithm

on commercial hardware we can show that it works in practice, and we can

observe how real channel conditions affect its performance.
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CHAPTER 4
Broadcom Chipset

Programming

In this chapter we discuss how the Broadcom BCM43xx wireless adapters work and

how we implement and evaluate algorithms on them. We also give a brief description

of the architecture.

4.1 Introduction

The use of commodity hardware to implement custom behaviors on IEEE 802.11

has recently attracted much interest. Work in this area falls into three main

categories.

The first category of work focuses on the study of the behavior of the wireless

adapters themselves through experimentation. These works do not modify the

behavior of wireless cards and minor modifications are made only if needed

to extract results. Examples include [72], [122] and [123]. For instance in [72]

they study the back-off behavior of common off-the-shelf wireless cards and

investigate the differences in their compliance with the standard.

Works in the second category evaluate their proposed models and algorithms

by implementing them on wireless adapters. Examples are [93], [4], [3], and
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[116]. In [3] and [4] they introduce new rate adaptation1 algorithms and back

their proposals up with experimental results; and in [116] they introduce and

experimentally evaluate a new MAC protocol suitable for long-distance multi-

hop links.

The third category of work implements new mechanisms and alternative func-

tionality on wireless adapters. Examples are [118] where they implement a

spectrum “sensor” on Atheros cards, and works from the European project

FLAVIA [124], [125, 126] where they propose a visually reprogrammable wire-

less adapter design and implement it on Broadcom BCM43xx chipsets.

Experimental validation is important because many models and algorithms

are designed to improve the current IEEE 802.11 networks, and experimental

validation would be a strong indication that they are useful. Different wireless

adapters have been used for this purpose in the literature. Examples are

Broadcom BCM43xx adapters, used in [125] and [126], Atheros chipsets, used

in [4], [3] and [118], and Digital RoamAbout adapters, used in [123].

Software-defined radio (SDR) has also become popular recently (see also Sec-

tion 3.5). SDR is a radio communication system where components that have

been typically implemented in hardware (e.g. filters, modulators/demodu-

lators, detectors, etc.) are instead implemented by means of software on a

personal computer or embedded system. Works like [127] use SDR as their ex-

perimental tool. However, using off-the-shelf devices is still relatively cheaper

and the results reflect an everyday network rather than perfectly crafted wire-

less components.

The availability of open-source wireless drivers is a great asset for our work.

Hardware manufacturers have always been reluctant to distribute the source-

code for the drivers of their products. This was mainly due to intellectual

property protection, and to protect their hardware from misuse. However,

with the growth of open-source software and new attention for drivers, some

manufacturers began to release open-source drivers. As far as wireless adapters

are concerned, Qualcomm Atheros chipsets and Broadcom wireless adapters

are common examples.
1Rate adaptation involves changing a station’s physical transmission rate adaptively in

varying conditions to achieve high throughput.
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The original open-source Atheros driver, namely MadWifi [66], consists of an

open-source driver on top of a proprietary Hardware Abstraction Layer (HAL).

The latter is responsible for direct communication with the hardware. Using

the MadWifi driver you can modify queuing parameters of IEEE 802.11e with

simple shell commands on-the-fly, and you can change other aspects of the

IEEE 802.11 behavior by modifying the driver itself. MadWifi was succeeded

by ath5k which combined MadWifi and HAL to make a Free and Open-Source

Software (FOSS) driver for Linux. The release of the source code for HAL in

2008 was a driver for the development of ath5k. Qualcomm Atheros later

released ath9k, a fully open-source driver for their new IEEE 802.11n chips.2

Despite all the flexibility open-source drivers provide, these drivers lack the

low-level control that we need on the protocol. While MadWifi and ath9k

provide a reasonable control on the protocol stack, when it comes to the

hardware part, there is still little control. For example, the binary exponential

backoff procedure is hardwired and although some parameters can be modified,

the procedure itself cannot be altered. We use Broadcom BCM4318 wireless

adapters for our experiments. The choice of Broadcom over Atheros cards is

due to the higher flexibility and control. Similar to Atheros cards, there is

an open-source driver, called the b43 driver, available for Broadcom cards.

However, unlike Atheros, there is also an open-source firmware available. A

programmable firmware means control at the lowest level of the protocol. This

enables us to access features like carrier sensing, ACK generation, backoff

behavior, etc. The firmware we are using is a reverse-engineered firmware

called OpenFWWF [67] which is developed as a part of FLAVIA [124], and

used in their works.

In this chapter we will discuss the wireless card programming for Broadcom

BCM43xx chipsets. We explain how different software and hardware compo-

nents work together, and give an idea of how implementations are done by

altering the behavior of these components. The descriptions in this chapter

are based on the 4.xx series of the BCM43xx chipset by Broadcom.

2There is also a more recent driver named ath10k for Qualcomm Atheros QCA988x
family of chips, which support IEEE 802.11ac.
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4.2 Broadcom BCM4318 Chipset Basics

4.2.1 Processing

At the very bottom of the BCM43xx architecture is the “Backplane”. The role

of the Backplane is to interconnect between different cores available on the

chipset. It functions as a switch that can choose the active “core” to enable

or disable functionality. This is known as “switching to the core”. Each core

can be viewed as a light-weight CPU that handles a very specific task. When

a core is switched to, it can access its parameters (registers) as well as the

common registers on the Backplane.

Figure 4.1: The structure of the Backplane

On top of the Backplane, there are several cores, depending on the specific

card. This can be schematically drawn as Figure 4.1. As depicted in the figure,

each core has its own set of specific registers, depending on its functionality.

The number and nature of the cores on the chipset depends on the core revision

and the type of hardware. Two important examples of cores are “802.11” and

“NAND Flash”. In this chapter we are particularly interested in the former.

4.2.2 IEEE 802.11 Functionality

The IEEE 802.11 functionality of the device consists of the following compo-

nents.

802.11 Core is the main core on the BCM43xx chipset and is at the heart of

IEEE 802.11 functionality: it is where the firmware microcode is actu-

ally executed. We can break the features of this core into the following
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components: 802.11 MAC, 802.11 PHY, and 802.11 Radio. These com-

ponents consist of registers specific to their respective tasks. These reg-

isters make up the register set of the 802.11 core, along with additional

control registers. The purpose of the control registers is mainly to avoid

concurrent access to shared resources that may cause malfunction.

In modern processing units, calling external functionalities such as ra-

dio transmission is done through interrupts. In 802.11 core, these calls

are handled through registers. For instance, suspending the MAC 3 is

performed by writing a specific value in the “MAC Enabled” register.

To track the status of a previously accessed external function, there are

additional registers called “Interrupt Status” registers. There are two

such registers; one is called the “MAC Interrupt Status” and holds in-

formation about MAC function calls; the other one is called “DMA/PIO

Interrupt Status”. Reading and writing packet information is performed

using DMA to the memory of the host machine, and this can and should

be done in parallel with the normal MAC behavior because of its time-

consuming nature. The DMA/PIO status register provides the firmware

with the means to know whether the required information is ready or

whether the received packets are sent to the host.

Template RAM or FIFO RAM is 32KB in size and it can be accessed by the

802.11 core from the firmware code. For each transmission, the frame

is first written to Template RAM, and then the chip is instructed to

transmit the required portion of the data through control registers. As

stated in [128], Template RAM space is structured as shown in Table 4.1.

Address ranges are shown in hexadecimal format.

Writing to Template RAM is another example of the poll-based interrupt

handling in 802.11 core. To write to Template RAM, we first choose the

target offset using the “TX Template Pointer” register. Then we specify

the start and end of the source data (i.e. data that is going to be copied

to the target location) through the two designated “TX Template Data”

registers, which initiates the copy process. At this stage we keep checking

for the bit 1 of the pointer register to be cleared, which indicates that

the data is copied.
3Suspending MAC is temporarily disabling MAC functionalities of the card with the

intent of removing the device or for power saving purposes.
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Range Usage
0000 - 05FF Template for ACK (0000), beacons and probe response (0068, 0268, 0468)
0600 - 0EFF TX FIFO number 0, size is 0x0900
0F00 - 1BFF TX FIFO number 1, size is 0x0D00
1C00 - 25FF TX FIFO number 2, size is 0x0A00
2600 - 2DFF TX FIFO number 3, size is 0x0800
2E00 - 3AFF TX FIFO number 4, size is 0x0D00
3B00 - 3BFF TX FIFO number 5, size is 0x0100
3C00 - 43FF unknown but modifiable
4400 - 7FFF unknown but fixed, not modifiable

Table 4.1: The memory structure of Template RAM

Object Memory is a virtual address space used to access different kinds

of information on the chip. It is accessed by selecting an object type,

and a 16-bit address space. Object types include Microcode Memory,

Microcode registers, Internal Hardware Registers and Shared Memory.

The latter is what we use for bookkeeping and communication with the

host when implementing algorithms. It is a piece of memory that is

mapped to a portion of the host RAM that is assigned to the firmware

when we load the driver. It is 4 KB in size and our observations show

that a large portion of it is unused by the normal MAC behavior. We

will go back to shared memory later on in this chapter.

Firmware is the microcode run on the core, and what we use to implement

our algorithms. We introduce it as a main component of the MAC func-

tionality because it defines what the adapter does and how it behaves.

It can be easily written onto the NAND Flash when we load the driver.

4.3 Related Work

The Broadcom platform has previously been used by [125] [126] as part of

FLAVIA [124]. In these publications, a new mechanism is introduced for

wireless cards using which one can visually change the MAC behavior and

modify the state machine to run their designed algorithms. In [125] they

have implemented schemes such as Piggybacked ACKs, Pseudo TDMA, and

Multi-channel access using their framework.
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4.4 Programming for Broadcom IEEE 802.11

Adapters

Broadcom BCM43xx programming has two major components: the driver,

which is executed by the host CPU. It is characterized by fast processing,

large amount of available memory, and communication capabilities with the

card; and the firmware, which is executed on the 802.11 core in the chipset.

It is characterized by low latency, low-level control, and high processing time.

A typical 802.11 core on the Broadcom bcm4318 has a 8MHz clock. This is

definitely slower than the host machine’s CPU, which is typically faster than

1GHz. Most of the applications need modification on both the firmware and

the driver as we will discuss later.

4.4.1 Firmware Programming

The firmware is a piece of code written on the card’s NAND Flash and exe-

cuted by the 802.11 core. This code is responsible for the MAC/PHY/Radio

functionality of the card and is what defines how the card works. It can be

overwritten by software on the host machine. Firmware modification is nec-

essary whenever we need low-level control over the MAC behavior, and when-

ever changing functionality requires communication with the card through the

shared memory, which can be slow. More detail about this will be provided

when when we describe implementations in later chapters.

To program for Broadcom chipsets we need a set of tools called b43-tools,

which are available from the project’s git-hub4. A list of these tools and their

functions is shown in Table 4.2. Our main focus is on b43-asm to assemble

the firmware and b43-fwdump for debugging.

In order to modify the firmware, we should extract the microcode, disassemble

it, find the piece of code responsible for our specific task, and then modify as

we want it to work. This can be a difficult task. Extracted firmware is a

series of instructions, and finding relations and figuring out the information

flow in the code is time-consuming. Fortunately this has been done before. As

mentioned before, we use the open-source firmware OpenFWWF as a basis for

our firmware modifications. It is a firmware assembly code where information

flow has been reverse engineered and the code is “beautified” (see Table 4.2
4https://github.com/mbuesch/b43-tools
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Tool Usage
b43-fwdump Dumping shared memory, register values, and firmware microcode (see Sec-

tion 4.4.1.1)
b43-beautifier Replacing constant expressions in raw disassembled firmware code with human-

readable names
b43-asm Creating binary firmware from human-readable assembly code
b43-dasm Disassemble extracted firmware microcode into human-readable assembly code
b43-fwcutter Extracting firmware from binary Broadcom 43xx driver files
ssb_sprom Convenient modification of the Broadcom Sonics Silicon Backplane SPROM

Table 4.2: Tools for b43 firmware development and debugging

for some details) and documented in the project home page [67]. It is worth

noting that OpenFWWF is NOT the original firmware included with the b43

driver and it has fewer capabilities. However, the version we use has all the

functionalities required for IEEE 802.11b.

The assembly of the firmware microcode is also documented on the sip-solutions

website [128] and thus all building blocks required are available to program for

Broadcom cards. Different revisions of the 802.11 core have slightly different

instruction sets. Table 4.3 is a list of instructions available in core revision

5 which is the core revision of the cards we use. The instruction set is quite

simple and lacks operations such as floating point operators and even multi-

plication (the latter is available in core revision 11). However, it provides the

essentials for implementing IEEE 802.11 on the card.

As an example of the assembly code, what follows is a piece of code used in

device initialization to erase the shared memory. The code is extracted from

OpenFWWF and some descriptive comments are added. The first line puts

the address of the last word of the shared memory in an offset (base) register5.

It is then followed by an inverse loop that clears the words one by one. This

code snippet is just to have an idea of how we program for Broadcom chipsets.

mov SHM_LAST_WORD, SPR_BASE5 // index = MEMORY_END

erase_shm: // Loop entry

orx 7, 8, 0x000, 0x000, [0x00,off5] // Set the word to zero

sub SPR_BASE5, 0x001, SPR_BASE5 // index = index - 1

jges SPR_BASE5, 0x000, erase_shm // While index > 0

5Offset registers are used for relative addressing of the shared memory, and as an alter-
native to using constant hard-coded addresses.
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Mnemonic Operands Description Operation
Arithmetic and logic instructions

add A,B,rD Add rD = A + B
add. A,B,rD Add, set Carry rD = A + B Save Carry
addc A,B,rD Add with Carry rD = A + B + Carry
addc. A,B,rD Add with Carry, set Carry rD = A + B + C Save Carry
sub A,B,rD Subtract rD = A−B
sub. A,B,rD Sub, set Carry rD = A−B Save Carry
subc A,B,rD Sub with Carry rD = A−B − Carry
subc. A,B,rD Sub with Carry, set Carry rD = A−B − C Save Carry

Branch instructions
jand A,B,l Jump if binary AND if(A&B)PC = l
jnand A,B,l Jump if not binary AND if(!(A&B))PC = l
js A,B,l Jump if all bits set if((A&B) = A)PC = l
jns A,B,l Jump if not all bits set if((A&B) 6= A)PC = l
je A,B,l Jump if equal if(A = B)PC = l
jne A,B,l Jump if not equal if(A 6= B)PC = l
jls A,B,l Jump if less (signed) if(A < B)PC = l
jges A,B,l Jump if greater or equal (sign.) if(A ≥ B)PC = l
jgs A,B,l Jump if greater (signed) if(A > B)PC = l
jles A,B,l Jump if less or equal (signed) if(A ≤ B)PC = l
jl A,B,l Jump if less if(A < B)PC = l
jge A,B,l Jump if greater or equal if(A ≥ B)PC = l
jg A,B,l Jump if greater if(A > B)PC = l
jle A,B,l Jump if less or equal if(A ≤ B)PC = l
jdn A,B,l Jump if diff is < 0, no carry if(nc(A−B) < 0)PC = l
jdpz A,B,l Jump if diff is ≥ 0, no carry if(nc(A−B) ≥ 0)PC = l
jdp A,B,l Jump if diff is > 0, no carry if(nc(A−B) > 0)PC = l
jdnz A,B,l Jump if diff is ≤ 0, no carry if(nc(A−B) ≤ 0)PC = l
call lrX,l Store PC, call function lrX = PC; PC = l
calls l Store PC, call function PC− > stack; PC = l
ret lrX,lrY Store PC, ret from func lrX = PC; PC = lrY
rets ret from function stack− > PC
jzx M,S,A,B,l Jump if zero after shift + mask
jnzx M,S,A,B,l Jump if nonzero after shift+msk
jext E,A,B,l Jump if External Condition true if(E)PC = l
jnext E,A,B,l Jump if External Condition false if(!E)PC = l

Bitwise instructions
sra A,B,rD Arithmetic rightshift rD = A >> B fillup sign
or A,B,rD Bitwise OR rD = A|B
and A,B,rD Bitwise AND rD = A&B
xor A,B,rD Bitwise XOR rD = AB

sr A,B,rD Rightshift rD = A >> B
sl A,B,rD Leftshift rD = A << B
srx M,S,A,B,rD Shift right over two registers
rl A,B,rD Rotate left rD = lrot(A, Bbits)
rr A,B,rD Rotate right rD = rrot(A, Bbits)
nand A,B,rD Clear bits (notmask+and) rD = A&( B)
orx M,S,A,B,rD OR with shift and select

Other instructions
nap none Sleep until event

Table 4.3: The instruction set of 802.11 core revision 5
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Something worth noting in the previous code snippet is the use of a compli-

cated instruction like orx 6 for setting a memory word to zero. One can argue

that this can also be carried out using a simple mov instruction, but sometimes

instructions like this are used in the firmware not only to perform the desired

task, but also to control the flow of the core (clearing the pipeline, etc.). In

cases like this, using the trivial approach might lead to unexpected behavior

that has roots in the architecture of the device.

When modifications are made, we take the steps below to install the new

firmware. If you are using OpenFWWF, you can simply execute make &&

make install in the source directory instead of steps 2 and 3, as these proce-

dures are incorporated in the Makefile that is included with the OpenFWWF

source.

1. Disable the driver by executing: modprobe -r b43.

2. “Compile” the firmware assembly using b43-asm.

3. Copy the assembled firmware files to the firmware directory in Linux

(typically /lib/firmware).

4. Enable the driver again, leaving QoS disabled (as it is not supported by

OpenFWWF) by executing: modprobe b43 qos=0.

4.4.1.1 Debugging Firmware Code

Testing and debugging are essential parts of software development in gen-

eral, and they are even more crucial when it comes to firmware programming.

Modifications we make to the firmware code might cause malfunction or even

kernel panics if we affect the integrity of the communicated content between

the firmware and the driver. However, debugging firmware code is more com-

plicated than debugging a piece of software on a PC.

Using modern debuggers, one can halt a running program at any point in

code, and observe the values of different symbols and variables. This helps

programmers find bugs in their code. They can also choose to execute their
6The orx instruction takes four arguments. The first two arguments define two adjacent

bit ranges on the word and the bits in each of the two ranges are then ANDed with the
corresponding bits of the following two arguments respectively.
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code line by line to see where an exception occurs or an unexpected behavior

initiates.

Unfortunately, these sophisticated features cannot be implemented for code

running on a chipset like BCM4318. The most important reasons for this

are: (i) firmware code runs on a single-threaded machine with memory and

processing power limitations; (ii) there is no external control on the flow of

the program, and even if this was somehow implemented into the firmware

itself, the resulting firmware code would be too large for the allocated space;

and (iii) there is no hardware support and capacity for running instructions

remotely. If there was such possibility, all firmware code could be handled by

a debugging program running on the host machine, and instructions could be

handed in to the 802.11 core one by one.

Although we cannot implement a sophisticated debugger for BCM43xx-based

chipsets, debugging them is not completely impossible. There is a very useful

tool in b43-tools, namely b43-fwdump, that facilitates debugging to some

extent. The tool can be used to dump shared memory, register values, and

even firmware assembly. In order to use this tool, a kernel module called

DebugFS must be installed, and the corresponding virtual file system must be

mounted. What exactly this module does is out of the scope of this chapter.

We will discuss DebugFS in more detail in Chapter A.

If b43-fwdump is executed without any arguments, it simply lists the values of

all general-purpose registers, offset registers, and the program counter (PC).

You still cannot pause the code at an arbitrary point, but you can practically

have the values of your variables at any time instant, as they are all stored in

general-purpose registers. Adding -s to the tool’s command line also prints

out the shared memory. Listing 4.1 is a partial example of b43-fwdump output.

Tracing registers and the shared memory can help us understand the firmware

operation. As we will discuss in coming chapters, a large portion of the 4 KB

shared memory is unused, which makes it convenient for storing traces, coun-

ters, or any other sort of information from within the firmware, which can

help us debug the code.
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Listing 4.1: Example b43-fwdump output. This is just the first page of the
trace. The complete output is lengthy as it prints out the whole shared mem-
ory. Each word in the architecture is 2 bytes long, which is why hexadecimal
representations of the data are grouped into 16-bit (4-digit hexadecimal) num-
bers in this output.

--- B43 microcode state dump ---

PC: 030 PSM -COND : 0000

Link registers :

lr0: 039F lr1: 03 EC lr2: 0059 lr3: 041D

Offset registers :

off0 : 041E off1 : 0504 off2 : 0370 off3 : 0391

off4 : 010E off5 : 011E off6 : F15F

General purpose registers :

r00: 000E r01: 0000 r02: 0000 r03: 000F

r04: 03 FF r05: 001F r06: 0007 r07: 0004

r08: FFFF r09: B382 r10: 0000 r11: 0001

r12: 0000 r13: 0000 r14: 0035 r15: 0000

r16: 001F r17: 4021 r18: 0035 r19: 0035

r20: 0105 r21: 0000 r22: 0000 r23: 0000

r24: 0000 r25: 0000 r26: 0000 r27: 0000

r28: 0000 r29: 00 A3 r30: 4789 r31: EB2C

r32: 0000 r33: 75 A0 r34: 0802 r35: 013F

r36: 9C6A r37: 0000 r38: 0008 r39: 0000

r40: 0000 r41: 0000 r42: 0000 r43: 0001

r44: 0001 r45: 0000 r46: 0000 r47: 0000

r48: 0000 r49: 0000 r50: 0000 r51: 0000

r52: 0000 r53: 0000 r54: 0000 r55: 0000

r56: 0000 r57: 0000 r58: 0000 r59: 0000

r60: 0000 r61: 0000 r62: 001F r63: 03 FF

Code :

<No binary supplied . See --binary option >

Shared memory :

0 x0000 : 9A01 7008 1A75 0A7C 0000 0000 C000 0A00 ..p..u .|........

0 x0010 : 1400 0000 8000 0900 4700 4700 8301 6400 ........ G.G...d.

0 x0020 : 3009 C0FC 0000 0000 0000 0000 0000 0103 0...............

0 x0030 : 0001 0000 0200 0200 0100 0400 1E00 0000 ................

