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Abstract 

 

Circadian rhythms are recurring patterns in behavioural, physiological, and other 

parameters that display periods of approximately every twenty four hours. The molecular 

basis of the circadian timekeeping involves clock genes which act as transcription factors 

in a serious of feedback loops. Disruption of clock genes in transgenic models leads to 

dysregulation of the temporal architecture of behaviour and physiology. The master 

circadian pacemaker is the suprachiasmatic nuclei (SCN) in the anterior hypothalamus. 

There are circadian oscillators in numerous brain areas and peripheral organs and tissues. 

NF-κB is composed of dimers of members of the Rel family, including p65 

(RelA), p50, p52, c-Rel and Rel B. NF-κB transcription factors are required for regulating 

cell survival and differentiation and also are important for inflammatory and immune 

responses. Dysregulation of this transcription factor has been shown to lead to 

inflammatory and autoimmune diseases. NF-κB is expressed in neurons and glia 

throughout the brain. 

We hypothesised that the NF-κB pathway may play a role in the generation and 

perhaps the phase setting of the circadian rhythms in the master mammalian circadian 

pacemaker. Understanding the role NF-κB system may play in the free running circadian 

clock, may be of great importance in understanding the effects of ageing, 

neuroinflammation and neurodegeneration on circadian rhythms. We set out to examine 

whether there might be a role for the NF-κB system in the master suprachiasmatic clock. 

We have examined expression of constituents of the pathway across the circadian cycle 

in the SCN, we examined the effects of pharmacological inhibition of the pathway on 

circadian processes in vivo and in vitro and have examined whether there is evidence for 

circadian regulation of NF-kB-mediated transcription in the SCN. Furthermore, we 

examined whether the NF-κB pathway played a role in ageing. 

Overall, we found no evidence that the NF-kB pathway is involved in the basal 

functioning of the SCN clock or in photic resetting. We do find some evidence that the 

NF-kB pathway may have a role in transducing immune events in the SCN.  This data 

suggest that while the NF-kB pathway may be involved in circadian function in peripheral 

clocks, it does not appear to play a major role in the SCN. 
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Chapter One 

General Introduction 

 

1.1 What are circadian rhythms?    

 

Chronobiology is the study of circadian and other biological rhythms. 

Chronobiology is a Greek word, and is derived from three words, ‘chrono’ meaning time, 

‘bios’ meaning life and ‘logos’ meaning the study of (Cornélissen et al., 1990; 

Wetterberg, 1994).  The term circadian arises from the Latin circa, meaning about; and 

dies, meaning day (Jud et al., 2005; Monk & Welsh, 2003). Circadian rhythms are 

endogenous cycles that recur around every twenty 24 hours in relation to behaviour, 

physiology and other parameters. They are entrained daily by Zeitgebers (from the 

German ‘time giver’) which are external cues such as photic stimuli,  or non- photic 

stimuli such as feeding times and temperature, with light being the most powerful 

Zeitgeber (Challet, 2007). Circadian rhythms exist in all eukaryotic organisms from 

unicellular fungi to plants, animals and humans (Jud et al., 2005; Reppert & Weaver, 

2002). In order for a rhythm to be circadian in nature a criteria of three properties must 

exist. The cell, tissue or organism must exhibit an endogenous self-sustaining rhythm that 

persists in the absence of external environmental cues. Secondly, it must be able to 

temperature compensate to maintain the period of rhythms. Finally, the pacemaker must 

also be capable of being reset by environmental cues, for example light or temperature 

(Butler & Silver, 2009). 

A range of biological processes are regulated by circadian clocks including the 

sleep-wake cycle, body temperature, blood pressure and hormone secretion (Honma & 

Hiroshige, 1978). The first human circadian rhythm studies were carried out in the late 

1930s by Nathaniel Kleitman and Bruce Richardson. Kleitman and Richardson retreated 

for 32 days to a cave in the U.S. state of Kentucky, and were deprived of all time cues. 

They maintained constant environmental conditions with regard to temperature, humidity 

and darkness, as they attempted to live on a non-24 hour day in the cave (Monk & Welsh, 

2003). Jurgen Ashcoff was a crucial figure in the development of chronobiology as a field 

of study. He was the first to prove that humans have endogenous cycles, and that our 

circadian sleep cycles were not dependent on environmental cues, for example sunlight 
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or darkness. His studies consisted of an underground bunker, where he was able to 

research human subjects in isolation from time cues. Ashcoff and his colleague Wever 

carried out a range of experiments over 20 years and they established that human 

behaviour, cognition and physiology were controlled by endogenous circadian oscillators 

(Aschoff, 1960). Experiments carried out examined the human circadian system under 

constant conditions and under different entrainment. While experimenting on himself, 

Aschoff established that there was a difference in temperature over a 24-hour period in 

humans (Aschoff, 1965; Foster & Roenneberg, 2008). These pioneers of chronobiology 

were key in the development of chronobiology that followed and continues to the current 

day. 

  

1.2 The Master Circadian pacemaker 

 

 In mammals, the master circadian clock is located in the suprachiasmatic nucleus 

(SCN) (Moore, 1983). The SCN coordinates peripheral circadian clocks in individual 

cells and organs throughout the body and delivers coherent circadian rhythms. The SCN 

is a bilateral structure located in the anterior part of the hypothalamus at the base of the 

third ventricle, above the optic chiasm (Reghunandanan & Reghunandanan, 2006; 

Reppert et al., 1981). In the mouse SCN there is roughly 20,000 neurons, with 10,000 per 

SCN (Antle & Silver, 2005; Ramkisoensing & Meijer, 2015; Welsh et al., 1995; Welsh 

et al., 2010). Individual SCN cells are able to oscillate independently when placed in 

culture (Welsh et al., 1995). The human SCN contains approximately 100,000 neurons 

and is 1mm3 in volume (Hofman & Swaab, 2006). 

Studies carried out have shown lesions of the SCN abolish circadian rhythmicity 

in various physiological and behavioural processes (Moore & Eichler, 1972; Stephan & 

Zucker, 1972; Wager-Smith & Kay, 2000; Yan, 2009). Studies have shown that SCN 

lesions can result in the loss of circadian rhythms in locomotor activity (Ralph et al., 1990; 

Stephan & Zucker, 1972) along with circadian adrenal corticosterone rhythms in rats 

(Moore & Eichler, 1972). Another vital experiment was a transplantation study performed 

in lesioned wild type (WT) SCN. Foetal SCN tissue from a Syrian hamster carrying the 

tau mutation was transplanted into the WT hamsters. The host animal took on the 

behavioural rhythm phenotype of the donor. The host hamster ran with a shortened 
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activity period of approximately 20 hours, characteristic of animals exhibiting the tau 

mutation compared to the previous WT period of roughly 24 hours. WT foetal SCN tissue 

can also be transplanted into tau mutant hamster, with the host now exhibiting a period 

of approximately 24 hours (Ralph et al., 1990; Silver et al., 1996). 

If the SCN is detached from the rest of the brain and maintained in slice 

preparation in vitro, SCN neurons still manage to retain their rhythmic electrical activity 

(Shirakawa et al., 2000; Welsh et al., 1995; Welsh et al., 2010). However, outside the 

SCN rhythmic electrical activity was destroyed. This demonstrates the importance of 

SCN projections for conveying rhythmicity to neurons outside the SCN (Hofman & 

Swaab, 2006; Inouye & Kawamura, 1979). These early studies emphasised a circadian 

pacemaker function for the SCN.        

 

              (A)                                                                  (B) 

 

 

 

 

 

 

 

 

 

Figure 1.1: The location of the master circadian clock. (A) Coronal section of a mouse brain 

with the location of the SCN been depicted. The SCN sits directly above the optic chiasm (OC) 

and on either side of the third ventricle (3v). The two arrows represent the two nucleus of the 

SCN, adapted from (Mutsuga et al., 2004). (B) The approximate location of the SCN rosral-

caudal, depicted in the parasagittal section, adapted from (Zylka et al., 1998). 

 

The SCN is a heterogeneous structure and has been subdivided into two distinct 

anatomical regions which can be distinguished on the basis of their chemoarchitecture, 

the ventrolateral region/core and the dorsomedial region/shell (Abrahamson & Moore, 

2001; Welsh, 2009). The core makes up 43% and the shell 57% of the total neuronal 

population of the SCN (Moore et al., 2002). The nuclei receive both direct and indirect 
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retinal input, helping to carry photic input for entrainment to the environmental 

photoperiod (Reppert & Weaver, 2002). The core region receives heavy retinal input, and 

both the core and the shell region shows high amplitude of circadian oscillations in clock 

gene expression (Morin & Allen, 2006). 

The core and the shell are defined by the different neuropeptides and neuronal 

compositions they contain. The shell region is rich in arginine vasopressin polypeptide 

(AVP) neurons which makes up 20% of all SCN cells. Angiotensin II, calbindin (CALB) 

and met-enkephalin are found in neurons in the shells also (Abrahamson & Moore, 2001). 

The core region is rich in vasoactive intestinal polypeptide (VIP) which accounts for 10% 

of all SCN cells and gastrin releasing peptide (GRP) which contributes to 5% of cells 

(Welsh et al., 2010). Neurotensin (NT) (in the human SCN) and calretinin are also located 

in the core (Rosenwasser, 2009; Welsh, 2010; Yan, 2009). Additionally, the core contains 

CALB cells, which are known to effect responses to photic input in the SCN (Hamada et 

al., 2003; Moore et al., 2002).  

Intercellular signalling between the core and the shell is vital in maintaining the 

order of SCN cellular oscillators and circadian function within the SCN (Yan, 2009). 

Signalling occurs from the SCN core to the SCN shell, however, less projections via the 

shell to the core exist (Moore et al., 2002). The core; projections have been found to 

terminate at shell neurons which display links between both regions (Abrahamson & 

Moore, 2001; Antle & Silver, 2005; Morin, 2007), with light information projected to the 

shell, which in turns projects to efferent regions (Kalsbeek & Buijs, 2002).  

 

1.3 Afferent input and efferent pathways  

 

Light information reaches the brains SCN via the optic nerves from the retina. 

There are three major input pathways identified in the SCN; the retinohypothalamic tract 

(RHT), the geniculohypothalmic tract (GHT) and projections from the raple nuclei.  

 

1.3.1 The Retinohypothalmic Tract 

 

The ventrolateral subdivision of the SCN receives retinal input from the RHT. 

The RHT is important for photic entrainment of the master clock in the SCN, this is 

displayed in studies showing that sectioning of RHT abolishes entrainment without 

javascript:void(0);
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causing any visual difficulties. It has also been demonstrated in animals that ablation of 

all visual pathways resulting in blindness, still had normal circadian rhythm entrainment 

(Johnson et al., 1988). Light is perceived from ganglion cells in the retina, and then the 

photic information is transferred directly to the SCN clock directly via the RHT (Challet, 

2007; Gooley et al., 2001). Intrinsically-photosensitive retinal ganglion cells (ipGRC) 

which contain photopigment melanopsin (Schmidt et al., 2011) are retinal ganglion cells 

that make up the RHT projections (Berson et al., 2002; Gooley et al., 2001; Hattar et al., 

2002; Hattar et al., 2006; Rollag et al., 2003), and it is these cells that play a role in 

transmitting axons to both the intergeniculate leaflet (IGL) and SCN, to aid photic 

synchronisation of circadian rhythms (Hattar et al., 2006; Hirota & Fukada, 2004; Morin 

et al., 2003). Melanopsin KO mice display a reduced lengthening in period when placed 

in LL compared to WT mice. Furthermore, phase shifts caused by light are also attenuated 

in these KO mice (Rollag et al., 2003). 

 

Glutamate is the major neurotransmitter contained in the RHT terminals involved 

in transferring information along the RHT to the SCN, (Hannibal & Fahrenkrug, 2002; 

Hannibal, 2006) which help control the entrainment process (Rosenwasser, 2009). Light 

stimulation of the retina produces secretion of glutamate from the RHT into the VIP part 

of the core SCN (Ding et al., 1994; Mikkelsen et al., 1995). Glutamate seems to require 

the activation of NMDA and non-NMDA receptors, the expression of immediate early 

genes (IEGs), along with nitric oxide (Rea, 1998). When glutamate receptor antagonists 

are applied in vivo, it blocks the effect of light on the SCN at certain time points inhibiting 

phase advances or delays in the subjective night (Colwell & Menaker, 1992; Ding et al., 

1994; Shibata et al., 1994). Furthermore, it attenuates photically induced Fos expression 

in retinorecipient neurons of the SCN (Vindlacheruvu et al., 1992). Application of 

glutamate agonists to SCN slices in vitro, cause induced phase shifts in the rhythm of 

neuronal firing rate in a pattern that mimics the in vivo effect of light photic stimulus on 

behaviour rhythms (Ding et al., 1994; Ebling, 1996; Mintz et al., 1999). Therefore, these 

results indicate a role for glutamate in transferring photic information to the SCN.  

 

PACAP can be found co-localised with glutamate in ganglion cells distributed 

throughout the retina and on terminals in the retinorecipient region of the SCN and may 

play a role in light signalling to the clock (Hannibal et al., 1997; Hannibal, 2002). PACAP 



 

 

6 

 

administration is dose and phase dependent on whether it effects circadian gene 

expression (Harrington et al., 1999). Administration of PACAP at high doses can increase 

glutamatergic signalling in the SCN during the early night. When PACAP and glutamate 

are administered at the same time, PACAP can inhibit the phase advance during the late 

subjective night usually induced by glutamate (Chen et al., 1999). PACAP6-38, a PACAP 

antagonist block the effects of glutamate phase advance (Nielsen et al., 2001) and also 

induce non-photic like phase advances during the subjective day (Hannibal et al., 1997). 

Whereas low dose PACAP results in a phase advance in the subjective night similar to 

light or glutamate (Harrington et al., 1999; Nielsen et al., 2001). This data represents 

PACAP as a modulatory component of nocturnal phase regulation of the SCN clock by 

light (Chen et al., 1999).  

  

1.3.2 The Geniculohypothalmic Tract 

  

The GHT is the second afferent photic projection from the IGL to the SCN. The 

IGL is the first indirect pathway, which receives input from the same retinal cells whose 

axons compose the RHT, and is involved in supplying retinal input to the SCN (Challet, 

2007; Reppert & Weaver, 2001). The IGL is situated between the dorsal lateral (dLGN) 

and ventral lateral geniculate nucleus complex (vLGN) (Harrington, 1997; Moore & 

Card, 1994). The IGL contains neuropeptide Y (NPY), encephalin (ENK) and γ-

aminobutyric acid (GABA) neurons, that project to the SCN via the GHT (Blasiak & 

Lewandowski, 2013; Harrington, 1997; Morin & Allen, 2006; Morin et al., 1992). The 

IGL plays a role in both photic and non-photic phase shifting (Abe & Rusak, 1992; 

Harrington, 1997).  

Studies of non-photic phase shifting in the GHT displayed that phase shifts from 

a six hour dark pulse could be blocked by ablation of GHT (Harrington & Rusak, 1986). 

Administration of benzodiazepines triazolam and chlordiazepoxide which cause phase 

shifts at certain CTs were also blocked by GHT ablation (Biello et al., 1991). 

Furthermore, phase shifts can occur due to the introduction of a novel running wheel but 

GHT ablation prevented this (Wickland & Turek, 1994). Studies were carried out looking 

at the effects of photic phase shifting after GHT ablation occurred. In the early subjective 

night, phase delays that take place after a light pulse were either increased (Pickard et al., 

1987) or unaffected in hamsters (Harrington & Rusak, 1986). Whereas in the late 
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subjective night following a light pulse, phase advances were decreased due to GHT 

ablations (Pickard et al., 1987). Another study demonstrated that the phase angle of 

entrainment was changed significantly by GHT ablations (Pickard, 1989). Therefore, the 

GHT appears to play a role in phase shifting of circadian rhythms caused by photic 

stimuli, but its key role may be its involvement in mediating non-photic phase shifts.   

Recent electrophysiological studies in the rat, have shown that IGL neuron 

projecting to the SCN, differ from IGL neurons projecting to contralateral IGL. They have 

individual firing patterns and react different to light environments. Therefore, this 

suggests that IGL neurons play different roles in the brain (Blasiak & Lewandowski, 

2013). Another study carried out displayed that dim night light caused changes to the 

photoperiod responses through the IGL in hamsters. The IGL is involved in transducing 

the effects of dim light to the SCN. When the IGL was damaged, the accelerated response 

to the L:D 10:14 photoperiod shown by control hamsters, were not demonstrated by 

ablated IGL’s. This suggested further that the IGL is involved in facilitating the effects 

of dim light at night with regard to the expression of short photoperiod responses (Evans 

et al., 2012). Additionally, alterations as a result of transferring to a short photoperiod 

occurred in mice lacking NPY, with npy-/- mice exhibiting a significantly delayed onset 

of activity in comparison to control mice. Therefore, NPY plays a role in entrainment in 

the SCN (Harrington et al., 2007; Kim & Harrington, 2008). 

 

1.3.3 The Midbrain raphe nuclei projections 

 

The final afferent pathway is the midbrain raphe nuclei which is the second 

indirect pathway and which contains serotonergic projections to the retinorecipient SCN. 

Neurotransmitters in the raphe nuclei pathways appear to play a part in mediating non-

photic phase shifts, such as those caused by behavioural arousal (Reppert & Weaver, 

2001). Serotonin (5-HT) plays a role in regulating circadian rhythmicity and 

administration of 5-HT receptor agonists can reduce/block photic phase shifts by 

inhibiting the release of glutamate (Rea & Pickard, 2010; Selim et al., 1993; Weber et al., 

1998).  

Administration of 5-HT receptor agonist, 8-hydroxy-2-(di-n-propylamino) 

tetralin (8-OH-DPAT), during the mid to late subjective day can result in a small phase 

advance in wheel running hamsters in DD (Cuesta et al., 2008; Edgar et al., 1993). 
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Therefore, serotoninergic innervation to the SCN conveys non-photic information to the 

SCN clock. Furthermore, PER1 and PER2 expression is attenuated following 8-OH-

DPAT administration (Cuesta et al., 2008). The 5-HT1A agonist/antagonists, NAN-190, 

is known to significantly increase photic phase shifts (Gannon, 2003), as a result of 

reduced inhibition of the RHT and by also increasing the responsiveness of retinorecipient 

SCN cells (Sterniczuk et al., 2008). A recent study investigated what therapeutic effect a 

5-HT7 antagonist, mixed with a selective serotonin (5-HT) reuptake inhibitor (SSRI), 

would have on circadian rhythms. It was established that the combination of agents had 

a larger effect on circadian rhythms, than either individual agent separately, and may help 

in patients with clock dysfunction (Westrich et al., 2013). 

 

 

 

Figure 1.2: The afferent inputs and efferent pathways of the SCN, (Reghunandanan & 

Reghunandanan, 2006a). 

 

1.3.4 The efferent pathways 

 

The main output of the clock is AVP expressing neurons which send efferents to 

the PVN, SPZ and DMH (Buijs & Kalsbeek, 2001; Dai et al., 1997; Reghunandanan & 

Reghunandanan, 2006). The SCN can communicate to the CNS and the periphery by SCN 

efferent projections which will allow SCN timing information throughout the nervous 

system (Deurveilher & Semba, 2005; Dibner et al., 2010). The SCN projections extends 

to the ventral and dorsal regions of the subparaventricular zone (SPZ). The ventral SPZ 

(vSPZ) transmit projections to dorsomedial hypothalamus (DMH). The DMH then sends 

http://www.sciencedirect.com/science/article/pii/S0031938412004155#200008660
http://www.sciencedirect.com/science/article/pii/S0031938412004155#200019121
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projections to the ventrolateral preoptic area (VLPO) important in sleep promoting, as 

well as the lateral hypothalamic area (LHA) which is important in feeding and wake 

promoting (Chou et al., 2003; Laposky et al., 2008; Saper et al., 2005). The dorsal SPZ 

(dSPZ) transmits to the medial preoptic area (MPOA) which is involved in regulating 

body temperature (Lu et al., 2001). The DMH contributes to circadian rhythms of sleep 

and wakefulness, corticosterone secretion and feeding (Chou et al., 2003). Lesions in the 

SPZ or the DMH will cause impairments to sleep and metabolic rhythms, hence they are 

important pathways in the output of the SCN (Laposky et al., 2008). Light is transmitted 

from the retina to the SCN, with output from the SCN occurring via the PVN which 

transmits to the pineal gland allowing for melatonin synthesis (Weaver & Emery, 2013). 

The medial parvicellular paraventricular nucleus (mPVH) and dorsal parvicellular PVH 

(dPVH) are involved in regulating adrenal rhythms and pineal melatonin secretion 

respectively (Saper et al., 2005; Weaver & Emery, 2013).  

 

 

 

Figure 1.3: SCN output pathways in the hypothalamus. Environmental light: dark cues are 

transmitted to the SCN via the RHT, which is sent to the dPVH. The SCN sends efferent 

projections also to the vSPZ and dSPZ, which then transmits SCN signals to many nuclei involved 

in sleep/wake cycle, feeding, energy and autonomic regulation, adapted from (Weaver & Emery, 

2013).  

 

Humoral routes may also be involved in the SCN conveying information within 

the brain. Studies carried out by Silver and colleagues showed that a diffusible substance 

from transplanted fetal SCN tissue can restore weak circadian rhythmicity in locomotor 
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activity in SCN-lesioned hamsters (Silver et al, 1996). Various neurochemical outputs 

from the SCN have been highlighted to play a role in humoral output, including signalling 

via AVP, VIP, PK2 and cardiotrophin-like cytokines (CLC) (Kraves & Weitz, 2006; 

Reghunandanan & Reghunandanan, 2006b). PK2 plays a role in the SCN to help 

synchronise output (Cheng et al., 2002; Zhang et al., 2009). 

 

1.4 Neurotransmitter in the SCN 

 

Neurotransmitters are present in the SCN and play a role in the functioning of the 

pacemaker (Abrahamson & Moore, 2001; Card & Moore, 1984). Whether input is photic 

or non-photic, it can reach the circadian clock by neurotransmitters in nerve terminals. 

Neurotransmitters in the afferent and efferent projections of the SCN are vital for the 

entrainment of the clock and for the control of overt rhythms (Reghunandanan & 

Reghunandanan, 2006b). Neurotransmitters and neuropeptides such as GABA, NPY, NT, 

calretinin, somatostatin, MET-Enkephalin, prokineticin 2, serotonin, VIP,  and AVP have 

all been implicated in the functioning of the SCN (Lall & Biello, 2003a, 2003b; Lall & 

Biello, 2002; Reghunandanan & Reghunandanan, 2006; Reppert & Weaver, 2002).  

 

1.4.1 AVP 

 

AVP is one of the principal neuropeptides in the SCN. AVP neurons occupy a 

large part of the SCN and are co-localised with somatostatin and GABA, where it is 

expressed in the shell of the SCN (Ingram et al., 1999). AVP is known to be synthesized 

and secreted by the SCN in a circadian pattern. AVP displays an excitatory role by 

activating V1a receptors (Ingram et al., 1998) which in turn increase the amplitude of 

electrical firing activity in the SCN through the subjective day (Mihai et al., 1994). In 

vitro application of AVP to brain slices resulted in increased SCN spontaneous electrical 

firing rate rhythms, whereas perfusion with V1a antagonist displayed decreased 

spontaneous electrical firing rate rhythms (Ingram et al., 1998). AVP is implicated in 

circadian time-keeping as it plays a role in controlling the circadian rhythm of food and 

water intake (Reghunandanan & Reghunandanan, 2006b). Administration of AVP 

antagonist at the beginning of the light and dark phases disrupted the circadian rhythm of 

food intake, whereas administration of AVP at the same time did not disrupt the circadian 
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rhythm. Therefore it displays that endogenous AVP has a regulatory role in circadian 

feeding rhythm (Reghunandanan et al., 1987). Another experiment carried out looked at 

the effect endogenous AVP and its antagonist had on water intake. Similar findings were 

discovered to that of food intake, with AVP antagonist disrupting circadian rhythms while 

AVP injections into the SCN did not disrupt the rhythms (Reghunandanan et al., 1992). 

Perturbations occurred in the sleep wake cycle due to reduced number of AVP neurons 

(Hofman & Swaab, 1994). AVP deficient rats contain reduced amplitude of circadian 

sleep rhythms (Brown & Nunez, 1989). A recent study has shown that mice deficient in 

vasopressin V1a and V1b receptor seem to be unaffected by jet lag, with mice instantly 

re-entrained to phase shifted light-dark cycle when monitoring both their behavioural 

locomotor activity and clock gene expression (Yamaguchi et al., 2013). Therefore these 

studies suggest that AVP plays a part in SCN output.  

 

1.4.2 GABA  

 

Another important neurotransmitter of the circadian timing system is GABA, 

which can be found in most SCN and IGL neurons (Moore & Speh, 1993). An important 

role of GABA involves the coupling between the core and shell of the SCN (Albus et al., 

2005). Phase advances can occur in the subjective day when GABA receptors are 

activated in nocturnal species (Ehlen et al., 2006; Smith et al., 1989), while GABAergic 

stimulation during the subjective day results in a phase delay in diurnal species (Novak 

& Albers, 2004). GABA is connected to reduced Per1 and Per2 mRNA expression in the 

SCN of nocturnal animals, comparable with serotonin (Ehlen et al., 2006). Hence, GABA 

acts as a non-photic stimuli involved in the circadian clock.  

In SCN, it is necessary for individual clock cells to become synchronized for a 

coordinated output signal. Communication through gap junction and neurotransmitter 

based interactions are mechanisms to help with synchronization. Studies have displayed 

functional gap junctions in the SCN. Studies presented the transfer of Lucifer Yellow 

between adult rat SCN neurons and inhibition of this transfer by the GABA receptor 

agonist muscimol (Shinohara et al., 2000). GABA activity is generally inhibitory, but a 

study reported that GABA excited SCN neurons during daytime, while at night GABA 

inhibited SCN electrical activity (Wagner et al., 1997). GABA is released from SCN 

terminals in the PVN region and appears to play a role also in regulating melatonin 
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synthesis from the pineal gland by switching off a stimulatory signal emitted from the 

PVN. When there is an increased SCN electrical activity, this leads to increased GABA 

release. However, further investigations must take place to link the circadian clock and 

the mechanisms that regulate GABA release from the SCN (Reppert & Weaver, 2001).  

Research undertaken using electrical activity rhythms of SCN clock cells in 

culture displayed that GABA is an important neurotransmitter for synchronizing SCN 

neurons. A change in phase shifts and entrainment of clock cells in culture is caused by 

application of GABA (Liu & Reppert, 2000). GABAA and GABAB agonist application 

reduced phase advances caused by photic stimulation in the late subjective night. GABAB 

agonist and GABAB antagonist administration reduced and increased the phase delays 

respectively in the early subjective night (Gillespie et al., 1997; Novak & Albers, 2004). 

These findings represent that GABAA or GABAB activity within the SCN can alter the 

phase-shifting effects of light on circadian rhythms. It also may indicate a role for gating 

photic input to the circadian clock. GABAergic neurotransmission in the SCN can cause 

various changes throughout the day and night, therefore, there may be a time gating 

mechanism, which may enhance excitatory signals throughout the SCN during the night 

but causing inhibition of daytime excitation (De Jeu & Pennartz, 2002). Furthermore, a 

recent study has displayed how an extended length in day can affect GABA in the SCN, 

with an upsurge of GABAergic excitation (Farajnia et al., 2014). Lastly, another study 

exhibited how during the circadian day, 60% of GABA-dependent connections were 

inhibitory, whereas 40% were excitatory (Freeman et al., 2013). 