0 x0040 : 0200 0000 0300 0200 0E00 4700 0028 0000 .......... G ..(..

0 x0050 : 0700 0200 C0FC 7E05 167F 7F7F 0A00 8300 ......~.........

0 x0060 : 0001 0000 0300 0000 0000 0000 0000 1200 ................

0 x0070 : 7F7F 7F7F 0100 0000 0000 0000 2C15 2258 ............ ,." X

0 x0080 : 0600 1027 0100 7391 1212 1010 5401 0702 ... ’..s ..... T...

0 x0090 : 0000 0000 6009 FA00 090D 0A08 0D01 0000 .... ‘...........

0 x00A0 : 0E00 0000 0000 3F01 FFFF 0000 0000 0000 ......?.........

0 x00B0 : 0000 0000 0000 0000 0000 0000 B403 B403 ................

0 x00C0 : 0000 0000 0000 0000 0000 0000 0000 0000 ................

0 x00D0 : 0000 0000 0000 0000 0000 0000 0000 0000 ................

0 x00E0 : 0000 0000 0000 0000 0000 0000 0000 0000 ................

0 x00F0 : 0000 0000 0000 0000 0000 0000 0000 0000 ................

0 x0100 : 0000 0000 26 F9 0000 0000 0000 9072 0000 ....&........ r..

0 x0110 : 7E08 0000 0000 0000 0000 0000 92 B0 33 F9 ~.............3.

0 x0120 : 0000 0000 0000 9B05 5300 0000 0000 0000 ........ S .......

0 x0130 : 0000 0000 2CEF 0000 0000 0000 0000 0000 .... ,...........

0 x0140 : 0000 0000 0000 0000 0000 0000 0000 0000 ................

0 x0150 : 0000 0000 0000 0000 0000 0000 0000 0000 ................

0 x0160 : 4252 434D 5F54 4553 545F 5353 4944 0000 BRCM_TEST_SSID ..
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4.4.2 Driver Programming

The driver is a piece of software that is installed as a module on the host ma-

chine. The role of a driver is to communicate with the wireless card and bring

information from the card to the host machine and vice versa. In a Wi-Fi

card, this information is basically sent and received frames. The communi-

cation takes place through the shared memory. The term is generically used

for any piece of memory that provides communication between applications.

When used in the context of device drivers, it is also called Memory-mapped

I/O (MMIO)7. Figure 4.2 illustrates shared memory mechanism. As depicted

in the figure, a piece of host memory is mapped to an internal memory on

the chipset designated for this purpose. MMIO is a channel for the host and

the device to communicate. Each time either of the two counterparts of the

shared memory is modified, the modification is also applied on the other side,

although this does NOT happen instantly. In fact, this communication can

often be lengthy and sometimes unreliable if communication time exceeds the

validity period of the communicated information. Hence we cannot solely rely

on the driver for our implementations, especially if we have actions that need

to be performed within microseconds, such as ACK generation.

Figure 4.2: An illustration of shared memory

We use a package called compat-wireless [129] for the driver part. It is a

collection of open-source driver modules that build the wireless sub-system for

Linux, and it includes the b43 driver. In order to modify a driver, it is worth-
7This term is also used for memory-mapped file I/O, which should not be confused with

what we are discussing here.
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Stub Broadcom Implementation Function
tx b43_op_tx Transmit a frame
conf_tx b43_op_conf_tx Set transmission parameters
add_interface b43_op_add_interface Add an interface
remove_interface b43_op_remove_interface Remove an interface
config b43_op_config Change bands, channels, power, etc
bss_info_changed b43_op_bss_info_changed Act upon BSS info. change
configure_filter b43_op_configure_filter Configure filtering capabilities
set_key b43_op_set_key Set encryption key
update_tkip_key b43_op_update_tkip_key Update TKIP key
get_stats b43_op_get_stats Retrieve operation statistics
get_tx_stats b43_op_get_tx_stats Retrieve TX queue statistics
get_tsf b43_op_get_tsf Retrieve TSF timer
set_tsf b43_op_set_tsf Update TSF timer
start b43_op_start Initiate the driver
stop b43_op_stop Stop the driver
set_tim b43_op_beacon_set_tim Set TIM for beacon frames
sta_notify b43_op_sta_notify Notify the AP of station updates
sw_scan_start b43_op_sw_scan_start_notifier Start notifier for scanning
sw_scan_complete b43_op_sw_scan_complete_notifier Complete notifier for scanning
rfkill_poll b43_rfkill_poll Poll rfkill hardware state

Table 4.4: Broadcom implementations of mac80211 sub-system functions.

while first having an idea how drivers work under Linux. Each IEEE 802.11

driver in Linux consists of an implementation of a set of operations. These

operations are defined in the mac80211 module which is a part of the wireless

sub-system and is also included in compat-wireless. Table 4.4 shows a list of

these functions. The b43 driver has additional internal functions apart from

those required by the mac80211 sub-system. One example of such functions is

do_periodic_work, which is triggered periodically. The calling interval can

be modified in the driver source code. As you will see in later chapters, we use

this function to export periodic reports and to perform periodic calculations

related to our algorithms. The driver also provides the means to read from

and write to the shared memory, which is very useful for us.

4.5 Implementing and Testing Algorithms

In this section we will describe the process by which an algorithm is imple-

mented for use on a testbed using Broadcom adapters. Since implementing

algorithms is difficult and time consuming, we make sure algorithms have been

validated through analysis and often simulations before moving to this stage.

The first step is to think which parts of the algorithm can be implemented

in the driver, and which parts in the firmware. The speed/capacity trade-off

should always be kept in mind when making this decision. A task involv-
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ing heavy calculations on large amounts of data is an example of what is best

assigned to the driver. The firmware runs on an 8 MHz core and some instruc-

tions can take up to 4µs to execute. This makes heavy workloads unsuitable

for the firmware. Other tasks that should be assigned to the driver are report

generation and information dump. The reason for this is simply because the

host machine has access to all the resources and output devices required to

print out information or consume reports.

Tasks such as carrier-sense-based decision-making, ACK-dropping, and device

fingerprinting are implemented in the firmware. The reason is that these tasks

require access to the lowest level of the architecture, or save communication

overhead if done in the firmware.

The next step is to design a communication mechanism. We mentioned earlier

that any communication should be through MMIO, and we also mentioned

that this communication can be slow, and unreliable in the sense that changes

may not be mapped immediately. Therefore, we should minimize this com-

munication and also plan it so that delays in MMIO communication do not

cause misbehavior. Thus, deciding how much information should be shared

between the driver and the firmware and how this information will be shared

and consumed by either side is an important design decision.

After choosing how to split the algorithm and designing a communication

framework, we move on to the implementation. We usually finalize the driver

first, since it takes much longer to compile and deploy. Adding some runtime

signals and parameters8 to the driver can make things much easier and elim-

inate the need to recompile when small changes are necessary. The firmware

side should then be developed in line with the implementation of the driver

part. In our experience, the driver might also require some changes at this

stage, but a careful design helps us avoid this as much as possible. Program-

ming the firmware is more difficult, but deploying changes usually takes a

matter of seconds. Thus, the firmware can be developed and tested continu-

ally with little overhead.

The final step is testing and reporting. In order to see whether what we see
8Signals are anything that can be monitored by the driver, such as creation of a new

file. Linux drivers also have a capability of handling start-up parameters. The modprobe

command can send parameters to drivers as they start up.
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from the wireless card is what we should see, we need some reports. Report

generation is usually programmed into the driver and is aided by some shell

scripts. Deciding what reports are required depends both on the purpose of

the implementation, and on implementation details. We need reports to infer

results as well as reports to check the sanity of the implementation. The reason

we implement reporting at the end is that implementing reporting alongside

algorithm implementation brings more complication to both sides, and may

cause implementation mistakes.

The execution of tests and the collection of experimental results is accom-

plished using scripts. These scripts vary between simple shell commands that

connect wireless nodes and send traffic between them, and more complex

scripts that analyze and digest the information reported by the driver.

4.6 Conclusions

Experimental validation of wireless algorithms and protocols is important be-

cause we can see how they work in real world scenarios. Open-source drivers

for IEEE 802.11 adapters are now widely available and enable us to manip-

ulate the behavior of Wi-Fi cards. Some researchers have been using them

alongside theoretical validation and simulations. Broadcom BCM43xx wire-

less adapters have the advantage of facilitating low-level manipulation of the

protocol stack. There is open-source firmware available for these chipsets and

this makes them an asset in experimental validation. We briefly reviewed the

architecture of the Broadcom chipset and the development process around it.

The implementation of a behavior on a card consists of making two main de-

cisions. One is how to break the implementation into tasks handled by the

firmware and the host machine (driver); the other is deciding how these two

parts communicate and how much memory should be allotted to this commu-

nication. For evaluation of algorithms, we also need a reporting mechanism

implemented in the driver.
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CHAPTER 5
Policing Algorithm

With the increasing availability of flexible wireless IEEE 802.11 devices, the po-

tential exists for users to selfishly manipulate their channel access parameters and

gain a performance advantage. Such practices can have a severe negative impact

on compliant stations. A policing algorithm has previously been introduced that

enables the access point to counteract these attacks in wireless networks, and drives

misbehaving users into compliant operation without requiring any cooperation from

clients. In this chapter we discuss this algorithm and propose amendments to it by

the present work, which are aimed to overcome its shortcomings.

5.1 Introduction

Computers equipped with Wi-Fi devices that follow the popular IEEE 802.11

specification [5] employ a decentralized Medium Access Control (MAC) pro-

tocol to coordinate their transmissions on the channel. By design, this mech-

anism ensures compliant users connecting to a wireless network receive equal

opportunities to access the medium and in this sense share resources in a

fair manner.1 Each client station, however, operates independently and thus

anyone could act more aggressively in order to gain performance benefits if

changes can be made to the protocol behavior. This already occurs in practice
1This means equal channel access in the original version of the IEEE 802.11 protocol.

For later versions that include QoS, however, this equality is limited to traffic belonging to
the same access category.
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when network interface cards are not designed correctly as reported in [72],

where they find that the behavior of the card may even change depending on

the number of contenders. More critically, it can happen when users selfishly

manipulate their channel access parameters to gain a performance advantage

(see e.g. [97]). This can cause significant unfairness, with the performance of

the users that abide by the standard severely degraded [64, 65]. Such MAC

misbehavior attacks are of increasing concern as open-source device drivers

(e.g. MadWifi [66], compat-wireless [129], etc.) are prevalent and allow users

to modify the protocol rules either from the command line or with basic pro-

gramming knowledge. Looking ahead, the trend is towards introducing even

further flexibility, e.g. versatile architectures that allow changing the MAC op-

eration of commodity hardware by reprogramming the protocol state machine

with the help of simple visual tools [126].

For said reasons, misbehavior detection has received much attention from

the research community (see e.g. [103, 97, 64, 101, 98, 96, 95]). Existing

work, however, largely focuses on how undesired behavior can be achieved

with current cards and on engineering solutions that assist the AP in identify-

ing disobedient users, as well as the nature of their misbehavior. As discussed

previously in Chapter 3, only a limited number of proposals address counter-

acting greedy actions, and these suffer from significant practical drawbacks.

Dangerfield et al. propose an effective policing scheme [6] for IEEE 802.11

WLANs that overcomes the above limitations, since it does not require any

modifications to the protocol stack of client stations. It is implemented com-

pletely in the access point. By design, a key benefit of their policing algo-

rithm is that it does not require any information about the number of nodes

or the nature of their misbehavior. Thus it is effective against a broad class

of misbehaviors. With their policing scheme, the AP controls the through-

put of misbehaving stations by acknowledging their frames with a probability

that depends on the deviation of the stations’ throughput from the compliant

value. Decreasing the probability of acknowledgement causes a client sta-

tion to backoff its contention window, thereby reducing their throughput and

restoring fairness provided by IEEE 802.11 protocol.

An important feature of this approach is that it only requires measuring the

throughput of each client station, which is straightforward as all traffic passes
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through the AP in the infrastructure operational mode, and does not require

identification of the specific type of attack being used (e.g. shorter backoff,

frame bursting, etc.).

There are, however, shortcomings to their approach. An important unsolved

problem in the original work is the computation of the compliant throughput.

This throughput highly depends on network characteristics (e.g. number of

stations and volume of transmissions) and channel conditions. This value is

assumed to be known in the original work, and in their simulations, they have

precalculated it for each point. One of the main contributions of this thesis

is the introduction of a method to calculate this value on-the-fly, given any

network condition. The main importance of this addition is that it makes the

algorithm practical, and paves the way for its implementation on real hard-

ware. Another shortcoming of the policing algorithm that is addressed in this

thesis is that the punishment inflicted on non-compliant stations degrades the

network throughput as a whole, as those stations keep retrying their trans-

mission. This issue is solved by equalizing transmission attempt rates instead

of throughputs.

The last problem in the policing algorithm is that it can be gamed by a

smart station that is aware of the algorithm. In collaboration with P. Patras

and D. J. Leith, we have modified the policing algorithm so it is immune to

gaming. This will also be discussed in this chapter, along with the rest of the

aforementioned amendments.

The solution proposed in this chapter leverages the algorithm designed in [6],

but differs in that (i) it aims to control the attempt rate instead of throughput,

thus seeking to equalize stations’ channel access opportunities by driving the

channel access probabilities of all clients to the same value, regardless of the

contention parameters they employ, we effectively preserve short-term fair-

ness; (ii) it carries forward penalties, thus also achieving long-term fairness

provided by the standard; and (iii) it guarantees that the mechanism can-

not be gamed by attackers that detect its operation. In addition to all these

changes, we then introduce the Virtual MAC, a novel technique for estimating

the transmission attempt rate of a compliant station, and provide sufficient

analysis to demonstrate its efficacy. This concept has been previously used

in other contexts, such as service differentiation [130]. But in this work we
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extend the idea to compliant attempt rate estimation.

5.2 Policing Algorithm

In this section we explain the class of attacks that the policing algorithm

tackles and detail the operation of the policing algorithm. We also point out

the amendments this work proposes to the algorithm. We consider WLANs

with a single-AP (or, alternatively a group of co-operating APs) operating

in infrastructure mode, i.e. all packets are transmitted through the AP, as

this is the default and most widespread operational mode of today’s Wi-Fi

deployments.

5.2.1 Class of Attacks

In Section 3.3.1 we discussed different types of attacks on IEEE 802.11. Our

focus here is on IEEE 802.11 MAC layer attacks. We do not consider lower

layer PHY attacks such as ACK jamming, or higher layer attacks, such as

TCP ACK manipulation or station association attacks. We also confine con-

sideration to attacks that seek to obtain performance benefits, rather than

simply to disrupt the network operation through e.g. signal jamming [131], or

exploiting security vulnerabilities [132].

Our interest in this class of greedy MAC attacks arises from the observation

that they can be especially easily realized with currently available open-source

drivers, which allow manipulation of the MAC layer parameters (CWmin,

CWmax, AIFS and TXOP [5]), sometimes simply by issuing a single com-

mand on the system console (see e.g. iwpriv for Atheros-based cards). Each

of the attacks considered in this chapter correspond to the modification of

one of the aforementioned MAC layer parameters. Thus, they constitute an

exhaustive collection of possible attacks in this class.

Note that, despite the possibility of broadcasting set EDCA configurations

by means of beacon frames from the AP, non-compliant clients are free to ig-

nore any of the contention parameter values assigned through this (advisory)

mechanism and the prevalence of such open drivers provides them sufficient

incentives to do so.2 We assume WLANs implement an authentication mech-
2Consequently, earlier TXOP-based airtime allocation approaches (e.g. [35, 37] do not

provide effective policing when stations are misbehaving.
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anism such as Wi-Fi Protected Access (WPA2) [133], that prevents short and

repeated aggressive sessions facilitated by MAC address spoofing techniques.

Note also that the IEEE 802.11i standard ensures replay protection through

several mechanisms, of which the use of CCMP (Counter Mode Cipher Block

Chaining Message Authentication Code Protocol) or TKIP (Temporal Key

Integrity Protocol) procedures are particularly relevant to our scheme. Thus,

a selfish user will be unable to impersonate compliant clients and jeopardize

their reputation.

This can be adapted to open-access networks by augmenting it with a signal-

strength based MAC layer spoofing detector [134] or a passive device finger-

printing tool [135]. The resilience of the policing algorithm to more sophisti-

cated security attacks can be further strengthened if used in combination with

fine-grained PHY layer information [136].

5.2.2 Controller Operation

To tackle this class of attacks, the policing algorithm’s AP exploits the fun-

damental nature of the ACKs within the ARQ mechanism of IEEE 802.11.

Specifically, it uses the fact that stations will usually increase their contention

window and re-attempt to deliver a frame that was not acknowledged, be-

fore sending the next packet. By appropriately suppressing ACK generation

for non-compliant users, the AP can reduce their transmission rate and drive

them into compliant operation. We consider, for example, WLANs that op-

erate in a commercial setting where the service provider seeks to monetize

connectivity.

A naive solution that simply disassociates users with marginal, possibly acci-

dental, misbehavior (see e.g. [72]) would be operationally unacceptable. In-

stead, the goal is to effectively correct such behaviors. It is possible, though,

that a misbehaving station does not increase its contention window despite

not receiving ACKs. For such blatantly and deliberately misbehaving stations,

it is not possible to use ACK suppression to drive the station to compliant

operation and instead the policing algorithm adapts to drop all ACKs and

associated data packets, reducing the goodput of such misbehaving stations

to zero.

The key to the performance of this algorithm is the manner in which the
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rate of ACK suppression P i
ACK is adjusted for user i. Algorithm 1 details the

proposed approach.

Algorithm 1 Determining the rate of ACK suppression.
1: Initialize t = 0, pi

t = 0, P i
ACK,0 = 0 for client station i,∀i.

2: loop
3: Estimate the maximum compliant transmission attempt rate x̄t,

given the current network conditions;
4: for each associated client station i do
5: Measure transmission attempt rate xi

t of the station; Update the
penalty:

pi
t+1 = max

(

0, pi
t + α

(

xi
t

x̄t

− 1

))

, (5.1)

where 0 < α < 1 is a parameter that drives the speed of
reaction to deviations from the compliant behavior;

6: P i
ACK,t+1 = min{pi

t+1, 1};
7: t← t + 1;
8: end for
9: end loop

For each station, the algorithm works as follows. At each step t, it compares

the measured station attempt rate xi
t against the compliant value x̄t. The

meaning of attempt rate will be described in further detail in the next subsec-

tion. When the value of this metric is above the compliant value, the rate of

ACK suppression is increased, and vice-versa when the attempt rate is below

the compliant value. Thus at a fixed point we have xi

t

x̄t

− 1 = 0, i.e. xi

t

x̄t

= 1 and

the station’s attempt rate is driven to the compliant value.3

Figure 5.1 shows an example of the policing algorithm in operation. In this

example we consider an IEEE 802.11g WLAN with three stations: two stations

use standard IEEE 802.11g parameters and the third uses a smaller value of

CWmin. The time evolution of the stations’ throughputs are illustrated as

the policing system operates, with the throughputs modeled using a two-class

Bianchi-like model described in [137]. Observe that while the more aggressive

station initially claims more throughput due to the increased transmission

attempt rate, the policing algorithm quickly adjusts the ACK drop probability,

so that the aggressive station receives lower performance.
3Note that to streamline notation, we will often drop the i superscript from now on,

provided there is no scope for confusion.

62



5.2. Policing Algorithm

5.2.3 Throughput vs. Attempt Rate

One might notice a difference between the original policing controller and the

one presented here. Dangerfield’s policing algorithm looked like the following

(notations have slightly changed to better match those described here):

P i
ACK,t+1 =

[

P i
ACK,t + α

(

St
c,i

St
f

− (1− γP i
ACK,t)

)]

0,1−ǫ

(5.2)

where St
c,i is the throughput of client node i and St

f is the maximum through-

put of a well-behaved node. This controller ensures that the throughput of

non-compliant stations is reduced until it converges to St
f . However, the non-

compliant station still sends packets, whether or not they are acknowledged,

and this takes channel time, and consequently degrades channel utilization.

The design parameter γ in the original algorithm aims to mitigate this issue

by adjusting the size of the penalty.

In the present work we take a different approach, and use transmission at-

tempt rate instead of throughput. This is the proportion of MAC layer slots

(with Bianchi’s definition) that the station attempts transmission in.4 The

rationale behind using this metric rather than the original throughput is that,

by design, the policing algorithm ensures standard compliance rather than

throughput fairness (see Chapter 3 for more information regarding fairness

and compliance). And transmission attempts and their timings are what de-

termine the standard compliance of a station. Hence the new metric better

fits the operation and the goal of the algorithm. Moreover, with this metric

in place, the γ parameter, which was originally added to address this channel

utilization issue, becomes superfluous and hence is omitted.

The algorithm requires an estimate of the maximum compliant transmission

attempt rate. That is, the TX rate that would be achieved by a client station

employing the standard recommended IEEE 802.11 MAC configuration. We

discuss in detail how to estimate this quantity in Section 5.3.
4Note that this attempt rate is different from the PHY modulation and coding rate used

by individual packets.
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Figure 5.1: Performance in a network with three stations, two using standard
IEEE 802.11g parameters, and one with CWmin = 16. The policing algorithm
is applied with α = 0.1, packet size is 1500 bytes and the stations are saturated.

5.2.4 Penalty Carry Forward

Since P i
ACK,t is a probability value, it can only take values in [0, 1], but for

aggressive attacks P i
ACK,t reaches 1 quickly. However, as we do not impose an

upper bound on the update of pi
t, we also consider a version of the algorithm

that allows to carry forward and accumulate the penalty when pi
t−P i

ACK,t > 0,

until the greedy station reverts to compliant operation or is otherwise disasso-

ciated. Thus we prevent gaining long-term advantage over compliant stations.

The effect of this change is discussed detail in Section 5.2.5.2 when the ro-

bustness of the modified policing algorithm is proven.

5.2.5 Mathematical Analysis

In this section, we first present an analysis for the convergence properties of

the policing algorithm. We prove convergence for Algorithm 1, but similar

results hold for the version that carries forward the penalty. Then, we study

the robustness of the proposed solution under attacks that seek to game its

operation with the goal of achieving long-term performance benefits.
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5.2.5.1 Convergence

We begin by establishing general conditions under which Algorithm 1 con-

verges to a fixed point. For well-behaved stations we have the following im-

portant result.

Theorem 5.2.1 (Well-behaved stations). For stations satisfying xt ≤ x̄t(1−
cPACK,t) for some c > 0, Algorithm 1 ensures limt→∞ pt = 0. That is, for

well-behaved stations the policing algorithm does not drop any ACKs.

Proof: First note pt ≥ 0 and if pt = 0 then subsequent terms are zero. If

the sequence does not become constant at zero, then the max with zero is not

active in Algorithm 1, and we consider two cases:

1. if 0 < pt ≤ 1, then

pt+1 = pt + α
(

xt

x̄t

− 1
)

≤ pt − αcpt;

2. if pt > 1, then

pt+1 ≤ pt − αc.

So, at each step, pt decreases by at least αc min(pt, 1). Thus pt is non-

increasing and bounded below, and so convergent. As pt − pt+1 → 0 we

see αc min(pt, 1)→ 0, and thus pt → 0.

Using a model such as [1], we can see that a station following the DCF standard

meets the conditions for a well-behaved station in Theorem 5.2.1. The attempt

rate will be proportional to the transmission probability (Bianchi’s τ) which we

can calculate as a function of PACK , the collision probability for the station

and other (fixed) MAC parameters. Figure 5.2 shows that for a range of

collision probabilities, these can be bounded with c ≤ 0.4. Note that with this

choice, αc < 1 and thus pt+1 cannot become negative in case 2) above.

We now show that in many reasonable situations with misbehaving stations

Algorithm 1 also converges. Firstly, for misbehaving stations whose transmit

attempt rates remain sensitive to ACK suppression we have the following.

Theorem 5.2.2 (Moderately misbehaving stations). Suppose the transmit

rate of a station satisfies the following conditions:
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Figure 5.2: Normalized attempt rate, xt/x̄t, for a standard compliant station
under a range of network conditions.

i) xt/x̄t > 1 when PACK,t = 0,

ii) xt/x̄t < 1 when PACK,t = 1 and

iii) xt/x̄t is strictly decreasing with PACK,t and Lipschitz with a constant

smaller than 2/α.

Then Algorithm 1 converges to a point where xt = x̄t.

Proof: Since xt/x̄ is strictly decreasing, there exists a unique value of PACK,t

where xt/x̄t = 1. We call this value P . Let Vt = (pt − P )2. Note that Vt is

positive definite and radially unbounded in pt and

Vt+1 = (pt+1 − P )2 ≤
(

pt − P + α
(

xt

x̄t

− 1
))2

.

Expanding, we find

Vt+1 ≤ Vt + α
(

xt

x̄t

− 1
)

(pt − P )



2− α

(
xt

x̄t

− 1
)

pt − P



 .
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Note that α > 0 and (xt/x̄t − 1)(pt − P ) is strictly negative except when

pt = P , so if

2 > α

(
xt

x̄t

− 1
)

pt − P
,

then we can ensure that Vt converges asymptotically to zero as t→∞. How-

ever, this condition is ensured by requiring xt/x̄t be Lipschitz in PACK,t (and

consequently pt) with a constant smaller that 2/α. Thus, as Vt → 0 we have

pt → P .

In the case of highly-aggressive stations for which the transmit attempt rate

cannot be made fair using ACK suppression alone (e.g. when backoff of the

MAC contention window has been disabled), we have the following.

Theorem 5.2.3. For stations where ∃c > 0 such that xt ≥ x̄t(1 + c) for all

PACK ∈ [0, 1], Algorithm 1 ensures PACK,t → 1.

Proof: By assumption, xt/x̄ > 1. Hence, pt+1 ≥ pt + αc. It follows that pt

increases to a value greater than 1 and so PACK,t → 1.

Of course, some non-compliant stations may not meet the smoothness condi-

tions for convergence of PACK . Indeed, the station might randomly choose an

attempt rate at any time. However, in the next section we show that in this

case the station cannot gain from any such strategy, even if does not converge.

5.2.5.2 Robustness

Next we consider a scenario where an attacker becomes aware of the policing

algorithm running at the AP and attempts to game its operation with the goal

of achieving a long-term benefit in terms of throughput. We demonstrate that

our scheme is robust to such sophisticated attacks by showing that, by design,

the algorithm will penalize any strategy that deviates from the compliant

behavior.

Suppose that the attacker seeks to maximize its goodput and we run the algo-

rithm that carries forward the penalty. The mean goodput over the interval

[0, T ] is given by

S(T ) :=
1

T

T∑

t=1

xt(1− pt) =
x̄

T

T∑

t=1

(1 + yt)(1− pt) (5.3)
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where yt = xt/x̄− 1. Note, our policing update becomes

pt+1 = max (0, pt + αyt) , (5.4)

and if we iterate this backwards to the previous time t∗ where pt was zero, we

see

pt+1 = max

(

0, α
t−1∑

k=t∗

yk

)

.

Suppose there is a time T ∗ > 0 with pT ∗ = 0 but pt > 0 for 1 ≤ t < T ∗. Then,

we see
∑T ∗−1

k=0 yk ≤ 0, so the average attempt rate of the station up to time

T ∗ is less than that of a compliant station. As pT ∗ = 0, we may remove this

interval from our consideration and consider just the times from T ∗ onwards.

By repeating this argument, we see that we only need to consider the potential

non-compliant behavior of stations where p0 = 0 and pt = α
∑t−1

k=0 yk > 0 for

1 ≤ t < T . We have the following result.

Theorem 5.2.4. For policing Algorithm 1, suppose α
∑t−1

k=0 y ≥ 0 for 1 ≤
t < T . Let Y be an upper bound for yi and let ∆ > 1/α + Y be a positive

integer. Then, if T > ∆ and we consider the values of S(T ) as we vary

y1, . . . , yT −∆ and hold the other yi fixed, we find S(T ) is maximized by choosing

y1 = . . . = yT −∆ = 0.

Proof: With policing update (5.4) we have

pt+1 = α
t∑

k=1

yt,

and we consider terms in S(T ) as follows.

S(T ) = x̄ +
x̄

T

T∑

t=1

yt

︸ ︷︷ ︸

goodput gain

− x̄

T

T∑

t=1

(1 + yt)pt

︸ ︷︷ ︸

goodput cost

(5.5)

Now,

T∑

t=1

(1 + yt)pt =
T∑

t=1

(1 + yt)α
t−1∑

k=1

yt

=
T∑

t=1

ytα
T∑

k=t+1

(1 + yk).
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So, the net relative gain is bounded by

T∑

t=1

yt −
T∑

t=1

ytα
T∑

k=t+1

(1 + yk)

=
T∑

t=1

yt(1− α(T − t))− α
T∑

t=1

T∑

k=t+1

ytyk.

Taking the derivative with respect to yi we get

(1− α(T − i))− α
∑

t6=i

yi = α

(

1

α
− T + i−

T −1∑

t=i

yt + yi

)

which is negative when i ≤ T −∆ < T − 1/α− Y , as the sum is non-negative

and yi ≤ Y . Thus, to maximize the gain, we choose the smallest possible

values of yi subject to the constraint on the partial sums being non-negative.

Thus y1 = . . . = yT −∆ = 0.

This results confirms that no benefit can be obtained by deviating from the

compliant behavior over T − ∆ steps. Note however that an attacker could

potentially attempt to use a more aggressive transmit rate over the last ∆ iter-

ations before leaving the network, seeking to gain a small throughput benefit.

But the fact that we allow for the penalty to carry forward to future times

and consider networks that employ authentication prevents the occurrence of

such situations.

5.3 Compliant Attempt Rate Estimation

The main analytical contribution of this thesis is an estimation method for

compliant transmission attempt rate. As mentioned before, to decide whether

to police an associated station, our algorithm measures their performance and

compares this to the maximum transmission attempt rate a compliant client

would attain under current network conditions. The fact that network setup

and channel conditions affect this value, makes it impossible to be precom-

puted and hard-coded into the AP, and we need another way to find it at

each step. If we did have a compliant station in the network that was send-

ing saturated traffic, we could use its attempt rate as our measure. However,

this is almost never the case in a real network: real network traffic is often

bursty and sporadic. Deliberately adding such a compliant saturated station
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to the network is also undesirable because it wastes airtime with unnecessary

transmissions, and this has a severe negative impact on channel utilization.

The existence of service differentiation makes said scheme even less practical,

since we would need to have a saturated node for each traffic category.

5.3.1 Description of the Virtual MAC

According to what we have discussed so far, we need a mechanism for achieving

compliant attempt rate estimation non-intrusively, i.e. without injecting traf-

fic into the network or requiring message-passing between the AP and other

stations. To this end we run a virtual MAC instance at the AP that repro-

duces the operation of a compliant station, but does not release packets on the

channel. Instead, we monitor channel slots and check the outcome of “virtual”

transmissions, i.e. whether virtual attempts would have resulted in successes

or collisions. Based on these observations, the mechanism estimates the fail-

ure probability f experienced by a compliant station, which can be then used

to derive the attainable transmission attempt rate. Virtual MAC was first

introduced in [130] for service differentiation, as a tool for measuring packet

delays. We extended the Virtual MAC to additionally provide transmission

attempt rate estimation, to be combined with the policing algorithm.

We can run the estimator just like a normal DCF-based station, and replace

the transmission procedure by the procedure of observing the channel for the

slot the sending should occur. Thus a “virtual collision” is identified by the

channel becoming busy in that slot, and a virtual success is identified by the

channel remaining idle. However, we take an approach which is more suitable

for implementation on wireless adapters. We count idle and busy slots and

use them to calculate the transmission attempt rate using Bianchi’s model

[1]. According to this model, the probability of transmission τ of a compliant

station is defined

τ = 2
(1− 2p)

(1− 2p)(W + 1) + pW (1− (2p)m)
(5.6)

where p is the probability of failure, W is the size of the minimum contention

window, and m is the maximum backoff stage (e.g. 5). Looking at this

equation, τ depends on the variable p, which in turn is dependent in the

number of contenders, channel conditions, etc.. In order to compute p, we use

the information collected by our Virtual MAC. Given the number of idle and
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busy “Bianchi slots”, p can be calculated as

p =
nb

nb + ni

where nb is the number of busy slots, and ni is the number of idle slots.

The logic behind this calculation is that transmissions fail if they collide with

other stations’ transmissions. So, if the virtual station were to transmit in

a slot already containing a transmission from another station, it would be a

collision. So it only considers that slot as a failure candidate, contributing to

p. Plugging the result in (5.6), we can calculate τ , and then the attempt rate

will be calculated as follows:

x =
τ(1− p)(nb + ni)

d
(5.7)

that is, the total number of slots that contain a successful transmission attempt

from the station per unit time (d is the duration of observation in the above

formula).5 This value can then be used as an estimate for x̄t in Algorithm 1.

In Section 5.3.2 we discuss in further detail whether and how we can use this

estimate.

Note, our Virtual MAC assumes all non-colliding transmissions are successes,

i.e. for chosen PHY rate there are no channel errors. This is the best case for

a real station, and so in the worst case we overestimate the attempt rate for

a compliant saturated station with channel errors. This will not result in the

punishment of a compliant station.

5.3.2 Mathematical Analysis

In this section we give a formal analysis of this approach and investigate

its accuracy. Suppose we have a network of n stations transmitting with

probabilities τ1, . . . , τn. Further, suppose that a station is saturated, for

instance station 1. Assume for now that this station is compliant. We can

write the failure probability due to collisions for this station as

f1 = 1− (1− τ2) . . . (1− τn). (5.8)
5A meticulous reader might note that (5.7) produces successful transmission attempts

rather than total number of attempts (i.e. including collisions). It is worth mentioning that
this is exactly what we are after. What we include as a failed attempt in our calculation for
policing is not a collision, but rather a successful attempt by a station that is deliberately
not acknowledged by the AP. With this definition, the Virtual MAC has no failed attempts.
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As the station is compliant,

τ1 = g(f1),

where g is a function mapping the failure probability to the transmission

probability and is given by [138]:

g(f) =
2(1− 2f)(1− fR+1)

W (1− (2f)m+1)(1− f) + (1− 2f)(1− fR+1)

+W2mfm+1(1− 2f)(1− fR−m)
. (5.9)

In the above, W = CWmin, m is the maximum backoff stage and R denotes

the retry limit.

Consider now that the AP runs a saturated Virtual MAC instance. We can

similarly express the failure probability fv the Virtual MAC observes, as fol-

lows:

fv = 1− (1− τ1)(1− τ2) . . . (1− τn)

= (1− τ1)(1− f1) = 1− (1− g(f1))(1− f1), (5.10)

where the second line is derived from (5.8). g here is the compliant backoff

function given by (5.9). Note that if we know fv, we can solve the above for f1.

In Figure 5.3, we plot the relationship between the virtual and actual failure

probability of a saturated station. To add perspective, we also plot fv with a

dotted line. We observe that the difference between the two is relatively small

and reduces as the contention rate increases.

Since there is a one-to-one mapping from fv to f1, we could invert this6 to ob-

tain an exact value for the failure probability of a compliant saturated station

and apply (5.9) to compute the maximum achievable rate x̄ of a compliant

station. Another approach is to compute the virtual attempt rate, g(fv), and

scale this up by 14%, as numerical calculations of both the virtual and actual

maximum achievable attempt rate show this is a good estimate of their gap,

over a broad range of network conditions. To make this clearer, we plot τv

against τ1. As we just mentioned τ1 = g(f1) can be calculated using (5.9),

and τv is also a function of only f1, given by (5.10), so it can be calculated

similarly. Figure 5.4 shows this plot over its possible range. It can be seen in
6We can do it using a standard root finding algorithm, such as bisection.

72



5.3. Compliant Attempt Rate Estimation

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  0.1  0.2  0.3  0.4  0.5

f 1

fv

f1
fv

Figure 5.3: Relationship between failure probability of a virtual station and
that of a real compliant client.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0  0.01  0.02  0.03  0.04  0.05  0.06

τ
v

τ1

Figure 5.4: Relationship between failure probability of a virtual station and
that of a real compliant client.

the plot and the corresponding numbers that the difference between the two

lines never exceeds 13.5%.

On a more practical note, we can also see the effect of increasing network
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size on the transmission attempt rate of both the virtual STA and a saturated

compliant station, as network size is what actually affects failure probabilities,

and transmission probabilities as a result. We know that the transmission

attempt rate of a compliant station can be expressed as x1 = τ1(1−f1) frames

per slot. The error of the attempt rate of the virtual station Sv according to

S1, can be written as:

ev = 1− xv

x1

= 1− τv(1− fv)

τ1(1− f1)
.

As this is a function of one unknown f1 and a function of just the behavior of

f of a compliant node, we can plot its possible range. Figure 5.5 shows the

evolution of attempt rates and the error, with increasing network size. As we

can see, the number of attempts decreases as expected while the Virtual MAC

estimation stays close to this measure. Even relative error in Figure 5.5b stays

small, less than the 14% we use.

The remaining question is how long should the channel observation period be

to ensure an accurate estimation of fv. To answer this, we regard the virtual

transmission attempt as a Bernoulli trial, whereby a failure is observed with

probability f̂v and a success with probability 1 − f̂v. By the central limit

theorem, if the number of observations N is large, the distribution of f̂v is

approximately normal with mean fv and variance σ2 = fv(1− fv)/N .

Say we want to compute the number of samples N that gives us 95% confidence

that the estimated mean has precision ǫ, i.e. P (|fv − f̂v| > ǫ) < 0.05. The

confidence interval is f̂v ± zσ, where z = 1.96 is the z-score required for 95%

confidence. Since σ is unknown and f̂v(1− f̂v) ≤ 0.5, using this conservative

upper bound [139], N must satisfy

z

2
√

N
= ǫ.

Thus,

N =
(

z

2ǫ

)2

.

To translate this into an observation period required for a good estimation of

compliant performance before an update of the PACK probabilities, consider

the average slot duration in a network with saturated stations

E[Tslot] = Peσ + PsTs + PcTc,
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where Pe, Ps and Pc are the probabilities that a slot is empty, contains a

success, or contains a collision respectively, and σ, Ts and Tc are the corre-

sponding slot durations (see [1] for detailed calculations).7 Thus we compute

the observation interval that gives an accurate estimation of the mean as

Tupdate = N · E[Tslot].

To indicate the values Tupdate would take in practice for ǫ = 0.01, in Figure 5.6

we plot the necessary channel observation time for obtaining an estimate ac-

cording to the above requirements for different network conditions in terms of

number of saturated stations and assuming nodes send packets with 1000 byte

payload at 11 Mb/s (IEEE 802.11 HR/DSSS). We conclude, that an observa-

tion interval above 5 seconds will ensure a good estimation of the compliant

performance in many scenarios. In our experiments we conservatively use a

Tupdate = 10s for all tests. In what follows, we evaluate the performance of our

prototype in a real testbed and demonstrate its effectiveness under different

types of misbehavior.
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7Note that T [slot] is upper bounded by the length of a successful transmission Ts, which
is readily obtainable in practice from the “duration” field of correctly received frames.
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5.3.3 Adapting the Estimator to EDCA

We introduced Enhanced Distributed Channel Access (EDCA) in Section 2.4.

This DCF amendment introduces traffic categories, each of which can have

different contention parameters. With EDCA, high-priority traffic has a higher

chance of being sent than low-priority traffic: a station with high-priority

traffic waits a little less before it sends its packet, on average, than a station

with low-priority traffic. It might seem that the policing algorithm conflicts

with this scheme at first. We will explain here how this algorithm can be

adapted to work under EDCA without interfering with service differentiation.

We know that the goal of the policing algorithm is to ensure standard compli-

ance, and traffic with different priorities that still abide by EDCA standard

should not be penalized. To solve this problem, we recognize the fact that each

EDCA traffic category can have a different AIFS, and idle/busy slot counts

can be different. Different contention windows also cause variability in g calcu-

lation for different categories. A basic step in accommodating this variability

would be to introduce more than one instance of the Virtual MAC in the

AP: one for each traffic category. Thus, we can determine the attempt rate a

station can achieve in each AC. The next step would be dividing transmission

attempts of each station into different traffic classes, through TSPECs. So,

a station that sends traffic in two categories will be treated as two separate

stations by the policing algorithm, each of which judged by the corresponding

Virtual MAC estimate.

As the estimator uses Bianchi’s model [1], and said model is for a homoge-

neous network, it might seem challenging to extend the estimator to multiple

classes. However, it is more straightforward than it first appears. Bianchi’s

model of a Wi-Fi network has two components. One component relates the

probability of a station transmitting τ in an available slot to the probability

of collision, p, through a function, g that models the MAC. This is then com-

bined with a model of the network, which says the probability of no collision

is the probability no other station transmits.

Bianchi combines these in a homogeneous network to give τ = g(p) and 1−p =

(1−τ)n−1. The Virtual MAC only makes use of the function g to determine the

transmission probability τ from its estimate of the collision probability p, and

so does not depend on the homogeneous network assumption used elsewhere
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in Bianchi’s paper.

As access categories are determined by the MAC parameters CWmin, CWmax,

AIFS, and TXOP, we must show how to accommodate these in the virtual

MAC or estimator. The MAC parameters CWmin, CWmax and the maximum

number of retries are implicit parameters of the function g, and so can be

accounted for by selecting an appropriate g. The AIFS/DIFS MAC parameter

determines which slots should be considered when counting busy/idle slots,

and so can be accounted for by adjusting which slots are considered by the

Virtual MAC. Finally, TXOP changes the amount of time that can be used

for transmission, and this is accounted for by having the throughput estimator

count the extra time if a station exceeds its allocation.

To run the virtual MAC for multiple access categories, the Virtual MAC must

know the AIFS value for each access category i, and count the busy/idle slots

accordingly before calculating a per-access category collision probability pi.

Each access category will have its own function gi which accounts for the the

backoff parameters, so τi = gi(pi), allowing the calculation of the expected

throughput for that category. One barrier to this method, however, could be

implementation cost. As we will see in the next chapter, the driver runs the

algorithm, so it would be capable of running multiple instances of the Virtual

MAC. Nevertheless, the information needs to be stored on the shared memory,

which is relatively small. With EDCA in place, the memory required to store

station information will be multiplied by the number of ACs, which leads to

a reduced number of stations our algorithm can accommodate.

5.4 Limitations and Workarounds

In this section we discuss limitations of the policing algorithm. We discuss how

new IEEE 802.11 features affect the operation of the algorithm, and what can

be done to mitigate the effects. We also discuss the attacks that are immune

to the policing scheme.

5.4.1 New IEEE 802.11 Features

The policing algorithm was designed and analyzed for IEEE 802.11 b/g net-

works. However, these rather dated standards no longer rule the IEEE 802.11-

based WLANs. New amendments have introduced features that may make
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the policing algorithm less effective. In Chapter 2 we introduced some of these

features. Here we discuss how these features can affect the operation of the

algorithm, and how the algorithm can be amended to mitigate the effects.

5.4.1.1 Block Acknowledgements (BA)

As we described before, using this feature, instead of sending an ACK for

every single MPDU, a single ACK can be sent for a group of MPDUs. A

block acknowledgement (BA) can support up to 1024 data units (fragments).

Even with the modest 11Mb/s speed of IEEE 802.11b this many frames with

1024 bytes of payload would take less than a second to transmit, while the

policing iteration is usually much longer (see Section 5.3.2). Besides, data

rates in IEEE 802.11n are typically much higher than in IEEE 802.11b. So

the gap between ACKs does not create a problem for the algorithm, and

we can still achieve node policing by exploiting BlockACKs. A BA contains

a bit-map, each bit of which indicates the successful reception of a single

MPDU fragment. By distributing ACK-dropping samples over this bitmap,

we can implement the policing scheme. This is assuming that immediate

Block ACKs are used. Delayed Block ACKs are more complicated, because

there is no link between the frames and the Block ACK, which means that

the misbehaving station may have a long head start. However, this requires

further investigation, because of the choices left open to the implementor.