 

1.4.3 VIP 

 

The polypeptide VIP is an important neurotransmitter synthesised by 9-25% of 

SCN neurons and plays a role in SCN function. These SCN neurons are retinorecipient 

and can be stimulated by light (Cayetanot et al, 2005; Piggins & Cutler, 2003; 

Reghunandanan & Reghunandanan, 2006; Welsh et al., 2010). VIP is found in the core 

of the SCN (Welsh et al., 2010; Yan et al., 2007), and it is vital for intercellular signalling 

systems in the SCN and for cellular coupling (Hughes et al., 2015). The biological clock 

is synchronized to the light/dark cycle by photic information that is transferred from the 

retina to the SCN. These afferent fibres terminate in the core of the SCN, and synaptic 

contacts take place with VIP neurons. Therefore, VIP in the SCN is thought to play a vital 



 

 

13 

 

role in the facilitation of photic information to the circadian timing system (Hofman & 

Swaab, 2006).  

Exogenous administration of VIP has the ability to reset the circadian clock in a 

manner comparable to that of light application, both in vitro and in vivo (Piggins et al., 

1995). VIP has two important roles in the SCN. Firstly keeping circadian rhythmicity in 

a subset of neurons and, secondly, maintaining synchrony between intrinsically rhythmic 

neurons (Aton et al., 2005; Reghunandanan & Reghunandanan, 2006). Studies 

undertaken have shown that VIP is vital for the coordination of the daily rhythms in 

behaviour and physiology at the level of biological clock in mice. Loss of VIP, stopped 

circadian firing rhythms in roughly 50% of all SCN neurons and disrupted synchrony 

between rhythmic neurons. Administration of a VPAC2 agonist re-established 

rhythmicity and synchrony to VIP−/− SCN neurons (Aton et al., 2005). Other studies 

demonstrate perturbations in gating of photic input to the SCN in Vip2-/- mice (Hughes et 

al., 2004). A recent study carried out has shown how constant light can actually improve 

behavioural locomotor rhythms and also SCN intercellular synchrony in Vipr2−/− mice, 

which is in contrast to the effect LL has on WT mice (Hughes et al., 2015). Phase shifts 

can arise with VIP application to SCN slices similar to those induced by light pulses (Reed 

et al., 2001). These findings represent the importance of VIP as a neurotransmitter of the 

SCN.  

Circadian firing rhythms can be measured using a multielectrode dish. This allows 

for individual SCN neurons to be monitored for a few weeks (Shirakawa et al, 2000; 

Welsh et al, 1995). The circadian firing rate is important to the circadian pacemaker as 

both an input to and output of the molecular clockworks, as studies have shown that by 

manipulating the firing rate can reset circadian rhythms both ex vivo and in vivo (Jones et 

al, 2015).  

 

1.5 Peripheral Clocks 

  

Circadian clocks can be found in the brain outside the SCN and in peripheral 

tissues and organs throughout the body (Balsalobre et al., 2000; Brown & Azzi, 2013; 

Damiola et al., 2000; Yamazaki et al., 2000). There are eight known clock genes, mBmal1, 

mNpas2, mRev-erbα, mDbp, mRev-erbβ, mPer3, mPer1 and mPer2 expressed in almost 

every peripheral tissue. These genes have robust circadian expressions of mRNAs in 
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nearly all peripheral tissues (Yamamoto et al., 2004). Yamamoto and colleagues analysed 

mRNA expression of clock and clock-controlled genes in mouse peripheral tissues such 

as heart, lung, liver, stomach, spleen and kidney. Circadian mRNA expression patterns 

were similar in each tissue, suggesting, that there may be a unitary mechanism for 

resetting the peripheral clock. The peak transcript level of each circadian rhythm in the 

master clock was as follows, in mBmal1 and mNpas2 peaked at CT20-CT0, mRev-erbα 

the peak occurred between CT4-8, mDbp and mRev-erbβ at CT8, mPer3 at CT8-12, 

mPer1 at CT12; and mPer2 biggest transcript level was at CT12-16. Whereas peripheral 

tissues mRNA peaks occurred roughly four hours later than those in the SCN (Yamamoto 

et al., 2004).  

A study was carried out on mouse liver where the bmal1 gene was knocked out. 

The liver was no longer able to produce sufficient amount of glucose needed in the blood 

circulation, which resulted in hypoglycaemia, as a result of BMAL1-/-. This emphasises 

how vital the liver peripheral clock is in relation to the metabolic system (Lamia, et al., 

2008). Apart from the master clock, peripheral oscillators have also been seen to be 

directly entrained by Zeitgebers for example body temperature alterations and feeding-

fasting schedule (Buhr et al., 2010; Challet et al., 2003; Damiola et al., 2000). 

Peripheral cells generally can sustain cellular rhythms independently. Studies 

have displayed that cell cultures have rhythmicity in their gene expression and functions 

in cells of peripheral tissues. The SCN plays a vital role in coordinating and synchronizing 

rhythmic behaviour all through the body, however, peripheral clocks can generate 

circadian oscillation in gene expression on their own. The central clocks light/dark cycle 

help regulate and retrain oscillations in the clocks in the peripheral cells, along with other 

factors such as food, stress and certain hormones (Sukumaran et al., 2010). The adrenal 

peripheral clock plays an important role in helping to generate glucocorticoid rhythms 

that synchronize peripheral clocks, as glucocorticoid modulates inflammation, immune 

function and lipid metabolism (Son et al., 2008; Son et al., 2011). 
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Figure 1.4: Interaction between the SCN and peripheral clocks, adapted from (Pevet & 

Challet, 2011). Nervous fibres can transmit circadian signals from the SCN to peripheral clocks, 

represented by the (black arrows). The signals reach peripheral organs including the liver, lung, 

heart and adrenal glands. Two hormonal outputs presented are melatonin (purple) and 

glucocorticoids (green), which are synthesized by the pineal gland and the adrenal gland 

respectively. These outputs distribute temporal cues produced by the SCN to numerous peripheral 

tissue targets which express the necessary receptors.  

 

1.6 The Molecular Clock  

 

1.6.1 Transcriptional feedback loops 

 

In the early 1970’s the first circadian rhythm mutants to be isolated were the 

frequency mutants in the fungi neurospora (Feldman & Hoyle, 1976) and the period 

mutants in the fruitfly Drosophila (Konopka & Benzer, 1971).  Research undertaken on 

the fruit fly Drosophila melanogaster has assisted in finding out the mechanisms of the 

mammalian clock (Young & Kay, 2001). Genes in the circadian clock of this fruit fly 

have a similar transcriptional feedback mechanism loop that is in mice and humans 

(Reppert & Weaver, 2002).  

The SCN endogenously generates circadian rhythm by a molecular oscillator with 

a periodicy of about a day, and consists of a transcription-translation feedback loops. This 

process involves a set of eight core clock genes and clock-controlled output genes that 

link the oscillator to clock-controlled processes (Hastings & Herzog, 2004; Ko & 

Takahashi, 2006; Reppert & Weaver, 2001). The transcription translation feedback loops 
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of the molecular clock drive expression of the core genes (Reppert & Weaver, 2002), and 

the oscillations of clock gene proteins are important for generating and regulating 

circadian rhythms (Takahashi, 2004). The following mammalian core clock gene 

involved in this process, circadian Locomotor Output Cycles Kaput protein (CLOCK), 

Brain and Muscle ARNT-like protein 1  (BMAL1), the period proteins PER1, PER2, PER3, 

and the cryptochromes CRY1 and CRY2 and casein kinase 1 epsilon (CSNK1E) (Ko & 

Takahashi, 2006).  

 

Figure 1.5: The molecular circadian clock network, (Gallego & Virshup, 2007). This diagram 

presents the action of CLOCK and BMAL1 proteins which dimerise to produce a complex which 

promotes the transcription of the Per and Cry genes. PER and CRY products in turn dimerise in 

the cytoplasm and inhibit CLOCK-BMAL1, which indirectly regulates their own transcription. 

This loop occurs over a period of 24 h and generates mammalian circadian rhythms. A secondary 

transcription mechanism exists between CLOCK-BMAL1 and the genes Rev-erbα and Rorα, the 

proteins of which respectively negatively or positively drive BMAL1 transcription.  

 

The clock genes are entrained to the light-dark cycle with CLOCK: BMAL 

peaking during the light period, in contrast to PER: CRY peaking during the dark period 

in diurnal and nocturnal animals (Sukumaran et al., 2010).  The major transcriptional 

activator consists of a hetrodimer between CLOCK and BMAL1 (positive feedback loop), 

which binds to E-box sequences in the promoters of many genes including per and cry 

genes (negative feedback loop). Throughout the day, the PER and CRY proteins build up 

in the cytoplasm where they are phosphorylated by casein kinase 1 ɛ and glycogen 

synthase kinase-3 (GSK3) (Gekakis, 1998; Harms et al., 2003; Kurabayashi et al., 2006). 
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This results in mPER and mCRY proteins translocating into the nucleus and the mCRY 

represses the activity of CLOCK/BMAL and it prevents transcription which in turn closes 

the negative feedback loop (Kume et al., 1999; Sato et al., 2006; Stojkovic et al., 2014). 

Degrading occurs of the PER and CRY proteins in a CKI-dependent manner which 

releases the repression of the transcription and allows the next cycle to start. 

A second regulatory loop is induced by CLOCK-BMAL1 heterodimers which 

activates transcription of the orphan nuclear receptor gene Rev-Erbα and Rorα 

(Guillaumond et al., 2005; Preitner et al., 2002; Sato et al., 2004). The REV-ERBα protein 

suppresses Bmal1 transcription by the Rev-Erb/ROR response element in its promoter. 

This results in Bmal1 RNA levels reducing and mCry and mPer RNA levels increasing. 

The mCRY proteins is then able to enter the nucleus to inhibit mPer and mCry 

transcription as it acts on the CLOCK-BMAL1, mCRY protein also blocks Rev-Erbα 

transcription which in turn causes  activation of Bmal1 transcription (Preitner et al., 2002). 

An additional core member of the mammalian circadian clock is neuronal PAS-domain 

protein 2 (NPAS2). NPAS2 is comparable to CLOCK, displaying similar activities but 

tissue distribution is different. NPAS2 can also heterodimerize with BMAL1, and attach 

to E-box motifs, transcribing and activating circadian genes (Reick et al., 2001). The 

positive and negative feedback loop described above are responsible for producing 

messenger ribonucleic acids (mRNAs) from the Per, Cry, Rev-erbα and Bmal1 genes 

throughout the circadian phase. In the SCN, Per, Cry and Rev-erbα all show peak during 

the light phase, with Bmal1 producing an opposite phase with peak approximately 12 

hours later. Rhythms in other regions of the brain and peripheral tissues are delayed by 

several hours.  

Since a simple transcriptional feedback loops leads to mRNA oscillations with a 

period less than 24 hours, other mechanisms are needed in addition to this simple loop 

model that allows the 24 hour environment period to be slowed down. These mechanisms 

include post-transcriptional processing of the mRNAs, translation, post-translational 

processing of the proteins and nuclear translocation. Each of these mechanisms is 

important for delaying activation and repression of transcription that is necessary to keep 

the period at about 24 hours (Harms et al., 2003).  

A model of the SCN clockwork suggests that at the beginning of the circadian day 

(CT 0), mPer and mCry transcription is driven by the accumulation of CLOCK: BMAL1 

heterodimers. Clock RNA levels are expressed constitutively across the 24 hour cycle 
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(Gekakis, 1998). The circadian oscillations of mPer and mCry RNA levels exhibit similar 

yet different temporal profiles in the SCN, with the mPer1 RNA rhythm peaking from 

CT 4 to 6, mPer3 peaks between CT 4 and 9 (Shearman et al., 2000), mPer2 at CT 8 (Bae 

et al., 2001), and mCry1 at CT 10. At CT 12 the mPER and mCRY proteins are 

synchronously expressed in the nucleus where the mCRY proteins stop CLOCK: BMAL1 

mediated transcription. Simultaneously, mPER2 enhances Bmal1 transcription, which 

then leads to peak Bmal1 RNA levels at approximately CT18 (Bunger et al., 2000). It is 

suggested that the Bmal1 RNA rhythm drives a BMAL1 protein rhythm after a four to six 

hour delay. The restoration of BMAL1 levels at the end of the night most likely increases 

CLOCK: BMAL1 heterodimers to drive mPer/mCry transcription, resulting in the cycle 

starting again. It appears that the availability of BMAL1 is rate limiting for heterodimer 

formation and is vital for the positive: negative feedback loop to reoccur for the start of a 

new circadian day (Reppert & Weaver, 2001). The expression of proteins are seen 4-6 

hours following the expression of mRNA peak levels (Field et al., 2000). 

 

1.6.2 Post-translation  

  

Post-translational modifications of clock proteins are vital for the timing of the 

clock feedback mechanism and also play a role in providing regulatory fine-tuning 

(Duguay & Cermakian, 2009). Modifications by acetylation, phosphorylation, 

ubiquitination, methylation and sumoylation plays an important role in regulating the 

circadian clock during post-translation. Regulation of the core circadian proteins occurs 

by phosphorylation using , Casein kinase 1 epsilon (CK1ε), Casein kinase 1 delta (CK1δ), 

Casein Kinase 2 (CKII), glycogen synthase kinase-3 (GSK3) and adenosine 

monophosphate-activated protein kinase (AMPK)  (Reghunandanan & Reghunandanan, 

2006a). Phosphorylation is necessary for the recruitment of ubiquitin ligases, which help 

mediate the polyubiquitylation and the subsequent degradation of these proteins in the 

proteasome. In mammals, βTrCP1 or βTrCP2 regulate PER1 and PER2. CKI are involved 

in phosphorylating PER1 and PER2 and this phosphorylation leads to the recruitment of 

βTrCP which mediates the ubiquitylation and proteasomal degradation of these proteins 

(Eide et al., 2005; Shirogane et al., 2005).  

In the last 10 years, sumoylation was discovered, which is an additional post 

translational modification involving regulation of various mechanism involved in the 
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circadian clock. It is a reversible post translational modification resulting in small 

ubiquitin-related modifier protein (SUMO) covalently linking to lysine residues. It is 

controlled by an enzymatic pathway similar to the ubiquitin pathway (Cardone et al., 

2005; Reghunandanan & Reghunandanan, 2006). However,  in contrast to ubiquitination, 

sumoylation does not directly target proteins for degradation instead it regulates other 

functions for example nuclear localization, protein–protein interactions, transcriptional 

activity and ubiquitination itself (Buschmann et al., 2000; Desterro et al., 1998).  

Mutations in CK1ε and CK1δ emphasize how vital post translational modification 

occurring in the molecular clock is (Lee et al, 2009). There is a decrease in free running 

period (FRP) and an altered phase angle of entrainment seen in CK1ε mutated hamsters 

(Ralph & Menaker, 1988). Mutations occurring in CK1ε and CK1δ effect kinase activities 

and result in a shorter circadian period in mammals (Akashi et al, 2002; Eide et al, 2002; 

Lowrey et al., 2000). CK1ε and CK1δ mutations are of particular interest to humans as 

they are associated in the sleep disorder familial advanced sleep phase syndrome (FASPS) 

(Xu et al., 2005). Post translation modifications are necessary in order to have a self-

sustaining cycle of core clock components oscillating every 24 hours per cycle (Guilding 

& Piggins, 2007). 

 

1.6.3 Mutations or deletions of the core clock genes 

 

Disruption or deletion of circadian clock genes in mice impair circadian behaviour 

and altered expression profiles of circadian genes. mPER and mCRY outputs of the 

negative feedback loop are essential for maintaining a functioning circadian clock 

(Lowrey & Takahashi, 2004). Diseases including diabetes, obesity, and vascular disease 

and accelerated ageing are linked to impaired clock gene expression (Bass & Takahashi, 

2010; Kondratov et al., 2006; Paschos et al., 2012; Rudic et al., 2004). The studies 

described next, emphasis the effect perturbations to components of the molecular clock 

mechanisms can have on circadian output rhythms.  

 

1.6.3.1 Per mutations 

 

Per1-/- mice display a shorter circadian period, with the period less stable and 

precise (Cermakian et al., 2001; Zheng et al., 2001). Furthermore, Per1-/- mice displayed 
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disturbed locomotor activity rhythms when placed in DD for an extended period (Bae et 

al., 2001). When Per1-/- mice are placed in LL their period length is extended and become 

arrhythmic in light of >500 lux (Steinlechner et al., 2002). Therefore, PER1 seems to be 

important in the regulation of the circadian clock and maintenance. However, a 

subsequent study has shown that C57BL/6J Per1-/- mice had a similar free running period 

(FRP) to Per1+/+ and Per1+/- of approximately 23.5 hours. Additionally, analysis of the 

total wheel running activity, phase angle of entrainment and amplitude were comparable 

between all 3 mice groups. Finally, no arrhythmic wheel running behaviour was observed 

in this study following DD conditions (Pendergast et al., 2009). This was in contrast to 

the findings from Bae and colleagues, where some of the mPER1-deficient mice 

displaying arrhythmic behaviour in DD (Bae et al., 2001; Zheng et al., 2001). Circadian 

behaviour can be affected by genetic background (Ebihara et al., 1978; Schwartz & 

Zimmerman, 1990; Shimomura et al., 2001), therefore, the strain of mice used in each 

study may be the reason for different findings, with Pendergast using a C57BL/6J genetic 

background, in contrast to both Bae and Zheng using mixed or isogenic 129/sv 

backgrounds. When studies were carried out in vitro, the cultured SCN of Per1-/- mice 

exhibit weak or absent molecular rhythms, which is in contrast to in vivo results 

established (Pendergast et al., 2009; Takasu et al., 2013).  

Per2-/- mice in DD also exhibit a shorter circadian period and eventually lose their 

circadian rhythmicity. This arrhythmicity in DD can be overturned by the application of 

a light pulse, re-establishing circadian rhythmicity (Zheng et al., 1999, 2001). Per2-/- mice 

placed in LL differ from Per1-/- mice, with shortened period less than 24 hours and display 

robust activity rhythms. Per2 is important for SCN gene expression, with reduced levels 

in Per2-/- mice (Bae et al., 2001). In vitro studies also displayed a shortened circadian 

period when analysing Per2-/- SCN explants using the Per1-Luc reporter. However, the 

cultures were greatly reduced by approximately 1.5 hours when compared to in vivo 

studies (Pendergast et al., 2010). A Per2 mutation can result in a sleep disorder known as 

FASPS in humans (Toh et al., 2001). Additionally, Per3-/- mice express continuous 

mPer2Luc bioluminescence rhythms in SCN explants (Liu et al., 2007). mPer3 does not 

appear to be necessary in the functioning of circadian rhythmicity with only a modest 

period alteration in DD (Bae et al., 2001; Shearman et al., 2000) and in SCN explants 

(Pendergast et al., 2012). However, mice deficit in Per3 exhibit alterations to phase and 

period in both lung and pituitary explants (Pendergast et al., 2010). Double knockout of 
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Per1/Per2 results in immediate behavioural arrhythmicity if the knockout mice are put in 

DD (Zheng et al., 2001). The Per1 and Per2 genes are vital in regulating circadian rhythms 

as animals deficient in both these genes show no circadian rhythm.  

 

1.6.3.2 Cry mutations 

 

Cryptochromes play a key role in the negative feedback loop of the circadian 

timekeeping system. When in constant conditions of either DD or LL in vivo, the double 

knockout of Cry1/Cry2 mice results in behavioural arrhythmicity. Whereas either Cry1 

or Cry2 alone can maintain rhythmicity. Cry1-/- mice display a shortened period length, 

while Cry2-/- mice exhibit an extended period length in DD (van der Horst et al., 1999; 

Vitaterna et al., 1999). Therefore, the CRY proteins are necessary for the smooth running 

of the circadian timekeeping system. In vitro studies present similar findings with either 

Cry1-/- or Cry2-/- mice been able to maintain mPer2Luc bioluminescence rhythms in SCN 

explants. Interestingly, neither Cry1-/- or Cry2-/- mice were able to maintain mPer2Luc 

bioluminescence rhythms in lung explants (Liu et al., 2007). 

 

1.6.3.3 Clock and NPAS2 mutations 

 

Peripheral Clock-/- liver and lung explants display long period locomotor activity 

that ultimately causes arrhythmicity in DD, hence, CLOCK is vital in peripheral 

oscillations (DeBruyne et al., 2007). Heterozygous Clock mutant mice display a FRP of 

approximately 24.5 hours, whereas homozygous Clock mutant mice exhibit a FRP of 

roughly 28 hours before becoming arrhythmic (Vitaterna et al., 1994; Young & Kay, 

2001). Studies have revealed that clock-/- mice maintain SCN bioluminescence 

rhythmicity and demonstrate robust circadian rhythms in locomotor activity (Asher & 

Schibler, 2006; Debruyne et al., 2006), unlike peripheral oscillators which showed loss 

of rhythmicity without CLOCK (DeBruyne et al., 2007b). In LL conditions, clock-/- mice 

do not have a lengthened period, which conflicts with the Aschoff’s Rule (Dallmann et 

al., 2011). Under LD conditions, clock-/- mice have an altered phase angle of entrainment. 

Furthermore, they exhibit a decrease in phase delays and greater phase advances, 

therefore, this might suggest that CLOCK is an important clock gene component with 
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regard to either transferring photic information to the SCN or in regulating SCN 

sensitivity to photic stimulation (Debruyne et al., 2006). 

The transcription factor NPAS2 (which is also referred to as MOP4), is a paralog 

of Drosophila CLOCK (Hogenesch et al., 1997; Zhou et al., 1997) and can also 

heterodimerize with bmal1 to drive gene expression (Hogenesch et al., 1998; Reick et al., 

2001). NPAS4 can be used in place of CLOCK in clock-/- mice, as it is seen to regulate 

circadian rhythmicity in the absence of CLOCK. Arrhythmia occurs if mice are deficit in 

both CLOCK and NPAS4, therefore, indicating that one is necessary for functional 

circadian rhythms (DeBruyne et al., 2007a). Evidence for an overlapping role of both 

CLOCK and NPAS4 was also displayed in liver circadian oscillators (Bertolucci et al., 

2008). 

Studies have investigated what effect clock gene knockout has with regard to 

mood regulation and obesity in mice respectively (McClung, 2011; Turek, 2005). 

Reduced diurnal feeding rhythms, obesity and a hyperphagic condition are presented in 

homozygous Clock mutant mice. Further findings from this study also showed these mice 

developed a metabolic syndrome similar to diabetes (Marcheva et al., 2009; Turek, 2005). 

Another study investigating behavioural changes, showed that Clock mutant mice 

exhibited cocaine sensitization, hyperactive in a new environment and attenuated anxiety 

when compared to controls (Easton et al., 2003; McClung et al., 2005). Npas4/Clock-/- 

expressed marked astroglial activation throughout the brain, with the cortex greatest 

affected (Musiek et al., 2013). 

 

1.6.3.4 Bmal1 mutations 

 

Bmal1 (Mop3) is essential for maintaining behavioural rhythms in both the SCN 

and peripheral clocks. It is also thought to be involved in the functioning of behavioural 

output. Bmal1-/- mice in DD are arrhythmic, have impaired circadian behaviour, display 

altered entrainment to LD cycle and contain impaired mPer1 and mPer2 rhythmicity in 

the SCN (Bunger et al., 2000). These KO mice presented with hyperlipidaemia and 

glucose intolerance (Marcheva et al., 2009; Rudic et al., 2004). Bmal1-/- mice display 

signs of impairment in learning and memory (Kondratova et al, 2010), along with early 

ageing and a reduction in their lifespan (Ali et al., 2015; Kondratov et al., 2006). A recent 

study found interesting findings with regard to astroglial activation in Bmal1-/- mice. At 
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2.5 months, glial fibrillary acidic protein (GFAP) exposed a high occurrence of 

astrogliosis throughout the brain, in Bmal1-/- mice. This increased further by six months, 

with the cortex most affected. These findings suggest that transcriptional regulation by 

BMAL1:NPAS2/CLOCK heterodimers, is necessary to avoid neuropathology in the brain 

(Musiek et al., 2013). 

 

1.6.3.5 Rev-erbα mutations 

 

REV-ERBα plays a role in regulating clock rhythmicity, as it represses Bmal1 

transcription (Liu et al., 2008). Rev-erbα-/- mice display changes in phase shifting of 

locomotor behaviour and there is also a decrease in their FRP when placed in constant 

conditions (Preitner et al., 2002).  

 

Table 1: Summary of the effect of genetic mutation of core clock genes on behavioural 

phenotypes. 

 

Gene Mutation Circadian Behaviour Phenotype 

(DD) 

Reference 

Per1 Per1-/-  
 

Short (Cermakian et al. 2003)  

 

Per2 Per2-/-  

 

Short/arrhythmic (Zheng et al. 1999; Bae et al. 2001)  

 

Per3 Per3-/-  

 

Short (Bae et al. 2001)  
 

Per1/Per2 Per1-/-/Per2-/-  

 

Arrhythmic (Bae et al. 2001)  

 

Per2/Cry1 Per2-/- /Cry1-/-  

 

Arrhythmic (van der Horst et al. 1999;  

Bae et al. 2001 ) 
 

Cry1 Cry1-/-  

 

Short (van der Horst et al. 1999) 

 

Cry2 Cry2-/-  

 

Long (van der Horst et al. 1999;  

Vitaterna et al. 1999)  

 

Cry1/Cry2 Cry1-/-/Cry2-/-  Arrhythmic (van der Horst et al. 1999;  
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1.7 Entrainment of the SCN pacemaker 

 

The circadian clock not only can generate its own rhythms but can also be 

entrained by Zeitgebers, which are external cues, allowing for photic entrainment using 

light or non- photic entrainment such as feeding time, temperature, exercise and chemical 

stimuli. Light is the most influential synchronizer of the SCN clock (Challet, 2007). 

Circadian rhythms vary between species since diurnal animals are active during the light 

phase and nocturnal animals are active during the night. Zeitgeber time (ZT), ZT0 is 

defined as the start of the light phase and ZT12 corresponds to the start of the dark phase. 

Phase response curves (PRC) is the time across the circadian cycle at which an external 

cue will effect circadian rhythmicity and cause phases shifts of the circadian locomotor 

activity, which will the oscillator to reset (Daan & Pittendrigh, 1976; Jud et al., 2005). 

Species differences are displayed in the form of the shape and amplitude of the PRC 

(Golombek & Rosenstein, 2010). 

In constant light (LL) or constant darkness (DD) conditions, animals express a 

free running rhythm in the absence of external time cues. LL causes a lengthened period 

and presents a low amplitude of activity resulting in arrhythmic behavioural rhythms in 

mice (Aschoff, 1960; Ohta et al., 2005; Pittendrigh & Daan, 1976; Sudo et al., 2003). The 

lengthening period in LL is in proportion with the logarithm of the applied light intensity 

(Aschoff, 1952; Jud et al., 2005). Mice in DD usually have a shorter FRP due to their 

internal rhythms usually less than 24 hours, with one circadian unit typically less than 1 

hour in constant darkness (Jud et al., 2005; Pittendrigh & Daan, 1976; Sudo et al., 2003). 

Since free running animals usually no longer have a period length of 24 hours, time is 

now represented in circadian time (CT) units. CT0 is defined as the onset of the resting 

 Vitaterna et al. 1999)  

 

Bmal1 Bmal1-/-  

 

Arrhythmic (Bunger et al. 2005) 

Clock Clk-/-  

 

Long/arrhythmic (Dallman et al. 2011) 

Rev-erbα Rev-erbα-/- Short (Preitner et al., 2002) 
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phase whereas CT12 is the onset of activity in free-running conditions. PRC’s can occur 

either by photic stimuli or non-photic stimuli. 

 

 

 

Figure 1.6: Actograms representing phase response curves of circadian rhythms. (1) displays 

no effect of photic stimulation during the subjective day, (2) a phase delay follows as a result of 

a light pulse in the early subjective night, (3) a phase advance occurs due to photic stimulation in 

the late subjective night, (4) a phase advance arises as a consequence of non-photic stimuli (novel 

running wheel) administered in the subjective day, (5) no phase shift was displayed in the 

subjective night as a result of non-photic stimuli. The middle graph emphasises the photic PRC 

(solid line) and the non-photic PRC (dashed line) with numbers 1-5 corresponding to the 

actograms (Golombek & Rosenstein, 2010).  

 

1.7.1 Photic entrainment 

 

1.7.1.1 Light pulses 

 

Light is the most important cue in entraining the circadian clock. The photic PRC 

describes where photic stimuli at various circadian phases will result in a phase delay, a 
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phase advance or no change in the circadian phase (Jud et al., 2005; Marpegán et al, 

2005). The phase shifting responses of the SCN clock to light depend on what time of the 

day light is administered. In nocturnal and diurnal animals, phase delays occur when light 

pulses are carried out in DD in the early subjective night, while phase advances take place 

when light pulses are administered in the late subjective night (Sumová & Illnerová, 

2005). When a light pulse is administered during the day in nocturnal animals no phase 

shift occurs. This period where light has no resetting effect is called the dead zone (Daan 

& Pittendrigh, 1976; Takahashi et al., 1984). 

Environmental light stimulates the photopigment melanospin found in retinal 

ganglion cells, which transmit light to the core of the SCN via the RHT (Hattar et al., 

2002; Rollag et al., 2003; Ruby et al., 2002).  The molecular mechanisms for entraining 

the circadian clock are believed to arise from a light pulse causing the release of the 

neurotransmitter glutamate (Reppert & Weaver, 2002). This brings about activation of 

glutamate receptors, which in turn induces phosphorylation of CREB resulting in its 

translocation to the nucleus where it binds to cAMP-responsive elements (CRE) on 

promoter regions of Per1 promoter, which leads to upregulation of Per1 transcription 

(Albrecht et al., 1997).  

The extracellular signal related kinases (ERKs) are pathways also implicated in 

the phase shifts following photic stimulation. Activation of ERK leads to the 

phosphorylation of CREB, which results in the transcription of photically inducible 

genes. Activation of the ERK pathway is vital for photic entrainment of the circadian 

clock (Obrietan et al., 1998). Phosphorylated ERK (p-ERK) are rhythmic and peak during 

the subjective day in the SCN of Syrian hamsters (Coogan & Piggins, 2003; Webb et al., 

2013). p-ERK is induced when light pulses are administered during the subjective night. 

Certain ERK pathway inhibitors or NMDA receptor channel blockers can cause reduce 

photic induction of p-ERK and attenuate phase advances of running wheel behaviour 

(Coogan & Piggins, 2003). Additionally, other pathways including CRTC1-SIK1 and 

protein kinase C (PKC) also are involved in regulating photoentrainment of the circadian 

clock (Bonsall & Lall, 2013; Jagannath et al., 2013). The CRTC1-SIK1 pathway may 

play a role in clock re-setting, with prompt re-entrainment displayed following jet lag 

experiments, therefore, SIK1 seems to be involved in reducing the effects of light on the 

SCN (Jagannath et al., 2013), whereas inhibition of PKC causes re-entrainment to be 

considerably slower (Bonsall & Lall, 2013). 
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Light induced phase shifts are noticeable by the induction of photically IEGs, 

which include c-Fos, egr-1 and jun-B. These genes contain CRE in their promoter regions, 

and bind to CREB which allow transcription to take place in response to photic simulation 

in the subjective night (Greenberg et al., 1992). c-Fos is the most studied IEG in response 

to photic stimulation. There is induction of c-Fos mRNA and immunoreactive Fos protein 

expression in the SCN of diurnal and nocturnal animals after administration of a light 

pulse at night and in response to lights on at dawn in the LD cycle (Hughes et al., 2004; 

Rea, 1989; Rusak et al., 1990). c-Fos expression is displayed in the core region of the 

SCN after even five minute light pulses in the subjective night, and can result in rapid 

induction of c-Fos within the hour of exposure to light (Colwell & Foster, 1992; 

Kornhauser et al., 1990; Schwartz et al., 1995). Therefore, c-Fos is thought to play a role 

in circadian function and photic entrainment.  

There is induction of Per1 and Per2 protein expression in the SCN of diurnal and 

nocturnal animals after administration of a light pulse at night. This expression is not seen 

during the subjective day following administration of light pulse (Hamada et al, 2001; 

Shigeyoshi et al., 1997). The Per genes show that in the early subjective night there is 

upregulation of Per1 in the core and increased Per2 expression in the shell, following a 

light pulse. Following a light pulse in the late subjective night, Per1 expression was 

upregulated in the core and the shell. However, there was no increase in Per2 expression 

in the core or shell. This evidence presented here supports the idea that light acts on cells 

in the SCN core, resulting in the resetting of the pacemaker cells in the SCN shell from 

core output (Yan & Silver, 2004). Furthermore, the involvement of Per1 and Per2 in the 

synchronisation of the SCN clock to photic signals has been displayed by the fact that 

mice with a mutated Per1 gene show no light induced phase advances, whereas mice with 

a Per2 mutated gene display no light induced phase delays (Albrecht et al., 2001). It is 

established from these studies that at a molecular and behavioural level, circadian 

responses to light are not different between diurnal and nocturnal animals.  

 

1.7.2 Non-photic entrainment 

 

 Non-photic entrainment can arise from chemical stimuli-scheduled food, 

scheduled exercise and temperature-but does not show responses to photic stimulation. 

The involvement of the IGL and the SCN, and serotonergic projections from the median 
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raphe to the SCN, seem to play a role in non-photic shifting (Meyer-Bernstein & Morin, 

1996). There are two main chemical Zeitgebers which can be used to entrain animals to 

circadian rhythms-serotonin and melatonin-which will all be discussed.  

 

1.7.2.1 Dark pulses 

 

Animals kept in LL can have their SCN clock reset by a dark pulse. When dark 

pulses are administered in nocturnal rodents it results in phase advances during most of 

the subjective day, but during the late subjective night and early morning dark pulses 

cause phase delays (Boulos & Rusak, 1982; Canal & Piggins, 2006; Rosenwasser & 

Dwyer, 2002). Studies indicate that there is a down regulation of FOS, Per1 and Per2 

expression in the SCN of hamsters (Coogan & Piggins, 2005; Mendoza et al., 2004). With 

regard to dark pulses, phase advance of circadian rhythms occurs in the resting phase of 

the animals. Therefore, nocturnal and diurnal species differ when dark pulses are 

administered (Mendoza et al., 2007). Studies have displayed that at a behavioural level, 

circadian responses to light differ between diurnal and nocturnal animals. 

 

1.7.2.2 Serotonin 

 

Serotonin is a neurotransmitter important in circadian entrainment, as it appears 

to be involved in non-photic phase shifting (Mintz et al., 1997). The SCN and the IGL 

obtain serotonergic projections from the midbrain raphe nuclei (Morin, 1999). Serotonin 

and 5-HT receptor agonists either in vitro or in vivo, can cause phase shifts of the SCN 

when administered at times where light does not cause any phase shifts in the circadian 

cycle (Challet et al, 1998; Ehlen et al., 2001; Reghunandanan & Reghunandanan, 2006a). 

Peripheral serotonin agonist injections which activate serotonin neurons cause phase 

advances in nocturnal animals when administered during the day in LL at CT8, whereas 

administration of serotonin agonist injections at any other time did not phase shift the 

SCN clock (Tominaga et al., 1992). In contrast, diurnal animals phase shift during the 

subjective night. Therefore, serotonin phase shifts the SCN clock in the animals resting 

phase (Cuesta et al., 2008).  

Peripheral injection of the serotonin agonist, 8-OH-DPAT, administered in the 

mid subjective day in golden/Syrian hamster’s results in phase advances (Challet et al., 
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1998; Cutrera et al., 1994; Mintz et al., 1997). There has been some inconsistent findings 

with regard to direct serotonin agonist administration to the SCN directly in vivo, with 

phase shifts displayed in some studies and others finding no alterations (Antle et al., 2003; 

Prosser et al., 2006). However, in vitro studies have revealed that serotonin and serotonin 

agonists can act directly on the SCN to alter the phase of the circadian pacemaker in rats 

and mice (Medanic & Gillette, 1992; Prosser et al., 2006; Shibata et al., 1992; Sprouse et 

al., 2005). Administration to SCN explants during the subjective day results in a phase 

advance in the circadian pacemaker, whereas at night it causes phase delays (Prosser, 

2000; Prosser, 2003). 

 

1.7.2.3 Melatonin 

 

Melatonin is a hormone secreted during the night by the pineal gland, which can 

also phase shift the master clock and amplify circadian rhythmicity (Reghunandanan & 

Reghunandanan, 2006a). The SCN controls circadian rhythmicity of the pineal gland to 

allow secretion of melatonin, hence melatonin is thought to be involved in a feedback 

role on the SCN (Challet, 2007). The highest amount of melatonin receptors such as MT1 

and MT2 are located in the SCN (Ekmekcioglu, 2006; Reppert et al., 1988). The function 

of melatonin in the SCN has been recognised in several rodent studies. Administration of 

melatonin injections at subjective dusk in mice resulted in phase advances (Benloucif & 

Dubocovich, 1996). Furthermore, daily treatment of melatonin by oral administration, 

subcutaneous injection or infusion are able to entrain the locomotor rhythms of free 

running rodents (Pitrosky et al., 1999; Redman et al., 1983; Slotten et al., 1999; Slotten 

et al., 2002). Mice in DD present phase delays after morning administration, whereas 

phase advances occur after evening administration (Benloucif & Dubocovich, 1996). The 

effects of melatonin are independent of whether the animal is nocturnal or diurnal, as 

phase shifting occurs at similar times in both types (Slotten et al., 2002).  

Timed administration of melatonin helps people readjust after acute phase shifts 

that take place from jet lag and shift work (Sack & Lewy, 1997). Another study carried 

out administered intermitting bright light by morning, melatonin by afternoon and a 

gradual advanced sleep schedule which resulted in an advance in circadian rhythms by 

one hour per day. This may be an effective treatment for passengers traveling eastwards 

to alleviate jet lag. It may also be a useful treatment in the condition delayed sleep phase 
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syndrome (DSPS) (Revell et al., 2006). Administration of melatonin can also entrain free 

running circadian rhythms in blind people and patients with dementia (Lockley et al., 

2000; Mishima et al., 1994; Sack et al., 2000; Sack & Lewy, 1997). 

 

1.7.2.4 Food and exercise entrainment 

 

 Feeding cues have only a weak influence over the SCN but are potent 

synchronizers of peripheral oscillators. Temporal restricted feeding together with calorie 

restriction, can alter phase angle of photic synchronisation in the SCN (Challet et al., 

2003; Mendoza et al., 2005). A study was carried out to investigate if daily restricted 

feeding in CS mice was able to reset the circadian clock in the SCN. CS mice in DD were 

fed for 3-4 weeks at a fixed time of three hours per day, and then returned to having free 

access to food for 2-3 weeks. The outcome was that CS mice wheel running rhythms 

entrained to a restricted feeding schedule, whereas controls SCN did not entrain to a 

restricted feeding schedule. Therefore the circadian clock can be reset by food schedule 

in DD in CS mice (Abe et al., 2007). 

 Exercise cues can have an effect on the entrainment of the master clock 

(Mistlberger & Skene, 2005; Mrosovsky, 1996). In a study carried out by Mrosovsk, the 

effect of a three hour exercise pulse using a novel running wheel was investigated. This 

was given seven hours before the time hamsters became active in the LD cycle. The three 

hour exercise pulse caused a greater phase advance when compared to control mice.  

When hamsters were put into DD the following day after their exercise accelerated phase 

shift, their free-running activity rhythms started at a time nearer to the onset of darkness 

in the new LD cycle rather than the previous LD cycle, showing that scheduled exercise 

can entrain the SCN.  An additional experiment carried out displayed that a three hour 

exercise pulse followed by a light pulse eight days after DD resulted in a phase advance, 

whereas controls who received a light pulse only phase delayed (Mrosovsky, 1989).  

 

1.8 Circadian rhythms and disease 

 

Environmental factors such as sleep restriction and shift work are known to impact 

on circadian rhythms which can lead to certain cancers and inflammation (Bechtold et al., 

2010). Epidemiological studies have suggested a link between shift workers and an 
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increased risk of cancer (Logan & Sarkar, 2012). Shift work can cause altered circadian 

rhythms. Animal models have shown a link between circadian disruption and cancer. A 

higher incidence of breast cancer is associated with long-term shift workers 

(Schernhammer et al., 2006). In males, long-term shift workers face increased risk of 

prostate cancer (Kubo et al., 2006). By ablating the SCN or by manipulating the circadian 

cycle to cause chronic jet lag, alterations in circadian rhythms resulted in decreased 

lymphocytes numbers, which is related to increased rate of tumour growth (Filipski et al., 

2006). An increase in the mortality of aged C57BL/6 mice can be seen with chronic 

circadian disruption (Davidson et al., 2006). 

In relation to inflammation, chronic disruption in circadian timing using jet lag 

experiments in mouse models, resulted in altered innate immune responses. LPS 

challenge in chronic jet lag mice lead to an increased mortality rate compared to controls 

(Castanon-Cervantes et al., 2010). The potential long-term health consequences of shift 

workers and airline crew frequently crossing time zones may cause unnecessary health 

issues. Hence, there is a need for employers to work out a better working time schedule. 

Genetic analyses of circadian rhythm sleep disorders allowed for the discovery of 

FASPS and DSPS sleep disorders. Intrinsic sleep disorders may be shown by DSPS, 

where patients have shifted circadian rhythms. Patient’s falls asleep later at night, have 

more difficultly waking up in the morning and have reduced alertness in the morning. 

DSPS typically happens in adolescence and is the most common intrinsic circadian 

rhythm sleep disorder. Genetic studies identified extreme diurnal preference using the 

hPer3 gene, which has been implicated in the pathogenesis of DSPS (Archer et al., 2003; 

Ebisawa et al., 2001). The second intrinsic circadian rhythm sleep disorder discussed 

briefly earlier is FASPS, which occurs in patients who fall asleep early and wake earlier. 

This sleep disorder is associated with depression and has greater prevalence in elderly 

patients (Monk & Welsh, 2003; Xu et al., 2005). Genetic studies have revealed that 

missense mutation in the clock component hPer2 gene causes alterations in the circadian 

period (Toh et al., 2001). 

 

1.9 The innate immune system  

 

 The innate immune system is the first line of defence during infection and plays 

a vital role in recognising invading pathogens and activating a pro-inflammatory response 
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against them (Mogensen, 2009). When infection occurs, the cells of the innate immune 

system cause inflammation to arise. Macrophages and dendritic cells are pathogen 

recognition receptors (PRR’s) which recognise pathogen-associated molecular patterns 

(PAMPs) that are present on the surface of invading microbes. This results in the 

activation of the innate immune system (Medzhitov & Janeway, 2000). The most 

commonly studied PPRs are toll like receptors (TLRs). There are 10 known TLRs studied 

in humans, and each TLR produces specific proteins that act as cell surface receptors 

which identify a group of ligands PAMPs in bacteria, fungi and viruses (Akira et al., 

2006). The TLR4 binds to pathogen-associated molecular patterns in LPS which causes 

a signalling cascade via two pathways, NF-κB-dependent and NF-κB-independent 

pathways (Pålsson-McDermott & O’Neill, 2004).  

 There are two basic intercellular pathways which play a role in TLR signalling, 

firstly the MyD88 dependent pathway (NF-κB-dependent) and secondly the MyD88-

independent pathway (NF-κB-independent) (Bagchi et al., 2007; Takeda & Akira, 2004). 

The MyD88 dependent pathway is important for the early activation of the NF-κB 

signalling pathway and is responsible for pro-inflammatory cytokines expression, 

whereas the MyD88-independent pathway is involved in the late phase NF-κB activation 

and is responsible for the induction of IFN-inducible genes, along with maturation of 

dendritic cells (Akira et al., 2006; Broad et al., 2007; Kawai & Akira, 2011). It is 

necessary for both the early and late phase activation of NF-κB to enable the induction of 

inflammatory cytokines (Kawai & Akira, 2011). The adaptors myeloid differentiation 

primary response protein 88 (MyD88), TIR domain-containing adaptor protein (TIRAP), 

TIR domain-containing adaptor protein inducing IFNβ (TRIF) and TRIF-related adaptor 

molecule (TRAM) are involved in the signal transduction of TLR4 (Akira, 2009; Horng 

et al., 2002; Yamamoto et al., 2003).  

The early activation phase of NF-κB stimulation of TLR4 and LPS result in 

receptor recruits MAL/TIRAP and MyD88 which are TIR containing proteins. This 

complex then recruits IRAK4 and IRAK1/2 (IL-1 receptor-associated kinase) which 

contain both a death domain and a kinase domain (Lu et al., 2008). IRAK4 then 

phosphorylates IRAK1/2 resulting in recruitment of the adaptor protein TRAF-6 (TNF 

receptor-associated factor 6) (Kawai & Akira, 2010; Keating et al., 2007). TRAF-6 forms 

a complex with UEVIA (ubiquitin-conjugating enzyme E2 variant 1 isoform A) and 

UBC13 (ubiquitin-conjugating enzyme 13), this allows for the activation of Transforming 
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growth factor-B-activated kinase 1 (TAK1) to take place. TAK 1 is important for 

activating the downstream IKK pathway as well as the MAPK (mitogen-activated protein 

kinase) pathway. This IKK complex phosphorylates IκB proteins which leads to the 

translocation of NF-κB from the cytoplasm to the nucleus. NF-κB DNA binding and 

transcription of pro-inflammatory cytokines such as IL-6, IL-1β, and TNF-α takes place 

(Mogensen, 2009; Moynagh, 2005b).  

 

 

Figure 1.7: MyD88-dependent pathway- involves MyD88 activating IRAKs/TRAF which 

results in the activation of the transcription factor NF-κB and AP-1 further downstream, adapted 

from (Lu et al., 2008).  

 

TLR4 triggers the MyD88 independent pathway via TRAM to induce IFNs. TRIF 

is an important TIR-containing adaptor protein which interacts with RIP and TRAF3 and 

activates MAPK, IRF3 and the late phase activation of NF-κB. TBK1/IKK-I 

phosphorylates IRF-3 which results in the translocation of IRF-3 into the nucleus which 

leads to the expression of the IFN inducible gene important for anti-viral and anti-

bacterial responses. Mice lacking MyD88, RIP and TRIF result in reduced activation of 

NF-κB in response to TLR4 stimulation (Bohannon et al., 2013; Yamamoto et al., 2003).  
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Figure 1.8: MyD88-independent pathway- TRIF recruits TRAF3 and RIP1 which result in 

activation of the transcription factor IRF3, NF-κB and AP-1. 

 

LPS consists of lipid A which is a hydrophobic endotoxin and makes up the outer 

membrane of most gram negative bacteria. LPS stimulation occurs through a series of 

interactions with several proteins, such as TLR4, CD14, MD-2 and LBP (LPS binding 

protein). LBP forms a high affinity complex with the lipid A part of LPS which results in 

LPS forming a ternary complex with CD14. CD14 can only bind to LPS in the presence 

of LBP (Wright, 1999). CD14 directs the transfer of LPS to the TLR4/MD-2 receptor 

complex allowing for LPS-dependent responses in many cells (Juan et al., 1995; Palsson 

and O'Neill, 2004). MD-2 is a soluble protein that non-covalently associates with TLR4, 

but can directly form a complex with LPS in the absence of TLR4 (Shimazu et al., 1999). 

MD-2 is vital for LPS signalling to occur as mice lacking this protein are unresponsive to 

LPS (Bohannon et al., 2013; Nagai et al., 2002). 
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(A)                                     (B)                   

 

 

 

 

 

 

 

 

Figure 1.9: Simple LPS structure: (A) is a 3-dimensional structure of LPS, with sugars 

displayed in blue and fatty acids illustrated in yellow. (B) Represents the molecular base structure 

of LPS made up of lipid A, a core oligosaccharide, and an O side chain (Alberts et al., 2002). 

 

                                                       

Figure 1.10: LPS interaction with TLR4, LBP, CD14 and MD-2, adapted from (Lu et al., 

2008). 

 

1.10 Interaction between the circadian system and immune response 

 

 The crosstalk between the circadian system and the immune system is 

bidirectional (Coogan & Wyse, 2008; O’Callaghan et al., 2012). The circadian system 

can play a role in immune function, and likewise, the different immune cells can affect 

the circadian system by acting on the SCN clock and in peripheral clock tissues 

(Cermakian et al., 2013; Logan & Sarkar, 2012).  

 

1.10.1 Interaction of the circadian systems and the immune system 

 

 The endocrine and autonomic pathways plays a role in communicating circadian 

timing information from the SCN to the immune system (Logan & Sarkar, 2012). Stress 
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and immune function are regulated by the SCN which communicates with the PVN and 

arcuate nuclei (ARC) through axonal connections (Saeb-Parsy et al., 2000).  

 

 

 

Figure 1.11: Bidirectional communication between the circadian and immune system. The 

SCN and the ARC send projections to the PVN which results in modulating the autonomic 

nervous system (ANS) endocrine and neural signalling to peripheral immune tissues. Activated 

cytokines can modulate clocks in the SCN and ARC, adapted from (Coogan & Wyse, 2008; Logan 

& Sarkar, 2012).  

 

 The innate immune system is under circadian control. In the brain, cytokines 

display circadian variations: in particular IL-1β peak in the hypothalamus at the onset of 

the activity phase (Taishi et al., 1997). TNF-α, glucocorticoids, noradrenaline and 

adrenaline also exhibit circadian variation in expression, similar to IL-1β (Scheiermann 

et al., 2013). The circadian regulation exhibited in the immune pathway components may 

serve to enhance immune responsiveness at the time of the circadian cycle at which 

infection is most likely to occur. Mice are highly sensitive and have reduced survival rates 

when exposed to endotoxins and cytokines in the early subjective night (active phase) 

(Scheiermann et al., 2013). A recent study has displayed how LPS administration can 

cause diurnal changes to microglia inflammatory responses, with the light phase 

displaying increased cytokine gene expression when monitored ex vivo, in isolated 

microglia from the hippocampus of rats (Fonken et al., 2015). Other studies have shown 
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that LPS administered in the late subjective day ZT11 can increase mortality, in 

comparison to ZT19, when mice are in their active phase (Marpegan et al., 2009).  

IL-1β and TNF-α receptors of the immune system are expressed rhythmically in 

the SCN (Beynon & Coogan, 2010).The administration of lipopolysaccharides (LPS) can 

modulate circadian rhythms in the SCN, resulting in phase delays or phase advances 

depending on the time of administration (Marpegán et al., 2005). In addition, Per2 and 

Dbp expression is briefly repressed in the SCN following LPS application (Cavadini et 

al., 2007; Okada et al., 2008). Clock gene expression can be altered when IFN-α is 

administered (Koyanagi, 2002; Kwak et al., 2008). Firstly, CLOCK and BMAL1 levels 

are reduced in the SCN as a result of IFN-α application (Koyanagi, 2002). Secondly, it 

was shown that long term IFN-α application in SCN explants from Per1::Luc rats have 

attenuated Per1-luc rhythm aptitude in comparison to controls (Kwak et al., 2008). 

Astrocytes in the SCN have also been discovered to control the circadian clock as a result 

of TNF-α administration, with SCN astrocyte cultures having altered phase and amplitude 

of PER2 expression rhythms, however, it is phase dependent. This study suggests that 

astrocytes may play a role in the alteration of circadian timing as a result of an immune 

challenge (Duhart et al., 2013). 

Application of TNF-α in vitro on SCN cultures, resulted a prompt increase in the 

spontaneous firing rate in most SCN neurons, with a nitric oxide (NO) inhibitor seen to 

block this effect. Therefore, NO application may play a role in controlling SCN electrical 

output (Nygård et al., 2009). Studies have shown how LPS-induced circadian responses 

are mediated by TLR4 and TNF respectively (Paladino et al., 2010; Paladino et al., 2015).  

In mice deficit in the TNF-α receptor Tnfr1, it was witnessed that LPS administration 

caused no phase delay of locomotor activity at CT15, and furthermore, it did not alter c-

Fos or Per2 expression in the SCN when compared to controls (Paladino et al., 2015). 

When the role of TLR4 in the circadian system was investigated since it is known to 

initiate the LPS cascade, LPS administered to TLR4-/- mice also displayed no phase shifts 

at CT15 as a result of this immune challenge. Additionally, c-Fos and Per1 expression 

were significantly upregulated in the PVN of controls mice following LPS, however, no 

induction of c-Fos or Per1 expression were displayed in TLR4-/- mice (Paladino et al., 

2010). The two studies emphasise the importance of TLR4 and TNF-α in circadian 

modulation as a result of an immune challenge.  
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1.10.2 The Circadian system and immune function and disease 

 

 Circadian disruption can have implications on health leading to sleep disorders, 

inflammation and cancers (Bechtold et al., 2010; Brooks & Canal, 2013; Evans & 

Davidson, 2013; Logan & Sarkar, 2012). Studies carried out found a link between cancer 

and shift work. Shift workers have a high prevalence in obesity, diabetes and 

cardiovascular disease (Logan & Sarkar, 2012). Several chronic inflammatory diseases 

are known to exhibit circadian variations. Rheumatoid arthritis (RA) patients have joint 

stiffness in the early morning which is associated with the increased serum levels of TNF 

and IL-6 (Cutolo, 2012).  

           

Figure 1.12: The circadian clock and disease: Disruption of the circadian clock due to 

physiology, environmental factors and genetics can lead to clinical and pathological conditions 

for example cancer, inflammation and sleep disorder, adapted from (Bechtold et al., 2010). 

 

Sleep disorders can occur due to circadian dysfunction. In circadian rhythm sleep 

disorders there is a mismatch between circadian timing of sleep and the demands of the 

environment, which results in symptoms of disturbed sleep and impaired day time 

alertness. There are two types of circadian sleeping disorders - extrinsic and intrinsic 

disorders. Jet lag and shift work are examples of extrinsic disorders caused by 

environmental factors whereas delayed sleep phase syndrome (DSPS) and familial 

advanced phase sleep syndrome (FASPS) are examples of intrinsic disorders related to 

genetics. 
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1.11 The role ageing plays in the circadian timing system 

 

Understanding the role neurobiology plays in normal ageing and disease is of vital 

importance. There are two types of ageing. Firstly, primary ageing which causes gradual 

changes over time which are generally not harmful. The other type of ageing is senescence 

or secondary ageing which is a more progressive form of ageing with deficiencies to 

metabolic, physiological and neurological functions causing a higher death rate. 

Dysfunctional circadian clocks in mouse models can result in attenuated lifespan. 

Therefore, a hypothesis needing investigation is that the ageing process can be slowed 

down by the re-organising of metabolic and physiological function by the circadian 

clock (Costa & Ripperger, 2015).   

 Studies have shown that ageing can cause dysfunction to the circadian 

timekeeping system in terms of behaviour and also at a molecular level (Crowley, 2011; 

Popa-Wagner et al., 2015; Weinert, 2000). The exact underlying mechanisms of this 

dysfunction are not clearly understood. Defects in the circadian clock can result in 

premature ageing, with Bmal-1-/- and Clock-/- mice having disrupted circadian behaviour 

along with reduced lifespans. Bmal-1-/-  mice display sarcopenia and cataract development 

as a consequence of ageing (Dubrovsky et al., 2010; Kondratov et al., 2006). The average 

lifespan of Bmal-1-/-  mice is 8 months is comparison to WT mice with an average of 

lifespan of 26 months (Kondratov et al., 2006). Furthermore, increased inflammation was 

observed in ageing Bmal-1-/-  mice, along with increased astrocyte activation in the brain. 

This study also found chronic inflammation with elevated levels of Ptghs2 and Tnf-

α mRNAs and COX2 protein in the cortex of ageing Bmal-1-/-  mice (Musiek et al., 2013). 

Physiological factors such as senescence causes circadian dysfunction in humans and 

mammals, as there is a decrease in amplitude of circadian rhythms in temperature and 

hormone secretion when analysed (Kondratova & Kondratov, 2012; Sellix et al., 2012). 