5.4.1.2 No ACK

This feature is intended for traffic that is time-critical. It prevents the retrans-

mission of such data, and corresponding frames are neither acknowledged by

the receiver, nor expected to be acknowledged by the sender. This feature can

be troublesome for the policing algorithm as it relies on the ACK mechanism.

With No ACK, the policing algorithm will not be able to operate normally

for that traffic class. A quick solution to this problem comes from the way

QoS works in IEEE 802.11. In order for a station to send a traffic stream

(TS) with specific QoS requirements, it should first send traffic specification

(TSPEC) for that TS. The AP can then choose to accept or reject the TSPEC

[140]. One solution would be to reject all TSPECs that include the QoSNoAck

policy, although it disables this feature altogether.
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Even if we don’t take this extreme measure, it does not mean that a non-

compliant flow will still gain benefit. Without the signaling provided by ACKs,

the station cannot be sure if the transmission was successful. Consequently,

it will be unaware of the punishment, and will not increase its contention

window. This leads to a persistent non-compliance which causes the policing

algorithm increase the ACK-dropping (or frame dropping in this case) proba-

bility to 1 and beyond, and eventually it can disassociate the station with the

non-compliant TS. Also note that frames will still be dropped, even though

there are no ACKs to be skipped.

5.4.1.3 Direct Link Setup

This feature can also disarm the policing algorithm at the AP, as there will

be no more central control when two stations in a BSS communicate directly.

The only real solution to this problem is again to disable this feature. In order

to setup a direct link, a station needs to send a DLS action frame to the AP,

and the AP needs to approve it. The policing-equipped AP can refuse all DLS

requests to always be in full control, or reject them from stations that have

exhibited significant misbehavior.

Another less elegant solution would be to implement the policing algorithm

in compliant stations. The AP can then use device fingerprinting [135] to

recognize trusted stations that are equipped with the policing algorithm, and

only allow DLS when at least one side of the pair is in the circle of trust!

However, this is a decentralized approach which is not in the spirit what the

policing algorithm is intended for.

5.4.2 Attacks That Are Immune

We described different types of misbehavior in IEEE 802.11 in in Section 3.3.1

of Chapter 3. In Section 5.2 we described classes of attacks the policing

algorithm covers and the reason behind that choice. In this section we put it

in perspective by describing attacks that can still be effective with the policing

algorithm.

Jamming attacks (see 3.3.1) are very good examples of attacks that are im-

mune to the policing algorithm. By jamming control frames, a station will

simply buy more time on the channel by continuously causing other stations to
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back off. The AP will not notice the misbehavior if the non-compliant station

uses correct EDCA parameters, and it will only assume that other stations

are not active. Packet forging attacks also have a similar results. Although a

smart AP can be programmed to detect packet forging attacks, the policing

algorithm alone cannot detect these attacks.

Furthermore, the policing algorithm neither targets nor is effective against

attacks that aim only to degrade network performance without an intended

gain for the attacker. Examples of these attacks include DoS attacks, and

those jamming attacks that don’t rely on higher layer information and frame

types.

While these attacks are hard or impossible to treat using the policing algo-

rithm, they are also hard to execute, and only a more highly skilled user

can implement them. The group of attacks we discussed in this chapter are

those that are both easy to implement and give the non-compliant station

throughput advantage.

5.4.3 Rate Control

The policing algorithm can have a negative impact on rate control algorithms

that rely on retries, as it forces retries. This can be a problem due to the

performance anomaly of IEEE 802.11 [21]. It is, however, compatible with

other rate control algorithms such as Minstrel [25]. The next chapter will

provide experimental results showing the impact of this algorithm on rate

adaptation algorithms.

5.5 TCP Traffic

As both the original and our extended version of the policing algorithm rely on

ACK-dropping for their operation, one might understandably ask the question

of whether this could have a negative impact on TCP’s congestion control. The

answer to this question is that TCP ACKs are on a higher layer than the IEEE

802.11 ACKs. For a TCP packet to be discarded, all MAC-level attempts to

send the corresponding frame must fail. For example if the IEEE 802.11 retry

limit is r = 7, then 7 consecutive frames must be dropped by the AP in order

for the TCP packet transmission to fail.
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So, the probability of a TCP packet being dropped will be P = P r
ACK = P 7

ACK ,

where PACK is the current ACK-dropping probability for the station. This

value is only 0.0078125 for PACK = 0.5, which is a relatively high ACK-

dropping probability. However, this also means that a station will lose about

1.5 packets on average if it sends 250 frames per policing iteration. For less

aggressive stations, this value will be even smaller, and marginally misbehav-

ing stations will see a healthy TCP link with reduced throughput due to lower

layer retries. This is desirable, as these limited losses will have little impact

on TCP’s congestion control.

For stations involved in significant misbehavior, the extra degradation caused

by TCP congestion control is not a big issue as it will reduce throughput and

our goal is to incentivize standard compliance. But we do not want to cause a

TCP backoff for compliant stations. As far as PACK is concerned, we will see

in the next chapter that it never goes above 5%, and is usually considerably

less in practice. For this ACK-dropping probability, the probability of a TCP

frame to be dropped is only 10−9, which we consider negligible. In Chapter 6

we run experiments to show the effect of policing on misbehaving as well as

compliant stations using TCP.

5.6 Conclusions

In this chapter we introduced a policing scheme that penalizes MAC misbe-

havior and preserves the fairness provided by the DCF in IEEE 802.11 wireless

networks. We chose this scheme because is executed at the AP and does not

require any modifications to compliant devices. We demonstrated the conver-

gence of our algorithm, and presented the proof for robustness to sophisticated

attacks that seek to game its operation.

We amended said policing scheme by adding a compliant attempt rate esti-

mator using a Virtual MAC mechanism, and showed that the estimation error

is limited and decreased when network size increases. We also calculated the

measuring interval required to achieve our desired accuracy.

The policing algorithm is designed to work under IEEE 802.11b/g. However,

it can also work with new IEEE 802.11e/n features such as block acknowl-

edgements, No ACK, and direct links, although in some cases solutions are

too complicated, or need decentralized control. Furthermore, while the algo-
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rithm treats greedy stations that do not comply with contention parameters, it

is not effective on jamming attacks and those attacks that aim only to reduce

network performance.
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CHAPTER 6
Experimental Evaluation

In the previous chapter we introduced an effective and robust policing algorithm to

counteract misbehaving IEEE 802.11 stations. This scheme is amenable to practical

implementation on existing commodity hardware. This chapter describes implemen-

tation details of the policing algorithm on such hardware, and provides a wide range

of experimental results which put the algorithm into test in different scenarios.

6.1 Introduction

The previous chapter introduced the policing algorithm. As an important part

of the contribution of this thesis, we added a compliant transmission attempt

rate estimator to this algorithm, using a method called Virtual MAC (see Sec-

tion 5.3). With this mechanism in place, the policing algorithm is now feasible

for implementation on real hardware. To establish this feasibility, we present

a prototype implementation of the policing algorithm that uses off-the-shelf

hardware. We explain this prototype in great detail through flowcharts and

pseudocode. We validate the performance of our implementation by conduct-

ing extensive experiments over a wide range of misbehavior scenarios.

Experiments in this chapter are chosen to evaluate the performance of both

the policing algorithm and the Virtual MAC. We are interested in determining

whether the policing algorithm effectively penalizes attackers irrespective of

the network size, number of attackers and the parameters manipulated. We
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also want to show that our amended algorithm does not mistakenly penal-

ize compliant stations, even in complex situations where compliant stations

generate different volumes of traffic and so some clients consume the air time

underutilized by others. Further, we study the impact of the policing algo-

rithm on state-of-the-art PHY rate control algorithms.

As we discussed previously, the underlying principle behind the policing al-

gorithm approach is to control the throughput of attackers by censoring the

generation of MAC layer ACKs. Although this technique is used even in

works prior to the policing algorithm1, but to the best of our knowledge,

before present work, it has not been implemented with real devices, as this

fundamental operation is handled at the firmware level.

6.2 Implementation

To demonstrate that deploying the amended policing algorithm is feasible with

off-the-shelf hardware, in this section we present a Linux-based prototype im-

plementation that we developed and discuss details of the implementation

of the policing algorithm and the Virtual MAC technique for transmission

attempt rate estimation. You can see Appendix B for more information re-

garding the actual code.

6.2.1 Architecture

In order to implement the algorithm, we need to implement the suppression of

MAC ACKs with existing devices. This is a challenging task, since generation

of ACK frames is a basic operation that is handled at a low level within the

wireless stack, below the device driver. To tackle this challenge, we based

our implementation on an AP equipped with a Broadcom BCM4318 wireless

adapter that employs the OpenFWWF firmware [67]. The key advantage of

using this open-source firmware is that it allows modifying the MAC protocol

state machine running on the device, as already reported in [141, 125]. How-

ever, as we mentioned in Chapter 4, the firmware runs on a modest 8 MHz

processing unit on the network interface card. So the more computationally

demanding operations of the algorithm need to be managed by the driver

which resides on the host machine.
1ACK skipping has been suggested as an effective means to allocate bandwidth for

traffic prioritization in a network of well-behaved nodes [109, 110, 111]
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STA 1  P        Frame counter
ACK

1

STA n  P        Frame counter
ACK

n

Figure 6.1: Schematic view of the policing algorithm implementation

Figure 6.1 illustrates the essential building blocks of our prototype. As shown

in the figure, the implementation is split between the firmware and the driver.

The former handles bookkeeping of per-station frame count, channel monitor-

ing and ACK generation, while the latter manages the TX rate computation

and updating the ACK suppression rate for each associated client based on

the policing algorithm. Note that the two parts can communicate using the

4 KB shared memory shared memory (see Chapter 4). Since a large portion

of this remains unused during normal operation of the card we use it to store

the information pertaining to each station and required by our algorithm. To

maximize the efficiency of this small memory and inherently time-consuming

communication, we design a data structure in the shared memory that holds

required information with minimum space requirement.

Figure 6.2 shows the structure of the memory allocated for policing. The

allocated memory starts with a hash map. This part of the memory block is

512 bytes long, and contains 256 words, each of which can contain a single

memory address. The addresses stored in this hash map point to memory

locations of the following record table, and are used for fast lookup in this

table.
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Figure 6.2: Memory structure used to store policing data. The hash map
items point to per-station information elements.

As you can see in Figure 6.2, each record in the table contains three pieces of

information. The longest piece of information is the station’s MAC address,

which is 3 bytes long. This is to confirm the address resolved by the hash

function. In case of a hash collision, a different slot is chosen using open ad-

dressing. The second part of a record is the current number of frames received

from the station, and the third part is the probability of ACK-dropping. This

field is not a floating point number, but rather a 16-bit integer. A value of 0

for this field corresponds to PACK = 0, and a value of 65535 corresponds to

PACK = 1.

To summarize the operation of the implementation, when a frame arrives, the

AP quickly looks up in the hash map, and creates a record in the table if nec-

essary. Then it uses the ACK-dropping probability field to determine whether

it should drop the ACK. It then increments the frame counter. Once every it-

eration, the P t
ACK needs to be updated for each record. The AP goes through

all valid records, and uses (5.1) to update the probability. Subsequently, it

also clears the attempts field (sets it to zero) to mark the beginning of the

next iteration. Next, this operation will be explained in further detail.

6.2.2 Firmware Implementation

We implement ACK handling in the firmware, as this is a highly time-sensitive

operation. Specifically, the decision whether or not to acknowledge a correctly

received frame must be made within SIFS time and thus must not be inter-
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rupted or delayed by other tasks. For each frame received with a correct frame

check sequence (FCS), the lookup routine hashes the source MAC address to

retrieve the pointer storing the information for the corresponding station. If

such record does not exist, this routine creates one, and returns the new record

instead. Algorithm 2 shows the pseudocode for the lookup routine.

Algorithm 2 MAC address lookup routine.
1: function Policing-Lookup(addr)
2: hash← h(addr);
3: if map[hash] not set then
4: list.size← list.size + 1;
5: map[hash]← list.size;
6: return list[list.size];
7: else
8: while list[map[hash]].address 6= addr do
9: hash← hash + 1;

10: end while
11: return list[map[hash]];
12: end if
13: end function

After finding the data record for the station, the firmware increments the

frame counter for the sending station. We then fetch the corresponding PACK

value, and use it together with the internal random number generator (RNG)

of the BCM4318 chipset to decide whether to generate or suppress the ac-

knowledgement. If the frame is not acknowledged, the memory allocated for

the packet is released and the state machine returns to idle state. Conversely,

if we decided to send an ACK, we jump to ACK generation from here. This

procedure is depicted in Algorithm 3. The Random function in this algorithm

returns the value of the internal 16-bit integral RNG register.

Virtual MAC is more complicated, as it must capture and interpret carrier-

sensing information. In b43 chipset, a special-purpose register called IFS_STATUS

always holds the current channel state. We can use this register to determine

when the channel goes busy and idle.2 Algorithm 4 shows a single iteration

of the VMAC operation within the firmware. This procedure is placed in

the firmware’s idle process, and is continuously called whenever the device is
2This register holds a bitmap of flags, and channel busy/idle status is only one of the

flags it provides.
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Algorithm 3 Policing firmware implementation.
1: procedure Police-Frame(frame)
2: sta← Policing-Lookup(frame.addr);
3: if frame.type 6= DATA then return ;
4: end if
5: sta.attempts← sta.attempts + 1;
6: if Random < sta.P then
7: Discard-Frame(frame);
8: end if
9: end procedure

idle. It is normally called by the firmware every 1µs (for more information

regarding the firmware architecture, see Chapter 4).

Algorithm 4 Virtual MAC firmware implementation.
1: procedure Virtual-MAC-Iteration(time, state)
2: if first call then
3: store.start_time ← time;
4: store.cur_state ← INV ALID;
5: store.prev_state ← BUSY ;
6: end if
7: if mem[cur_state] = state then
8: return ;
9: end if

10: backup_state← store.cur_state;
11: store.cur_state← state;
12: diff = time− store.start_time;
13: if diff ≥ 50µs & store.prev_state 6= backup_state then
14: store.prev_state← backup_state;
15: if backup_state = BUSY then
16: store.busy_slots← store.busy_slots + 1;
17: else
18: store.idle_time← store.idle_time + diff ;
19: end if
20: store.prev_state← backup_state;
21: end if
22: store.start_time← time;
23: end procedure

Note the object called store in said algorithm. You can assume that members

of this object are preserved between calls, and can also be shared with the

driver. This imaginary object notation is solely for ease of understanding. In
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the real implementation, each field of this object is in fact a word in the shared

memory, and is accessed by its address within the firmware. The main output

values of this Algorithm 4 are store.busy_slots, and store.idle_time which

are later retrieved and used by the driver.

One thing you may notice in Algorithm 4 is that we ignore spikes that are

shorter than 50µs. This is due to the fact there are so-called “training se-

quences” in which the device tries to determine noise level. In a training

sequence, the signal is amplified and the hardware may show the channel as

busy, even though it is free. However, these spikes are always small, and

shorter than 50µs.

6.2.3 Driver Implementation

As we discussed in 4.5, the driver code runs on the CPU of the host and can

perform calculations more quickly. So, the policing update which controls the

penalty associated to each client is implemented in the driver. We modify the

b43 driver of the open-source compat-wireless [129] package to manage the

more computationally demanding operations of our algorithm.

The computation of the transmit rates and updates of the penalties according

to (5.1) are executed at configurable discrete time intervals3, when the driver

reads the information stored in the shared memory for each associated station

and performs the following operations: (i) computes the transmission attempt

rate of each station based on the frame count, (ii) estimates the compliant

attempt rate, and (iii) updates the ACK-dropping probabilities P i
ACK and

writes their values back into the corresponding blocks, and (iv) resets frame

counters.

So far we know how ACK-dropping probabilities are used in the firmware.

Algorithm 5 shows how they are assigned in the driver. It uses the principles

described in 5.3). Arguments store and list represent shared memory data

structures, and use the same notation as previous algorithms. You may have

noticed the use of a method Selective-Copy in this algorithm. This method

copies only the MAC address, and the attempt counter from a record, and
3To do this, we leverage a function called do_periodic_work in the b43 driver, which

is normally used to perform periodic driver-specific tasks.
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leaves the destination P untouched. The PACK is fully controlled in the driver,

and is never modified by the firmware.

Algorithm 5 Policing driver implementation.
1: procedure Policing-Iteration(list, store)
2: for i from 1 to list.size do
3: driver_list[i]← Selective-Copy(list[i]);
4: list[i].attempts← 0;
5: end for
6: x̄← Virtual-MAC-Estimate(store)
7: for i from 1 to driver_list.size do
8: sta← driver_list[i];
9: x← sta.attempts;

10: if x > 0 then
11: p← sta.P ;
12: p← max(0, p + α(x

x̄
− 1));

13: sta.P = p;
14: list[i].P ← min(1, p);
15: end if
16: end for
17: end procedure

You may also notice that we go through the station record list twice. On the

first pass, we copy the whole list locally and reset the source counters, and on

the second pass, we do the actual work. The reason we don’t do everything in

one pass lies in the fast-paced nature of the firmware task. As new frames can

arrive every millisecond, we want to mark the beginning of a new iteration

(with zero attempt counters) as quickly as possible, before moving on to more

time-consuming tasks.

While above reason may justify local bookkeeping and its inherent redun-

dancy, there is another reason for this, which is as important. Remember

from Chapter 5 that the ACK-dropping probability can exceed 1, and our

driver implementation precisely handles that. However, the simple firmware

code cannot handle probabilities greater than 1. So, indeed we need two copies

of each probability: one that is handled by the driver as is unbounded from

above, and one that is reported to the firmware, and is bounded by 1. That

is exactly why Selective-Copy does not copy P from the shared memory, as

it could have less information than the local copy.

The final piece of the puzzle in Algorithm 5 is the Virtual-MAC-Estimate
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method, which is the driver part of the Virtual MAC. Algorithm 6 shows

the pseudocode for this method. In this algorithm, nbusy, tidle, ntotal, and

m represent the busy slots, idle time (in µs), total number of slots, and the

scaling multiplier (e.g. 1.14) respectively. Also, dAIF S and dSLOT represent

durations of AIFS and a time slot respectively.

Algorithm 6 Virtual MAC driver implementation.
1: procedure Virtual-MAC-Estimate(store)
2: nbusy ← store.busy_slots;
3: tidle ← store.idle_time;
4: Reset store values
5: if nbusy > 0 then ⊲ VMAC is in operation
6: ntotal ← nbusy + (nidle − nbusy ∗ dAIF S)/dSLOT ;
7: fv ← nbusy/ntotal;
8: Using Bianchi’s model [1]:

τv ← 2
1− 2fv

(1− 2fv)(W + 1) + fvW (1− 2fm
v )

where W is the minimum contention window;
9: return mτv(1− fv)ntotal

10: else
11: return Alternate-Estimation-Method

12: end if
13: end procedure

6.2.4 Verification

Modifying the firmware and the driver may alter the normal behavior of the

wireless adapter in unwanted ways. In order to verify the correct behavior

of the updated software, we used the tool described in Appendix A. We used

a compliant device in the initial tests to only focus on whether the changes

have an impact on anything beyond their scope. For all measurements in this

section we used a compliant station sending saturated traffic with payload size

of 500 bytes.

First we measure the duration of the frame with the tool. The resulting aver-

age over 180 seconds was 603.1, with the expected value being 604.9 (see sec-

tion A.3.1 for information regarding the computation of the expected value).

We also measure the average inter-frame space, which was 15.7 over the three

minutes. Although this value differs from the expected value of 16, it was the
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Figure 6.3: Plan of the room where our testbed was situated

same with and without the modifications. Finally, we check the throughput,

which is 830.35 packets per second for the original firmware, and 830.33 for

our modified firmware. This compares to the expected value of 844.206. Ac-

cording to measurements such as the ones described above, we deduce that

the implementation has not had any effect on the normal behavior of the card,

and we move on to testing the algorithm itself.

6.3 Experimental Setup

Heaving designed and implemented the policing algorithm, we can now eval-

uate its performance in a real testbed. In this section we describe the testbed

and the environment we used for our experiments. The testbed was set up in

an empty office at the end of a corridor on the edge of Hamilton Institute in

the Rye Hall building in Maynooth University4. Figure 6.3 shows the plan of

the testbed room. Although there were some old computer equipment on the

desk at the bottom of the picture, the room was empty and dedicated to the

tests.

Our testbed consisted of 8 stations, and an AP. For the stations, we use Soekris

Engineering Inc.’s net4801 embedded PCs. Each of the stations is equipped

with a Atheros AR5001X+ chipset wireless adapter. The operating system
4Hamilton Institute has since moved to a new building.
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installed on the stations is Debian with kernel version 2.6.32.16, and they use

the ath5k driver. The ath5k driver is modified so the contention parameters

it uses can be specified on modprobe.

The AP is a Dell Dimension 3100C desktop computer with an Intel(R) Celeron(R)

CPU (2.80GHz), and 1 GB of main memory. The AP, too, runs Debian, and

it is equipped with two wireless adapters. A Broadcom BCM4318 adapter

is used for the policing algorithm, and an Atheros AR5004-based adapter is

used for sniffing packets over the channel. The latter is for the sole purpose

of debugging, and was not active during tests. For the Broadcom adapter we

use the b43 driver and OpenFWWF [67], with modifications presented in the

previous section.

The clients use Atheros AR5212 chipset adapters and the ath5k driver, which

are modified to allow manipulating the MAC parameters by simple commands

from the system console. All nodes employ the IEEE 802.11 HR/DSSS phys-

ical layer (IEEE 802.11b) and, unless otherwise stated, do not perform rate

adaptation. The reason we use IEEE 802.11b is mainly due to the fact that

the open-source firmware only works under this protocol. In Chapter 5 we

described how the algorithm can be adapted to newer versions of the IEEE

802.11 standard.

Unless otherwise stated, we consider all nodes to be backlogged and to send

unidirectional UDP traffic to the AP. In all cases, we measure the performance

of the stations when the network is operating with a standard AP and an AP

running the policing algorithm configured with the following settings: α = 0.2

and Tupdate = 10s. Table 6.1 shows an overview of all experiments conducted

in this chapter.

6.4 Controller Validation

First we study the impact of four types of attacks that can be easily im-

plemented with current hardware, whereby aggressive MAC settings are used.

Specifically, we investigate the scenarios where an attacker seeks to obtain per-

formance benefits by employing more aggressive configurations as follows: (i)

contending with a CWmin parameter half the default value (“CWmin Halved”),

(ii) disabling the Binary Exponential Backoff (BEB) mechanisms while keep-
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Parameter Figures Comments

MAC protocol
IEEE 802.11b All Fully supported by OpenFWWF

Packet Size
Fixed (∼MTU) 6.5–6.19, 6.27–6.31 MTU sized packets common, fre-

quently used for evaluation
TCP generated 6.20–6.26 TCP is most common transport

protocol
Application generated 6.26 Based on typical current applica-

tions

Number of Active Stations
2–8 all Small to medium network sizes

Traffic
Saturated/CBR 6.5–6.15,6.27–6.31 Basic type representing busy sta-

tion
Specific on/off 6.16–6.17 To show reactiveness of system
Periodic on/off 6.18–6.19 Basic strategy to game policing sys-

tem
TCP 6.20–6.26 Both long file uploads and shorter

transfers
Application 6.26 Specific to selected applications

Station Behaviour
Compliant all Baseline behaviour, also used to

verify baseline is not penalised.
Incorrect CWmin/
AIFS/CWmax /TXOP

6.5–6.25 Adjustable MAC parameters in
many drivers.

Rate Adaptation
Fixed (11Mbps) 6.5–6.26,6.31 Typical rate used for evaluation of

802.11b for evaluation without dy-
namics

Minstrel 6.27–6.30 Default rate controller for Linux
mac80211 layer

PID 6.29–6.30 Other implemented controller for
Linux mac802.11 layer

Table 6.1: Summary of Experiments
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Figure 6.4: Network topology
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Figure 6.5: Performance under different types of attacks. Throughput shown
above, attempt rate below. Experimental results.

ing a smaller CWmin setting (“CWmin=CWmax”),5 (iii) using a shorter inter-

frame space post-backoff (“AIFS = SIFS”),6 and (iv) retaining the access

to the medium for 6.413ms by violating the TXOPlimit parameter (“Large
5Note that compliant devices employ CWmax > CWmin settings to reduce failure prob-

ability upon subsequent attempts, thus being less aggressive.
6AIFS ≥ 2σ+ SIFS is the amount of time a station is required to sense the channel idle

before entering the backoff procedure. SIFS=10µs is the short inter-frame space. σ is the
duration of an idle slot.
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TXOP”), thus being able to transmit multiple frames upon a single attempt.

In these scenarios we consider a simple network topology with one attacker

sharing the medium with two compliant stations that contend for the channel

using the default MAC parameters specified by the IEEE 802.11 standard

(i.e. CWmin = 32, CWmax = 1024, AIFS = DIFS = 50µs, TXOP = 0). The

network setup used for these experiments is depicted in Figure 6.4. Each client

is saturated and transmits 1000-byte UDP packets to the access point for a

total duration of 3 minutes. We measure the throughput and attempt rate

performance of each station under each scenario, with and without the policing

algorithm running at the AP, and repeating each test 13 times to compute

average and 95% confidence intervals with good statistical significance.

Figure 6.5 shows the throughput and attempt rate attained by each client in

each of the scenarios considered, both with and without our policing algo-

rithm running at the AP. To add perspective, we also plot with a dotted line

the performance of one station when when all clients behave correctly (“All

Compliant”). Observe that an attacker using a smaller CWmin attains nearly

twice the throughput of complaint stations if not policed, while reducing the

throughput and attempt rate of the compliant stations (“CWmin Halved”, light

bars). When we activate the policing algorithm (dark bars), this behavior is

effectively counteracted, as our solution equalizes the attempt rates, while

the attacker sees its throughput performance reduced. If this attack becomes

more aggressive (“CWmax = CWmin”, light bars), e.g. the non-compliant sta-

tion uses a fixed contention window and thus does not backoff upon failures,

the policing algorithm rapidly increases the ACK-dropping probability corre-

sponding to that client to 1, thereby disassociating the attacker from the AP.

This is reflected in both the attempt rate and throughput performance, which

are effectively zero when policing is applied (dark bars).

A more subtle attack could employ a short post-backoff inter-frame space,

e.g. the greedy station only waits SIFS before a new attempt, which is the

minimum time separating two consecutive frames. Although less significant

(since the attacker can sometimes randomly select a large backoff counter and

wait more than other stations that wait DIFS plus a short backoff value),

the attacker still achieves performance gains to the detriment of the other

stations in the network (“AIFS=SIFS”, light bars). Once again, if we execute
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the policing algorithm at the AP, the transmission attempt rates are equalized.

Lastly, if the attacker transmits several frames upon a single channel access

(“Large TXOP”), their throughput performance is significantly higher than

that of the compliant stations if no action is taken. In contrast, with our polic-

ing algorithm, attempt rates stay equal and the attacker sees their throughput

throttled down below the value corresponding to compliant operation.

Let us now take a closer look at the behavior of the controller implemented

by our scheme. Specifically, we are interested in validating the convergence of

the algorithm under different attacks. For this purpose, we examine the time

evolution of the network performance for all scenarios. We begin by the case

where all stations are compliant. In our tests, not a single frame was dropped

by the AP, although p was slightly increased at some points. Figure 6.6

shows this change. The error bars are calculated over thirteen experiments.

Their large size shows that there are only random spikes of slightly positive p.

The reason for these spikes is that, although we overestimate the compliant

attempt rate, the virtual station is still contending with stations that use

random backoff. Hence there are isolated instances that those stations get a

slightly higher share of the channel than the virtual MAC.

Further, Figures 6.7, 6.8, 6.9, and 6.10 show throughput and attempt rate for

the attacker and a compliant station, as well as the penalty applied by the

algorithm. Most of these cases converge in 5 to 6 iterations. We can reduce

the convergence time by either using a shorter iteration time (10s is relatively

high, and is used only to reduce randomness in the graphs), or a larger α

value, which determines the rate of adaptation.

In most cases, observe that the policing algorithm successfully brings the

attempt rate of the attacker down to that of a compliant client (middle graph),

while their throughput is reduced (top graph). An exception to this is the

CWmin=CWmax case (Figure 6.8), where the penalty is increased much further

than 1, and the station can no longer get any frames through. This is a good

example of the case where we have an option to disassociate the station.

However, we don’t do that in our tests and. The result is that the station still

sends some traffic bursts every once in a while, which fail due to the high p

value.
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Figure 6.6: Time evolution of penalty when all stations are compliant.

What is also important to remark is that the algorithm is close to convergence

after a few steps. Based on the results, within 5 iterations, p is within 10% of

its long-term value. Convergence time is shorter for more aggressive attacks

(i.e. with manipulated TXOP), and it can be further reduced by choosing a

larger α parameter.

6.4.1 False Alarms

Further, we verify that our algorithm does not unnecessarily penalize com-

pliant stations, i.e. does not trigger false alarms, due to the channel access

randomness inherent in 802.11 DCF. Results we discussed previously show

little or no penalty for compliant stations.7 To put this in perspective, we

examine the time evolution of a station’s attempt rate, the maximum achiev-

able attempt rate estimated by our algorithm, and the penalty applied to each

client. We investigate these with the same network settings (three backlogged

stations) in two scenarios, namely all stations compliant and respectively one

of them misbehaving with a CWmin half the default value. As we show in

Figure 6.12, our estimate closely follows the actual performance attainable

by a compliant client, and consequently the penalty applied to these exhibits

only small variations above zero. To put things in perspective, we plot a 0.02
7In all experiments in this chapter, the controller adds 14% to the Virtual MAC esti-

mation. See Section 5.3.2 for the explanation of this amount.
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penalty threshold and confirm that the percentage of times the penalty applied

to compliant clients exceeds this value is zero in all scenarios.

6.4.2 Impact on Network Throughput

While the policing algorithm is designed to enforce standard compliance and

ensure the fair channel access provided by the standard, it does have a negative

effect on overall airtime utilization. In this section we study this impact and

its implications. We use the experiments presented in Figure 6.7, when a

non-compliant station uses half the standard minimum contention window.

Figure 6.11 shows the effect of policing on network utilization. It compares

two scenarios, (i) the original scenario where there is one misbehaving and 2

compliant stations, and (ii) where all three stations are compliant. As shown

in the top graph, the network throughput decreases when we begin policing

the misbehaving station, and this decrease brings it to a lower value than

when all stations behave normally. The reason is that the AP drops ACKs for

more frames as p increases, but those frames still take up channel time.

However, the middle graphs shows that compliant stations still return to what

they would get in the all-compliant case after a few iterations of the algorithm

(within 5 iterations, the error bars overlap), so this network degradation does

not impact compliant stations at all. To understand where the extra through-

put goes, note the throughput evolution of the non-compliant station in the

same graph. This station gets a penalty that reduces its throughput to a

much lower value than if it was compliant. The high penalty value helps put

the expense of lost channel time solely on the non-compliant station. There-

fore, while policing does impact network throughput, this only affects non-

compliant stations. This is why we use attempt rates instead of throughput

or successful frame count, as we discussed previously in Section 5.2.3.

6.5 Impact of Other Stations

Increased network size affects the estimate provided by the Virtual MAC as

well as the impact of non-compliant nodes on compliant ones. In the previous

chapter, we provided proof that in fact the estimate is improved as the number

of stations in the network increases. In this section we are interested in the
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Figure 6.11: The impact of policing algorithm on network throughput in prac-
tice, comparing network throughputs when non-compliant stations are present
and absent (top), throughput of a compliant client in the presence and ab-
sence of a non-complaint one (middle), and the evolution graph for p when
in the presence of a non-compliant station (bottom). The non-compliance is
question is choosing half the standard CWmin value.

105



6.5. Impact of Other Stations

impact of network size on the performance of the policing algorithm as a

whole, when the network is a mix of attackers and compliant stations.

6.5.1 Hiding in the Crowd

We now investigate whether an attacker could “hide in the crowd” as the

number of network users increases. For this purpose, we consider a network

with one non-compliant station employing a CWmin based attack and we vary

the number of compliant stations while we examine the performance of both.

In each case, all clients are backlogged and send 1,000-byte packets for a total

duration of 3 minutes. We repeat each experiment 13 times and compute again

average and 95% confidence intervals for the attempt rate and throughput

obtained by each station.

In Figure 6.13 we show the throughput and attempt rate of the attacker and

a compliant client, with a standard AP as well as with an AP executing our

algorithm. Observe that the performance of the attacker decreases as the

network size increases from 2 to 8 STAs (to be exact, from the average of 464

frames per second for the smallest network to 165 for the largest), but is always

significantly above that of a compliant client if no action is taken to counteract

the greedy behavior. In contrast, when the AP runs the policing algorithm,

the attempt rate of the attacker never exceeds that of a compliant client

(observe the overlapping lines in the top sub-figure), while their throughput

performance falls below that of compliant clients in all circumstances.

We can conclude that the network size does not impact the performance of

the policing algorithm, which effectively penalizes attackers even in denser

topologies.

6.5.2 Multiple Attackers

In what follows, we study the performance of the proposed policing algorithm

when multiple attackers are present in the WLAN. Here, we aim to understand

whether the presence of a large number of attackers could influence the penalty

update of our algorithm. We demonstrate that, despite its prevalence, such

behavior will not be regarded as compliant by the proposed policing scheme.

We use the same methodology as in the previous subsection, running 3-minute

tests for each experiment and getting 10 measurements for each case in order
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Figure 6.12: WLAN consisting of three saturated stations. The AP runs the
proposed policing scheme (α = 0.2). Time evolution of the attempt rate and
compliant rate estimate (top), and penalty applied (bottom) when all clients
are compliant (left), respectively one employs a CWmin of half the default
value.

to measure the performance of both compliant stations and attackers in terms

of attempt rate and throughput.

First let us consider the case where only one station is compliant and in-

crease the number of attackers present in the network. The results of these

experiments are depicted in Figure 6.14, where we plot the attempt rate and

throughput of the compliant station and one attacker, with and without the

policing algorithm running at the AP. We observe that also in this setting,

the policing algorithm equalizes the attempt rate of all stations while the

throughput performance attained by attackers is reduced.
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tal results.
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6.5.3 Fixed Network Size

So far we have examined the effect of increased network size, when additional

nodes are either non-compliant or compliant stations. We now take a step

closer to fully isolating the type of stations added from the network size. To

this end, we examine a network with a fixed number of clients (n = 8) and vary

the proportion of compliant and misbehaving stations. The performance of

one client within each category is shown in Figure 6.15, which further confirms

the effectiveness of our proposal in the presence of several attackers. Notice

the equalized attempt rate, and the difference (of 40 frames per second on

average) between throughputs of a compliant station and that of an attacker

when policing is applied.

6.6 Dynamic Network Conditions

We next consider two scenarios to demonstrate the effect of network dynamics

on the behavior of the policing algorithm. Our goal here is twofold: (i) verify

that our proposal adapts quickly to changes in the network topology, and (ii)

demonstrate the algorithm carries forward the penalty of selfish users when

they leave the network. The access-point runs the policing controller, for

which measurement and parameter adjustment iterations are 5 seconds apart.

In the first experiment, two compliant stations connect to the WLAN and start

transmitting to the AP at t = 0s. After 100s, a misbehaving station (S3) joins

the network, contending with a CWmin parameter half the standard value. At

t = 200s another standard-compliant station (S4) connects to the WLAN.

Finally, S3 leaves the network after transmitting for 200s and S4 disassociates

100s later.

The result of this experiment is depicted in Figure 6.16 where we plot the time

evolution of the attempt rate, throughput and penalty corresponding to each

client. We can see clearly that our algorithm quickly detects and starts pe-

nalizing the misbehaving station, equalizing the attempt rates in 5 iterations.

As the fourth client joins, our solution re-estimates the maximum achievable

attempt rate and continues penalizing the selfish user, without affecting the

performance of the new station. Lastly, as the non-compliant station leaves

the network, the penalty is preserved and carried forward to be applied when

this client reconnects. Thus we confirm that the performance of our algorithm
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Figure 6.16: Scenario 1: two compliant stations are joined by a misbehaving
one (CWmin half the default value) and subsequently by a third compliant
client. Stations S3 and S4 transmit for 200s each and then leave the network.
The AP runs the proposed policing scheme. Time evolution of the attempt
rate (top), throughput (middle) and penalty applied by the proposed policing
algorithm (bottom) for each client. Experimental data.

is not affected by network dynamics and penalties are successfully carried for-

ward.

In the second experiment, we have 3 standard-compliant stations transmitting

saturated traffic at 11 Mb/s. At time 100, station 4 associates to the network

and starts transmitting saturated traffic with half the standard contention

window. The policing algorithm adjusts the penalty accordingly to equalize
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S4’s attempt rate with the compliant value. The penalty for behaving stations

is always around zero, with little variation caused as a result of real-time

estimation. Even so, the probability is always below 0.05.

After 100 seconds of transmitting, station 4 disassociates and re-associates

with correct parameters. The penalty is maintained while this is happening

(taking about 10 seconds) and the station is still penalized even after it joins

with good behavior. But soon as the compliant behavior is observed, the

penalty is reduced to zero in a few iterations (5 to be exact). Following 100

seconds of standard behavior, the station is reconfigured again not to comply

and re-associates. Fig 6.17 shows the response of the policing algorithm to

these changes.

6.6.1 Non-compliant station with Bursty Traffic

In the experiments presented so far, all the contenders, whether compliant

or non-compliant, transmitted saturated traffic. Indeed misbehavior becomes

problematic under heavy network loads, since the performance of compliant

users suffers as a result of the gains achieved by the non-compliant clients.

However, it is also useful to verify that our algorithm can detect misbehav-

ing clients that transmit on/off (bursty) traffic, since intuitively the average

attempt rate of these might fall below the expected maximum compliant value.

We note that the robustness analysis described in Section 5.2.5.2 guarantees

that no transmission strategy can game the operation of the policing algo-

rithm, though verifying this in practice with such bursty traffic is a useful

demonstration. To this end we conducted additional experiments where a

misbehaving client alternates periodically between silent and active periods,

while sharing the network with two complaint stations. Figure 6.18 shows

results when these periods are 10s long, and Figure 6.19 shows them when

they are 20s long.

These results demonstrate that the algorithm reacts quickly to such bursty

traffic, noticing misbehavior within one iteration, and recognizing its bursty

nature with a gradually increasing p over time. Further, the selfish user does

not gain any long-term throughput advantage from employing this strategy

(i.e. the mean throughput for the misbehaving stations in these experiments

is less than that of compliant stations, as we illustrate in the middle sub-plots
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Figure 6.17: Scenario 2: the effect of changes in behavior on policing. Exper-
imental data.

with dashed lines). The results confirm that the extended policing scheme

is robust to selfish users generating bursty traffic, as the algorithm detects

rapidly their deviation from compliant behavior and penalizes them accord-

ingly.

6.7 Real Traffic

So far we have only tested the policing algorithm mostly for constant bitrate

(CBR) traffic. In this section we demonstrate the performance of the polic-

ing algorithm in more realistic scenarios. First we consider a scenario where
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Figure 6.18: WLAN with three client stations. S1 transmits on/off traffic,
alternating between silent and active periods of 10 seconds with CWmin halved.
S2 and S3 always have packets to transmit. The AP runs the proposed policing
scheme (α = 0.02). Stations’ attempt rates and the maximum achievable
compliant attempt rate as estimated by the algorithm (top), instantaneous and
average throughputs (middle), and penalties applied to each client (bottom).
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Figure 6.19: WLAN with three client stations. S1 transmits on/off traffic,
alternating between silent and active periods of 20 seconds with CWmin halved.
S2 and S3 always have packets to transmit. The AP runs the proposed policing
scheme (α = 0.02). Stations’ attempt rates and the maximum achievable
compliant attempt rate as estimated by the algorithm (top), instantaneous and
average throughputs (middle), and penalties applied to each client (bottom).
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stations upload files to a remote server, and then we consider one with mixed

traffic.

6.7.1 FTP File Upload

File upload is a good example of real uplink traffic on the Internet. It is also

a valuable test for the policing algorithm as it is a non-CBR traffic over TCP.

So, we can study the effect of policing on TCP’s congestion control. In the

following tests we have two compliant stations and one non-compliant station

which is the same network as that of the previous tests. All these stations

send a very large file to a remote server8 through FTP. We run each test 13

times and plot the results with error bars (95% confidence). Before the tests,

we pinged the server 1000 times with each station, and the average round-trip

time (RTT) was 87.3± 0.1ms for all stations, without any loss.

First we examine a mild attack by the non-compliant station, namely AIFS

= SIFS, which we know is contained at around p = 0.18 through results

presented in Figure 6.9. Figure 6.20 shows the time-evolution of attempt rate,

throughput, and ACK-dropping probability for this test. Notice that there is

no noticeable change in the performance of any of the stations, and Figures

6.9 and 6.20 are very similar. The throughputs (and attempt rates) are less

in Figure 6.20 due to the different nature of the test, which involves sending

TCP packets to a remote server, rather than CBR UDP datagrams to a nearby

host. The unchanged behavior means that the probability is low enough not

to affect TCP’s congestion control.

Next, we try a more aggressive attack, namely CWmin halved. This leads to

a higher p for the non-compliant station, and as you can see in Figure 6.21

it makes the time evolution graph quite variable. You can identify the effect

of the policing algorithm on TCP congestion control for the non-compliant

station: when the probability gets high enough, the chances of losing TCP

packets because of reaching the IEEE 802.11 retry limit increases, and once

a loss happens, we see a large drop in the throughput of the non-compliant

station. As a result, p also decreases in the next step, reducing chances of

TCP packet loss again. That is why we see an oscillatory pattern in the plots.

This pattern is even more visible in Figure 6.22. Both plot stacks contain
8annahid.com
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Figure 6.20: Time evolution of throughput, attempt rate, and penalty for a
compliant and a non-compliant station (AIFS = SIFS), all sending FTP traffic
(over TCP). Experimental results.
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averages over all runs, and although the pattern stays the same, exactly when

the packet loss occurs may differ from one test to another, and that is why we

see large error bars. To get a better view of this effect, Figure 6.23 shows a

single run that contributes to Figure 6.22. Note the large drop in throughput

(and attempt rate) whenever p reaches approximately 0.4.

To compare the performance of the network in scenarios with non-compliance,

we have also run tests in the same network where every STA complies with

the standard. Figure 6.24 shows the results. We have plotted the station

that cheats in the other tests with a different line to demonstrate that it is

neither punished, nor gets a higher throughput if it is complying with the

standard. Comparing attempt rate and throughput values in this figure with

those previously discussed, we see little to no difference between that of the

compliant station in the non-compliance scenarios and that of these stations.

To aid comprehension Figure 6.25 shows the throughput and the attempt

rate of a compliant station in all scenarios we just described. Error bars are

omitted for the compliant case so as not to make the plot too crowded. Notice

that most error bars overlap with the compliant line itself (with momentary

exceptions such as t = 30). This means that the combination of the policing

algorithm and TCP’s congestion control mechanism does not have a negative

impact on the compliant station, even with the presence of an aggressively

non-compliant station.

6.7.2 Mixed Traffic

Next, we demonstrate the performance of the policing algorithm in another

realistic scenario with heterogeneous traffic. More specifically, we consider a

network with n = 4 clients, the first one uploading a large file, the second

generating web traffic, the third streaming a video file and the last performing

a system update. All stations are standard-compliant. Our goal here is to

verify that the policing algorithm will not unnecessarily penalize compliant

clients that have higher demands and attain higher transmission rates simply

due to the reduced activity of the other contenders.