In the healthy ageing, dementia and neurodegenerative diseases neuropathological 

changes were found in the SCN when studying post-mortem brains (Hofman & Swaab, 

2006). 

 As ageing results in circadian dysfunction, it can impact on certain 

neurodegenerative diseases for example Alzheimer’s disease (AD) and Huntington’s 

disease (HD). In neurodegenerative diseases, circadian rhythm and sleep dysfunction are 

some of the first clinical symptoms seen in AD, HD and PD. Circadian system and sleep 
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irregularities worsen as the diseases progress. One theory for the dysfunction is that there 

is degeneration of nuclei containing circadian clock regulation circuits in the SCN. 

Excitatory and inhibitory neurotransmitters are regulated by the SCN, therefore, 

disruption to the release and suppression of neurotransmitters may be contributing to 

circadian clock and sleep irregularities in ageing and neurodegenerative diseases (Wulff 

et al., 2010).  Animal models in AD, HD and PD have all shown negative effects of 

neurodegeneration on the circadian clock (Kudo et al., 2011; Oakeshott et al., 2011; 

Sterniczuk et al., 2010).  

AD is a neurodegenerative disease associated with cognitive and behaviour 

impairments. AD patients have a troubled diurnal and nocturnal rhythm, with increased 

nocturnal awakening while there is an increase in the amount of time one sleeps during 

the day (Coogan et al., 2013). Since CLOCK genes are an important factor in maintaining 

circadian rhythmicity, studies had investigated how alterations of the CLOCK genes may 

in fact play a part in the pathophysiology of AD, but no CLOCK gene variant has been 

identified as a risk factor in AD to date (Thome et al., 2011). The mouse model 3xTg-AD 

displayed alterations to their circadian pacemaker with a decline in nocturnal behaviour 

when compared to aged controls. There was also a decrease in VIP and AVP in the SCN 

of 3xTg-AD compared to controls (Sterniczuk et al., 2010). Since VIP and AVP are able 

to alter SCN neuronal function, their decrease in AD may play a role in the disease.  

 Having robust daily rhythms of the sleep and wake cycle are vital for good health. 

HD patients display disturbances in their daily cycle of the sleep and wake cycle which 

has an impact on a patient’s cognitive function and quality of life (Cuesta et al., 2014). In 

the mouse model of BAC HD, studies have revealed circadian dysregulation of sleep, 

heart rate and body temperature (Kudo et al., 2011). BAC HD mice also displayed 

significant lengthening of their period, demonstrating that circadian regulation is a core 

feature in HD (Oakeshott et al., 2011). Another mouse model R6/2 which carries the HD 

mutation displays dysregulation of circadian rhythms that deteriorate as the disease 

progresses. Cognitive decline is also exhibited in R6/2 mice, and treatment with 

Alprazolam can improve cognitive function (Pallier et al., 2007). An additional study 

using the R6/2 mice used bright light therapy and voluntary exercise as treatment which 

resulted in positive effects, as there was improved behavioural synchronisation to the 

light–dark cycle (Cuesta et al., 2014). Trying to stabilise the sleep wake cycle may in turn 
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reduce the symptoms of neurodegenerative diseases such as cognitive decline, motor 

function difficulties and behavioural impairments.  

 Since there is circadian dysfunction in neurodegenerative diseases, a therapeutic 

approach to treating the disease might be beneficial to ameliorate circadian 

misalignments. Chronotherapeutics might involve light therapy, exercise and melatonin 

for treating AD and HD patients (Coogan & Thome, 2011; Dowling et al., 2008; Mishima 

et al., 1994). Current and future studies in chronopharmacology are aiming to correlate 

the time of administrating a drug according to their peak efficacy while exerting minimal 

side effects (Levi & Schibler, 2007). As knowledge expands even more on the 

relationship of the circadian clock and health and disease, future chronopharmacology 

and chronotherapeutics discoveries will be of immense importance. 

 

1.12 NF-κB 

 

1.12.1 What is NF-κB? 

 

Nuclear factor-kappa B (NF-κB) is a transcription factor that is essential for 

immune and cell survival signalling pathway (Baeuerle & Henkel, 1994; Bhakar et al., 

2002). NF-κB plays an important role in coordinating both innate and adaptive immunity 

and is also involved in regulating certain genes responding to different stimuli and 

infections (Pomerantz & Baltimore, 2002). Therefore a breakdown in this transcription 

factor can lead to inflammation and autoimmune diseases (Yamamoto & Gaynor, 2001) 

It was 29 years ago when the NF-κB transcription factor was discovered (Sen & 

Baltimore, 1986). NF-κB is composed of homo and hetro dimers of the Rel family, which 

consist of p65 (RELA), RelB, c-Rel, p50/p105 (NF-κB1), p52/p100 (NF-κB2) (Perkins, 

2007). The NF-κB proteins play a part in specific biological responses as they can regulate 

target gene transcription differentially. Dimers that contain transcriptional activation 

domain (TAD) like p65, RelB or c-Rel are transcriptional activators, while p50 and p52 

homodimers are repressors as they lack a TAD (Bonizzi & Karin, 2004; Hayden & Ghosh, 

2008).  The proteins exhibit various different binding specificities including p50/c-Rel, 

p52/c-Rel, p65/c-Rel, p65/p65, p50/p50, p52/p52, Rel-B/p50 and Rel-B/p52, with 

p65/p50 being the most common dimeric complex (Moynagh, 2005a). p65 allows for the 

strongest transcriptional activating potential of NF-κB, and the p50 subunit allows for the 
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strongest DNA binding affinity (Schmitz et al, 2004). Each dimer has different 

transcriptional functions, p65/p50 promotes transcription and is pro-growth and pro-

survival. p52/RelB partakes in B-lymphocyte differention and while p50/p50 and p52/p52 

are usually inhibitory (Ling & Kumar, 2012). Each Rel protein contains an N-terminal 

region, called the Rel Homology Domain (RHD) which contains a conserved 300 amino 

acid residue domain. The RHD has a DNA-binding domain on the N-terminal end, and it 

contains sequences necessary for dimerization, nuclear localization and inhibitor binding 

(Courtois & Gilmore, 2006; Yamamoto & Gaynor, 2001). The dimerization domain is 

located at the C-terminal of the RHD. Near the C-terminal, the Nuclear Localization 

signal (NLS) can be located. This is vital for transporting active NF-κB complexes into 

the nucleus (Ghosh et al., 1998). 

 

 

Figure 1.13:  Members of the NF-κB family, (Hayden & Ghosh, 2008) 

 

There are two other proteins that are vital for regulating the NF-κB pathway 

known as the IKB family and the IKK complex. There are seven known IκB’s which have 

been identified so far, IκB-alpha, IκB-beta, IκB-gamma, IκB-epsilon, BCL3, P100 and 

p105 (Hayden & Ghosh, 2004). All forms of the inhibitor IκB comprise of multiple 

ankyrin repeat domain, which are multiple copies of around 30-33 amino acid sequences. 

The ankyrin repeats facilitate the association between the IκB and NF-κB dimers binding 

to the RHD (Courtois & Gilmore, 2006). Nuclear translocation is prevented when ankyrin 

repeats interact with a region in the RHD and this masks their NLS. IκBα can only mask 
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one nuclear localisation sequence, whereas IκBβ can mask both nuclear localisation 

sequences (Moynagh, 2005). 

 

Figure 1.14: Members of the IκB family, (Bonizzi & Karin, 2004) 

 There are 3 main subunits of the IκB kinase (IKK) complex. IKKα (IKK1) and 

IKKβ (IKK2) are catalytic subunits, whereas the third subunit IKKγ (NEMO), has no 

catalytic activity (Karin & Ben-Neriah, 2000; Scheidereit, 2006). 

 

 

Figure 1.15: The IKK complex, (Perkins, 2007) 

 

1.12.2 NF-κB Pathways 

 

  There are two main NF-κB pathways recognised-the canonical pathway and the 

non-canonical pathway (Bonizzi & Karin, 2004; Ghosh & Karin, 2002). The two 

pathways play different roles in immune function as they turn on different genes (Karin 

& Greten, 2005). The canonical and non-canonical pathway differ significantly in terms 

of signalling mechanisms (Sun, 2011). The canonical pathway is the better characterised 

pathway involved in activating NF-κB. This pathway is activated by physiological NF-

κB inducing agents, inducing inflammatory cytokines, and antigen receptors. The 
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p65/p50 complex in its non-active form is held in the cytoplasm due to its association 

with members of the inhibitor IκB protein family. Activation of NF-κB in the canonical 

pathways depends on the degradation of IκB, and this only occurs when the IKK complex 

is activated (Moynagh, 2005; Perkins, 2007). NF-κB stimuli such as pro-inflammatory 

cytokines tumour necrosis factor-alpha (TNF-α) and interleukin-1 (IL-1) and LPS can 

activate the IKK complex. These stimuli cause NEMO to ubiquitylaten at lysine 63 which 

recruits kinases which then phosphorylate IKKβ at serine 177/181. This results in IKK 

complex activation. In the canonical pathway IKKβ is the main IκB kinase (Perkins, 

2007). Phosphorylation of  IκBα occurs on two serine residues, S32 and S36, resulting in 

ubiquitination by SCF-βTrCP at Lys21 and Lys22 and then degradation by the 26S 

proteasome (Bonizzi & Karin, 2004; Courtois & Gilmore, 2006; Doyle et al., 2013). Once 

IκB is removed, translocation of NF-κB can now take place from the cytoplasm to the 

nucleus where it binds to a κB consensus sequence GGGACTTTCC, where transcription 

of specific cellular genes occurs (Yamamoto & Gaynor, 2001). A feedback pathway 

where new synthesized IκBα binds to the activated NF-κB in the cytoplasm results in 

down-regulation, and transportation out of the cytosol (Hayden & Ghosh, 2004). 

However modulation can also take place of NF-κB transcription complexes, by post-

translational modifications and interacting with other proteins (Perkins, 2006).  

The non-canonical pathway/alternative pathway has shown in genetic studies with 

mice that it is important in lymphoid organogenesis and B-lymphocyte function (Bonizzi 

et al., 2004). Dysregulation of this alternative pathway signalling is connected with 

lymphoid malignancies. Hence, it is important to understand the mechanism regulating 

this pathway (Sun, 2011). This pathway is activated in response to certain TNF family 

members, comprising of B-cell activating factor (BAFF), CD40 ligand, and lymphotoxin-

β (LT-β) receptor (Claudio et al., 2002; Coope et al., 2002; Doyle et al., 2013). The main 

dimer involved is the p100-RelB heterodimer. When at rest this dimer is located in the 

cytoplasm. This pathway is based on regulated processing of NF-Κb2/p100 precursor 

protein (Xiao et al., 2001). p100 contains an N-terminal RHD, and an inhibitory IκB-like 

C-terminal domain. This C-terminal domain inhibits nuclear translocation of p100 

(Bonizzi et al., 2004). It is strictly dependent on the IKKα subunit, whereas IKKβ and 

IKKγ play no role in this pathway (Bonizzi & Karin, 2004). NF-κB inducing kinase (NIK) 

activates IKKα, and phosphorylation takes place of p100 at two C-terminal sites which 

leads to its ubiquitation and proteasomal processing to p52 (Xiao et al., 2001). This in 
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turn causes activation and translocation of p52-RelB hetrodimers into the nucleus to 

activate certain genes that are vital for B-cell development and lymphoid organogenesis.  

 

 

Figure 1.16: the canonical and non-canonical pathway, adapted from (Sun, 2011). The 

canonical pathway is induced by TLRs and TNFs and many other stimuli and is dependent on 

activation of IKKβ by Tak1. Activation of IKKβ results in phosphorylation of IκBα, this leads to 

ubiquitylation and degradation by proteasome. The heterodimer RelA/p50 can then translocate to 

the nucleus from the cytoplasm. The non-canonical pathway activates IKKα by NIK, p100 is then 

phosphorylated by IKKα. This results in proteasome processing of p100 to p52, forming the 

heterodimer p52/RelB. Translocation to the nucleus of p52/RelB occurs to activate certain genes. 

 

1.12.3 NF-κB in diseases 

 

The transcription factor NF-κB plays a key role in immune cell development, 

homeostasis and survival. NF-κB regulates the expression of inducers and effectors in 

response to pathogens in the immune system (Hayden & Ghosh, 2008). This pathway 

controls the expression of hundreds of human genes (Courtois & Gilmore, 2006). NF-κB 

is activated by pathogen recognition through either toll-like receptors of the innate 

immune system or from specific B and T cell receptors of the adaptive immune system 

(Kumar et al., 2004). Dysregulation of this pathway due to amplified Rel genes or aberrant 

activation of upstream regulators can lead to the development of autoimmune diseases, 
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chronic inflammation, and cancer (Schulze-Luehrmann & Ghosh, 2006). There has, so 

far, been 700 inhibitors of NF-κB discovered and these are vital due to the central role 

that this transcription factor plays in inflammation and cancer (Tafani et al., 2013).  

Patients with chronic inflammatory diseases such as RA, asthma, and IBD have 

high levels of active nuclear NF-κB (Atreya et al., 2008). It is unknown what causes these 

diseases, though genetics and environmental factors are thought to be fundamental in 

disease process. In chronic inflammatory diseases, adhesion molecules recruit 

inflammatory cells to the area of inflammation such as neutrophils, eosinophils and T 

lymphocytes. NF-κB controls the expression of certain genes that encode adhesion 

molecules for example vascular-cell adhesion molecule 1, intercellular adhesion molecule 

and E-selectin. IL-1β, IL-6 and TNF-α are increased in patients suffering with chronic 

inflammatory diseases. Persistent activation of NF-κB from IL-1β and TNF-α may decide 

the severity of the disease. (Barnes & Karin, 1997). When a patient is suffering from 

chronic inflammation, treatment of glucocorticoid or immunosuppressive therapy may 

suppress the disease, however there is no curative treatment available to deal with any 

chronic inflammatory diseases (Barnes & Karin, 1997).  

RA is an autoimmune disease that primarily targets synovial tissues, cartilage and 

bone. The cause of this disease is unknown and it is the most common form of immune-

mediated arthritis. Studies have showed that pro-inflammatory chemokines and cytokines 

produced by diseased tissue is NF-κB dependent (Aupperle et al., 1999; Aupperle et al., 

2001). Animal models of arthritis also demonstrate the role NF-κB plays. Joint 

inflammation is followed by NF-κB activation but this can be prevented by abolishing 

NF-κB function (Miagkov et al., 1998). In RA patients, levels of TNF-α (mediated by 

NF-κB) are elevated in the synovial fluid which result in chronic inflammatory changes 

in the joints. Symptoms of patients can improve when treated with either TNF-α inhibitors 

or a TNF-α receptor that will bind to TNF-α (Feldmann et al., 1996). However there are 

many patients who do not respond to TNF-α inhibitors or do not respond well to this 

treatment after time, leading to a need for an alternative therapy (Emery, 2012; Smolen 

& Keystone, 2012). 

Idiopathic inflammatory bowel disease consists of two types of chronic intestinal 

disorders 1) crohn’s disease and 2) ulcerative colitis. Crohn’s disease mainly affects the 

ileum and colon, whereas in ulcerative colitis, inflammation usually occurs in the rectum 

and parts of the colon (Abraham & Cho, 2009). In inflammatory bowel diseases, patients 
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with active crohn’s disease and ulcerative colitis show NF-κB activation in their tissue 

macrophages and mucosal biopsy specimens (Atreya et al., 2008; Pacifico & Leonardi, 

2006). A study was carried out to examine the role of NF-κB activation during mucosal 

inflammation in situ. Activated NF-κB was discovered in biopsy specimens of inflamed 

mucosal whereas, in uninflamed mucosal, there was minute NF-κB activation. The 

activated NF-κB was similar in the inflamed mucosal of crohn’s and ulcerative colitis 

patients (Rogler et al., 1998). An effective agent for treating inflammatory bowel diseases 

is sulfasalazine which is an NF-κB inhibitor (Wahl et al., 1998). Patients are also treated 

with steroids which lessen NF-κB activity and reduce clinical symptoms. This indicates 

that activation of the NF-κB pathway is concomitant with the enhanced inflammatory 

response that is connected with these diseases (Yamamoto & Gaynor, 2001).  

Cancer causes normal cells to transform into highly malignant cells. NF-κB is 

activated in tumours and plays a role in tumour growth, progression and resistance to 

chemotherapy treatment (Tafani et al., 2013). Certain cancers have abnormalities in the 

regulation of the NF-κB pathway. These defects result in elevated levels of NF-κB in the 

nucleus of many tumours including breast, colon and prostate cancer (Pacifico & 

Leonardi, 2006; Yamamoto & Gaynor, 2001). Mutations that can result in tumours 

include those that inactivate IκB proteins, as well as the amplification and rearrangements 

of genes encoding the NF-κB transcription factor subunits. It is also thought that changes 

in the upstream pathways that lead to NF-κB activation become deregulated in cancer 

(Rayet & Gélinas, 1999). Constant nuclear NF-κB activity is thought to play a role in 

protecting cancer cells from apoptosis and, in certain cases, stimulate their growth.  Many 

current anti-tumour therapies try to block NF-κB activity to attempt to inhibit tumour 

growth or to sensitize the tumours cells (Tafani et al., 2013). One problem in cancer 

therapy based on inhibition of NF-κB activity is the difficulty to find compounds which 

block the oncogenic activity of NF-κB without obstructing its physiological roles in 

immunity, inflammation and cellular homeostasis. With future research, hopefully several 

NF-κB inhibitors can increase the therapeutic efficiency of chemotherapy and 

radiotherapy which could be used effectively in the treatment of cancer patients. 

Genetic studies have shown the importance of certain components of NF-κB. 

Studies from knockout mice have revealed that NF-κB proteins can have both pro- and 

anti-inflammatory roles (Lawrence, 2009). p65-/- mice show embryonic lethality during 

day 15/16 gestation caused by substantial apoptosis in the fetal liver due to TNF-α (Beg 
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et al., 1995). Similar to p65-/-, mice deficit for IKKβ and IKKγ are also embryonic lethal 

due to massive liver apoptosis. There is a signalling link associated between p65, IKKβ 

and IKKγ subunits as cells resulting from these deficit embryos are unresponsive to 

classical NF-κB inducers such as TNF-α and Il-1β (Flood et al., 2011).  Another study 

considered the effect of long-term treatment of TNF-α on p65-/- embryonic fibroblasts to 

establish if there were alterations in cellular function. Treatment with mouse TNF-α for 

eight hours on p65-/- embryonic fibroblasts resulted in cell death, unlike p65-/- and p50-/- 

where no substantial effect on viability resulted. This would suggest that p65 regulates a 

cellular protective mechanism against the cytotoxic effects of TNF-α (Beg & Baltimore, 

1996). Lack of p50-/- component results in immune deficiencies and increased risk of 

infection, but does not demonstration developmental abnormalities shown in p65-/- mice. 

p50-/- mice displayed inhibition of B cells proliferation in response to LPS, and there were 

defects in basal and specific antibody production (Sha et al., 1995). Sleep irregularities 

are also found in these knockout mice (Jhaveri et al., 2006). p52-/- have inadequate 

humoral responses, reduced number of B cells and are impaired in antibody response to 

T-dependent antigens (Franzoso et al., 1998). c-Rel-/- mice fail to produce a productive 

humoral immune response and mature B and T cells are unresponsive to mitogenic stimuli 

(Köntgen et al., 1995). Rel-B-/- mice proliferates inflammatory infiltration in many organs 

and also have deficits in adaptive immunity (Hayden & Ghosh, 2004).  

There has been a strong focus on the development of anti-inflammatory drugs 

targeting NF-κB (Lawrence, 2009). Drugs that inhibit NF-κB have side effects due to 

non-selectivity. In the future, the development of effective inhibitors of the NF-κB 

pathway that can act selectively with be of vital importance as it will evade the risk of 

unwanted side effects (Hayden & Ghosh, 2008). 

 

1.12.4 NF-κB expression in the brain 

 

 Until 1994, NF-κB had not been reported in the brain. The first evidence 

exhibiting the expression of NF-κB activity was in the rat brain (Prasad et al., 1994). NF-

κB activity is expressed in neurons and glia throughout the central nervous system (CNS) 

and the brain. NF-κB is important for mediating the immune and inflammatory response 

in the brain, learning and memory, neuronal plasticity and neurodegeneration (Meffert & 

Baltimore, 2005; O’Neill & Kaltschmidt, 1997).  
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NF-κB plays a role in normal physiological function of the CNS at both cellular 

and behavioural levels (Meffert & Baltimore, 2005). Basal levels of synaptic activity are 

able to activate NF-κB family members in a range of cultured neurons, located in the 

cerebellum and the hippocampus (Guerrini et al., 1995; Meffert et al., 2003). Constitutive 

NF-κB activity was found in glutamatergic neurons in the hippocampus and cerebral 

cortex using detection methods of western blotting, gelshift assays and antibody staining 

(Kaltschmidt et al., 2005; Kaltschmidt et al., 1994). As NF-κB is located in the synaptic 

regions it has been suggested that NF-κB might serve as a vital role in transducing 

synaptic events to the nuclear transcriptional machinery (Meberg et al., 1996). NF-κB in 

synaptic transmission is thought to be a factor due to the expression of COX-2 in neurons 

being regulated by synaptic activity, and COX-2 was discovered colocalised with active 

NF-κB in neurons of the cortex and hippocampus (Yamagata et al., 1993). Another study 

displaying evidence that NF-κB is important in regulating synaptic function was 

inhibiting NF-κB activation causing alteration in synaptic plasticity (Albensi & Mattson, 

2000). There has been conflicting findings in recent years with regard to Kaltschmidt 

results, in relation to NF-κB activity in the brain. Studies have found that there is minimal 

NF-κB activity in neurons (Listwak et al., 2013; Zhang et al., 2013). Studies that found 

basal expression of NF-κB in the brain used non-specific antibodies (Herkenham et al., 

2011). 

Neurotransmitters such as glutamate and N-methyl-D-aspartate receptor (NMDA) 

can activate NF-κB in cerebellar granular neurons. Glutamate mediated, long-term 

potentiation (LTP) increased p65/p50 mRNA levels significantly in the hippocampus, 

suggesting its role as an activator of NF-κB during synaptic activity and neuronal 

plasticity (Meberg et al., 1996; O’Neill & Kaltschmidt, 1997). If NMDA receptors and  L-

type Ca2+ are blocked, basal synaptic activation of NF-κB is reduced (Guerrini et al., 

1995; Meffert et al., 2003). This also suggests a role for Ca2+  signalling in NF-κB 

activation (Meffert & Baltimore, 2005; Meffert et al., 2003). In double knock out mice 

TNFRI-/-/P65-/-, there was no expression of p65, p50, IκBα and IκBβ in the synapses. This 

suggests the vital role of p65 as the driving subunit for synapses localisation and transport 

(Kaltschmidt & Kaltschmidt, 2009).  
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Figure 1.17: The role of NF-κB within the cellular context of the nervous system, adapted 

from (Kaltschmidt & Kaltschmidt, 2009). 

 

NF-κB plays a role in cognitive functions such as learning and memory. Inhibition 

of NF-κB by pharmacological or genetic methods results in impaired inhibitory avoidance 

of long-term memory and spatial navigation learning in mice (Meffert & Baltimore, 

2005). p65-/-  and p50-/- mice exhibit deficits in specific cognitive tasks (Kassed & 

Herkenham, 2004). p65 deficient mice have defects in learning and memory when 

compared to controls. In p50 deficient mice, learning deficits were not as severe as p65 

deficient mice. p65 deficient mice showed a discerning learning deficit in the spatial 

version of the radial arm maze when compared to controls. (Kaltschmidt & Kaltschmidt, 

2009; Meffert & Baltimore, 2005; Meffert et al., 2003).  p50-/- mice display low level of 

anxiety-like behaviour in experiments such as the open field test, novel option and the 

elevated plus maze compared to controls. This would draw the conclusion that the p50 

subunit plays a role in normal expression of anxiety (Kassed & Herkenham, 2004). The 

investigation of double knock out mice TNFR-/-/p65-/- compared to TNFR-/-/p65+/+ tested 
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on spatial and cue versions of RAM took place. TNFR-/-/p65-/- made more errors on the 

spatial RAM compared to TNFR-/-/p65+/+. There was no difference observed on the cue 

RAM. With extra space training, the TNFR-/-/p65-/- were able to implement the task 

similar to TNFR-/-/p65+/+, again emphasising the requirement of p65 for learning (Meffert 

& Baltimore, 2005). NF-κB transcription factors play a part in learning and memory and 

p65 inhibition of NF-κB function can cause a variety of learning paradigms (Meffert & 

Baltimore, 2005). 

NF-κB is involved in sleep regulation under normal conditions. The greatest 

amount of NF-κB activation occurs during the light phase in the cerebral cortex. During 

sleep loss NF-κB increases in the cerebral cortex of mice and an upregulation of p65 

immunoreactivity in the hypothalamus in sleep deprived rats arises. IL-1β and TNF-α are 

involved in sleep regulation and activates NF-κB, whereas IL-4 is associated with sleep 

inhibition and inhibits NF-κB activation (Brandt et al., 2004; Chen et al., 1999; Krueger, 

2008). Sleep inhibition can also happen from administering glucocorticoids which can 

also inhibit NF-κB (Krueger et al., 2001; Unlap & Jope, 1995). Infectious and 

inflammation alter normal patterns of sleep in certain species and this may be due to 

activation of NF-κB. A study carried out looked at p50 KO mice and controls and assessed 

sleep under basal conditions-after 6 hours of sleep deprivation and after challenge with 

LPS or influenza virus. The p50 knockout (KO) mice demonstrate more slow-wave sleep 

(SWS) and rapid eye movement sleep (REMS) under normal conditions and have a 

heightened homeostatic recovery of sleep after sleep loss compared to controls. In 

addition, they have altered immune responses to administration of LPS, producing 

increased SWS and suppression of REMS and temperature. However, p50 KO mice do 

not display increased SWS during infection with influenza virus. Therefore the p50 

subunit of NF-κB seems to play a role in modulating sleep under physiological conditions 

and after immune challenge in mice (Jhaveri et al., 2006).  

The NF-κB transcription factor is activated within the CNS in apoptosis and in 

neurological diseases (Meffert & Baltimore, 2005). NF-κB has been associated with 

neurodegenerative diseases. Abnormal regulation of NF-κB can underlie neurological 

disorders concomitant with neurodegeneration (Pizzi & Spano, 2006). Inflammation 

occurs in most neurodegenerative diseases. The severity of these diseases proliferates 

over time and neuronal death accumulates (Block & Hong, 2005). Neurodegenerative 

diseases are either acute neurodegeneration such as stroke and traumatic brain injury or 
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chronic neurodegeneration, for example Parkinson’s disease (PD), HD and multiple 

sclerosis (MS) (Mattson & Camandola, 2001a).  

Brain injury results in increased p65 levels in axons one to two hours after injury. 

After 24 hours and up to seven days later, activated NF-κB levels were detected in 

cytoplasm and nucleus of neurons. Activated NF-κB in microglial and astrocytes were 

also discovered in the cerebral cortex after 24 hours and, importantly, could be activated 

for up to one year in the cortex following injury. This finding suggests that NF-κB 

activation may play a part in long-term inflammatory processes following traumatic brain 

injury (Nonaka et al., 1999). This may occur due to increased production of pro-

inflammatory cytokines IL-1 or TNF which leads to activation of NF-κB ensuing the 

induction of a range of pro-inflammatory genes.  

One study carried out investigated whether NF-κB was activated in vivo global 

ischemia in the hippocampal CA1 neuron. Elevated levels of NF-κB were discovered in 

degenerating CA1 neurons. Other areas in the hippocampus did not display nuclear NF-

κB localization (Clemens et al., 1997). IκBα is involved in neuroprotection-it inhibits the 

abnormal NF-κB activation caused by severe ischemia preventing brain damage. p65 

deficient mice have defects in loss of neuroprotection.  