To emulate the file upload, we generate saturated traffic using iperf on the

first client. The second station establishes finite size TCP connections, alter-

nating between periods of activity, during which a 2 Mbyte file is transferred,

and silent periods exponentially distributed with mean λ−1 = 60s [142]. The
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Figure 6.21: Time evolution of throughput, attempt rate, and penalty for
a compliant and a non-compliant station (CWmin halved), all sending FTP
traffic (over TCP). Experimental results.
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Figure 6.22: Time evolution of throughput, attempt rate, and penalty for a
compliant and an aggressively non-compliant station (which sets CWmin to a
quarter of the standard value), all sending FTP traffic (over TCP). Experi-
mental data.
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Figure 6.23: Single run time evolution of throughput, attempt rate, and
penalty for a compliant and an aggressively non-compliant station (which
sets CWmin to a quarter of the standard value), all sending FTP traffic (over
TCP). Experimental data.
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Figure 6.24: Time evolution of attempt rate, throughput, and penalty when
all stations are compliant and sending FTP traffic (over TCP). Experimental
results.
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Figure 6.26: Performance under mixed traffic. Experimental data.

third station streams a MPEG-4 encoded version of “Resident Evil: Apoca-

lypse” at 1 Mb/s using the VLC media player9. To emulate the activity of

the fourth station, we use a backlogged iperf downstream session from the

AP to the client. We run this experiment for a total duration of 1 hour. In

this scenario, as the AP is always standard-compliant, we use the downstream

flow to estimate the compliant throughput.

In Figure 6.26 we plot a 30-minute snapshot of the network operation in this

experiment, showing the time evolution of the attempt rate of each client,

the throughput attained by each flow, as well as the penalty applied by our
9http://www.videolan.org/
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policing algorithm to each station. First, we observe that the penalty stays at

zero about 85%10 of the time, only with infrequent and small variations (below

0.05) above zero. Second, the medium-quality video flow sees its bandwidth

demand satisfied most of the time. Third, the bandwidth demanding upload

and download flows equally share the remaining available air time. Lastly, the

spurious web traffic experiences similar performance to that of the other data

flows whenever they are competing.

We conclude that the proposed policing algorithm does not penalize nodes

that generate more traffic than their competitors as long as they comply with

the MAC configuration defined by the IEEE 802.11 standard.

6.8 Non-ideal Channel Effects

Next we investigate the performance of our implementation under several chal-

lenging situations that occur frequently in practice. Specifically, we assess the

impact of our algorithm on rate-switching decisions taken by state-of-the-art

rate control algorithms and investigate the potential of our scheme to alleviate

unfairness issues that arise due to the PHY/MAC interactions occurring in

the presence of the capture effect.

6.8.1 Rate Adaptation

We study the behavior of a rate control algorithm executed at a greedy client

that manipulates their MAC configuration and is being penalized by our polic-

ing algorithm to counteract their misbehavior. Our goal here is to verify that

rate control (RC) algorithms will not wrongly interpret suppressed ACKs as

losses caused by poor channel conditions and thus will not trigger downgrades

of the PHY rate. This is particularly important, since unnecessarily select-

ing a lower modulation scheme can be wasteful of channel time and have a

significant impact on overall network utility [21].

Though there are many rate adaptation algorithms in the literature, mac80211

driver on Linux systems only implements Minstrel[25] and PID, with Minstrel
10This number is an average for all stations in this test. Values for individual stations

differ, with the highest belonging to the saturated station which is 36%, and the lowest
belonging to the video traffic for which the penalty is actually always 0. However, it does
not have a noticeable impact even for the station paying the highest toll, as the effect is
small and transient.
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Figure 6.27: Rate selection when policing is applied. Experimental results.

currently being the default. In our first test we consider a non-compliant sta-

tion that uses Minstrel. We examine the time evolution of the penalty applied

by the policing algorithm to the attacker, as well as the rate selected by Min-

strel during the operation of our scheme. We consider again a simple scenario

with two compliant clients and one attacker using a smaller CWmin param-

eter (see Figure 6.4). As shown in Figure 6.27, increasing the penalty does

not influence the rate selection decisions taken by the rate control algorithm,

since packets are transmitted almost always at the maximum rate (11 Mb/s)

and lower rates are only periodically sampled (approx. every 30s), with only

a couple of frames.

Further, to illustrate that the network utility is not affected when policing is
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Figure 6.28: Utility of a policed network, with and without rate control

applied, in Figure 6.28 we plot this metric for the same network configuration

when the attacker does not perform rate adaptation and respectively executes

Minstrel. Note that we compute the network utility as in [42], i.e. the sum of

the log of the individual throughputs, which is considered a good measure of

proportional fairness [46]. From the results in Figure 6.28 we conclude that,

indeed, our policing algorithm does not have a negative impact on the network

utility when clients run current rate control mechanisms.

Next we observe the impact of policing on stations’ throughputs when they

employ rate adaptation. In what follows we test the performance of stations

when they use Minstrel and PID rate adaptation algorithms. As we mentioned

earlier, these are two prominent rate adaptation algorithms in Linux drivers,

and they are the only options available in the ath5k driver. We use the same

scenario described above, and run the tests for 180 seconds. For each test, all

stations use the same rate adaptation algorithm.

Figure 6.29 summarizes the performance of the non-compliant station for each

rate selection strategy. You can see in the figure that when rate adaptation

is employed, lower ACK-dropping probability is enough to bring back the

station’s attempt rate to that of a compliant station. Also, the converged

throughput is larger as a result, which means that less channel time is wasted.

Figure 6.30 shows the performance of a behaving station in the same set of

tests. As shown in the figure, there is little to no difference in the performance
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Figure 6.29: Performance impact of the policing algorithm on the non-
compliant station when all stations employ rate adaptation algorithms. There
is one non-compliant station (CWmin halved) and two well-behaved stations
in this network. Experimental results.
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Figure 6.30: Performance impact of the policing algorithm on a behaving
station when all stations employ rate adaptation algorithms. There is one
non-compliant station (CWmin halved) and two well-behaved stations in this
network. Experimental results.
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Figure 6.31: Performance under capture effect. Experimental results.

of the compliant station with any rate selection strategy.

6.8.2 Capture Effect

Next we investigate a scenario where all stations obey the standard specifica-

tion, but experience different performance due to their placement relative to

the AP. Specifically, we are interested in checking whether our policing scheme

can improve fairness when a client that is located closer to the AP captures

the channel while transmitting simultaneously with stations that reside far-

ther away. This effect is frequently encountered in practical deployments and

may cause significant unfairness, as already documented in e.g. [143, 144].

For this purpose, we examine the performance of a network with three com-

pliant stations again, but this time with one station (S1) located next to the
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AP. As shown in the top plot of Figure 6.31, in this scenario an AP that

does not perform policing will take no action to correct the distribution of the

throughput among contenders. Thus S1 achieves significantly better perfor-

mance than the other two clients. On the other hand, when the AP executes

our policing algorithm, the attempt rate of the node positioned near the AP

is reduced and consequently all stations attain nearly identical throughputs.

Note that this correction comes at no network utility cost, as we show in the

lower plot of Figure 6.31.

We conclude that, though not designed to do so, the proposed extended polic-

ing algorithm not only combats MAC misbehavior, but can also be used to

mitigate unfairness that arises in real deployments due to the PHY/MAC

interactions.

6.9 Conclusions

In this chapter we implemented the policing algorithm and the Virtual MAC

estimator on off-the-shelf hardware and demonstrated the effectiveness of

policing by conducting experiments in a real network over a wide range of

scenarios. The results of these experiments show that our policing algorithm

drives non-compliant users into compliant operation, regardless of the type of

attacks employed (among those considered in this study), and does not penal-

ize compliant users that consume more airtime than lightly-loaded stations.

Additionally, the results showed that our proposal has no negative impact on

common rate control algorithms, and can also alleviate unfairness incurred by

the capture effect.
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CHAPTER 7
Conclusions

In this chapter, we review and summarize the work presented in this thesis, draw

conclusions out of our analysis, and give recommendations for possible extensions

to this work.

7.1 Summary and Conclusions

As we discussed in Chapter 1, the wireless medium is not always as predictable

and easily examined as in simulations or analytical models. This makes ex-

perimental analysis difficult and time-consuming. In Chapter 4 we introduced

tools and methods that can facilitate this process. We provided an overview of

the Broadcom BCM43xx chipset architecture. We introduced the firmware as

a special-purpose piece of software that runs on the wireless adapter. We in-

troduced the assembly language used in the firmware of Broadcom devices and

concepts such as Template RAM and shared memory. Then we talked about

the driver and how it works and how it interacts with the device. Finally, we

described how we split the workload between the driver and the firmware.

The most important theoretical contribution of this thesis is the analysis and

amendment of the policing algorithm introduced in [6]. The IEEE 802.11 stan-

dard leaves room for stations to abuse the back-off mechanism to gain more

channel time and this causes compliant stations to have less. In Chapter 5 we

introduced said policing algorithm. Although the original algorithm detects
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such misbehaving stations and penalizes them proportionately, it does have

some shortcomings as mentioned before:

1. It does not provide a mechanism to estimate the throughput of a com-

pliant station, which is required in the policing controller.

2. The amount of penalty applied to a non-compliant station is enough to

equalize throughputs, but not to compensate for the network degrada-

tion induced by the non-compliance and the policing.

3. It is prone to gaming, and a station that is aware of the algorithm can

still choose a winning strategy using bursty traffic.

In this work we amend the algorithm to be more robust and effective, and

create an estimator for the compliant throughput. The new algorithm is ro-

bust to non-compliant stations trying to game it, and the estimator provides

sensible values in various scenarios that we have tested, regardless of the net-

work topology and configuration. These are proven both theoretically, and

through experiments on real hardware for various scenarios, including with

realistic network traffic (video transmission, TCP file download, etc). These

experiments and their results were presented in Chapter 6.

While the amended algorithm works for all scenarios conducted in IEEE

802.11b/g/a, this is not always the case. There are attacks that are immune

to this scheme, and there are later IEEE 802.11 amendments that mitigate its

effectiveness. Jamming attacks are examples of attacks that are immune. The

AP will not notice the misbehavior if the station uses correct EDCA parame-

ter, but jams control frames to buy time. Another example is packet forging

attacks, which is overlooked by the policing algorithm. Furthermore, the polic-

ing algorithm neither targets nor is effective against attacks that aim only to

degrade network performance without an intended gain for the attacker.

As for IEEE 802.11 amendments, service differentiation is one example that

can invalidate the policing algorithm as it stands in this thesis. However,

in Section 5.3.3 we described how it can be adapted to EDCA. Adapting it

to newer features can be more complicated. Examples are No ACK, Block

ACKs, and Direct Link Setup. Trying to make the policing algorithm work
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alongside these features will often mean canceling the performance benefit of

the features, or using complicated hardware-level measurements or unneces-

sary message-passing between nodes. So, while the algorithm can be amended

for a marginal benefit in modern IEEE 802.11 networks, it is not applicable

to those networks as it currently stands.

Rate adaptation is another potential source of problems for the policing al-

gorithm. Although we showed through experiments that the most common

rate adaptation algorithms will not get a negative impact by the policing al-

gorithm, we know that older algorithms such as AMRR that rely solely on

retries will perform poorly under policing.

During the course of this work, we learned that although experiments can be

very quick to perform in an ideal environment and they are helpful in validat-

ing algorithms and ideas, they can be very time-consuming when it comes to

debugging. A great portion of our time was always spent on debugging our

testbeds and figuring out causes of problems and unexpected behavior of the

network. The diagnostic tool was an attempt to help reduce this time and

bring focus to what’s more important, which is the validation process.

We also discovered that while current off-the-shelf wireless hardware can be

reprogrammed and ideas can be implemented on them, there has not been

enough interest in highlighting these capabilities. There are valuable works

like [125] and [126] that try to develop this idea, but it is still unknown for

many in the areas of research and development. This is partly because of

insufficient publicly available documentation. We hope Chapter 4 helps to

redress this lack of documentation.

7.2 Future Works

The present work opens the path to wider experimentation with Wi-Fi hard-

ware. As for the policing algorithm itself, we mentioned how it could possibly

be adapted to work alongside some of the new IEEE 802.11 features. Imple-

menting those changes could also be interesting, and keep the policing algo-

rithm relevant in the continuously evolving world of wireless communication.

With the power to modify the behavior of IEEE 802.11 wireless cards, not only

we are able to make changes to the state machine, as we did in Chapter 6, but
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we can also implement and test other protocols. An example of protocols that

can be conformed to wireless adapters is the power-line communication (PLC)

using the IEEE 1901 protocol[145]. PLC devices are used to carry network

traffic over the conductors used for electric power distribution. The benefit of

using these devices is that the existing electric backbone of a residence can be

used for setting up a network, rather than setting up new cables and switches.

The MAC protocol in IEEE 1901 is in fact very similar to that of IEEE 802.11,

with the exceptional of a counter called the “deferral counter” (see [146]). This

counter works as an extra collision avoidance measure, as collisions are more

costly in PLC. We have implemented the PLC MAC protocol on Broadcom

wireless devices. However, to see the real effect of the extra measures, we need

a relatively large testbed, which carries its own challenges on the inherently

noisy wireless medium.

Another interesting concept that can be implemented on a real testbed is

collision-free medium access. The idea of a distributed, collision-free MAC

protocol have been studied in [147], [148] (Learning BEB), and [149] (Learning

MAC). Learning BEB is a decentralized algorithm that stations in a wireless

network employ to pick time slots. Once a station finds a free time slot it

always transmits in that slot. This scheme replaces the random backoff used

in DCF. Learning MAC is an algorithm built on the same idea, with enhance-

ments on how it handles collisions. In [149] they prove that their method con-

verges if the number of stations is not too large, and achieves better network

throughput. We have a current implementation of the Learning MAC, which,

however, falls short on throughput expectations. With background noise and

internal delays of the wireless adapter, the desired goal is not achieved on our

testbed. A complete implementation could prove the concept practical as well

as efficient.

There are also other works whose implementation should be possible using

techniques we discussed in this manuscript, and we would like to evaluate

their behavior on a real testbed. Examples of such works include: [111],

where they use ACK-dropping to provide throughput guarantees to EDCA

stations in a network where legacy DCF stations also contend; [27], where

they attack the exposed node problem (see Section 2.6.3 using an algorithm

that allows concurrent transmissions when possible; and [138], where they

propose a scheme named DCF+ to enhance the performance of TCP over
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WLAN.

Apart from evaluation of algorithms, the flexibility provided by open-source

driver and firmware can be further cultivated for next-generation wireless

hardware that is easily and perhaps visually programmable without much

knowledge of assembly or driver programming. [126] is a significant step to-

wards this end. With such frameworks, researchers can easily create new MAC

protocol ideas and put them to practice and even competition with existing

or other MAC protocols.
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APPENDIX A
Designing a Diagnostic Tool for

IEEE 802.11 MAC

Experimental assessment has been an important part of IEEE 802.11 research,

however measuring the detailed behavior of the medium and hardware has been

challenging. A diagnostic tool for IEEE 802.11-based WLANs is designed in this

appendix, which helps developers and researchers monitor and analyze the wireless

signals and details such as backoff distribution in a user-friendly environment. This

tool is much cheaper and easier to use than existing tools, and provides more flex-

ibility by allowing users to add functionality. We then use WiFo to study several

aspects of some off-the-shelf hardware and their corresponding software drivers, and

show some interesting results regarding how they apply standard specifications.

A.1 Introduction

With ever increasing interest in WLANs, researchers have been trying to

improve current protocols (such as IEEE 802.11) in terms of performance

[149, 148, 150], security [151, 144], and scalability [152]. Mathematical anal-

ysis and simulations are common ways of evaluating new methods [95, 27].

The final step in evaluating a new method is putting it in practice on a real

network, which is what we have been discussing in this thesis.
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In order to implement and experiment with something on a wireless medium,

we need to understand the medium itself. Although protocol descriptions are

available in detail [5, 10, 11, 133, 12, 22, 13] and we can know what “should”

happen on the wireless medium per protocol, in most cases that is not exactly

what happens. Sometimes this is due to the implementational flexibilities

provided by the standard, and other times it is beyond those flexibilities and

we have deviations from standard. Even if we assume all wireless hardware

behaves exactly as the standards suggest, we still have other factors that

interfere with our expected results in an experiment. We discussed some of

these in Section 2.6. Besides, the truth is that our first assumption is also

wrong and many devices do not completely follow the standard [72].

In order to have controlled experiments, we need to know the hardware we

use and also channel conditions beforehand. For example, if a wireless device

has an unexpectedly high saturation throughput, we can infer that it is not

following the standard.1 However, without better diagnostics we cannot know

for sure which part of the standard is not being followed. It could be an

abuse of TXOP, or using a small contention window. This gets worse if it

is having an unexpectedly low throughput, as it can either be a hardware

failure, a protocol adoption error, channel interference, or something else. In

order to find out which one is the case, we need more information than just

the throughput. In order to identify the underlying problem, we need more

information.

One device that is designed for detailed analysis of the wireless medium is

a spectrum analyzer. A spectrum analyzer measures the magnitude of an

input signal versus frequency within its frequency range. By analyzing the

spectra of electrical signals, dominant frequency, power, distortion, harmonics,

bandwidth, and other spectral components of a signal can be observed that

are not easily detectable in time domain waveforms. Spectrum analyzers are

particularly useful for understanding the physical (PHY) layer of a transmitter

or receiver, such as power levels, distortion and interference. Some spectrum

analyzers even come with add-ons that characterize PHY symbols or packets.

Figure A.1 shows a spectrum analyzer.

We can use a spectrum analyzer to observe the IEEE 802.11 medium by simply
1This was discussed in greater detail in Chapter 2.
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Figure A.1: Spectrum analyzer

adjusting the frequency range to that of the specific channel we would like to

study. In Figure A.2 we have done this for Wi-Fi channel 14 while one station

transmits saturated traffic to an access point (AP) in this channel. The first

plot shows the maximum, minimum and current power observed, and the Wi-

Fi channel is clearly visible within the bump in the blue line that shows peak

power per frequency. The spectrum analyzer can also give us the changes in

power over a period of time using “zero span” mode. With zero span, we can

actually understand temporal aspects of the channel. Figure A.3a and A.3b

are snapshots from a spectrum analyzer screen on zero span mode while Wi-Fi

traffic is ongoing on channel 14.

While we can observe traffic using a spectrum analyzer, and it provides a num-

ber of ways to process the observed data, there are some downsides, including

financial cost. A spectrum analyzer is a versatile but relatively expensive de-

vice, and thus the expense may not be justified for a group developing Wi-Fi

drivers or analyzing some performance anomaly. In addition, because it is a

general-purpose device, many 802.11 properties are not recognized by a typi-

cal spectrum analyzer, or are only understood by specialist add-on packages.

When we study IEEE 802.11, we are often interested in things like backoff

period, throughput and transmission time. We often need to have numerous

samples in order to understand the stochastic behavior of the Wi-Fi MAC

and PHY. Although there are ways to export spectrum data using a spectrum
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Figure A.2: One station transmitting saturated traffic on channel 14 (center
frequency 2.484 GHz). Blue indicates peak power, black corresponds to the
minimum received power, and green is current status of the spectrum.

(a) A single beacon (b) Successful frame transmission and
ACK

Figure A.3: Spectrum analyzer: 44 MHz frequency span for (a), and zero span
for (b) and (c).

analyzer and process it later on a computer, the whole process is often not

easily automated or tailored to those studying Wi-Fi, and so experiments can

be difficult without human interaction.
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In this appendix we provide a solution that addresses both these problems

which are inherent in using a spectrum analyzer. While a spectrum analyzer

receives, digests and displays electronic signals, a cheap off-the-shelf wireless

adapter also receives all those signals, but it then uses them to provide data

transmission and reception over the medium. We leverage the fact that all

wireless adapters have the means of sensing the medium to make a test tool.

This feature of the hardware has been used before, for example to implement

spectrum sensing for cognitive radio [118] or to detect non-Wi-Fi sources of

interference [119].

We use carrier sensing of off-the-shelf wireless hardware in a different way;

rather than using data collected from the medium for one particular purpose,

we aim to export it to the application layer, where it can be analyzed using

high level tools. Works such as [72], where the study of existing wireless

hardware or software is intended or required, emphasize the need for the tool

we present.

We discussed OpenFWWF [67] in detail in Chapter 4. With the flexibility

provided by this open-source firmware, we use a Broadcom wireless adapter

to create an inexpensive tool for researchers and developers to study IEEE

802.11. What we want to develop is a tool that can monitor Wi-Fi traffic

and provide a visual representation of the received data, as well as statistical

studies on transmitted frames. The tool will sit just above the PHY layer and

focus on the interaction of PHY and MAC layers. Additional functionality

can also be introduced to the system through a plugin system.

A.2 Design and Architecture

This section covers implementation details of our wireless diagnostic tool.

As we mentioned before, we use a commercial off-the-shelf wireless adapter

to monitor the medium. To allow greater flexibility in the processing and

visualization, we transfer the data from the monitoring host using a small

TCP-based server to a front-end host. This separation of monitoring and

front-end hosts allows us to install the monitor on a small device, such as

a Soekris net4801 [153], while using a higher-powered device for storage and

visualization. Our front-end visualizes the data and allows the user to analyze

and study the data. Figure A.4 depicts the building blocks of our system. We
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Figure A.4: Simple architecture diagram of the diagnostic tool

Bit Meaning
15 Flip to 1 when time reserved for receiving PLCP has passed
11 Flip to 1 when RX’ing or TX’ing (same time receiver flips on, may 1µs after transmitter flips on)
10 Flip to 1 when RX’ing or TX’ing (same time receiver or transmitter flips on)
9 Flip to 1 when receiver has started decoding
8 Flip to 1 when transmitter is working
7 Flip to 1 when backoff is zero
4 Flip to 1 when time reserved for receiving MPDU has passed
3 Flip to 1 when channel is sensed free (phy+nav) for more than two slots
2 Flip to 1 when channel is sensed free (phy+nav) for more than one slot
1 Flip to 1 when channel is sensed free (physically)
0 Flip to 1 when channel is sensed free (virtually through NAV)

Table A.1: Important bits of the “IFS Status” register and their meanings

will discuss the different parts of this diagram in this section.