PD is a progressive degenerative disorder of the nigro-striatal DA resulting in the 

impairment of motor skills and speech (Jellinger, 2002; Olanow & Tatton, 1999).  There 

is selective loss of dopaminergic neurons in the nigrostriatal pathway. Neuronal death 

may occur due to oxidative stress, mitochondrial defeats and protein mishandling in the 

nigrostriatal pathway (Mogi et al., 2007). In PD patients, there is an increase 70-fold in 

DA neurons in the substantia nigra which exhibit nuclear p65 immunoreactivity when 

compared to controls (Hunot et al., 1997; Mogi et al., 2007).  PD may also play a 

neuroprotective role as the increase of NF-κB activity may be due to dysfunction in 

oxidative stress and mitochondria in neurons (Mattson & Meffert, 2006). Studies have 

revealed that the canonical pathway is activated significantly in the substantia nigra (SN) 

of mice undergoing dopaminergic (DA) neurodegeneration, and also seen in the 

brains of deceased PD patients (Hunot et al., 1997). The non-canonical pathway has 

been shown to play a role in the regeneration of DA neurons within the SN by treating 

rats with glial-derived neurotropic factor (GDNF) (Cao et al., 2008). Standard agents and 

natural anti-inflammatory compounds to treat inflammation such as sulfasalazine, 

corticosteroids, Il-10 and glutamate, are effective inhibitors of microglial activation and 
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play a role in neuroprotection to DA neurons in vitro and in vivo. Inhibiting NF-κB 

activity in microglial cells more effectively should lead to improved therapies for PD 

patients, aiming to end and reverse DA neuron loss. (Flood et al., 2011). Using the 1-

methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD, a study to 

determine if therapeutic administration of selective NF-κB inhibitors could halt the 

progression of neurodegeneration induced by the neurotoxin MPTP, was investigated. 

Administration of MPTP resulted in an up regulation of NF-κB activation within the 

midbrain of animals undergoing neurodegeneration due to MPTP administration. There 

was also increased NF-κB activation in the SNpc of PD patients. Activation was seen in 

astrocytes, microglial and TH+ DA- neurons. When the NF-κB essential modifier-binding 

domain (NBD) peptide was administered prior to MPTP intraperitoneal (i.p), it was 

shown to inhibit MPP+ induced NF-κB activation in vitro in microglial and astrocytes, 

and it also inhibited the activation in vivo in the mid brain region.  

Another finding was that the mice showed highly significant production of 

nigrostriatum from MPTP induced neurodegeneration of the Th+ neurons and the loss of 

dopamine production, and improvements in their locomotor function in contrast with 

MPTP mice injected with the mutant peptide. Since treatment is given after a disease has 

begun, treatment with NBD peptide was given two days after the injection of MPTP. 

There was still significant protection of Th+ neurons, proposing that the NBD peptide can 

be used therapeutically to halt the development of DA neurodegeneration in MPTP 

treated mice and in turn suggests that NF-κB is a viable target for treatment in PD patients 

(Ghosh et al., 2007). Other neurological disorders as a result of ageing, such as AD, will 

be discussed in chapter four in detail. 

 HD is another incurable progressive degenerative disorder resulting in the 

impairments of motor function, speech and cognitive loss (Martin & Gusella, 1986). It is 

caused by polyglutamine (polyQ) repeat expansion in htt. There is degeneration of 

neurons in the striatum. Administration of mitochondrial toxin 3-nitropropionic acid in 

p50-/- results in increased damage to the striatal neurons and enhanced motor impairments. 

The effect of this treatment gives rise to an increase in NF-κB activity and Mn-SOD levels 

in striatal cells of wild-type, but not in p50-/- mice. Therefore, NF-κB activation seems to 

serve a neuroprotective role in this animal model of HD (Yu et al., 2000). Mutant 

Huntingtin, expressed from an inducible promoter, was found to activate NF-κB in a 
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neuronal cell line. Inhibiting the NF-κB activation pathway reduced the toxicity of mutant 

Huntingtin (Khoshnan et al., 2004).  

 MS is an idiopathic inflammatory demyelinating disease, with symptoms 

deteriorating over time but there are many periods of remission. Neurodegeneration 

appears in the form of lesions in the CNS. Early symptoms occurring can range from loss 

of optic neuritis, fatigue and vertigo. As the disease progresses cognitive impairment, 

ataxia and limb spasms can ensue. Nuclear magnetic resonance imaging and the MS 

animal model show an increase in microglial activity around MS lesions (Block & Hong, 

2005). Immunohistochemistry was carried out to examine the expression in situ of 

molecules of NF-κB pathways in chronic MS, to investigate if it had a function in 

oligodendrocyte pathology. There was up regulation of NF-κB signals found on 

microglial and oligodendrocytes in chronic MS plagues in contrast to control and silent 

MS results (Bonetti et al., 1999).  

  

1.12.5 NF-κB and Circadian Interaction 

 

 Links have been established between the immune system and the circadian clock 

due to the fact that many clock controlled genes contain NF-κB binding sites on their 

promoters. Establishing the relationship between the circadian clock and NF-κB may be 

of important benefit to therapeutic treatments used in a wide variety of diseases, including 

cancer, immunodeficiency and inflammation (Bozek et al., 2007; Marpegán et al., 2005; 

Silver et al., 2012). The circadian-immune interaction operates in two directions. The 

SCN drives circadian variations in several immune variables, whereas humoral signals 

can also have an affect the molecular mechanism of the circadian clock and its 

entrainment (Nicolas Cermakian et al., 2013; Guerrero-Vargas et al., 2014). There is 

evidence for neuroimmune regulation of circadian rhythms, since the SCN is regulated 

by an immune challenge of either TNF-α, LPS and interferon, which was discussed in 

(section 1.10.1) (Kwak et al., 2008; Nygård et al., 2009; Okada et al., 2008).  

  NF-κB activation displays a diurnal rhythm in mouse cerebral cortex. There is 

higher activiation during the resting phase compared to the active phase in the dark (Chen 

et al., 1999). Also in the rat pineal gland, NF-κB expresses a diurnal rhythm and it is 

significantly reduced when DD occurs (Cecon et al., 2010). A study carried out on the rat 

liver shows the opposite effect with peak levels of NF-κB in the active phase (Luna-
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Moreno et al., 2009). Another interesting study was carried out looking at DD inducing 

IL-6- dependent depression like behaviour through the NF-κB signalling pathway (Monje 

et al., 2011). An increase in IL-6 is displayed in depressed patients (Anisman et al., 2005; 

Chourbaji et al., 2006; Maes et al., 1995), with DD shown to cause depression in rats 

(Gonzalez & Aston-Jones, 2008). There was an increase in IL-6 plasma and protein levels 

(in the hippocampus) also as a result of four weeks in DD, however, the NF-κB inhibitor 

PDTC significantly reduced the effects of DD in this experiment. Furthermore, DD 

caused alterations of PER2 and NPAS2 expression in their hippocampus (Monje et al., 

2011), with both circadian clock genes thought to contribute to SAD disease (Partonen et 

al., 2007). These alterations of PER2 and NPAS2 expression did not occur as a result of 

PDTC. Finally, NF-κB activity was elevated in hippocampus tissue as a result of mice 

placed in DD (Monje et al., 2011). 

 Another study carried out has shown how the circadian clock protein CRY can 

regulate the expression of pro-inflammatory cytokines. Mice deficient in the protein CRY 

have shown an increase in pro-inflammatory cytokines, with the NF-κB signalling 

pathway seen to be constantly activated in CRY KO fibroblasts. When the NF-κB 

pathway was blocked, a reduction in the activation of IL-6 was observed in CRY KO 

fibroblasts (Narasimamurthy et al., 2012). It was also found that a mutation in CRY in 

p53-null mice resulted in the onset of cancer been delayed, with apoptosis been regulated 

by the circadian clock through NF-κB signalling (Lee & Sancar, 2011). These studies 

further add to linking the NF-κB signalling pathway and circadian interaction.  

There is correlation between time of day and illness or immune activity. 

Administration of LPS, as well as of pro-inflammatory cytokines IL-1β and TNF-α result 

in changes in locomotor activity rhythms. At the molecular level, this effect occurs by 

activation of NF-κB which leads to the expression of specific clock genes, resulting in 

regulation of rhythmic output (Coogan & Wyse, 2008). Administration of LPS in 

hamsters caused induce phase-delays in free-running hamsters and also altered photic 

induction of c-Fos in the SCN of mice in the early subjective night, but not at any other 

CT. Therefore, showing a link between the time of LPS challenge and immune response. 

Administration of an NF-κB inhibitor sulfasalazine blocked LPS, resulting in no phase 

shift (Marpegán et al., 2005). Activation of the NF-κB pathway also result from IL-1β, 

TNF-α and LPS treatment of SCN derived astrocytes (Leone et al., 2006).  
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Figure 1.18: Circadian clock and immune interaction, adapted from (Curtis et al., 2014). 

BMAL-1 sequesters CLOCK and prevents it from acetylating and activating p65, which results 

in reduced active NF-κB, which in turn leads to less induction of specific genes such as cytokines 

necessary for survival and proliferation. BMAL-1 also drives the expression of Rora that can 

increase the expression of IkB, which is a major negative regulator of NF-kB. This may give rise 

to the delay of the NF-kB complex in the cytoplasm, translocating into the nucleus and activating 

a range of genes including cytokines.  

 

CLOCK and the NF-κB subunit p65 can be found concomitant in protein 

complexes. Overexpression of CLOCK results in increased phosphorylation and 

acetylation of p65, which in turn leads to higher transcriptional activity of the NF-κB 

complex ensuing over production of inflammatory cytokines (Spengler et al., 2012). 

BMAL-1 reduces the effect of CLOCK on NF-κB by sequestering CLOCK. This 

mechanism by BMAL-1 reduces inflammation. Therefore CLOCK and BMAL-1 are 

inter-reliant on each other in their role in the immune system (Curtis et al., 2014). BMAL-

1 is also involved in controlling the expression of retinoid-related organ receptor α 

(RORα) which is a member of the nuclear receptor family. RORα can induce the 

transcription of IκBα which in turn restricts NF-κB translocating to the nucleus. 

Therefore, BMAL1 has an anti-inflammatory role to play in limiting NF-κB (Delerive et 

al., 2001).  

Another component of NF-κB subunit RelB interacts directly with BMAL1 to 

supress the circadian gene Dbp which is CLOCK controlled. Therefore circadian 

transcription can be supressed by RelB. Alterations of circadian genes expression were 

seen in RelB-/- fibroblasts (Bellet et al, 2012). These findings provide evidence of a 

molecular link between CLOCK:BMAL-1 transcription pathway and the NF-κB 

pathway, therefore establishing a relationship between the inflammatory response and the 
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circadian clock. NF-κB plays vital roles in the immune and inflammatory response. If 

NF-κB plays a part in the intracellular integration of circadian and neuroimmune system, 

then understanding its exact role will be important in understanding the effects of age, 

neuroinflammation and neurodegeneration on circadian rhythms. Recent studies have 

uncovered that mice deficit in CRY-/- protein display an upregulation of NF-κB activation 

and pro-inflammatory cytokines, consequently highlighting an association between an 

arrhythmic circadian clock and a higher inflammatory response (Narasimamurthy et al., 

2012). 

The NF-kB signalling system has been shown to be under circadian influence and 

to impact on circadian function, in a variety of peripheral cell types. Outside of 

neurodevelopment, neuroinflammation and pathological states, the physiological role of 

the NF-kB system in neuronal function has however been controversial. Additionally, 

little is known about NF-κB in the SCN clock, but given the potential for this pathway to 

modulate circadian processes, we set out to examine whether there might be a role for the 

NF-kB system in the master suprachiasmatic clock.    

 

1.13 The aims of this study were: 

 

 To investigate the expression of constituents of the NF-κB pathway across the 

circadian cycle in the SCN. Photic resetting was also examined on NF-κB 

components. Furthermore, pharmacological inhibition of the NF-κB pathway 

was examined in vivo (Chapter Two). 

 

 To examine the effects of acute low and high dose LPS treatment on the levels 

on expression of NF-κB in the SCN and PVN (Chapter Three). 

 

 To assess the effect ageing has on the master circadian clock in relation to the 

NF-κB pathway. This will be investigated by behavioural experiments and 

immunohistochemistry, using non-treated aged mice, acute and chronic LPS 

treated mice (Chapter Four). 
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 To examine PER2::LUC and NF:κB::LUC mice using luciferase reporter system 

which will examine circadian regulation of NF- κB in vitro. Blockage of the NF-

κB pathway or LPS administration will be carried out in vitro (Chapter Five). 
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Chapter Two 

Analysing the effects of light pulses and PDTC on NF-κB in the 

circadian timing system 

 

2.1 Introduction  

 

 Research into understanding the signalling input pathways that convey actions at 

the SCN neuronal membrane to core nuclear clockworks have been investigated greatly 

over the years. Signalling pathways involving mitogen activated protein kinases (Coogan 

& Piggins, 2003) and protein kinase C (Lee et al., 2007), have been recognised as playing 

vital roles. These signallers are thought to change the activity of transcription factors, 

which result in them binding to promoter sequences on clock genes to alter their 

expression (Obrietan et al., 1999). The MAPK pathways can be utilised as an input 

pathway into the SCN for the purpose of entraining the endogenous clock to a 24 hour 

environmental cycle, along with playing a role as an output in the circadian clock (Bennett 

et al., 2013; de Paula et al., 2008; Dziema et al., 2003; Goldsmith & Bell-Pedersen, 2013; 

Wang, 2002). Activation of the MAPK signalling cascade in the SCN is vital in coupling 

light to circadian clock entrainment (Antoun et al., 2012). The families of the MAPK 

pathways have been elucidated, JNK, p38 and ERK, and these pathways have been 

associated directly to circadian clock mechanism (Goldsmith & Bell-Pedersen, 2013). 

MAPK is an important intermediate pathway between photic stimulation and 

transcriptional activation which is essential to allow for the resetting of the circadian clock 

(Dziema et al., 2003). Therefore, our aim in this study was to establish if the NF-κB 

pathway played a similar role between photic stimulation and transcriptional activation 

in relation to the resetting of the circadian clock. 

 This NF-κB pathway has not been systemically examined in terms of regulation 

of the SCN clock function. The NF-κB pathway can be activated when bound to TLRs 

and pro-inflammatory cytokines (Kaltschmidt et al., 2005; Lawrence, 2009; Perkins, 

2007). Some studies have confirmed that NF-κB is expressed in neurons and glia 

throughout the brain (Kaltschmidt et al., 2005; Mattson & Camandola, 2001). Learning 

and memory defects can be displayed in mice with neuronal NF-κB inhibition, whereas, 

in glia cells, NF-κB is involved in the inflammatory processes that intensifies diseases for 
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example autoimmune encephalomyelitis, ischemia, PD and AD (Kaltschmidt & 

Kaltschmidt, 2009). Studies in recent years have suggested a role for NF-κB in the CNS 

under basal conditions, and NF-κB has been implicated in such processes as synaptic 

transmission, plasticity and sleep (Meffert & Baltimore, 2005). Therefore, we want to 

investigate whether the NF-κB pathway plays any role in the SCN.  

Findings have emerged that the neuroimmune system regulates circadian rhythms, 

with TNF-α (Cavadini et al., 2007; Nygård et al., 2009), interferon-γ (Kwak et al., 2008) 

and LPS (Leone et al., 2012; Marpegán et al., 2005; Okada et al., 2008) shown to cause 

alterations to the SCN and to behavioural locomotor activity. Photic induction at time 

points where light appears to have maximal effect, can also causes behavioural and 

molecular changes (Marpegán et al., 2005; Meijer & Schwartz, 2003; Shibata & Moore, 

1993). Studies discussed previously, reiterate the link between the NF-κB pathway and 

the circadian clock (Bellet et al., 2012; Curtis et al., 2014; Delerive et al., 2001; Spengler 

et al., 2012). Since this pathway appears to play a role in modulating circadian processes, 

the current study sets out to investigate whether there might be a role for the NF-kB 

system in the master circadian clock.    

 

2.1.1 Immediate Early Genes 

 

IEGs are used as neuronal activity makers (Guzowski et al., 2005) and have an 

established role in learning and memory (Kovács, 2008) along with circadian rhythms 

entrainment (Guido et al, 1999; Kornhauser et al, 1990). There are two groupings of IEG, 

the regulatory transcription factor (RTF) IEGs and effector IEGs. The RTF IEGs regulate 

the expression of downstream genes, while effector IEGs directly influence cell functions. 

The expression of IEGs in neurons of control animals is very low, however, IEG mRNA 

and proteins can be expressed rapidly, due to certain extracellular stimulation (Sheng & 

Greenberg, 1990). This chapter will focus on the IEGs, c-Fos and activity-regulated 

cytoskeletal-association protein (Arc) in relation to circadian rhythm entrainment. Stimuli 

such as nocturnal light, which cause phase shifts in the circadian pacemaker, can also 

cause alterations in the expression of various IEGs in the retinorecipient area of the SCN 

(Aronin et al., 1990; Rea, 1989) and PVN (Beynon & Coogan, 2010; Sagar et al., 1988).  

Light stimulus results in IEGs such as c-fos and jun-B being transcriptionally activated, 

in the ventrolateral part of the SCN (Schwartz et al, 1995). The role of these genes are 

http://www.sciencedirect.com/science/article/pii/S0006899398006192#NEU12449
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thought to function in coupling short-term signals stimulated by extracellular events to 

long-term changes in cellular phenotype by arbitrating subsequent alterations in gene 

expression (Hughes & Dragunow, 1995; Morgan & Curran, 1991). Once translation 

occurs in the cytoplasm, c-Fos, re-enter the nucleus to form a heterodimeric complex with 

a member of the Jun family, such as c-Jun, JunB or JunD, which results in the production 

of a functional transcription factor termed activating protein-1 (AP-1). This binds certain 

genes, which regulate the transcription of late response genes, affecting cell structure and 

function (Chaudhuri et al., 2000).  

 c-Fos proto-oncogene was one of the first IEGs to be discovered (Greenberg & 

Ziff, 1984; Müller et al., 1984). This IEG is one of the RTF and is expressed at very low 

levels throughout the brain, with low levels expressed in the SCN and PVN in control 

rodents. Since c-Fos has low basal levels of expression, it makes it suitable for research, 

due to the fact that administration of certain stimuli, may cause upregulation in certain 

brain regions (Chaudhuri et al., 2000; Kaczmarek & Chaudhuri, 1997). The c-Fos gene 

is linked with playing a role in circadian function (Guido et al, 1999; Kornhauser et al, 

1990), however, a better understanding is needed in relation to the exact role of c-Fos in 

the SCN in the generation of circadian oscillation. When examining the role c-fos plays 

in the circadian system, it was observed that when this gene was knockout in mice, that 

the magnitude of light induced phase shifts in DD lessened, however, the times of phase 

delays and advances still remained the same. Therefore, c-fos is essential for normal 

entrainment in the circadian timing system (Honrado et al., 1996). 

The second IEG examined in this chapter was Arc, which is an effector IEG. Arc 

mRNA quickly travels to dendrites and gathers close to synapses that have been 

stimulated (Steward & Worley, 2001) and it is promptly induced by synaptic activity in 

the hippocampus and the cerebral cortex (Lyford et al., 1995). Arc expression is 

dependent on NMDA receptor activation (Steward & Worley, 2001) and intracellular 

MAPK signalling (Waltereit et al., 2001). Furthermore, Arc is a key protein in 

neurobiology as it is an important marker for synaptic plasticity changes in the brain 

(Korb & Finkbeiner, 2011). Arc is also vital in sustaining long term memory formation 

and LTP, with Arc KO mice displaying lack of late phase LTP (Guzowski et al., 2000; 

Plath et al., 2006). Arc is involved in homeostatic plasticity, by increasing or decreasing 

neuron activity in order to stabilise extremes in activity caused  by LTP and LTD, leading 

to dysfunction to the network (Korb & Finkbeiner, 2011; Turrigiano, 2008).  
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2.1.2 Inhibition of the NF-κB signalling pathway 

  

 The NF-κB signalling pathway has established itself to be a possible target for 

pharmacological intervention in various diseases. There are many NF-κB inhibitors 

within the nervous system (Kaltschmidt et al., 2005), with approximately 700-800 

inhibitors of NF-κB signalling discovered to date (Gilmore & Herscovitch, 2006; Gupta 

et al., 2010). The NF-κB pathway is vital in the body’s immune defence system, with IKK 

acting as a crucial regulator of the NF-κB pathway, with ubiquitination and proteasome 

of IκB also necessary for NF-κB activation. Disease can result in overproduction of NF-

κB activity, therefore, inhibition of the this pathway has being investigated in terms of 

therapeutic treatments for inflammation and cancer (Yamamoto & Gaynor, 2001).  

 There are many genes controlled by NF-κB including transcription factors, 

immunoreceptors, early response genes, cytokines and chemokines. Since there is several 

levels of regulation in this pathway, inhibition of NF-κB can be targeted at certain levels 

such as kinases, phosphatases, ubiquitination, nuclear translocation, and DNA binding 

(Gupta et al., 2010). Studies have investigated blocking signals such as cytokines (which 

can activate NF-κB) upstream of IKK, this results in inhibiting the activation of IKK 

(Song et al., 2002). Molecules such as calagualine and Anti CD146 antibody AA98 can 

block NF-κB by causing inhibition also upstream from IKK (Bu et al., 2006; Manna et 

al., 2003). By upregulating IκB in the cytoplasm it inhibits NF-κB nuclear translocation 

to the nucleus (Ehrlich et al., 1998; Lentsch et al., 1997). Another approach is to use 

ubiquitination (Swinney et al., 2002; Zhou et al., 2005) or proteasome inhibitors (Grisham 

et al., 1999). 

Anti-inflammatories such as aspirin (Kopp & Ghosh, 1994) and glucocorticoids 

for example prednisone have been reported to inhibit NF-κB activity by unsettling the 

interaction of p65 with the basal transcription machinery (De Bosscher, 2000; Unlap & 

Jope, 1997; Unlap & Jope, 1995), with other reports suggesting that glucocorticoids 

increase IκB expression which results in a decrease in NF-κB translocating to the nucleus 

for the purpose of DNA binding (Auphan et al., 1995; Quan et al., 2000; Scheinman et 

al., 1995). Furthermore, more recent studies have shown that small molecules inhibitors 

of the NF-κB pathway may be utilised as anti-inflammatory therapeutics (Ivanenkov et 

al., 2011). 
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 The NF-κB inhibitor, sulfasalazine, is an anti-inflammatory agent used in the 

treatment of IBD and RA, and is vital in treating chronic inflammation, as it restricts NF-

κB signalling (van Vollenhoven et al., 2009; Wahl et al, 1998). NF-κB activation caused 

by either LPS or TNF-α can be blocked by sulfasalazine, for that reason it seems that this 

inhibitor affects an early common signal in both signal transduction cascades (Wahl et 

al., 1998). This inhibitor supresses NF-κB activity by direct inhibition of IκB kinase α 

and β, prohibiting the translocation of NF-κB into the nucleus (Wahl et al., 1998; Weber 

et al., 2000). Sulfasalazine is thought to be a specific inhibitor of NF-κB, due to the fact 

that administration of this inhibitor did not impact on other DNA-binding activities for 

example AP1 (Wahl et al., 1998).  

 Sulfasalazine has being shown to block phase shifts in mice as a consequence of 

an immune challenge of LPS in the early subjective night (Marpegán et al., 2005). This 

is similar to PDTC blocking photic phase shifts in hamsters (Marpegan et al., 2004). 

Marpegán and colleagues wanted to see if there was an interaction between LPS and light, 

due to the fact that LPS administration induced a photic-like PRC (Schwartz & 

Zimmerman, 1990). Accordingly, investigations were carried out to decide if both stimuli 

shared a common pathway, no additive effects were found as a result of administration of 

both light pulse and LPS on phase shifts, therefore leading us to believe that there is some 

interaction between both pathways. As previously discussed, at a molecular level 

administration of LPS at CT15 induced c-Fos expression in the dmSCN region only. In 

contrast a light pulse administered at CT15 resulted in c-Fos expression exhibited 

throughout the dmSCN and vlSCN (Marpegán et al., 2005) and displayed in this current 

study at CT22. It would be of interest in future studies to ascertain if sulfasalazine can 

inhibit phase shifts caused by photic induction displayed in both the early and late 

subjective night, and also to establish if this inhibitor can block induced IEG expression 

as a result of a light pulse to see if the NF-κB pathway is involved in entrainment and 

regulation of circadian rhythms and also IEG induction in the SCN of mice.  

 

2.1.3 The NF-κB inhibitor PDTC 

 

 PDTC is a metal chelating compound, which can be used for anti-oxidant and 

anti-inflammatory purposes (Ivan et al., 2014; Yadav et al., 2011) however, it is also 

known for its pro-oxidant effects (Brennan & O’Neill, 1996; Burkitt et al., 1998; Riera et 



 

 

64 

 

al., 2015).  PDTC was first discovered as an inhibitor of the NF-κB pathway in 1992. NF-

κB inhibition can result from using micromolar concentrations of PDTC (Schreck et al., 

1992), and it is thought that this arises from inhibiting IκBα degradation (Cuzzocrea et 

al., 2002), which in turn prevents the translocation of NF-κB dimers to the nucleus and 

preventing pro-inflammatory gene transcription to take place (Henkel et al., 1993; Liu et 

al., 1999).  Studies have shown that for inhibition of NF-κB to occur, PDTC 

administration of between 25-50 mg/kg is required in animals (Cuzzocrea et al., 2002; 

Siegel et al., 2009; Zhang et al., 2014). Toxic effects were established at an LD50 i.v of 

282.4mg/kg in both the central and nervous system of mice (Chabicovsky et al., 2010), 

therefore, PDTC is a modulator of the inflammatory response at particular doses.  

 PDTC administration has been shown to affect different pathways in the immune 

system including casein kinase 2 (CK2), ERK and JNK pathways (Chung et al., 2000; 

Min et al., 2003). Studies carried out have shown how PDTC administration can inhibit 

cell death caused by various factors (Hockenbery et al., 1993; Kane et al., 1993; Rothstein 

et al., 1994), however, it can also induce cell death (Chung et al., 2000; Kim et al., 1999; 

Wu et al., 1996). Acute inflammation in the form of pleurisy (Cuzzocrea et al., 2002) and 

acute kidney injury (Kumar et al., 2015) were reduced by PDTC. Furthermore, acute 

administration of PDTC has been shown to attenuate focal brain ischemic injury (Nurmi 

et al., 2004), decrease impairment of learning and memory (Zhang et al., 2014) and reduce 

microglial activation as a result of neuroprotection in the hippocampus (Lv et al., 2014).  

 

2.1.4 Aims of this chapter are to 

 

 Examine whether the NF-κB components, p65, p-IκB, p-IκK and c-Rel express a 

circadian rhythm across a 24 hour cycle in DD in the SCN under basal 

conditions. 

 

 Observe what effect light pulses during the subjective night have on NF-κB 

signalling. 

 

 Investigate if NF-κB inhibitors play a role in behavioural alterations from photic 

induction.  

 

 Examine if induced c-Fos or Arc expression caused by photic induction in the 

SCN and PVN can be blocked by the NF-κB inhibitor PDTC.  
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 Study the effect of chronic long term administration of PDTC on behavioural 

locomotor activity, the SCN and PVN 

 

2.2 Materials and Methods 

 

2.2.1 Ethical approval  

 

 All protocols in this thesis were approved by the Research Ethics Committee at 

Maynooth University and were licensed by the Department of Health and Children, 

Ireland. Animals were treated in agreement with the Cruelty to Animals Act, 1876 and 

the SI No.17 – European Communities (Amendment of Cruelty to Animals Act, 1876) 

regulations, 1994 (European Directive 86/609/EC). All efforts were taken to minimize 

the number of animals used and any potential suffering in each procedure. To reduce the 

number of animals used for experimentation, all animals used for behavioural analysis 

were also used for immunohistochemical analysis.  

 

2.2.2 Animals and housing 

 

 The animal model that was used in this study is the C57BL/6 strain of mouse (Mus 

musculus). This study requires the use of an animal model as we monitor rhythmicity at 

the whole animal level and C57BL/6 mice are well studied from a chronobiological 

aspect, extensive studies have been undertaken on their circadian parameters. The adult 

C57BL/6 male aged 6 weeks (24-30g) were grouped house on arrival from Charles 

Rivers, UK or Harlan, UK both designated breeding establishments. Animals were 8-10 

weeks old when experiments were carried out. 

When behavioural analysis was undertaken, mice were individually housed in 

polypropylene cages (33cm long x 15cm wide x 13cm high) along with steel running 

wheels (11.5cm diameter) with food and water available ad libitum and also wood-chip 

bedding and shredded paper for environmental enrichment. Lighting conditions for the 

cage were adjusted using a timer which was placed on the outside of the cabinet, therefore, 

the cabinet door did not have to be opened disturbing the mice without need. The light in 

each individual cage was roughly 150 lux luminance level. The inside of the cabinets 
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were black and non- reflective in order to minimise any reflection of light and guarantee 

similar lighting conditions for each cage. 

In relation to group housed mice, 10 were in each cage (44.5cm long x 28.5cm 

wide x 10.2cm high) and again equipped with food and water available ad libitum and the 

same environmental enrichment as single housed mice. Animals were maintained in LD 

12:12 cycle prior to any experiment. When mice were housed in DD conditions, daily 

checks were done with the assistance of a dim red safety light (<1 lux). Furthermore, 

temperature and humidity were recorded daily to make sure they were both remaining 

constant, with average temperatures of 21 ± 1°C and humidity 50± 10%. Ventilation of 

cages took place via axial fans to avoid a build-up of pheromones and these fans produced 

white noise at the level of 50dB.  

 

2.2.3 Treatments 

 

2.2.3.1 NF-κB inhibition by i.p injection 

 

 Mice were treated with ammonium pyrrolidinedithiocarbamate (PDTC) 

(C5H12N2S2), which is a potent antioxidant and pharmacological inhibitor of NF-κB (Ivan 

et al., 2014; Schreck et al., 1992; Zhao et al., 2013), 30 minutes before a light pulse at 

CT15 or CT22. Mice were administered a single dose of 200mg/kg i.p (0.12ml) injection 

of PDTC dissolved in 100mM DMSO. This dose was previously displayed in rats to 

maximally inhibit NF-κB activation (Liu et al., 1999). Control animals were treated at the 

same time with an equal volume of sterile saline (0.9% NaCl) to DMSO i.p (0.12ml). 

 

2.2.3.2 NF-κB inhibition by oral administration 

 

 To study the effects of chronic treatment with PDTC, mice were administered 

fresh PDTC every 3 days in their drinking water available ab libitum. PDTC (50mg/kg) 

was dissolved in water along with 0.1% DMSO  (Gu et al., 2009; Hirata et al., 2007; Luo 

et al., 2015; Malm et al., 2007; Mariappan et al., 2010; Zhao et al., 2013), while controls 

were administered with water containing 0.1% DMSO. 
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2.2.4 Transcardiac perfusion and tissue preparation 

 

 An i.p injection of sodium pentobarbital (Euthanal, Merial Animal Health, UK) 

was used to terminally anesthetise mice. When anesthetised, the chest cavity was opened 

and mice perfused transcardially with roughly 30mls of 0.9% saline (NaCl) at 4°C, 

followed by perfusion with approximately 50mls of 4% paraformaldehyde (PFA, sigma) 

in 0.1M phosphate buffer (PB) at 4°C.  

 Brains were removed, post fixed overnight in 4% PFA for 48 hours at 4°C, 

followed by putting all brains into 30% sucrose (Sigma) in 0.1M PB for a further 24-48 

hours at 4°C, so they were cryoprotected. Brains were then removed from 30% sucrose 

for cutting. Each brain was cut caudally removing the cerebellum first, and rostrally to 

remove the preoptic region using a single edged blade. Brains were mounted on a 

microtome (Leica) using mounting medium and brains were frozen using dry ice. The 

caudal end was attached to the microtome stage, while the ventral end faced the blade. 

Brain slices were cut at 30µm thick throughout the rostrocaudal extent of the SCN. All 

sections of the SCN were collected and divided into 4 different wells, which contained 5-

6 SCN sections. The sections were placed in wells and stored in 0.1M PB, pH 7.4 (Sigma) 

along with 0.1% sodium azide at 4°C. Sodium azide prevents microbial growth prior to 

being processed for immunohistochemistry.  

 

2.2.5 Immunohistochemistry protocol  

 

 This protocol method used the avidin-biotin-peroxidase complex (ABC)/Nickel 

DAB colorometric technique (Coogan & Piggins, 2003). The SCN sections in the wells 

were washed twice with 0.1M PB (pH 7.4) for 10 minutes at room temperature. This was 

followed by a 10 minute wash of PBX (0.1M PB + 0.03% Triton X-100 (Sigma)). PBX’s 

function is to perforate the cell membrane of these sections. Sections were then incubated 

for 20 minutes in 0.1% PB and 1.5% hydrogen peroxide (H2O2). H2O2 plays an important 

role by inactivating endogenous peroxidases and reduces non-specific background 

staining. Another round of 2 X PB washes and a PBX wash for 10 minutes each was 

carried out. The next step was using a non-specific antibody block with 0.1M PBX, which 

was either 5% normal goat serum (NGS- used for rabbit and rat polyclonal) or normal 

horse serum (NHS- used for goat polyclonal), which mixed for 60 minutes at room 
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temperature. The final part of the first day immunohistochemistry protocol was that 

sections were incubated with primary antisera raised in either rabbit or goat diluted in 

0.1M PBX and 2% NGS or NHS (blocking solution) for 24-48 hours at 4°C. 

 

Table 2: Primary antisera used for Immunohistochemical analysis 

 

Antibody Dilution Raised in Supplier Product code 

c-Fos (4) 1:2000 Rabbit Santa Cruz 

Biotechnology 

sc-52 

Arc (H-300) 1:500 Rabbit Santa Cruz 

Biotechnology 

sc-15325 

Per1 (N20) 1:500 Goat Santa Cruz 

Biotechnology 

s-7724 

p65 1:500 Rabbit Santa Cruz 

Biotechnology 

sc-372 

 

 The second part of the protocol, begins with sections being put through a serious 

of washes as above, two 0.1M PB and one 0.1M PBX wash. The sections were then 

incubated with biotinylated secondary antibody (1:400 biotinylated goat anti-rabbit 

Jackson Immuno research labs, 1:400 anti-goat) which was diluted in 0.1M PBX and 2% 

NGS or NHS (blocking solution) for 70 minutes at room temperature. Biotinylated 

secondary antibody is photosensitive, therefore the well plates were covered from light 

for the remainder of the experiment. After the 70 minutes, 3 washes were carried out as 

previous with PB and PBX. This was followed by sections been incubated with avidin-

biotin method (0.4%) in 0.1M PBX with a Vectastain Elite Universal Kit (Vector 

Laboratories) for 90 minutes, again at room temperature. Sections were washed twice 

with 0.1M PB, followed by 0.1M sodium acetate (pH6, Sigma) for 10 minutes. Light 

sensitive nickel-enhanced diaminobenzidine (NiDAB) (pH6) can visualise 

immunoreactivity of the antigen. 1ml of NiDAB and 60µl of catalyst, glucose oxidase 

(5mg/ml) per well was added for immunoreactivity. When the staining was satisfactory, 
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sections were placed in PB to stop the reaction. The sections went through 3 final washes 

in 0.1M PB.  

 The sections were mounted on to slides coated in gelatine (1% gelatine and 0.05% 

chromium potassium sulphate) and were placed to dry for 2-3 days before being put 

through dehydrating and delipifying steps. Dehydrating steps were carried out by putting 

the slides through 70%, 90% and 100% ethanol for 3 minutes each, and were then cleared 

using two 3 minute delipifying steps in 2% histoclear washes (National Diagnostics, UK). 

Finally the slides were coverslipped using mounting media (Eukitt, Fluka Analytical). All 

sections followed this protocol at all stages of tissue processing to minimise any 

interassay variability. Sections were reacted for standardised lengths of time to make sure 

similar staining intensity across each experimental group. 

 

2.2.6 Quantitative Analysis 

 

 Photomicrographs of the mid rostral-caudal level of the SCN were taken using a 

digital camera connected to an Olympus BX-51 light microscope which was equipped 

with an image analysis digital system (ImageJ 1.43, NIH, USA). The same camera and 

magnification settings were used for every single image. Brain sections were examined 

under the microscope using the 40 X objective lens. Roughly 3-5 sections were analysed 

and evaluated for each animal, and a mean value was calculated. Photomicrographs are 

presented in this thesis with scale bars representing 100μm unless otherwise noted. 

 Mid-rostrocaudal levels of SCN were analysed by two ways. The first analysing 

method was quantification of immunoreactive (ir) cell numbers by an observer by 

manually counting for the purpose of analysing immunoreactive nuclear staining. The 

sections were counted from the rostral through to caudal of the SCN. However, the SCN 

sections were measured at the mid rostral-caudal level. This included counts of both the 

core and shell regions individually too. The observer was blinded to the treatment during 

immunoreactive cell counts.  

 The second analysing method was carried out using an image analysis software, 

and evaluated using integrated optical density (IOD). This method was carried out by 

taking the SCN images and using ImageJ for analysing the immunostaining in the SCN 

(Schneider et al., 2012). ImageJ allows for the automatic quantification of numbers of 

cells, this can eliminate experimenter bias. The light intensity was kept constant while 
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taking all the images to standardise IOD measurements. Results were taken as a mean 

value (IOD or cell number count) ± standard error of mean. Statistical significance results 

were P<0.05.  

 

2.2.7 Circadian Behavioural Analysis 

 

 Mice were singly housed in cages with running wheel for behavioural analysis. 

Each cage contained a micro-switch on the outside which was connected to a data 

acquisition system computer using the Chronobiology Kit by Stanford System (Santa 

Cruz, California) for the recording of daily rhythms of locomotor activity. The data 

acquisition system is able to record each wheel revolution and collects data every 5 

minutes, which in turn produces actograms or actigraphs of each mice activity rhythms. 

The onset of activity is ZT12 when lights are turned off. Mice are usually entrained in a 

light:dark (LD) (12:12) cycle for two weeks, before they are released into constant 

darkness (DD), where they begin to free run. Mice are kept in DD for two weeks before 

any behavioural experiment takes place. Using the actogram data for all mice, photic-

induced phase shifts are calculated by fitting a line of best fit through activity onsets for 

one week prior to treatment and then another line for one week post treatment (Figure 

2.1). Two to three researchers calculated the difference between the two lines and take 

the average to exclude experimenter bias. The FRP and rhythm amplitude were calculated 

using the programme Chronobiology Kit Chi Squared periodogram (Figure 2.1) (Stanford 

software system). 

 

 

 

 

 

 

 

 

Figure 2.1: Line of best fit analysis. A sample double plotted actogram displaying the line of 

best fit method used to assess locomotor activity onsets following applications of a phase shifting 
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stimulus to a subject free running in DD. The application of the stimulus is displayed by the blue 

circle. The lines demonstrate the lines of best fit-through activity onsets. The green line highlights 

the line of best fit through activity onsets for the 7 cycles prior to the stimulus. The red line 

indicates the line of best fit for the 10 days post the phase resetting stimulus. Note there is 

omission of transient days from analysis of the locomotor phase resetting response.  

 

2.2.8 Statistical Analysis  

 

All the data was analysed using IBM SPSS Statistics version 20. The type of test 

used is indicated in experimental and results section for each experiment. Mean values 

are presented ± the standard error of the mean (SEM). P levels below 0.05 were significant 

for all tests. All data is presented as means ± SEM. * represents p<0.05, ** represents 

p<0.01 and *** represents p<0.001. 

 

2.2.9 Analysis of NF-κB and clock gene expression across the 24 hour circadian        

cycle 

 

For the purpose of this experiment, adult male mice were group housed in cages 

and allowed to habituate to a 12:12 LD cycle (150 lux, lights on 0700h) for two weeks 

prior to release into DD where they establish FRPs. Mice continued in DD for two weeks 

before experimental procedures took place. Mice were kept in DD to ascertain if 

expression was circadian in nature, over a 24 hour period. Mice (n=5) were sampled in 

dim red light (<1 lux) at time points over a twenty four hour period ranging from CT2, 

CT6, CT10, CT14, CT18 and CT22. Mice (n=30) were perfused (outlined in section 

2.2.3) and brains were removed and analysed by immunohistochemistry (outlined in 

section 2.2.4). Brains were fixed in 4% paraformaldehyde and after a day placed in 30% 

sucrose. Immunohistochemistry was carried out to analysis glia activation in the mice for 

the expression of components of NF-κB including p65, IκK, IκB and c-Rel and also 

nuclear expression of the clock gene PER1. The mean was calculated for each animal and 

grouped by location and each time point was compared and analysed by one way 

AVOVA. Statistical significance was accepted at P<0.05, and results are given as mean 

values ± standard error of the mean. 
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2.2.10 Cosinor Analysis 

 

 To Evaluate the individual 24-h cycle of expression of the clock gene protein 

PER1 and components of NF-κB in SCN and to discover if the rhythm was indeed 

circadian in nature, a cosinor method was applied (Nelson et al., 1979). Using the 

CircWave 1.4 analyses software (established by Dr. R.A. Hut, 2007, 

http://www.euclock.org) it uses a forward linear harmonic regression in order to evaluate 

the profile of the wave with a 24 hour period for independent samples using the following 

function:  

 

Where: a=average; i=1, 2, 3, representing the fundamental wave, the first harmonic, the 

second harmonic, such as (i-1)th harmonic; pi is the sine coefficient of the (i-1)th harmonic 

and qi signifies the coefficient of the (i-1)th harmonic; t=timepoint value (modulo τ); f(t) 

is the calculated function value at time point t. Additionally, y is the fitted value for time 

point t; a and b denote linear estimates for the sine and cosine contribution to a flat line 

(when i=0), the fundamental wave (i=1), first harmonic (i=2), second harmonic (i=3), etc. 

A 24 hour rhythm was recognised if the null amplitude hypothesis was rejected from an 

F test creating a significant value P<0.05. Values for the amplitude, acrophase and 

rhythms adjusted mean level through the 24 hour cycle were also provided during the 

cosinor analysis.  

  

2.2.11 Analysing the effect photic regulation has on the behavioural circadian 

locomotor activity in the early and late subjective night 

 

 Mice (n=6-7) were placed in 12:12 L:D conditions for two weeks before being 

placed in DD for two weeks. Mice received a 30 minute light pulse in the early subjective 

night at CT15. There was a control crossover carried out two weeks later. In the second 

experiment, mice received a 30 minute light pulse in the late subjective night at CT22. 

Again, a control crossover was carried out two weeks later. The mean was calculated for 

each animal and each time point was compared and analysed by one way AVOVA. 

http://www.euclock.org/
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Statistical significance was accepted at P<0.05, and results are given as mean values ± 

standard error of the mean. 

 

2.2.12 Analysing photic regulation of an early immediate clock gene and NF-κB p65 

expression in the SCN 

 

 In order to assess photic regulation of the NF-κB pathway, adult male mice were 

maintained in DD for 2 days and then received a 30 minute light pulse at C15 (the early 

subjective night) or CT22 (the late subjective night). Mice (n=8) were sampled, 4 taken 

before the light pulse, another 4 immediately after the light pulse, 4 mice 30 minutes after, 

and finally 4 mice 60 minutes after a photic induction. Light appears to have maximal 

effect at these two time points, therefore helping to investigate the temporal nature of any 

regulation. Sections from these animals were stained for the component of NF-κB, p65, 

and the early immediate gene, c-Fos at CT22. The mean was calculated for each animal 

and each time point was compared and analysed by one way AVOVA. Statistical 

significance was accepted at P<0.05, and results are given as mean values ± standard error 

of the mean.  

 

2.2.13 Acute PDTC treatment prior to light pulse 

 

Mice were entrained to a 12:12 cycle for two weeks before undergoing two weeks 

in DD. Application of either DMSO (n=4) or the NF-kB inhibitor PDTC (200mg/kg 

Tocris Bioscience, USA) (n=4) was given i.p 30 minutes prior to a 30 minutes light pulse 

administered to mice. Mice were treated in the late subjective night CT22. A cross-over 

design between DMSO and PDTC was carried out two weeks later. This data was 

recorded by the Chronobiology Biology Kit to analyse any phase shifts that may have 

occurred. Statistical analyses was carried out using repeated measures t-tests. 

Finally, mice were treated again when two weeks had passed, and were given 

either DMSO or PDTC at CT22 with a 30 minute light pulse following. The mice were 

sampled at CT23.5-24. Brains were removed and fixed in 4% PFA for 2 days. 

Immunohistochemistry was carried out to analysis mice for the expression of c-Fos and 

ARC. The mean was calculated for each animal’s nuclei per SCN/PVN and analysing of 



 

 

74 

 

data was carried out using an independent t-test. Statistical significance was accepted at 

P<0.05, and results are given as mean values ± standard error of the mean. 

 

2.2.14 Chronic PDTC oral treatment  

 

It was also examined whether chronic treatment of PDTC caused any changes in 

core circadian locomotor activity or at a molecular level. Actogram data and the core 

circadian locomotor behaviour rhythm parameters of free running period and rhythm 

amplitude were assessed under DD conditions following administration of either PDTC 

(50mg/kg) or DMSO (0.005%) vehicle in drinking water for a period of 42 days. 

Additionally, total wheel running activity was assessed under 12:12 LD cycle across a 42 

day period with either PDTC or vehicle being administered.  In order to assess the 

integrity of the retinohypothalamic tract (RHT) transmission from it, the phase angles of 

entrainment were examined for each animal in both treatment groups under the LD 

photoperiod, since alterations in RHT transmission impact upon the phase angle of 

entrainment. Total wheel running activity, the phase angle of entrainment, the FRP and 

the rhythm amplitude for animals treated with either PDTC or DMSO were analysed. 

Statistical analyses was carried out using repeated measure t-tests.  

After 84 days, mice administered PDTC (n=8) and DMSO (n=8) were sampled at 

ZT6 and ZT12. Brains were removed and fixed in 4% PFA for 2 days as outlined in 2.2.3. 

Immunohistochemistry (2.2.4) was carried out on SCN sections to analysis expression of 

c-Fos, PER1 and p65. The mean was calculated for each animal’s nuclei per SCN/PVN 

and analysing of data was carried out using a two way Anova test. Statistical significance 

was accepted at P<0.05, and results are given as mean values ± standard error of the mean. 
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2.3 Results 

2.3.1 Analysis of NF-κB and clock gene expression across the 24 hour circadian cycle 

 

2.3.1.1 PER1 expression across the 24 hour circadian cycle 

 

 One way ANOVA was utilised to assess statistically significant differences in the 

mean expression of the clock gene protein PER1 across the 24 hour circadian cycle. There 

was an effect of time found in the expression of PER1 in the SCN across 24 hours 

(F5,19=9.87, P=0.01). Post-hoc analyses revealed significant elevation of PER1 expression 

at CT10 and CT14. A subdivision of the SCN was also analysed, investigating core and 

shell expression of PER1 across 24 hrs. There was an effect of time found in the core, 

(P<0.05, ANOVA), with post-hoc analyses revealing significant elevation of PER1 

expression at CT14. Furthermore, the shell had a significant difference in the mean 

expression of PER1 at CT10 compared to all other time points excluding CT14, (P<0.01, 

ANOVA), (Figure 2.2).  
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Figure 2.2: Effect of time on the expression of the clock gene product, PER1 in the SCN 

across the 24 hour circadian cycle. Circadian regulation expression of PER1 was examined in 
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the SCN of animals sampled every 4 hours across the 24 hour circadian cycle in DD. (A) 

Photomicrographs of PER1 expression in the SCN (n=4 per time point) at CT2, CT6, CT10, C14, 

CT18 and CT22 (scale bar = 100µm). Dashed lines outlines the SCN and delineates the core and 

shell subdivisions (B) Graph illustrating quantification of levels of PER1 immunoreactive nuclei 

in the whole, core and shell of the SCN at CT2, CT6, CT10, CT14, CT18 and CT22 and showing 

the expression pattern across the circadian cycle. ANOVA and Co-sinor analysis revealed effect 

of time on PER1 expression across the 24hr circadian cycle (P<0.01). Error bars represent ±1 

SEM. 

 

2.3.1.2 p65 expression across the 24 hour circadian cycle 

 

 Immunohistochemistry coupled with Integrated Optical Density (IOD) 

measurements and one way ANOVA analysis was used to evaluate statistically 

significant differences in the mean expression of the p65 NF-κB immunoreactivity in the 

SCN across the 24 hour circadian cycle. There was no significant effect of time detected 

by ANOVA (P>0.05) and no significant co-sinor fit was found in the expression of p65 

in the SCN across 24 hours. A separate subdivision of the SCN was analysed, 

investigating the core and shell expression of p65 across 24 hrs. Again there was no 

significant effect of time found in the core or the shell (F5,17=1.236, P=0.351), in the mean 

expression of p65. (Figure 2.3).  
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(B) 

 

 

 

 

 

 

Figure 2.3: Effect of time on the expression of the p65 NF-κB in the SCN across the 24 hour 

circadian cycle. Circadian regulation expression of p65 was examined in the SCN of animals 

sampled every 4 hours across the 24 hour circadian cycle in DD. (A) Representative 

photomicrographs of p65 expression in the SCN (n=4 per time point) at CT2, CT6, CT10, C14, 

CT18 and CT22 (scale bar = 100µm). (B) Graph illustrating quantification of levels of p65 

immunoreactive glial in the whole, core and shell of SCN at CT2, CT6, CT10, CT14, CT18 and 

CT22 and showing the expression pattern across the circadian cycle. There was no significant 

effect of time on p65 expression across the 24hr circadian cycle (P>0.05). Error bars represent ±1 

SEM. 

 

2.3.1.3 p-IκB expression across the 24 hour circadian cycle 

 

Immunohistochemistry coupled with IOD measurements and one way ANOVA 

analysis was used to evaluate statistically significant differences in the mean expression 

of the p-IκB immunoreactivity in the SCN across the 24 hour circadian cycle. There was 

no significant effect of time detected by ANOVA (P>0.05) and no significant co-sinor fit 

was established in the expression of p-IκB in the SCN across 24 hours. Investigations of 

the core and shell expression of p-IκB in the SCN took place across 24 hrs. Again, there 

was no significant effect of time found in the core or the shell (F5,18=1.228, P=0.351), 

when analysing the mean expression of p-IκB. (Figure 2.4). 
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Figure 2.4: Effect of time on the expression of the p-IκB in the SCN across the 24 hour 

circadian cycle. Circadian regulation expression of p-IκB was examined in the SCN of animals 

sampled every 4 hours across the 24 hour circadian cycle in DD. (A) Representative 

photomicrographs of p-IκB expression in the SCN (n=4 per time point) at CT2, CT6, CT10, C14, 

CT18 and CT22 (scale bar = 100µm). (B) Bar graph illustrating quantification of levels of p-IκB 

immunoreactive glial in the whole, core and shell of the SCN at CT2, CT6, CT10, CT14, CT18 

and CT22 and showing the expression pattern across the circadian cycle. ANOVA and Co-sinor 

analysis revealed no significant effect of time on p-IκB expression across the 24hr circadian cycle 

(P>0.05). Error bars represent ±1 SEM. 

 

2.3.1.4 p-IκK expression across the 24 hour circadian cycle 

 

Immunohistochemistry coupled with IOD measurements and one way ANOVA 

analysis, was used to assess statistically significant differences in the mean expression of 

the p-IκK immunoreactivity in the SCN across the 24 hour circadian cycle. There was no 

significant effect of time detected by ANOVA (P>0.05) and no significant co-sinor fit 

was found in the expression of p-IκK in the SCN across 24 hours. Investigation of the 
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core and shell took place of p-IκK expression across 24 hrs, finding no significant effect 

of time found in the core or the shell (F5,19=0.220, P=0.948), (Figure 2.5). 
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Figure 2.5: Effect of time on the expression of the p-IκK in the SCN across the 24 hour 

circadian cycle. Circadian regulation expression of p-IκK was examined in the SCN of animals 

sampled every 4 hours across the 24 hour circadian cycle in DD. (A) Representative 

photomicrographs of p-IκK expression in the SCN (n=4 per time point) at CT2, CT6, CT10, C14, 

CT18 and CT22 (scale bar = 100µm). (B) Graph illustrating quantification of levels of p-IκK 

immunoreactive glial in the whole, core and shell of the SCN at CT2, CT6, CT10, CT14, CT18 

and CT22 and showing the expression pattern across the circadian cycle. ANOVA and Co-sinor 

analysis revealed no significant effect of time on p-IκK expression across the 24hr circadian cycle 

(P>0.05). Error bars represent ±1 SEM. 

 

2.3.1.5 c-Rel expression across the 24 hour circadian cycle 

 

Immunohistochemistry coupled with IOD measurements and one way ANOVA 

analysis, was used to assess statistically significant differences in the mean expression of 

the c-Rel immunoreactivity in the SCN across the 24 hour circadian cycle. There was no 

significant effect of time detected by ANOVA (P>0.05) and no significant co-sinor fit 
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was found in the expression of c-Rel in the SCN across 24 hours. A subdivision of the 

SCN was analysed, investigating the core and shell expression of c-Rel across 24 hrs. 

This resulted in no significant effect of time found in the core or the shell (F5,18=0.893, 

P=0.513), in the mean expression of c-Rel. (Figure 2.6). 
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Figure 2.6: Effect of time on the expression of the c-Rel in the SCN across the 24 hour 

circadian cycle. Circadian regulation expression of c-Rel was examined in the SCN of animals 

sampled every 4 hours across the 24 hour circadian cycle in DD. (A) Representative 

photomicrographs of c-Rel expression in the SCN (n=4 per time point) at CT2, CT6, CT10, C14, 

CT18 and CT22 (scale bar = 100µm). (B) Graph illustrating quantification of levels of c-Rel 

immunoreactive glial in the whole, core and shell of the SCN at CT2, CT6, CT10, CT14, CT18 

and CT22 and showing the expression pattern across the circadian cycle. ANOVA and Co-sinor 

analysis revealed no significant effect of time on c-Rel expression across the 24hr circadian cycle 

(P>0.05). Error bars represent ±1 SEM. 
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2.3.2 Analysing behaviour phase shifts as a result of photic induction 

 

2.3.2.1 Analysing the effect a light pulse has on behaviour phase shifts in the early 

subjective night 

 

 A 30 minute light pulse administered at CT15 induces phase delays of -1.69 ± 

0.34 hrs when compared to control mice in DD 0.18 ± 0.03 hrs (T7= 5.349, P=0.002) 

(Figure 2.7). 

  (A)                                                                                   (B) 

  

 

Figure 2.7: the effect photo induction causes on circadian locomotor activity at CT15.  

(A) Mice were initially entrained to an LD cycle for two weeks before been placed in DD for a 

further two weeks. They were then administered a light pulse at CT15, and a crossover was carried 

out two weeks later with no photic induction administered. Light pulse is indicated by yellow 

circles, with lines indicating line of best fit through activity onsets for 7 days before and 10 days 

after the light pulse. Note the exclusion of transient days from analysis. Phase delays were 

displayed in the double plotted actograms. (B) Bar graph representing the magnitude of the phase 

delay a light pulse causes at CT15. **<0.01.  