A.2.1 Firmware and Driver Modifications

The firmware is the software running directly on the chipset and the first layer

above the hardware. Signals from the medium are translated into a digital

representation and digested by different chips, the results of which are then

fed to the firmware. Unfortunately we do not have full access to the raw data

as we do using a spectrum analyzer. However, what we do receive from the

chipset is enough to observe what is happening on the channel. What we use

here is a set of flags stored in a register named the “IFS Status” register [128],

which holds current status information about the channel. Some of the most

important flags are listed in Table A.1. Using these indicators we can pretty

much know what is happening on the channel. As you can see we can know

when the card begins sending or receiving, and we can capture the occurrence

of several important timeouts.
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Given the completeness of the information on the IFS Status register, all we

have to do is to record its value over time and base our analysis on flips of the

flags. That is the fundamental idea of our implementation. As we mentioned

in previous chapters, we have about 4KB of shared memory, most of which is

unused by the normal workflow of the firmware. We use the available memory

in the form of a ring buffer, and whenever at least one bit of IFS Status flips,

we save its value along with a timestamp. Note that we only save a new record

whenever there is a change as this saves space compared to periodic recording.

One might ask where this procedure is actually inserted into the firmware.

Figure A.5 (a) shows the basic state machine of the OpenFWWF. Event han-

dling in this architecture is not interrupt-based and the firmware continuously

checks for events and handles them accordingly. Whenever there is no event,

the firmware calls a nap instruction to sleep for a short while as a power saving

measure, and then continues. This is the best place to insert any repeated

code. Figure A.5 (b) shows how we place our code. We simply replace the

nap instruction with our code. This is exactly what we did for the policing

algorithm in Chapter 5 as well.

There is a barrier to our approach, and that is memory limitation. The times-

tamp we use is 32 bits in size, filled with the least significant bits of the card’s

current TSF timer. With the register itself being 16 bits in size, 48 bits (6

bytes) are used per record. Even if we could use the whole shared memory,

we could only store 667 records, which is a very small number. A single frame

can trigger multiple bits of the register during its timespan. Some bits such

as bit 8 and bit 11 can be flipped 1µs apart from each other, which increases

the possible number of events per unit time. Moreover, the shared memory

is not completely free and putting aside the memory used for the firmware’s

normal workflow, we are left with space sufficient to accommodate only about

250 records. One solution is to mask out redundant flags and thus reduce the

number of triggered events. We couple this solution with the greater resources

available to the driver to get the most out of the information available to the

firmware.

The driver was discussed before in Chapter 4. The amount of memory avail-

able to the driver is usually much larger than the firmware as it is running

on the host machine which has more resources. Another useful feature of the

144



A.2. Design and Architecture

Figure A.5: Simple flowchart showing (a) the main loop of the OpenFWWF
state machine, and (b) our modification for the diagnostic tool.

b43 driver is that it can do periodic work at relatively small intervals. We

use these in our advantage. In our implementation, we allocate a large ring

buffer in the driver, which can hold 10 times as many records as the firmware

can hold. We then read the shared memory periodically and add new records

to the ring buffer on the driver’s side. The period is chosen so every record

on the shared memory ring buffer can be read before it is overwritten. In our

experiments with saturated traffic, this proves to be 25ms; anything less than

this period will frequently read redundant information, and longer periods

might lead to loss of information.

A.2.2 DebugFS and Socket Server

The next building block of our diagnostic tool is a socket server. While we

are collecting state information from the wireless adapter, we want to let

external clients access this information. The main problem here is accessing

the information saved by the driver, which is located in the kernel memory,

from the user space. Fortunately Linux kernel provides us with a tool named

debugfs. It is a special file system that facilitates access to the kernel space,
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Function Application
debugfs_create_dir Create a directory or subdirectory in DebugFS
debugfs_create_u8 Create a file representing an 8-bit unsigned integer
debugfs_create_u16 Create a file representing an 16-bit unsigned integer
debugfs_create_u32 Create a file representing an 32-bit unsigned integer
debugfs_create_u64 Create a file representing an 64-bit unsigned integer
debugfs_create_bool Create a file representing a boolean variable
debugfs_create_blob Create a file representing an arbitrary-sized block
debugfs_rename Rename a file within the file system
debugfs_remove Remove a previously created DebugFS file
debugfs_remove_recursive Remove a DebugFS file and its subfiles

Table A.2: DebugFS API functions

and it is included in Linux kernel version 2.6.10-rc3 and higher. The main

purpose of DebugFS is debugging Linux modules, however, it is suitable for

our software solution.

Before we get to our specific application of DebugFS, we briefly discuss how

it works. This file system can be set up using a simple Linux command2. The

mounted file system is a form of RAM drive. Files in this RAM drive point

to pieces of kernel memory, and can be read or written into based on their

permissions. Drivers and modules that need debugging create directories and

files using the DebugFS programming interface, and provide pointer and per-

mission information for them. Table A.2 shows the most important functions

in the API. Beside name and destination information, all debugfs_create_

functions take permission information and those that create files take also a

pointer to the data that will be accessed through the file. This can simply be

a pointer to a global integer variable for a u32 file, or to a structure or array

for a blob file.3

General memory management rules should be taken into consideration, as De-

bugFS files will not provide access to anything other than what is explicitly

assigned to them. For example, a multi-dimensional array could cause a prob-

lem, as each of the arrays corresponding to its second dimension are separate

pieces of memory, not addressed by the file. A more obvious mistake is the

use of local variables for DebugFS files. Pointers to these variables are stack

pointers and will become invalid once their scope is removed from the stack.
2mount -t debugfs none /sys/kernel/debug
3 Blob files can have arbitrary sizes and their size should be declared when creating the

file. This is done by passing a debugfs_blob_wrapper structure to the debugfs_create_blob

function, which contains data size and a pointer to the actual data block.
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Once files are created with persistent data pointers and sufficient access per-

missions, they can be treated as ordinary files from the user space. A u32

file will simply be a file with 4 bytes in size, containing a 32-bit integer. The

contents of this file constantly changes as the variable it points to changes

value in the kernel space.

We use a DebugFS blob to collect state information from the driver. We

mentioned earlier that we collectively store firmware state information in a

large ring buffer in the driver. This array is large enough to keep up with the

overwriting speed of the firmware ring buffer. However it is not, and need not

be, large enough to keep a full history. We choose to bring more work to the

user space, so we do not keep and export the entire history from the driver.

Instead, we design our server application so it dumps the exported information

periodically and leaves room for more information on the ring buffer.

Exporting the information to user space is our next step. The only change we

make on the driver side to do this is to create a DebugFS blob file that points

to the ring buffer array. On the application side, we read the whole array

from this file at an interval slightly less than it takes the driver to fill the ring

buffer and begin overwriting. For instance, we use 200ms for the driver we

described before, as it normally fills the DebugFS blob in 10 iterations (i.e.

250ms). This is to avoid missing data due to processing delays. Old items in

the array can be identified via each record’s TSF timestamp, allowing us to

remove items that are read twice.

The server application does not keep newly read items. It listens on a TCP

socket for incoming connections. Once a client application connects, it flushes

the data to the client over the network on each DebugFS read. The system

we described up to here can join the wireless adapter on a Linux box to a

sophisticated client on a PC or any other processing agent.

A.2.3 Front-end

A.2.3.1 Main Graphical Interface

In the previous subsection we discussed how a small server solution relays a

wireless card’s internal state information to an external client. The client we

use to receive this data is a graphical client named WiFo, which is developed

using the .NET framework, and typically runs on a Windows PC. It connects
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Figure A.6: Screenshots from the diagnostic tool’s front-end (WiFo).

to the server and displays the data it receives from it. Figure A.6 shows a few

screenshots from this application.

At its most basic state, you can use boolean expressions to monitor different

status bits as the wireless card works. These are displayed on a live chart called

the timeline. By choosing a suitable combination of bits to be displayed on

the timeline you can recognize frames, ACKs, and other activities that take

place on the channel. Figure A.7 shows the timeline. In this example we

have chosen bit 9 (RX engine busy status), the complement of bit 1 (which

corresponds to PHY busy status), and bit 8 (TX engine busy status). The

black line here represents bit 9. Therefore bumps on the black line represent
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Figure A.7: Transmission of a few packets captured on WiFo. The bottom,
middle, and top curves show busy status for the RX engine, the medium
(PHY), and the TX engine respectively.

frame transmissions. The diagnostic tool in this figure runs on the AP. This

suggests that bit 8 would be flipped on ACK or beacon transmissions. The

red line in the same image shows bit 8’s changes. As the figure shows, after

each black period we have a short period where the red line is up. The

duration of this flip is exactly the duration of an ACK, which confirms an

ACK transmission.

An interesting fact is visible in Figure A.7, and that is a limitation of the

system. One would expect to see SIFS periods on the blue line as it captures

PHY busy status, and PHY is idle during SIFS. Curiously we only see this

period only once in this figure, and it is for the first frame. The reason for this

lies in firmware operation. As we discussed in Section A.2.1 and as depicted

in Figure A.5, the firmware on the wireless chipset is constantly performing

its normal IEEE 802.11 operation and the monitoring work is an additional

task. The normal operation of the card requires it to sometimes halt until a

certain even occurs. Scanning the firmware code, we often find code snippets

whose only purpose is to delay the state machine. Listing A.1 is an example

of such code. These delays, along with delays associated with the additional

code, may sometimes cause a delayed capture of specific events. In some cases

these events might be so quick that we might just miss them. We believe this

is the reason why the SIFS period is missing from the timeline.

Listing A.1: A delay loop in OpenFWWF

add SPR_TSF_WORD0 , 16, GP_REG5

tx_frame_wait_16us :
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jext COND_TX_DONE , state_machine_idle

jne SPR_TSF_WORD0 , GP_REG5 , tx_frame_wait_16us

While these delays do not impair our debugging capabilities, but their effect

on the monitoring work can be mitigated by checking the IFS Status update

within each of these loops, depending on how precise we want our event cap-

turing to be. For normal studies such as those we do in this chapter, it is not

necessary to complicate the firmware code by running our code in any other

place than the idle state.

The diagnostic tool’s front-end can also measure time distance between two

events (top image in Figure A.6) to help you to further determine the nature

of those events, or mark a larger time frame to perform automated studies.

The application holds a full history of the data from the time it connects to

the server. This combined with zooming and panning functionalities help you

get various statistical data over large periods of time. The downside is that

this will require sufficient memory on the host machine. But since the client

is a separate piece of software, we can run it on a powerful machine. The

backup solution is to purge relatively old historical data periodically, which

the software does if it is short on memory.

A.2.3.2 Additional Functionality

Additional functionality can be added to WiFo through a plugin system with

APIs for both .NET Framework and Python. Placing a .NET class library or

a Python script in WiFo’s extensions directory will automatically activate it

on start-up. Extension developers do not need to worry about collection of

data, as it is passed in an accessible data structure to an extension; this is a

special-purpose enumerable list in .NET, and a list in Python. Each extension

can have its own settings and output formats, which can be integrated into

the user interface through the API.

There are currently two types of extensions. Studies are extensions that take

a subset of the data identified by a time range and produce results. These

results can be of any type and the API provides a flexible format to display

results. The bottom image in Figure A.6 shows an example of results produced

by a study. Results in the form of a plot can easily be displayed through the

API.
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Listings A.2 and A.3 show a very basic study extension written using the two

available APIs. It simply asks for an index from the user and shows the details

of the status record at that index. Figure A.8 shows the resulting GUI.

Listing A.2: C# for the ‘SimpleStudy’ extension

public class SimpleStudy : IStudy

{

[ Browsable ( false )]

public string DisplayName

{

get { return " Simple Study "; }

}

[ Browsable ( false )]

public string Author

{

get { return " Hessan Feghhi "; }

}

public void Perform ( RecordList records , IWiFoContext wifo )

{

int? i = wifo . AskInt (" Enter a record number ", 0);

if (i != null )

wifo . ShowResults (" Record Information ",

records [( int)i]);

}

}

Listing A.3: Python code for the ‘SimpleStudy’ extension

def displayname ():

return ’Simple Study ’

def author ():

return ’Hessan Feghhi ’

def perform ():

i = wifo . askint (" Enter a record number ")

if not i:

return

results = {}

results [’Time ’] = wifo .data [i]. time

results [’State ’] = wifo .data [i]. state

wifo . dictbox ( results )
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Figure A.8: Example of a result displayed by the ‘SimpleStudy’ plugin

Timeline view extensions are replacements for the original timeline view. They

have access to the graphics canvas of the timeline and the state information,

and they can offer a different representation of the existing data, or combine

it with external data sources to give more insight. For performance reasons,

the API for timeline views is currently only available for .NET Framework.

WiFo provides some default extensions, including packet recognition and an

inter-frame space (IFS) distribution calculator. The former simply uses the

state information to count packets in a given time frame and provides statistics

(e.g., bottom image in Figure A.6). The latter generates a bar plot for the

distribution of the inter-frame space (e.g. Figure A.13). We will discuss

these plots in detail in Section A.4. For example, recognizing successfully-

received packets is performed by scanning through all records and looking for

the following pattern:

1. RX engine becomes busy for longer than 192µs

2. RX engine becomes idle

3. TX engine becomes busy after 10µs

4. TX engine becomes idle (after an ACK duration)

This pattern represents the transmission and acknowledgement of a single

frame if WiFo’s back-end runs on the receiving access point. For other receive

cases, the final two steps examine the RX bit. In practice, WiFo checks both

cases. Note also that these two steps will also be absent if the frame is not

acknowledged. The inter-frame space can be calculated as the time difference
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from one match of this pattern to the next. Starting from the first two, the

time differences between the above steps correspond to frame duration, SIFS

and ACK duration respectively.

A.2.4 Linking to PCAP Data

When studying network information, tools such as tcpdump are invaluable.

These tools monitor the medium through a network adapter and capture

frames as they are observed. The type and important parts of every frame are

recorded and can later be filtered and studied.

There are differences between traffic capturing software and our diagnostic

tool. One of the differences is that tools like tcpdump only capture frames

that are transmitted successfully or at least key parts of which can be decoded.

Our system on the other hand captures every activity on the channel, whether

or not it is a successful frame. Even the noise from a microwave oven (MWO)

can be seen using our tool as it triggers the decoder on the wireless adapter

(see Section A.3.3).

Another important difference between our diagnostic tool and capturing tools,

which is a disadvantage of ours, is that our tool only sees state changes. While

this information is enough for determining where packets are situated on the

timeline, it cannot tell us who each packet belongs to and who it is destined

to. This makes our system less useful if the network has multiple stations.

On the contrary, capturing software does give us this extra information along

with everything else we need to know about the packets. We can even set

them to record full-sized packets so we can read application-level data as well.

If we use radiotap headers, we can access further information such as receiver

power levels and modulation.

Each of these systems have their own advantages as we discussed. With the

positive aspects of both put together, we can have a complete debugging tool

that can observe every aspect of the medium. That is what we do in our final

system. Tools like tcpdump and tshark save captured data in a common format

called PCAP. There are APIs available in almost every programming language

to read from and write to this format. We use the API for .NET Framework4

to develop a PCAP extension for the system. This extension displays the
4SharpPCAP/PacketDotNet
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PCAP information on the timeline, by aligning TSF and timestamp values. 5

This helps verify frame transmissions and have extra information to perform

further analysis.

PCAP data used in our tool can come from any source and we usually use

a second wireless adapter on the same machine as our main wireless receiver

just to capture. The reason why we do not use the same card for both tasks is

that our open-source firmware does not provide promiscuous mode, which is

a requirement for capturing network packets. This also avoids burdening the

firmware with additional work, which might result in missing more events.

A.3 Validation

Before we begin debugging wireless adapters, we need to make sure our system

is robust and captures IEEE 802.11 signals correctly. We can examine many

aspects of the system. In this section we present the most important validation

tests we performed on our system.

A.3.1 TX Duration

One of the fundamental aspects of the system is the timing of flag changes,

the correctness of which is crucial to any application of the diagnostic tool. To

this end, we verify the effect of varying frame sizes on the observed duration

of their transmission. We run a series of tests with different payload sizes,

from 100 bytes to 1400 bytes (with granularity of 100 bytes). The diagnos-

tic tool measures the duration of frames by using the pattern described in

Section A.2.3 and measuring the time the RX engine remains busy for that

frame.

We use saturated UDP traffic at 11Mb/s for all tests, and for each payload

size we average transmission duration over 2500 frames. We use long preamble

in these tests (192µs PLCP). We also calculate the expected duration D(l)

for each payload size l as

D(l) = dP LCP + df (l). (A.1)
5BCM43xx chipset internally uses a TSF timer that is never synchronized with the

network. Instead, a register keeps the difference between the internal and network TSF, the
value of which is updated each time a beacon is received. We use this value to align signal
records, which hold the internal TSF, with TSF values from PCAP data.
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where dP LCP = 192µs is the duration of the preamble and the PLCP header

and df (l) is the time required to transmit the payload and protocol headers

associated with different layers, which is calculated as

df (l) =
8(l + lH,LLC + lH,IP + lH,UDP + lH,802.11 + lF CS)

r
.

Here lH,x is the length of the header associated with layer x, lF CS is the length

of the FCS, all in bytes, and r is the data rate used to transmit the frame.

For example, for a payload size of 1000 and with our experiment settings,

df (1000) = 8(1000+4+20+8+30+4)
11×106 ≈ 7.75× 10−4s. Further, this translates to the

following for D(l) in microseconds:

D(l) = 240 + 0.727l. (A.2)

Figure A.9 shows average durations as observed by the AP as well as the

calculated expected duration for each payload size. In fact, the measured

packet lengths are tightly clustered around the mean, with variations of only

a single microsecond. As shown in the figure, the expected and observed

values closely match. Fitting a straight line through measured data gives us

the following for D(l):

238.055 + 0.725l.

which is very close to (A.2). Slight changes are expected given firmware delays.

This verifies the system’s pattern matching capabilities and the timeliness of

flag changes.

A.3.2 Throughput

Throughput is an important metric for IEEE 802.11 networks, as it can be an

indicator of different network aspects such as performance and fairness. For

this reason, it is important for our diagnostic tool to identify all transmitted

frames and to measure network throughput correctly.

To validate the diagnostic tool’s throughput calculation, we run a fresh test

on the same network as previously described, but this time we do not use

saturated traffic. Instead, we run a single UDP flow with PHY data rate of

11Mb/s with payload size of 1400 bytes for each frame for 30 seconds, and

have the tool calculate the throughput. We use a arrival rate of 100 packets/s
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Figure A.9: Duration with increasing payload size.

for the first test, and for each subsequent test we increase the arrival rate, up

to 800 packets/s.

The expected throughput is calculated simply by multiplying the transmission

rate by the payload size. However, rate should not exceed the saturation

throughput. We calculate saturation throughput S as

S =
1

D(l) + DSIF S + DACK + DDIF S + Dbo

=
1

Dt

, (A.3)

where D(l) comes from (A.1), DACK is the duration of the ACK, Dbo is the

average backoff duration, and DDIF S is the duration of DIFS (50µs). Dt is

used to denote the total duration of a successful frame transmission, including

its ACK and average backoff. We will be using this notation later. Also,

note that in our experiments we use a fixed packet size l and hence D(l) is a

constant.

Figure A.10 depicts the observed and expected throughput values. As you can

see, the two values match closely; and the small difference after saturation

may be explained by the backoff behavior of the chipset as we will discuss

in Section A.4. The reason this difference does not exist before saturation is

that packet inter-arrival times are usually larger than the maximum backoff,

eliminating the effect of the backoff mechanism.
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Figure A.10: Throughput with increasing packet-arrival rate.

A.3.3 Microwave Interference

In this section we show that we can see microwave interference using our tool.

To demonstrate this, we test two scenarios on a channel where only the AP

transmits beacons and there are no other stations or any interference from

other Wi-Fi networks. In our first test we use a microwave oven to introduce

interference, and for the second test we turn it off. Note, the interference

generated by the oven is bursty. The top image in Figure A.11 shows a single

microwave oven burst captured by a spectrum analyzer. The duration of this

pattern is approximately 8ms and it is repeated at intervals of about 20ms

(see bottom Figure A.11), which is related to the mains frequency of 50Hz.6

Figure A.12 shows what we observe using WiFo for both tests. The bottom

plot is taken on a free channel with only beacons, which show as periodic

spikes. Note that as the monitoring runs on AP the TX engine remains busy

during the transmission of a beacon. The top plot is taken with running

microwave oven. There are periodic spikes on the RX engine’s activity. The

duration of these spikes is around 140µs, which is the time required by the

decoder to distinguish noise from Wi-Fi signal. The RX spikes are separated

by two slightly different distances which alternate. The shortest distance

between the spikes is 8ms, which is the burst size. This suggests that the
6These observations are made with kitchen microwave ovens. Commercial ones that are

used in restaurants, as stated in [154], make pulses twice as frequent as the ones we use.
Moreover, the resulting interference has different characteristics.
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Figure A.11: Waveform of a single microwave oven burst (top), and a sequence
of bursts (bottom).
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Figure A.12: Channel activity observed by AP running WiFo’s backend when
a microwave oven is working (top) and when it is turned off (bottom). Vertical
lines are 10ms apart in both images.

beginning and the end of each burst triggers the chipset’s decoder, which

soon identifies it as noise and the decoder is deactivated. More generally, any

interference on the channel triggers the decoder temporarily.

A.4 Debugging Examples

In this section we introduce a few examples of how our diagnostic tool can help

debug wireless hardware. The main purpose of this tool is to help examine

wireless networks closely and figure out deviations from standard and reasons

behind unexpected behaviors. This is especially useful for driver and firmware

developers, as it can help them verify the performance of the wireless cards

and debug their implementations. It can also be a good practical research tool

as it can visualize information that is otherwise hard to notice in a wireless

network.

A.4.1 Contention Window

One of the most important parts of the standards which ensures equal oppor-

tunities for all the stations to use the channel is the contention window. The
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contention window is sometimes misconfigured by wireless card vendors [72]

and it is also the easiest to tweak as we discussed in Chapter 5. This makes

the ability to detect possible misconfiguration or misbehavior very important.

In this section we manually adjust the contention windows of the wireless

adapters to standard and non-standard values and then use our system to

observe the differences.

The diagnostic tool can scan through the received signals and measure the

inter-frame space. Through this value it calculates the backoff slots the station

chooses to wait and generates a distribution graph. We use this feature to see

whether we can detect misconfigured stations.