 

2.3.2.2 Analysing the effect a light pulse has on behaviour phase shifts in the late 

subjective night 

 

 A 30 minute light pulse administered at CT22 produced an average phase 

advances of 0.72 ± 0.11 hrs when compared to control mice in DD which displayed 0.15 

± 0.02 hrs (T6=4.746, P=0.004) (Figure 2.8).  
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(A)                                                                                     (B) 

  

 

Figure 2.8: the effect photo induction causes on circadian locomotor activity at 

CT22. (A) Mice were initially entrained to an LD cycle for two weeks before been placed in DD 

for a further two weeks. They were then administered a light pulse at CT22, and a crossover was 

carried out two weeks later with no photic induction administered. The light pulse is indicated by 

both yellow circles, with lines indicating line of best fit through activity onsets for 7 days before 

and 10 days after the light pulse. Note the exclusion of transient days from analysis. Phase 

advances were displayed in the double plotted actograms. (B) Bar graph representing the 

magnitude of the phase advance a light pulse causes at CT22. **<0.01.  

 

2.3.3 Analysing photic regulation of an early immediate clock gene and 

NF-κB p65 expression in the SCN 

 

2.3.3.1 Analysing photic regulation of c-Fos expression in the SCN in the early and 

late subjective night 

 

 c-Fos expression was assessed following a 30 minute LP at CT22 by 

immunohistochemistry with 4 mice being sampled before the LP, another 4 mice 5 

minutes into the LP, 4 mice 30 and 60 minutes post LP. Therefore, analysing levels of c-

Fos immunoreactivity between the different time points by manual quantification took 

place, followed by statistical analysis using one way ANOVA which was used to assess 

statistically significant differences in the mean expression of the c-Fos immunoreactivity 

in the SCN across the different time points. One way ANOVA analysis at CT22 displayed 

altered expression of c-Fos in the SCN (F3,11=33.58, P=0.001). Post Hoc analysis (Tukey) 

revealed that 30 minutes after a light pulse c-Fos expression  (72.000 ± 9.54) was 
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significantly higher compared to samples taken in DD 8.000 ± 0.57 (P<0.001) and after 

a 5 minute light pulse 12.333 ± 1.92 (P<0.01).  

 

(A) 

 

 

     

(B) 

                                 

Figure 2.9: c-Fos expression after photic induction in the early and late subjective night. (A) 

Representative photomicrographs and (B) bar charts illustrating the effects at different time points 

DD and post light pulse 5min, 30 min, & 60 min at CT22 on the expression of c-Fos in the SCN. 

Scale bar = 100µM. 

 

2.3.3.2 Analysing photic regulation of p65 expression in the SCN, in the early and 

late subjective night 

 

 p65 immunoreactivity between the different time points was under taken by IOD, 

followed by statistical analysis using one way ANOVA which was used to assess 

statistically significant differences in the mean expression of the p65 immunoreactivity 

in the SCN across the different time points. One way ANOVA test showed that a light 

pulse administered at CT15 did not alter p65 expression in the SCN before a light pulse, 

5, 30, or 60 minutes after a light pulse (F3,11=1.949, P>0.200). Similarly, a light pulse at 

CT22 did not alter p65 expression in the SCN at any time point (F3,11=1.971, P=0.197). 

 

 

 

DD             5 min             30 min         60 min 

CT22 
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(A) 

 

 

 

 

 

 

 

 

 

 

(B) 

 

                                                
 

Figure 2.10: p65 expression after photic induction in the early and late subjective night. (A) 

Representative photomicrographs and (B) bar charts illustrating the effects at different time points 

after a light pulse at either CT15 or CT22 on the expression of p65 in the SCN. Scale bar = 

100µM. 

 

2.3.4 Acute PDTC treatment prior to light pulse 

 

2.3.4.1 Behavioural analysis using PDTC treatment prior to light pulse in the early 

and late subjective night.  

 

 In order to examine the role of NF-κB in resetting circadian rhythms, mice free 

running in DD received PDTC (200mg/kg, i.p) or saline, 30 minutes before administration 

of a 30 minute light pulse at CT15. Pre-treatment with the NF-κB inhibitor did not 

attenuate the behavioural phase delay elicited by a light pulse in the early subjective night. 

Treatment with PDTC and light pulse displayed delays of -1.77 ± 0.22 hrs which was a 

similar phase delays as control and light pulse which resulted in -1.99 ± 0.08 hrs (T10=-

0.967, P=0.085). Similarly, administration of PDTC 30 minutes before a 30 minute light 

   DD              5 min              30 min            60 min 

CT22 

CT15 
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pulse at CT22 also did not reduce the behavioural phase advance stimulated by a light 

pulse in the late subjective night. Treatment with PDTC and light pulse produced a phase 

advances of 0.56 ± 0.09 hrs and control and light pulse 0.92 ± 0.09 hrs (T11=1.982, 

P=0.073).  

(A)                                                                  (B) 

 

 

Figure 2.11: (A) and (B) are sample double plotted actograms. Mice were initially entrained to 

an LD cycle for two weeks before been placed in DD for a further two weeks. They were then 

administered PDTC/saline followed by a light pulse at CT15 or CT22, and a crossover was carried 

out two weeks later. Light pulse is indicated by yellow circles, with lines indicating line of best 

fit through activity onsets for 7 days before and 10 days after the light pulse. Note the exclusion 

of transient days from analysis. Phase delays and advances were not inhibited by a peripheral 

PDTC injection at either circadian time.  

 

(C)  
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Figure 2.12: (C) Bar charts illustrating the average phase shift magnitude, amplitude, FRP and 

the total wheel running activity of each group following treatment and light pulse. There was no 

significant at CT15 (phase delay) when administered PDTC compared to saline.  

 

(D)  

         

         

 

Figure 2.13: (D) Bar charts illustrating the average phase shift magnitude, amplitude, FRP and 

the total wheel running activity of each group following treatment and light pulse. There was no 

significant difference at CT22 (phase advance) when administered PDTC compared to saline. 
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2.3.4.2 Immunohistochemisty analysis using the immediate early gene following 

PDTC treatment prior to light pulse in the late subjective night.  

 

 Mice that received either PDTC or saline treatment prior to a 30 minute light 

pulse at CT22, were sampled for immunohistochemistry 1.5-2 hours after at CT23.5-24. 

The neuronal activation marker c-Fos was examined first for expression in the SCN and 

the PVN, since photic induction is known to cause significant upregulation of c-Fos in 

the SCN (Kornhauser et al., 1990; Rusak et al., 1990). Therefore, PDTC a NF-κB 

inhibitor was examined to see if it could attenuate c-Fos upregulation. PDTC did not 

lessen photic induction of c-Fos in the SCN. Analysing levels of c-Fos immunoreactivity 

between the treatments was carried out by manual quantification, followed by statistical 

analysis using an independent t-test to assess statistically significant differences in the 

mean expression of PDTC and controls. Independent t-tests found the mean, PDTC, 112 

± 8.42 vs. saline, 123 ± 7.52 (T6=0.975, P=0.367). PDTC caused no alterations of c-Fos 

in the PVN, PDTC, 17 ± 1.87 compared with controls, 10.25 ± 3.28 (T6=1.335, P=0.124).  
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   (C) 

                        

 

Figure 2.14: Photomicrographs of the (A) SCN and (B) PVN illustrating the expression of c-Fos 

after 30 minute light pulse prior to saline and PDTC treatment. Scale bar = 100µM. (C) Bar graphs 

representing c-Fos expression in both the SCN and PVN following administration of either PDTC 

or Saline prior to a 30 minute light pulse. 

 

2.3.4.3 Immunohistochemistry analysis using ARC following PDTC treatment prior 

to light pulse in the late subjective night.  

 

 The ability of the NF-κB inhibitor, PDTC to alter the expression of ARC in the 

SCN and PVN prior to a light pulse was also investigated. The outcome was that PDTC 

did not lessen photic induction of ARC in the SCN. Analysing levels of ARC 

immunoreactivity between the different treatments was carried out by manual 

quantification, followed by statistical analysis using an independent t-test which was used 

to evaluate statistically significant differences in the mean expression of PDTC and 

controls. Independent t-tests found that there was no significant ARC expression between 

the two treatment groups. The mean PDTC was 15.00 ± 2.55 vs. saline 15.87 ± 1.30 

(t4=2.121, P=0.101). Furthermore, analysis using independent t-tests found no variation 

of ARC following treatment of PDTC (4.66 ± 0.33 when compared to control 6.66 ± 0.88, 

t4=2, P=0.116). 
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     (A)                                                               (B)                                                         

 

  

 

 

 

                    

               

 

 

 

(C) 

                     
 

Figure 2.15: Photomicrographs (A) SCN and (B) PVN illustrating the expression of ARC after 

30 minute light pulse prior to saline and PDTC treatment. Scale bar = 100µM. (C) Bar graphs 

representing ARC expression in both the SCN and PVN following administration of either PDTC 

or Saline prior to a 30 minute light pulse. 

 

2.3.5 Chronic PDTC treatment 

 

2.3.5.1 Behavioural analysis of chronic PDTC treatment by oral administration 

 

 Investigating the effects of chronic PDTC treatment by oral administration in mice 

drinking water resulted in no altering of the phase angle of entrainment, PDTC was 1.757 

± 0.05 hrs compared to DMSO 0.081 ± 0.14 hrs (F26=3.279, P=0.526). Repeated measures 

analysis also indicated that there is no significant differences in FRP values between the 

treatment groups (PDTC, 23.79 ± 0.03 hrs vs. DMSO, 23.81 ± 0.03 hrs, F30=0.385, 

P=0.516), nor was there with amplitude (PDTC, 1909.5 ± 197.02 vs. DMSO, 2126.3 ± 
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267.62, F30=1.67, P=0.519). Repeated measures analysis was also used to examine 

whether there was statistically significant differences between the total wheel running 

activity between treatment groups (PDTC, 7.701.1 ± 1585.16 vs. DMSO, 12189.25 ± 

1698.5, F24=0.086, P=0.065). (Figure 2.16). 

 

(A) 
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(B) 

                

 

            
 

Figure 2.16: (A) Sample of a double plotted actogram from mice wheel running in LD 12:12 

cycle for 6 weeks and DD for 6 weeks, while treated with chronic PDTC or DMSO in their 

drinking waters, with a crossover design carried out. (B) Bar graphs representing the phase angle 

of entrainment, amplitude in DD, FRP and the total wheel running activity.  

 

2.3.5.2 Immunohistochemistry analysis of chronic PDTC treatment by oral 

administration 

 

 Chronic treatment with PDTC (50mg/kg daily via drinking water) does not alter 

the diurnal rhythm in c-Fos expression in the SCN. Analysing levels of Fos 

immunoreactivity between the different treatments and time were carried out by manual 

quantification, followed by statistical analysis using two way ANOVA analysis used to 

assess whether there was alterations in the expression of c-Fos in the SCN and PVN, 

following treatment of either PDTC or control at two different time points and whether 

there was a significant interaction effect between time and treatment. There was no main 

effect of time (F1,16=2.39, P=0.147) or main effect of treatment (F1,16=2.39, P=0.147) in 

the SCN. There was no statistically significant effect between time and treatment 
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(F1,16=4.316, P=0.060) on c-Fos expression levels in the SCN. No main effect of time 

(F1,14=0.034, P=0.852) or main effect of treatment (F1,14=1.327, P=0.276) were found in 

the PVN. There also was no statistically significant effect between time and treatment in 

the PVN (F1,14=0.590, P=0.460) (Figure 2.17). 

 

(A)  
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Figure 2.17: Photomicrographs and bar charts of (A) SCN and (B) PVN illustrating the 

expression of the neuronal marker c-Fos after treatment with either PDTC or control at two 

different timepoints, ZT6 and ZT12.  

 

 Chronic treatment with PDTC does not alter the diurnal rhythm in PER1 

expression in the SCN. Analysing levels of PER1 immunoreactivity between the different 
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treatments and time were carried out by manual quantification. This was followed by 

statistical analysis using two way ANOVA analysis used to assess whether there was 

alterations in the expression of PER1 in the SCN and PVN following treatment of either 

PDTC or control at ZT6 and ZT12, and whether there was an effect of time*treatment. 

There was a main effect of time (F1,16=48.603, P=0.001), however, there was no main 

effect of treatment (F1,16=0.231, P=0.639) in the SCN. Results indicate that there was no 

statistically significant effect of time*treatment on PER1 expression levels in the SCN 

(F1,16=0.012, P=0.914) and in the PVN (F1,13=0.015, P=0.905). Additionally, no main 

effect of time (F1,13=0.600, P=0.458) or main effect of treatment (F1,13=1.212, P=0.300) 

were found in the PVN (Figure 2.18). 

(A)  
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Figure 2.18: Photomicrographs and bar charts of (A) SCN and (B) PVN illustrating the 

expression of the clock gene protein PER1 after treatment with either PDTC or control at two 

different timepoints, ZT6 and ZT12. 
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Chronic treatment with PDTC does not alter p65 expression in the SCN. 

Analysing levels of p65 immunoreactivity between the different treatments and time were 

carried out by IOD. Statistical analysis using two way ANOVA analysis was used to 

assess whether there was alterations in the expression of p65 in the SCN and PVN 

following treatment of either PDTC or control at ZT6 and ZT12, and whether there was 

an effect of time*treatment. No main effect of time (F1,15=0.044, P=0.837) or main effect 

of treatment (F1,15=0.667, P=0.431) in the SCN was found. There was no statistically 

significant effect of time*treatment on p65 expression levels in the SCN (F1,15=2.53, 

P=0.625), or in the PVN (F1,13=3.60, P=0.563). Furthermore, no main effect of time 

(F1,13=5.994, P=0.037) or main effect of treatment (F1,13=0.360, P=0.563) were found in 

the PVN (Figure 2.19). 

(A) 

              

 

 

 

 

 

 

 

(B)                

              

 

 

 

 

 

 

 

 

Figure 2.19: Photomicrographs and bar charts of (A) SCN and (B) PVN illustrating the 

expression of the NF-κB subunit p65 after treatment with either PDTC or control at two different 

timepoints, ZT6 and ZT12. 
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2.4 Discussion 

 

 The NF-κB pathway plays an important role in the body’s immune system in 

relation to inflammation and disease. Since activation of NF-κB in glia seems to 

exacerbate certain diseases, it is thought by inhibiting NF-κB in glia cells, that it might 

result in reducing disease in some cases (Kaltschmidt & Kaltschmidt, 2009). In control 

animals, no constitutive NF-κB activity was found in glia cells (Bhakar et al., 2002; 

Schmidt-Ullrich et al., 1996). Past studies have found low levels of basal expression of 

NF-κB in neurons in brain areas such as the cerebellum, frontal cortex (Korhonen et al., 

1997), hippocampus, cerebral cortex and basal forebrain observed using 

immunohistochemistry, western blotting and gel shift assays (Kaltschmidt et al., 1995, 

1994; Toliver-Kinsky et al, 1997). Furthermore, using transgenic reporter mouse models, 

the previous data was corroborated, and this model also displayed constitutive NF-κB 

activity in additional brain regions, for example the hypothalamus, amygdala and 

olfactory lobes (Bhakar et al., 2002; Schmidt-Ullrich et al., 1996).  

 In this study there was no differentiation carried out between neurons, astrocytes 

and microglial in terms of NF-κB expression patterns. Current research has discovered 

that there is minimal NF-κB activity in neurons even after LPS treatment (Listwak et al., 

2013), concluding that there is lack of evidence that NF-κB does play a role in the 

circadian clock. Extra care must be taken in interpreting results of neuronal NF-κB 

activity in the CNS, with numerous studies using antibodies that are not selective for p65. 

Herkenham and colleagues used selective and non-selective frequently used commercial 

and non-commercial p65 and p50 antibodies, using western blot assays to analyse the 

study of NF-κB activity in the CNS (Herkenham et al., 2011). Studies established that 

there is an inconsistency with the different antibodies used in western blot analysis, with 

some antibodies recognising the target proteins at the precise molecular weight, however, 

there are others that also mark in additional protein bands, therefore, making them 

unsuitable for immunohistochemistry, such as p65 (MAB3026; Chemicon) and p50 (sc-

114; Santa Cruz) (Herkenham et al., 2011; Pereira et al., 1996). In this study however, we 

used the p65 antibody from Santa Cruz Biotechnology (sc-372), which Herkenham and 

colleagues found to be accurate and precise in their study.  In conclusion, since antibodies 

can lack efficacy and specificity; experimental results can suffer as a consequence, in 

terms of perpetuating flawed findings, which may be the case in studies which had found 
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constitutive NF-κB in neurons using non-specific antibodies (Kaltschmidt et al., 1995, 

1994; Toliver-Kinsky et al., 1997). A recent study carried out revealed that there is 

minimal hypothalamic NF-κB in young mice (Zhang et al., 2013).  

 

2.4.1 The expression of clock genes and NF-κB components in the SCN 

 

 In this current study, we first looked at the expression of the clock gene PER1 

protein in the SCN across the 24 hour cycle in DD under basal conditions. Previous 

studies have shown that Per1 mRNA displays peak expression in the SCN between 

ZT/CT 4 and 6 (Bae et al., 2001; Guilding & Piggins, 2007; Ripperger et al., 2011). PER1 

protein is rhythmic throughout the 24 hours circadian cycle, with peak expression 

displayed 4-6 hours after mRNA levels, roughly between CT10 and 12 (Guilding & 

Piggins, 2007). We also established similar findings using immunohistochemistry, with 

PER1 rhythmic expression displayed during the 24 hour cycle and peak expression 

exhibited at CT10. This protein was tested to confirm expected circadian expression 

profiles in our animals. 

 With regard to the expression of NF-κB components in the SCN of WT mice, 

studies were undertaken to examine the 24 hour circadian cycle in DD conditions, again 

under basal conditions, to ascertain if certain components of the NF-κB pathway are 

rhythmic in the circadian clock. Immunostaining exhibited no significant temporal 

regulation of p65, p-IκB, p-IκK and c-Rel in the basal functioning of the SCN clock. Low 

levels of p65 expression in the SCN may be due to the fact that NF-κB is usually in its 

inactive state in the cytoplasm, and when active after binding to IκB it is continuously 

shuttling between the nucleus and cytoplasm. This may play a factor in the low levels of 

nuclear p65 and p-IκB staining exhibited in the SCN under basal conditions. This 

corresponds to findings of Zhang and colleagues (Zhang et al., 2013), highlighting that 

there is minimal hypothalamic NF-κB in young mice. A previous study was carried out 

by Marpegan to investigate if p65 expression was diurnal or circadian in nature using 

western blots. SCN cell extracts from hamsters were analysed at various time points over 

a 24 hour cycle with findings stating that p65 expression had no diurnal or circadian 

variation (Marpegan et al., 2004). 
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2.4.2 The effects of photic induction on circadian behaviour, IEGs and the NF-κB 

pathway 

 

In this current study, investigation of stimuli such as light pulses in the subjective 

night were analysed to see if it could activate the NF-κB pathway. The SCN is responsible 

for photic entrainment in nearly all mammals. From previous studies, light pulses 

administered during the night can result in phase shifts. Light induction in the early 

subjective night cause phase delays, in contrast to light pulses that are administered in the 

late subjective night, which result in phase advances (Meijer & Schwartz, 2003; Shibata 

& Moore, 1993). When photic stimuli occurs, the internal oscillator resets within one 

cycle, though overt behaviour shows transient cycles until a steady state of entrainment 

is attained (Johnson et al., 2003). Findings from our wheel running experiments found 

similar results, with light pulse administration causing phase delays at CT15 of 

approximately -1.69 hours, and phase advances at CT22 of 0.72 hours. Studies have 

displayed interesting findings, with NMDA administration causing similar effects with 

photic induction in the SCN. NMDA given at CT13.5 and CT19 cause phase delays and 

advances respectively (Mintz et al., 1999). Administration with NMDA receptor 

antagonists and non-NMDA antagonists were able to attenuate circadian phase shifting 

effects of light on wheel running behaviour in rodents (Colwell & Menaker, 1992; Mintz 

et al., 1999).  

The expression of IEGs have been researched to understand the physiological 

mechanisms responsible for entrainment by stimuli such as light, and also for the 

endogenous generations of circadian rhythms (Guido et al., 1999; Rusak et al., 2002). 

Light pulses during the subjective day show no alteration in IEGs expression. However, 

light pulses that induce phase shifts in rodents in the early and late subjective night can 

induce upregulation of the IEGs such as c-Fos and ARC expression in the vlSCN (Guido 

et al., 1999; Mahoney et al., 2001; Rusak et al., 1992; Rusak et al. , 1990). Photic 

induction of the arc gene was displayed in the SCN at CT16 after a 30 minute light 

exposure. Under DD conditions, Arc mRNA and ARC protein were not seen at CT16, 

therefore, emphasising the role photic induction plays in the early subjective night. 

Furthermore, a 30 minute light pulse did not result in Arc mRNA signals during the 

subjective day, which were tested at different time points throughout this period. The 

expression of Arc mRNA is circadian phase-dependent, with light exposure producing 
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increased Arc mRNA at CT12, CT16 and CT20. There were significant increases in Arc 

mRNA and ARC protein expression observed 30-60 minutes after a light pulse, seen 

exclusively in the retinorecipient ventrolateral part of the SCN (Nishimura et al., 2003).  

c-Fos is the most researched IEG in response to photic stimulation (Aronin et al., 

1990; Kornhauser et al., 1990; Rea, 1989; Rusak et al., 1990). c-Fos protein expression 

is extremely faint throughout basal conditions (Herdegen et al., 1995; Sagar et al., 1988). 

c-Fos mRNA and c-Fos protein expression can be induced in the SCN of diurnal and 

nocturnal animals after administration of a light pulse at night or in response to lights on 

at dawn in the LD cycle (Hughes et al., 2004; Rea, 1989; Rusak et al., 1990). c-Fos 

induction can result from photic induction of as little as 5 minutes (Kornhauser et al., 

1990), however the highest c-Fos expression can be seen within 30 minutes to one hour 

following exposure to light (Colwell & Foster, 1992; Kornhauser et al., 1990; Schwartz 

et al., 1995). Therefore, c-Fos protein expression can detect if photic induction is involved 

in photic entrainment and circadian function. The SCN itself is intrinsically rhythmic in 

its response to stimuli that produce c-Fos expression, with in vitro studies using SCN 

slices, displaying how electrical stimulus could stimulate c-Fos protein expression only 

during the subjective night (Bennett et al., 1996). Unlike ARC expression (Nishimura et 

al., 2003), spontaneous c-Fos expression is exhibited in the dmSCN and is independent 

of the effects caused by light pulses (Sumová et al., 1998).  

Our results displayed a similar outcome to other studies with an increase in 

immunoreactivity for c-Fos occurring when a light pulse was administered in the late 

subjective night CT22 (Earnest & Olschowka, 1993; Ebling et al., 1991; Rusak et al., 

1990). We found a statistically significant upregulation of c-Fos in the SCN at 30 

minutes and 1 hour following a 30 minute light pulse before been culled. However, 

when investigating if the NF-κB component p65 was affected by photic induction, it 

was discovered that p65 expression was not altered in the SCN at either CT15 or CT22 

when a light pulse was administered. The timeframe after the light pulse which we 

examined, 1 hour, should be long enough to observe any such change in photic 

resetting. This was not unusual since low levels of nuclear p65 expression are known 

under basal conditions in the SCN. Therefore, this seems to highlight that this NF-κB 

protein is not be involved in photic resetting, with other pathways such as MAPK key to 

photic stimulation in the circadian clock.  
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2.4.3 Acute PDTC treatment  

 

 We wanted to investigate further if the NF-κB pathway is linked with phase 

shifts following light pulses at a behavioural and molecular level since disruption to 

pathways such as MAPK can lead to a decrease in light induced phase shifts (Butcher et 

al., 2002). Inhibitors of the ERK pathway can reduce phase shifts of running wheel 

locomotor activity and attenuate IEGs expression including c-Fos and Egr1 (Dziema et 

al., 2003).  Therefore, a study was carried out using the NF-κB inhibitor PDTC to 

establish if it could block the phase shifts previously displayed in this chapter. In this 

study we report on findings in relation to the NF-κB specific inhibitor PDTC using in vivo 

methods (Riera et al., 2015). An investigation took place to see if this inhibitor had any 

effect on photic stimulation at CT22, in relation to behavioural phase shifts and IEG 

expression in the SCN and PVN.  

 Administration of PDTC prior to an immune challenge was found to inhibit LPS-

induced IκB degradation, along with an attenuation of neutrophils in certain peripheral 

organs (Liu et al., 1999). Additional studies found that PDTC reduces inflammation 

caused by LPS by inhibiting the NF-κB signalling pathway (Ohta et al., 2002). PDTC has 

to be administered prior to an immune challenge, because if given in conjunction with 

LPS it will preclude in blocking NF-κB (Cvek & Dvorak, 2007). Therefore, in this current 

study, administration of the NF-κB inhibitor, PDTC, was administered at 200mg/kg (Shu 

Fang Liu et al., 1999), 30 minutes prior to a light pulse, to establish if this inhibitor blocks 

photic phase shifting in wheel running rodents.  

 The effects of acute pharmacological inhibition of the NF-κB pathway on 

circadian processes in vivo have been investigated in Marpegans studies. Administration 

of NF-κB inhibitor PDTC in hamsters prevented phase advances caused by light pulses 

at CT18, whereas saline treated hamsters administered with a light pulse resulted in a 

phase advance (Marpegan et al., 2004). We investigated the effects of PDTC 

administration prior to a light pulse in mice in the early and late subjective night, CT15 

and CT22 respectively. In contrast we found that PDTC did not inhibit photic induced 

phase shifts. The contrasting results found between Marpegans study and this study may 

be due to the fact that different rodents were used in both studies. Also in the two studies 

there were different injection times, therefore, the participation of NF-κB in photic 

induction may be dependent on the time of photic stimulation. Another vital reason for 
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contrasting results might be due to how PDTC was administered to the rodents. In our 

study, injections were administered i.p, while (Marpegan et al., 2004) used i.c.v injections 

in hamsters. Administration of PDTC i.c.v into the CNS could have a more potent and 

immediate effect then that of i.p injections. I.p injections may have a longer time course, 

resulting in PDTC been unable to prevent photic phase shifts.  

 We looked at the IEGs expression in the SCN and PVN following the 

administration of PDTC and a light pulse. The PVN was also investigated since it is one 

of the main target areas of the SCN. The SCN communicates with the PVN in order to 

regulate stress and immune function (Kalsbeek & Buijs, 2002). Circadian information is 

transferred to the immune system as a result of SCN projections to the PVN which is 

involved in the regulation of endocrine and autonomic neuronal activity (Kalsbeek et al., 

2006).  We hypothesised perhaps NF-κB may be in fact regulating c-Fos and ARC, since 

a recent study has displayed that there is a κB-binding site in the c-Fos promoter region, 

which was discovered in mouse embryonic fibroblasts (MEFs). This study found that NF-

κB plays a role in PMA-induced c-fos mRNA and c-Fos protein expression in MEFs, 

since IKK-null MEFs have attenuated c-Fos expression compared to controls. 

Additionally PMA-induced c-Fos expression was supressed in MEFs deficit in p65, 

therefore, it would seem that NF-κB regulates c-fos expression. Finally, it was established 

the p65 homodimer can bind to the mouse c-Fos promoter region, associating the two 

transcriptional systems together (Tu et al., 2013). 

 

 

 

Figure 2.20: Displays the predicted NF-κB binding site in the mouse c-Fos promoter region. 

Adapted from (Tu et al., 2013). 
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 It was discovered that there was no difference in neuronal activation of either c-

Fos or ARC, in both the SCN and PVN, in mice administered with either PDTC or control 

before receiving a light pulse. This was not surprising since there was no difference seen 

in the behavioural experiment, with photic phase shifts comparable between PDTC and 

vehicle treated subjects. Therefore, it would seem that NF-κB is not essential in regulating 

c-Fos or ARC with regard to photic induction, as blocking this pathway using PDTC does 

not hinder neuronal activation. 