In our next experiments, we use the same network setup that we used in Sec-

tion A.3 and we send saturated UDP traffic using packets with 1000 bytes of

payload, and we alter the contention window for each experiment. The dura-

tion of each experiment is again 30 seconds. Figure A.13 shows the resulting

plots for three different values of the minimum contention window, namely 8,

16 and 32. We can see the number of times each backoff value is selected and

the range of values in use.

Note that as we use IEEE 802.11 channel 14 for our experiments and we

have little to no interference, the station almost never moves on to the second

backoff stage, and what we have here is only the first backoff stage. It is also

worth noting that observed values for the same backoff value are often 1µs

apart as a result of firmware delays. We bin the results into 20µs bins to get

a cleaner image, but even if we did not do that, they would appear as isolated

spike groups rather than spread all over the time frame.

Using these plots we can easily distinguish where the wrong CWmin is selected.

They can also help us see how evenly the backoff is chosen. As this value should

be chosen completely at random, we expect a flat distribution graph. Although

what we see in the plots are well distributed, they are not completely even.

This could be due to the way the RNG works on the device, and it could

also be the result of the small delays we mentioned previously. Table A.3

shows the chi-squared test values for these results, comparing them to uniform

distribution (the null hypothesis is that the results are not uniform). As the

table shows, p-values are too large, so it seems unlikely that the backoffs are

truly uniform.
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Figure A.13: Backoff distribution for CWmin = 32 (top), CWmin = 16 (mid-
dle), and CWmin = 8 (bottom), as recorded by our diagnostic tool. STA uses
Broadcom BCM4318 chipset with b43 driver and OpenFWWF.
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CWmin χ2 p-value
32 26.3006 0.70680
16 16.2286 0.36702
8 5.6899 0.57639

Table A.3: Chi-squared test for results in Figure A.13. We use CWmin − 1
degrees of freedom to obtain the p-value.

Standard-compliance is not solely the role of hardware and firmware, and

differences could exist in the driver level. In the next study we use an Atheros

mini-PCI wireless adapter for our station and compare the backoff behavior

when using different drivers. One of the drivers we use is ath5k7, which is a

reliable driver for Atheros cards, and the other one is MadWifi8.

Both drivers provide a similar average throughput, from which one might guess

they both present a similar backoff distribution. However, our observations

prove otherwise. Figure A.14 shows the results obtained using the diagnostic

tool. As you can see in the figure, the ath5k driver hops between the two ends

of the contention window rather than a uniform distribution over the whole

window. According to [155], this does not give the station any advantage

in the long run, as the average backoff is unchanged. Nevertheless, it is an

obvious deviation from the standard and it may affect certain experiments

by changing the collision probability, especially when more than one station

behaves this way.

A.4.2 TXOP Burst

We introduced TXOP in Section 2.4. It is as a bounded time interval during

which a station can send as many frames as possible. Although TXOP is

advertised by the access point and stations can requested an RTS frame, there

is no central control on how stations use it. Once a station wins the contention,

it can practically send frames indefinitely, resulting in poor performance of

other contending stations. We actually discussed this as a form of attack in

Chapter 5. TXOP should normally not be used unless allowed by the AP or

within a contention-free period.
7Our ath5k driver is slightly modified to enable us change contention parameters. How-

ever, we do not use this feature for these tests and the rest of the driver code is unchanged.
8The MadWifi version we use is 0.9.4-r4173, and the only modification made to the

driver is disabling QoS.
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Figure A.14: Backoff distribution for Atheros chipset provided by MadWifi
(top) and ath5k (bottom)

In our next experiment we demonstrate our system’s ability to detect TXOP

bursts. For this test we increase the TXOP period, and use the diagnostic

tool to count the number of packets that come in a single burst. Our network

has only one station connected to an AP equipped with the diagnostic tool’s

monitoring code. The station is equipped with an Atheros card with the

MadWifi driver, and it transmits saturated traffic using frames with payload

size of 500 bytes for 5 seconds in each test. Figure A.15 depicts the results.

As the figure shows, as long as the TXOP period is smaller than the time

required to transmit one packet, the burst contains only one frame, i.e. there

is no burst. Each time a new frame can fit in the given period, the burst

size increases. In other words, we can calculate burst size using the following
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Figure A.15: The number of frames in a burst with increasing TXOP. STA
uses Atheros chipset with ath5k driver.

formula:

n = ⌈tT XOP

Dt

⌉

Where tT XOP is the TXOP time, and Dt comes from (A.3).

We can also measure the duration of a single frame transmission as the distance

between two bumps of n, which is measured 863µs based on the results used

to plot Figure A.15.

A.4.3 ACK Skipping

Acknowledgements are normally used as a success signal for the transmitter.

However, deliberately skipping ACKs can sometimes be desired, e.g. [109, 110]

or what we did in Chapter 5. In this section we implement a simple scheme

at the AP: we skip every other ACK for received frames, forcing stations

to always make two attempts for each frame. We use WiFo to sanity check

our implementation. For the experiment, we use one station connected to

the AP, and send saturated traffic at 11Mb/s for 30 seconds using MGEN.

Both the station and the AP use Broadcom BCM4318 wireless adapters with

OpenFWWF. The station uses minimum CW of 32. By dropping the first

ACK, we force it to double this value, and use 64. Figure A.16 shows the

resulting backoff distribution graph calculated by WiFo. For values in the

range [0, 32), the numbers are almost twice as much as [32, 64), which is exactly
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Figure A.16: Backoff distribution when the AP drops every other ACK.

what we expect; remember that, on the second backoff stage, the station

uniformly selects a backoff time within the range of [0, 64) slots. This not

only proves that the implementation works, but also demonstrates another

aspect of WiFo’s usefulness.

A.5 Conclusion

In this appendix we designed an extensible diagnostic tool for IEEE 802.11

wireless cards which can be used to test various aspects of the protocol and

detect standard compliance. The purpose of this tool is to give programmers

and researchers enough flexibility to test and debug wireless cards and drivers.

The diagnostic tool is made using only commercial off-the-shelf devices and

it can be more practical than its more expensive alternatives. With an API

to add new features to the application, the diagnostic tool can be virtually

programmed to do sophisticated analyses on the data. We presented PCAP

integration as an example of additional features that can be plugged in to

the system. We presented results to validate the sanity and reliability of our

system, and presented some experimental results that highlighted some of

possible use-cases of this tool.
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APPENDIX B
Firmware and Driver Code

This appendix provides samples of the code used to implement the policing algo-

rithm, and the Virtual MAC, with brief explanation of design decisions.

B.1 Introduction

Implementing algorithms on hardware and testing them can be a time-consuming

task. Many of the implementations described in this thesis are done by modi-

fying the C code for the Linux drivers of the wireless adapters, or the assembly

code for their firmware. In order to facilitate the reproduction of the present

work, this appendix provides important pieces of the code used for each part

of the policing code. As we mentioned in Chapter 6, each algorithm is bro-

ken into two components, one running in the driver, and one on the wireless

adapter’s firmware. Here we describe how each component of the system is

implemented.

B.2 Driver Implementation

The policing controller and the Virtual MAC both involve recurring events

that happen periodically. They only need to run on the driver once per iter-

ation. Fortunately, the b43 driver provides a mechanism to schedule periodic

works. This is performed using the do_periodic_work function in the main.c

file of the driver. We modified this function, and inserted our own schedules

into it. The original version of the function looks like this:
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static void do_periodic_work(struct b43_wldev *dev)

{

unsigned int state;

state = dev->periodic_state;

if (state % 4 == 0)

b43_periodic_every60sec(dev);

if (state % 2 == 0)

b43_periodic_every30sec(dev);

b43_periodic_every15sec(dev);

}

As one can see, the granularity of the period is not enough to run a task more

frequently than every 15 seconds. To increase this granularity, we modify the

b43_periodic_work_handler function, and insert the following code when it

calculates the delay:

delay = round_jiffies_relative(HZ * 1); // The default driver uses 15

We would then need to adapt the do_periodic_work, and schedule the polic-

ing algorithm controller:

static void do_periodic_work(struct b43_wldev *dev)

{

unsigned int state;

state = dev->periodic_state;

if (state % 60 == 0)

b43_periodic_every60sec(dev);

if (state % 30 == 0)

b43_periodic_every30sec(dev);

if (state % 15 == 0)

b43_periodic_every15sec(dev);

policing_iteration(dev);

}

Then we can define the policing iteration function, and implement the con-

troller, and the Virtual MAC.

B.2.1 Importing Information

Unlike the driver, the firmware is always working, logging information to be

used by the driver. So, in each iteration, the first thing we do is to fetch this
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information from the shared memory, and store them locally. This code goes

into the policing_iteration method.

u16 u;

unsigned int i, slist_end, ix = 0;

struct policing_per_sta* temp_sta_info;

if (min_samples == 0)

return;

// Read the position of the end of the station list

slist_end = b43_shm_read16(dev, B43_SHM_SHARED, POLICE_SLIST_END);

/*

* Read in accumulate special-purpose counters from the shared memory.

* Each counter represents a measure (such as busy slots, dropped packet count, etc)

*/

for (i = 0; i < POLICE_CTR_COUNT; i++) {

u16 temp_addr = POLICE_CTR1_HI + i * 4;

long police_ctr;

police_ctr = (unsigned int)b43_shm_read16(dev, B43_SHM_SHARED, temp_addr);

u = b43_shm_read16(dev, B43_SHM_SHARED, temp_addr + 2);

b43_shm_write32(dev, B43_SHM_SHARED, temp_addr, (u16)0);

police_ctr = (police_ctr << 16) + (unsigned int)u;

saved_police_ctr[i] += police_ctr;

}

curSamples = (curSamples + 1) \% min_samples;

// If the iteration interval (in seconds) has passed

if (curSamples == 0) {

// TODO: Run policing and the Virtual MAC!

}

The constant POLICE_SLIST_END above is the shared memory location of the

word where the location of the last station item is stored. Next we begin filling

in the TODO part.

B.2.2 Policing

The first thing we need to do in order to execute the policing controller is to

fetch station data from the shared memory.

// Go through the list (starting from the constant location POLICE_SLIST_BEGIN).

while (i < slist_end) {

ix = (i - POLICE_SLIST_BEGIN) >> 3;

temp_sta_info = sta_info + ix;

temp_sta_info->pk_ptr = i;

temp_sta_info->retries = b43_shm_read16(dev, B43_SHM_SHARED, i + 2);
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temp_sta_info->attempts = b43_shm_read16(dev, B43_SHM_SHARED, i + 4);

temp_sta_info->packets = b43_shm_read16(dev, B43_SHM_SHARED, i + 6);

all_packets += temp_sta_info->packets;

b43_shm_write16(dev, B43_SHM_SHARED, i + 2, 0);

b43_shm_write32(dev, B43_SHM_SHARED, i + 4, 0);

i += 8;

}

ix++; // So it contains the count

// TODO: Use Virtual MAC to estimate the compliant attempt rate.

We get to the virtual MAC in the next subsection. Here we assume that the

estimate is ready, and stored in the variable p_Sf. The controller has now all

the required information to perform.

for (i = 0; i < ix; i++) {

sf->data[i] = sta_info[i].attempts;

if (p_Sf > 0 && sta_info[i].attempts > 0) {

// Now calculate the new PK

int pk = sta_info[i].pk;

pk = pk + ALPHA_NOM * ((long)hflt_div(sta_info[i].attempts - HFLOAT_ONE) /

ALPHA_DENOM;

/*

* Limit the calculated p value to the range [0, 1], and write it to the

* shared memory for firmware use

*/

if (pk < 0) pk = 0;

sta_info[i].pk = pk;

if (pk > 0xFFFE) pk = 0xFFFE;

b43_shm_write16(dev, B43_SHM_SHARED, sta_info[i].pk_ptr, (u16)pk);

}

}

The two constants ALPHA_NUM and ALPHA_DENOM together represent the α value

for the algorithm. Note that floating point numbers are not allowed in Linux

drivers. Also, the pk member of the station information structure represents

the PACK value for the station. That is why we have also implemented a

special float handling that corresponds the values between 0 and 65535 to the

floating point range [0, 1]. The code for these functions will be listed at the

end of this appendix.
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B.2.3 Virtual MAC

In Chapter 6 we discussed how the Virtual MAC estimates the compliant

attempt rate. Here we provide the actual code. The driver component in

this implementation is responsible for using the information collected in the

firmware to compute the estimate. The code below replaces he TODO line in

the policing code presented earlier.

#define BUSY_SLOTS saved_police_ctr[0]

#define IDLE_TIME saved_police_ctr[1]

#define BEACONS saved_police_ctr[2]

#define DROPPED_PACKETS saved_police_ctr[3]

unsigned long total_slots, _tau, _p;

total_slots = BUSY_SLOTS + (IDLE_TIME) / 20 - BEACONS;

_p = hflt_div(BUSY_SLOTS, total_slots);

/*

* The tau formula from Bianchi’s paper

* (we have two versions as we cannot have negatives)

*/

if (2 * _p > HFLOAT_ONE)

_tau = 2 * hflt_div(2 * _p - HFLOAT_ONE,

(2 * _p - HFLOAT_ONE) * 33 + 32 * hflt_mul(_p, (hflt_pow(2 * _p, 5) -

HFLOAT_ONE)));

else _tau = 2 * hflt_div(HFLOAT_ONE - 2 * _p,

(HFLOAT_ONE - 2 * _p) * 33 + 32 * hflt_mul(_p, (HFLOAT_ONE - hflt_pow(2 * _p,

5))));

p_Sf = FIX_MULTIPLIER_NOM * (hflt_mul(hflt_mul(_tau, HFLOAT_ONE - _p), total_slots)) / 100;

// Reset the counters for the next iteration

for (i = 0; i < POLICE_CTR_COUNT; i++) {

saved_police_ctr[i] = 0;

}

B.3 Firmware Implementation

Firmware implementation is more difficult because it is in assembly, and there

are far less hardware capabilities available to use. However, the firmware is

the last point from where frames are transmitted, and the first point of frame

reception. This is why things such as ACK generation and frame counting are

best implemented on the firmware. In this section we present the code for the

firmware part of the policing algorithm and the Virtual MAC.
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B.3.1 Policing

The policing algorithm implementation on the firmware involves mainly ACK

transmission decision, and that is where it resides. However, there are helper

functions it uses in its operation. One of these functions is a lookup function

used to fetch a record from the hash table described in Chapter 6. Below is

this function. The code is in the assembly of the BCM B43xx chipset (revision

5).

// HANDLER: policing_lookup

// PURPOSE: Looks up a MAC address in the STA list, or adds it if non-existent

policing_lookup:

srx 7, 0, POLICE_M3, 0x000, POLICE_TEMP1

srx 7, 8, POLICE_M3, 0x000, POLICE_M3

xor POLICE_M3, POLICE_TEMP1, POLICE_TEMP1

mov POLICE_SLIST_INDEX, POLICE_TEMP2

add POLICE_TEMP2, POLICE_TEMP1, POLICE_OFFSET

je [0x0, POLICE_OFFSET], 0, policing_create_item

mov [0x0, POLICE_OFFSET], POLICE_OFFSET

jext COND_TRUE, policing_lookup_complete

policing_create_item:;

mov POLICE_SLIST_POS, [0x0, POLICE_OFFSET]

mov POLICE_SLIST_POS, POLICE_OFFSET

add POLICE_SLIST_POS, 4, POLICE_SLIST_POS

sl POLICE_SLIST_POS, 1, [POLICE_SLIST_END]

mov 0x000, [0x0, POLICE_OFFSET]

jext COND_TRUE, policing_lookup_complete

The other helper function is used to discard a frame. It is used when we need

to refuse to send an ACK.

// HANDLER: policing_discard

// PURPOSE: Discards a received frame (without sending an ACK)

policing_discard:

/*

* The following two lines increment the discarded frame counter

* as a 2-word (32-bit) value.

*/

add. [POLICE_CTR4_LO], 1, [POLICE_CTR4_LO]

addc [POLICE_CTR4_HI], 0, [POLICE_CTR4_HI]

jext COND_TRUE, rx_discard_frame
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With these helper functions, the policing algorithm firmware has enough in-

formation to operate. The code we are going to present runs when a new

frame is received, and before an acknowledgement is created. This would be

directly after the following two lines in the OpenFWWF[67] code.

send_response:

jext COND_RX_ERROR, rx_complete

And the code itself looks like the following. Descriptive comments are added

to the code to aid comprehension.

// Save the MAC address of the sender in our registers

or [RX_FRAME_ADDR2_1,off1], 0x000, POLICE_M1

or [RX_FRAME_ADDR2_2,off1], 0x000, POLICE_M2

or [RX_FRAME_ADDR2_3,off1], 0x000, POLICE_M3

// Backup offset register (a shared use global pointer)

mov POLICE_OFFSET, POLICE_TEMP0

// Call the policing lookup/create helper function

jext COND_TRUE, policing_lookup

policing_lookup_complete:;

// Don’t discard if not a data frame

jzx 0, 2, POLICE_FLAGS, 0x000, policing_dont_discard

nand POLICE_FLAGS, 0x4, POLICE_FLAGS

add [0x2, POLICE_OFFSET], 1, [0x2, POLICE_OFFSET]

// Save PK in temp1

mov [0x0, POLICE_OFFSET], POLICE_TEMP1

// If PK >= RND then continue to call the discard frame helper function

jle POLICE_TEMP1, SPR_TSF_Random, policing_dont_discard

// Restore offset register

mov POLICE_TEMP0, POLICE_OFFSET

jext COND_TRUE, policing_discard

policing_dont_discard:;

// Add 1 to STA’s sent packet count

add [0x3, POLICE_OFFSET], 1, [0x3, POLICE_OFFSET]

// Restore offset register

mov POLICE_TEMP0, POLICE_OFFSET

B.3.2 Virtual MAC

The firmware part of the Virtual MAC is responsible for counting the number

of idle and busy slots. This is handled in the firmware’s idle state logic.
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Normally, the firmware sleeps for a while when it gets to this state, before

polling for new events:

orx 7, 8, 0x0FF, 0x0FF, SPR_MAC_MAX_NAP

nap

state_machine_start:

We remove the first two lines to buy time for the Virtual MAC. Then we call

our Virtual MAC estimator function under state_machine_start. Below is

the body of this function. Descriptive comments are added to the code for

better readability.

// HANDLER: hessan_vmac

// PURPOSE: Run the Virtual MAC code and return

hessan_vmac:

// Are we initialized?

jne r62, 0, vmac_inited;

// Set up our start time variable

mov SPR_TSF_WORD0, EST_START_TIME0;

mov SPR_TSF_WORD1, EST_START_TIME1;

// CurrentState = INVALID

mov 0xFF, EST_CURRENT_STATE;

// Set initialized

or r62, 1, r62;

vmac_inited:

// Temp1 = Channel idle flag

and SPR_IFS_STAT, 0x1, POLICE_TEMP1

// if(CurrentState == Temp1) return

je POLICE_TEMP1, EST_CURRENT_STATE, tracker_end;

// Backup = CurrentState

mov EST_CURRENT_STATE, POLICE_TEMP3;

// CurrentState = Temp

mov POLICE_TEMP1, EST_CURRENT_STATE;

// Calculate time difference

sub. SPR_TSF_WORD0, EST_START_TIME0, POLICE_TEMP0

subc SPR_TSF_WORD1, EST_START_TIME1, POLICE_TEMP1

// If difference > 65535 (the second word is non-zero), it is long enough!

jg POLICE_TEMP1, 0, vmac_not_too_short;

// If difference > 49 it is long enough (idle)

jg POLICE_TEMP0, 50, vmac_not_too_short;

vmac_too_short:

// This part is to ignore short spikes
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je POLICE_TEMP3, 0, vmac_too_short_busy;

jext COND_TRUE, final_step;

vmac_too_short_busy:

// Jump to final step

jext COND_TRUE, final_step;

vmac_not_too_short:

// If LastState is the same as Backup, it is a continuation.

je EST_LAST_STATE, POLICE_TEMP3, vmac_too_short;

// If we just ended a busy slot (Backup == BUSY)

je POLICE_TEMP3, 0, count_busy_slot;

// Otherwise IdleTime += difference

add. [POLICE_CTR2_LO], POLICE_TEMP0, [POLICE_CTR2_LO];

addc [POLICE_CTR2_HI], POLICE_TEMP1, [POLICE_CTR2_HI];

// We have processed the slot

jext COND_TRUE, slot_counted;

count_busy_slot:

// Add one to the busy counter

add [POLICE_CTR1_LO], 1, [POLICE_CTR1_LO];

slot_counted:

// It is safe to put Backup in LastState

mov POLICE_TEMP3, EST_LAST_STATE;

final_step:

mov SPR_TSF_WORD0, EST_START_TIME0

mov SPR_TSF_WORD1, EST_START_TIME1

// Jump back to the caller location (the label is defined just below the call)

jext COND_TRUE, tracker_end;

In the above code, POLICE_CTR1 is the first counter (counter index 0 in the

driver code), which holds the number of busy slots. POLICE_CTR2 (counter in-

dex 1 in the driver code) holds idle time in microseconds. Both these counters

consist of two words (LO and HI words), because they hold 32-bit numbers

while the firmware words are 16 bits long. The code ignores short spikes as

they often correspond to antenna training and not real idle/busy switches.

B.4 Floating Point Helpers

As mentioned previously in this chapter, floating point operations are not

allowed in driver code. For this reason, we implement a form of fixed-point

arithmetic in the driver. We use the integer range [0, 65535] as a representation

of the real range [0, 1] to have enough granularity in that range, and because

a word in the chipset is 2 bytes, and it would be easier to store numbers this

way. All operations are the defined in accordance with this representation.
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What follows is the code used to handle floating points in throughout the

implementation:

#define HFLOAT_DENOM 65536 /* Scale denominator used for calculations */

#define HFLOAT_ONE (HFLOAT_DENOM - 1) /* The value representing probability 1 */

unsigned long hflt_mul(unsigned long a, unsigned long b) {

return (a * b) / HFLOAT_DENOM;

}

unsigned long hflt_div(unsigned long a, unsigned long b) {

return (a * HFLOAT_DENOM) / b;

}

unsigned long hflt_pow(unsigned long a, unsigned int pow) {

unsigned int i;

long result = a;

for (i = 0; i < pow - 1; ++i)

result = hflt_mul(result, a);

return result;

}
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