   

2.4.4 Chronic PDTC treatment  

 

Chronic pharmacological inhibition of the NF-κB pathway has being carried out 

in many studies using oral administration of PDTC, in relation to various diseases such 

as breast cancer (Gu et al., 2009), diabetes (Luo et al., 2015; Mariappan et al., 2010; Zhao 

et al., 2013), ulcerative colitis (UC) (Hirata et al., 2007) and AD (Malm et al., 2007). 

PDTC ameliorated each of these diseases by being administered in rodent’s drinking 

water, varying from 20-200mg/kg daily. Patients with IBD, display higher expression of 

the p65 protein in their mucosal tissues (Neurath, 1998; Schreiber et al., 1998). The 

animal model of UC is known as (dextran sodium sulfate) DSS-induced colitis (Okayasu 

et al., 1990). Hirata and colleagues were able to alleviate DSS-induced colitis by oral 

administration of PDTC in mice, by suppressing NF-κB activity in the intestines, and 

reducing the production of IL-1β and TNF-α (Hirata et al., 2007). Other forms of chronic 

PDTC administration through injection have also been shown as attenuating NF-κB 

activation (Rangan et al., 1999). Chronic inflammation in the form of collagen-induced 

arthritis was reduced by an i.p injection of PDTC every two days (Cuzzocrea et al., 2002).  

The next step in this study was to examine if chronic pharmacological inhibition 

of the NF-κB pathway on circadian processes in vivo caused any changes in core circadian 

locomotor activity or at a molecular level. As discussed previously, this was investigated 

by oral administration of PDTC in mice drinking water. In LD there was no difference in 

the period, amplitude and the total wheel running activity in PDTC and vehicle subjects. 

In order to assess the integrity of the retinohypothalamic tract or RHT transmission from 

it, the phase angles of entrainment were examined for each animal in both treatment 

groups under the LD photoperiod, since alterations in RHT transmission impact upon the 

phase angle of entrainment. Under the LD photoperiod, the phase angle of entrainment in 
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both treatment groups displayed no variation. When transferred into DD there was no 

masking difference seen between PDTC and vehicle treated mice. Furthermore, in DD 

there was no alterations in endogenous clock properties such as their FRP and amplitude.  

 Lastly we examined the effects of chronic pharmacological inhibition of the NF-

κB pathway on circadian processes in vivo at a molecular level. We examined the effect 

of chronic PDTC versus vehicle at two different time points, ZT6 and ZT12, for 

expression of the NF-κB subunit p65, the IEG c-Fos and for clock gene protein expression 

using PER1. There was no alterations in the SCN or PVN in p65 expression, again 

perhaps due to the low levels of nuclear p65 expression displayed under basal conditions 

in the SCN. There are clock controlled genes known to contain NF-κB binding sites on 

their promoters which highlights a link between the immune and circadian system (Bozek 

et al., 2007). Therefore, we decided to see if blocking the NF-κB pathway using chronic 

oral treatment of inhibitor PDTC, had any effect on the molecular clock with regard to 

PER1 expression. There was no alterations in PER1 protein expression between treatment 

groups in the SCN or PVN. This would be expected as it ties in with the fact there are no 

behavioural alterations. When investigating the c-Fos expression there was a slight 

diurnal difference in control mice, with higher levels of expression displayed during the 

middle of the day in comparison to the middle of the night. This was not observed in mice 

treated with PDTC, therefore perhaps chronic PDTC treatment somewhat blocks NF-κB 

regulation of c-Fos expression in mice during the day, since NF-κB has been shown to 

regulate c-Fos expression (Tu et al., 2013).  
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Chapter Three 

Analysing the effects of acute administration of LPS on 

NF-κB signalling in the SCN 

 

3.1 Introduction  

 

 The aim of this chapter was to investigate the role acute LPS treatment has on 

NF-κB components in the SCN and PVN. LPS is a component of the outer membrane of 

Gram-negative bacteria which bind to TLR4 and CD14 on the surface of various cell 

types (Bohannon et al., 2013; Lu et al., 2008; Singh & Jiang, 2004; Van Amersfoort et 

al., 2003; Wright et al., 1990). It is an important target for recognition by the immune 

system as it results in septic shock in humans (Ulevitch & Tobias, 1995).  LPS application 

is known to induce in a systemic inflammatory response, increasing the level of TNF-α, 

IL-6 and IL-1β in the brain, causing sickness behaviour (Dantzer, 2009; Raetz & 

Whitfield, 2002; Skelly et al., 2013). This sickness behaviour is displayed in the following 

manner, reduced social activity, lethargy, hypersomnia, fever, piloerection, grooming and 

hyperalgesia (Dantzer, 2004). LPS-induced sickness behaviour has been the subject of 

intense research, from molecular to behavioural studies. Strokes and traumatic brain 

injury (TBI) are two acute neurodegenerative diseases, with acute inflammation a key 

factor in both diseases. There is increased pro-inflammatory cytokines for instance, TNF-

α, IL-6 and IL-1β in the brain, after strokes and TBI (Berti et al., 2002; Buttini et al., 

1994; Hang et al., 2004; Pan et al., 2006).  

 The circadian system may be involved in the syndrome of sickness behaviour, 

since the time that LPS is applied can cause different effects. Studies have shown that 

administration of LPS injections near the end of the resting phase, can result in increased 

cytokines production for example IL-1β, along with a higher mortality rate in rodents. 

However, this increase in IL-1β production and mortality in rodents after LPS injection 

was not displayed at ZT19 (Halberg et al., 1960; Marpegan et al., 2009). Another study 

also investigated the circadian system with regard to what effect LPS has on sickness 

behaviour. I.P injections of LPS were administered to rats at either ZT0 or ZT12. It was 

established that this immune challenge altered temperature and behavioural parameters, 
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but LPS was time dependent (Mathias et al., 2000). This modulation of inflammatory 

response throughout the day is also displayed in humans, after LPS and TNF-α 

administration (Hrushesky et al., 1994; Petrovsky et al., 1998). Furthermore, mortality in 

humans as a result of sepsis and higher cortisol levels is more common in the early 

morning (Hrushesky et al., 1994; Sam et al., 2004). The dose received and how LPS is 

applied whether intraperitoneal (i.p), intravenous (i.v), subcutaneous or 

intracerebroventricular injection is also critical with regard to what effects the immune 

challenge has in rodents and humans (Biesmans et al., 2013).   

 

3.1.1 The effect of LPS treatment on the CNS 

 

 The CNS consists of the brain and the spinal cord. Between the CNS and the 

peripheral immune system lies the blood brain barrier (BBB). The brain was once viewed 

as an immunological privileged organ, not susceptible to immune activation or 

inflammation. However, it is now established that the brain contains different immune 

components and is sensitive to inflammatory mediators. Peripheral immune mediators for 

example cytokines and chemokines are synthesized in the CNS by neurons, astrocytes 

and microglial. The two pathways involved in peripheral immune messages transferring 

to the brain are the neural and humoral pathway (Dantzer, 2009; Konsman et al., 2002). 

 A number of mechanisms are thought to be involved in how LPS may affect the 

brain. Firstly studies have shown that LPS may cross the BBB and activate cells within 

the CNS such as microglia (Marzolo et al., 2000), astrocytes and cells that express TLR4 

(Chakravarty & Herkenham, 2005). Other studies have displayed that minimal amounts 

of peripherally LPS application actually cross the BBB, therefore, this immune challenge 

should not induce the neuroimmune reactions exhibited in the brain. This would indicate 

that acute peripheral LPS administration causes this neuroimmune reaction using LPS 

receptors located outside the BBB (Banks & Robinson, 2010). The LPS receptor TLR4 

is known to be expressed in the leptomininges, choroid plexus and the circumventricular 

organs (CVO), which are close to the BBB (Laflamme & Rivest, 2001). Initially, 

peripheral LPS administration into the abdominal cavity causes inflammation of the 

peritoneum (Dantzer, 2009). Peripheral cytokines do not enter the brain, however, they 

manage to induce the expression of other cytokines in the brain resulting in sickness 

behaviour (Johnson, 2002). The neural route involves the vagus nerves which contain 
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TLRs, and these vagus nerves plays a major role in conveying messages to the brain in 

response to LPS i.p administration (Goehler et al., 1999). Furthermore, if vagus nerve is 

severed in rats, LPS administration does not cause sickness behaviour or expression of 

cytokines in the brain usually displayed in control rats (Bluthé et al., 1994; Laye et al., 

1995).  

 Other forms of periphery immune messages transferring to the brain include the 

humoral pathway involving, IL-1β to the CVO (Dantzer, 2001; Konsman et al., 1999; 

Konsman et al., 2002), and active transport (Banks & Kastin, 1991; Gutierrez et al., 1993) 

after peripheral LPS administration. The TNF-α receptor is also involved in mediating 

the effects LPS has on the brain, since TNF-α receptor KO mice have exhibited that 

systemic LPS administration, does not produce TNF-α mRNA in the brain that is 

displayed in WT mice (Qin et al., 2007). Peripheral LPS permeates the CNS and activates 

microglia within brain regions including the cortex, hippocampus and SN, again reliant 

on the TNF-α receptor (Qin et al., 2007; Rivest, 2003). When microglia become activated 

there is distinct difference displayed compared to those in their resting state, as they 

appear hypertrophic and display a phagocytic cell (Kreutzberg, 1996).  

 Studies have shown that administration of a single dose of 5mg/kg LPS can 

increase the level of cytokines in the CNS for up to 8 weeks, including TNF-α and IL-1β 

in the prefrontal cortex. Furthermore, this immune challenge also results in an 

upregulation of microglial  expression in the frontal cortex (Weberpals et al., 2009). Other 

studies have displayed chronic inflammation for up to 10 months following a single i.p 

dose of 5mg/kg LPS in young adult rodents, with upregulation of TNF-α in brain regions 

such as the hippocampus and frontal cortex (Bossù et al., 2012; Qin et al., 2007). 

Microglia and astrocytes also significantly increased in the cortex 8 hours post LPS 

treatment (Jacob et al., 2007). Another study showed that peripheral LPS treatment in rats 

caused significant increase of NOS2 in the cerebellum, hippocampus, midbrain and 

striatum, 24 hours following the immune challenge, while there was also a significant 

upregulation of astrocytes displayed in the cortex, striatum and hippocampus (Semmler 

et al., 2005). A recent study showed an upregulation of Iba1-positive microglial cells in 

the striatum, medial septum, frontal cortex, and hippocampus following LPS 

administration (Noh et al., 2014). 

 

 



 

 

106 

 

3.1.2 The effects of LPS treatment on the SCN and the circadian system 

 

Activating the peripheral innate immune system using LPS produces an 

exaggerated neuroinflammatory response and extends sickness behaviour (Godbout et al., 

2005). Unlike peripherally injected high dose LPS it remains to be confirmed whether 

peripherally injected low doses of LPS directly stimulate microglia or if they induce 

microglial activation through downstream messengers that are produced by immune cells 

or brain microvascular endothelial cells (Chen et al., 2012). Studies have shown that 

peripheral LPS administration whether high or low dose, can both effect both behavioural 

and molecular activity in the circadian timing system (Beynon & Coogan, 2010; 

Guerrero-Vargas et al., 2014; Marpegán et al., 2005; O’Callaghan et al., 2012; Okada et 

al., 2008; Paladino et al., 2010, 2015).   

LPS treatment results in an increase in pro-inflammatory mediators which in turn 

can impact on clock gene expression, for example in vitro, IL-1β effects the expression 

of dbp and Per3 in fibroblasts, with TNF-α treatment causes changes to SCN dbp 

expression (Cavadini et al., 2007). Furthermore, TNF-α treatment resulted in alterations 

to electrophysiological properties of SCN neurones (Nygård et al., 2009). IL-6 

administration to a human hepatoma cell line (HuH-7) is shown to cause a significant 

increase of Per1 gene expression (Motzkus et al., 2002). LPS administration to WT mice 

at the beginning of their active phase (CT12) causes a significant increase in IL-6 levels, 

when monitoring macrophages in mice, with lower levels of expression displayed at the 

beginning of their rest phase (CT0). Additionally, mice deficit in bmal1-/- or rev-erbα-/-, 

showed no significant alterations between time points, CT0 and CT12, following LPS 

administration with regard to IL-6 expression. Therefore, showing the importance of the 

clock genes bmal1 and rev-erb-α following an immune challenge, in relation to regulating 

a cytokine time of day effect, with IL-6 showing that it is a clock-regulated cytokine 

(Gibbs et al., 2012). This cytokine time effect of day was also exhibited in a Marpegan 

study, where IL-6 levels were increased at ZT11 following LPS treatment, when 

compared to lower levels displayed at ZT19 (Marpegan et al., 2009).  

A transient suppression of locomotor wheel running activity was exhibited when 

monitoring circadian behaviour following low dose peripheral LPS treatment (Marpegán 

et al., 2005; O’Callaghan et al., 2012). When analysing the effect of low dose acute 

peripheral LPS treatment has on circadian locomotor behaviour, studies have shown that 
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administration of peripheral low dose LPS in the early subjective night CT15 induced 

photic like phase delays, which was not displayed at any other time point (Leone et al., 

2012; Marpegán et al., 2005; Paladino et al., 2015). The cytokines TLR4 and TNF-α are 

both vital for LPS-induced circadian modulation in circadian locomotor behaviour, since 

mice deficit in either cytokine showed no significant alterations in phase shifts as a result 

of LPS (Paladino et al., 2010, 2015). 

There are several studies displaying how acute peripheral LPS administration also 

modulate clock genes in the SCN and peripheral tissues (Murphy et al., 2007; Okada et 

al., 2008; Paladino et al., 2015). Both septic and low dose treatment of LPS results in 

upregulation of expression of the IEG’s c-Fos and EGR-1 in the SCN respectively, 24 

hours post treatment (Beynon & Coogan, 2010; Marpegán et al., 2005; O’Callaghan et 

al., 2012). Acute treatment of LPS also resulted in a significant increase in F4/80 

expression in the SCN, when examined 24 hours after the immune challenge, showing 

microglia with activated morphology (O’Callaghan et al., 2012). Another study displayed 

how LPS administration resulted in suppressing the clock gene Per2 in the SCN post 

treatment, along with suppression of Per1 and Per2 in the liver, with rhythmic expression 

returning to normal 48 hours post treatment (Okada et al., 2008). Furthermore, PER2 

expression at CT14, was significantly lower in the SCN following LPS administration 

when examined one month post-treatment when compared to controls (O’Callaghan et 

al., 2012). Mice deficit in TNF-α display no alteration in c-Fos or Per2 expression in the 

SCN which was in contrast to WT mice post LPS treatment. This highlights that any 

alterations to the SCN neurochemistry as a result of LPS is mediated by TNF-α (Paladino 

et al., 2015). However, acute i.p LPS administration was not seen to significantly increase 

TNF-α in the SCN (O’Callaghan et al., 2012). Finally, the administration of LPS to SCN 

slices of rats in vitro resulted in the upregulation of the neurotransmitter AVP in the SCN, 

therefore suggesting that TLR4 might be expressed in the SCN (Nava et al., 2000). 

Peripheral organs under circadian control such as the heart and liver exhibited a phase 

dependent reduction in the expression of the clock genes Per1 and Per2 following LPS 

administration (Yamamura et al., 2010). LPS application caused a significant increase in 

Per2 and Bmal1 expression in equine blood (Murphy et al., 2007). 
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3.1.3 The effects of LPS treatment on the PVN 

 

 The SCN projects to the PVN through axonal connections, therefore, analysis of 

the PVN might give additional information into the effects of high and low dose LPS on 

the circadian system in young mice. The PVN plays a role in the regulation of autonomic 

(Ferguson et al., 2008) and endocrine outputs (Swanson & Sawchenko, 1980), including 

production of glucocorticoids and due to this the circadian system may be involved in the 

modulation of the immune system (Coogan & Wyse, 2008). The PVN contains the LPS 

receptor TLR4 (Laflamme & Rivest, 2001), therefore, the PVN may be directly 

stimulated by and respond to an LPS immune challenge in the ageing brain. IL-1 is 

thought to be a vital mediator in translating peripheral LPS into neuronal activation in the 

PVN (Quan et al., 2003). Studies carried out in rats, displayed how peripheral LPS 

administration resulted in a significant increase of IL-1β and iNOS mRNA levels in the 

hypothalamic PVN (Singh & Jiang, 2004), and significant upregulation of TNF-α and IL-

6 in this brain region following i.v or i.p LPS treatment (Kakizaki et al., 1999). LPS 

administration has also been shown to modulate the expression the clock gene per1 in the 

PVN (Takahashi, 2001). Similar to the SCN, the PVN also is reliant on the cytokines 

TLR4 and TNF-α for inducing LPS circadian modulation with regard to the expression 

of the clock gene Per1, since mice deficit in either cytokine showed no effect of LPS 

treatment with regard to alteration of c-Fos or Per1 expression in this region (Paladino et 

al., 2010, 2015). 

 

 In this chapter immunohistochemistry was carried out to investigate the effects 

of acute peripheral LPS treatment on young adult mice. The NF-κB pathway was 

investigated since studies have associated that the pathway is involved in the effect LPS 

has on the circadian timing system, shown by the role it plays in LPS induced phase shifts 

(Marpegán et al., 2004, 2005; Paladino et al., 2010). Additionally, a septic dose of 

peripheral LPS induced upregulation of the NF-κB component, p65 (Beynon & Coogan, 

2010), therefore, components of NF-κB were analysed p65, p-IκB, p-IKK and c-Rel in 

this study.  Furthermore, IEG proteins including c-Fos and EGR-1 to assess if acute 

peripheral LPS treatment induced alterations to expression of the IEG proteins in the SCN 

or PVN. Lastly, microglial activation was investigated using the ionized calcium binding 

adapter molecule 1 (IBA-1) immunoreactive microglial marker. Finally, we investigated 
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the effect of LPS administration on the molecular clockwork by analysing PER1 

expression, along with behavioural analysis investigation in relation to low dose LPS 

treatment.  

 

3.2 Materials and Methods 

 

3.2.1 Animals and housing 

 

 The animal models that were used in the following studies were male C57BL/6 

strain of mice and the B6.129S6-Per2tm1Jt/J. The adult C57BL/6 male aged 6-8 weeks old 

(24-30g) were group housed on arrival from Charles Rivers, UK or Harlan, UK both 

designated breeding establishments. Homozygous B6.129S6-Per2tm1Jt/J aged 6-8 weeks 

old (24-30g) were obtained from JAX mice (USA) via Charles River (U.K), and a 

breeding colony was established in Maynooth University. Homozygous B6.129S6-

Per2tm1Jt/J mice display no alterations in their circadian behaviour or in entrainment 

parameters (Yoo et al., 2004). One B6.129S6-Per2tm1Jt/J male and female mice were 

housed together when they became sexually mature between 6-8 weeks (Phifer-Rixey & 

Nachman, 2015). Female mice are in estrus every 4-5 days (Byers et al., 2012), with 

gestation time of mice usually 3 weeks (Phifer-Rixey & Nachman, 2015). The litter sized 

between 4-9 (Singleton and Krebs, 2007) needs to be weaned at 21 days (Kikusui, Isaka, 

& Mori, 2005), housing male and female separately, with meticulous care that all records 

are in order. Behavioural analysis was undertaken by single housed mice or group housed 

mice 3 per cage as outlined in section 2.2.2. To examine the SCN neurochemistry in acute 

treatment of LPS mice were in a 12:12 L: D cycle. For behavioural analysis single housed 

mice were kept in DD.  

 

3.2.2 Treatments 

 

 This chapter involves mice being treated with the endotoxin Lipopolysaccharide 

(LPS) from gram negative bacteria, Escherichia coli (Sigma, Ireland).  
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3.2.2.1 Acute high grade inflammatory response  

 

 LPS administration onto the abdominal cavity is used in the animal model of 

sepsis (Nemzek et al., 2008). Mice were treated with a single (5mg/kg i.p dissolved in 

0.9% sterile saline) injection of LPS or with an equal volume of sterile saline control 

(0.9% NaCl, 0.12ml). LPS treatment elicited the full spectrum of sickness behaviour 

evident 1 hour after treatment. Roughly, 10% of LPS 5mg/kg treated mice display a 

significant moribundity requiring euthanasia or mortality in the first 72 hours following 

treatment. 

 

3.2.2.2. Acute low grade inflammatory response 

 

 Mice were treated with a single (100µg/kg i.p dissolved in 0.9% sterile saline) 

injection of LPS or with an equal volume of sterile saline control (0.9% NaCl, 0.12ml).  

 

3.2.3 Sepsis scoring 

 

 A sepsis score was calculated for LPS and control animals immediately after and 

1 hour post treatment, and subsequently at regular intervals for 24 hours post treatment. 

Scores were assigned on a five-point scale assessing alterations on the parameters of 

behaviour, appearance, dehydration and respiration. Each parameter was then graded on 

a scale of 0-4; 0, absent; 1, mild; 2, moderate; 3, severe; 4, very severe.  
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Table 3: A sample animal welfare scoring sheet 

 

 

 

3.2.4 The effects of acute LPS treatment on SCN and PVN neurochemistry in wild 

type mice and mPer2Luc knock-in mice in LD 

 

C57/BL6 mice were group housed and allowed to habituate for two weeks in L: 

D 12:12 conditions prior to experiment. In order to examine the effects acute LPS 

(5mg/kg) treatment causes in IEGs, clock genes and components of NF-κB expression in 

the SCN and PVN, C57/BL6 mice and mPer2Luc knock-in mice, were treated with an 

acute dose of 5mg/kg LPS (n=6) or saline (n=6) i.p at ZT4, were perfused 24 hours later. 

This time was taken as the sampling time point because (Beynon & Coogan, 2010) 

showed effects of LPS treatment with regard to p65 expression in the SCN 24 hours post 

treatment, whereas 6 hours post treatment, there was no significant alteration of p65 

expression.  

All brains were subsequently processed for immunohistochemistry staining 

(section 2.2.4) for IEGs-c-Fos and Egr-1, the clock gene, PER1, and components of NF-
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κB-p65, p-IκB, p-IKK and c-Rel. Quantitative analysis was carried out simultaneously 

(section 2.2.5). The mean of each group was confirmed and analysed by using an 

independent t-test. Results are stated by IOD or cell number mean value ± standard error 

of mean, with P<0.05 accepted as statistical significant.  

 

Table 4: Primary antisera used for Immunohistochemical analysis 

 

Antibody Dilution Raised in Supplier Product code 

c-Fos (4) 1:2000 Rabbit Santa Cruz 

Biotechnology 

sc-52 

p-IκB-α 

(Ser32/36) 

1:200 Rabbit Santa Cruz 

Biotechnology 

sc-101713 

Per1 (N20) 1:500 Goat Santa Cruz 

Biotechnology 

s-7724 

p65 (C-20) 1:200 Rabbit Santa Cruz 

Biotechnology 

sc-372 

p-IKKα/β (Ser 

180/Ser181) 

1:200 Rabbit Santa Cruz 

Biotechnology 

sc-23470-R 

c-Rel  1:200 Rabbit Santa Cruz 

Biotechnology 

sc-71 

Egr-1 1:3000 Rabbit Santa Cruz 

Biotechnology 

sc-189 

IBA-1 1:000 Rabbit Wako, Denmark 019-1974 

 

3.2.5 The effects of acute low dose LPS treatment on circadian locomotor behaviour 

in wild type mice 

 

 This experiment was carried out to investigate if there were any altered 

behavioural responses between lose dose LPS treated animals compared to saline 

controls. C57/BL6 mice were firstly entrained to a 12:12 L:D cycle for two weeks before 

being placed into DD for a further two weeks and allowed free run. After two weeks in 

DD, animals received LPS 100µg/kg i.p injection (n=6) at CT15, the early subjective 
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night. Saline treatment (n=6) was administered two weeks later at CT15. Low dose LPS 

treatment at CT15 had been previously shown to cause phase delays of locomotor 

behaviour (Marpegán et al., 2005). The phase shifts magnitudes were calculated by fitting 

a line of best fit through activity onsets for the one week prior to treatment, and then 

another line for one week post treatment as seen in (Figure 2.1). Two to three researchers 

calculated the difference between the two lines and took the average to exclude 

experimenter bias. The FRP and rhythm amplitude were calculated for each animal using 

the programme Chronobiology Kit Chi Squared periodogram. 

 

3.2.6 The effects of acute low dose LPS treatment on SCN and PVN neurochemistry 

in wild type mice 

 

 In order to establish whether altered neurochemical responses would be seen in 

the SCN in acute low dose LPS treatment, C57/BL6 mice were administered with 

100µg/kg LPS i.p injection (n=8) or saline (n=8). Animals were single housed and were 

placed in DD for two weeks before treatments at CT15 were carried out and all 16 mice 

were perfused at CT19 (section 2.2.3). Immunohistochemistry (section 2.2.4) was carried 

out for NF-κB components p65 and p-IκB, the IEG c-Fos and the clock gene protein PER1 

(details of primary antisera is outlined in table 2). Each animal and each antibody 

represented approximately 3-6 SCN images. They were examined by either IOD or 

manual quantification for the number of immunoreactive glial and nuclei per SCN 

(section 2.2.5). The mean of each group was confirmed and analysed by an independent 

t-test. Results are stated by IOD or cell number mean value ± standard error of mean, with 

P<0.05 accepted as statistical significant.  

 

3.2.7 The effects of acute LPS treatment on SCN and PVN neurochemistry in 

mPer2Luc knock-in mice in LD in the subjective day and night 

 

B6.129S6-Per2tm1Jt/J mice were entrained to a 12:12 L: D cycle for two weeks 

before the experiment was carried out. The expression of IEGs and components of NF-

κB in the SCN and PVN were examined. Administration of acute LPS (5mg/kg) treatment 

was carried out in mice, at ZT6 and ZT18. Mice were perfused 24 hours later (section 

2.2.3). All brains were subsequently processed for immunohistochemistry staining 
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(section 2.2.4) for c-Fos, Egr-1, p65 and p-IκB. The mean was calculated for each 

animal’s nuclei per SCN/PVN and analysing of data was carried out using a two way 

Anova test. Statistical significance was accepted at P<0.05, and results are given as mean 

values ± standard error of the mean.  

 

3.2.8 The effects of acute LPS treatment on SCN expression in mPer2Luc knock-in 

mice LD using double immunostaining 

 

B6.129S6-Per2tm1Jt/J mice were entrained to a 12:12 L: D cycle for two weeks 

before experiment was carried out to habituate to their surroundings. The expression of a 

microglial marker and a NF-κB component in the SCN and PVN were examined. 

Administration of acute LPS (5mg/kg) treatment was carried out in mice at ZT8. Mice 

were perfused 24 hours later (section 2.2.3).  

All brains were subsequently processed for immunohistochemistry staining for 

IBA-1 and p65 expression. Immunohistochemistry protocol differs to section 2.2.4. This 

protocol method used the avidin-biotin-peroxidase complex (ABC)/NovaRED technique 

firstly, followed by the alkaline phosphatase streptavidin/Vector Blue (Coogan & Piggins, 

2003). The protocol takes 3 days in total. Day one follows the instructions of section 

(2.2.4) with SCN washes using PB, PBX and H2O2. The next step carried out used a non-

specific antibody block NGS with 0.1M PBX, which was mixed for 60 minutes at room 

temperature. The final part of the first day of the immunohistochemistry protocol involved 

sections being incubated with primary antisera raised in rabbit, p65 diluted in 0.1M PBX 

and 2% for 24 hours at 4°C. 

 Day two began with sections being put through a serious of washes as above, two 

0.1M PB and one 0.1M PBX wash. The sections were then incubated with biotinylated 

secondary antibody (1:400 biotinylated goat anti-rabbit, Jackson Immuno research labs) 

which was diluted in 0.1M PBX and 2% NGS or NHS (blocking solution) for 70 minutes 

at room temperature. After the 70 minutes, 3 washes were carried out as previous with 

PB and PBX. This was followed by sections being incubated with avidin-biotin method 

(0.4%) in 0,1M PBX with a Vectastain Elite Universal Kit (Vector Laboratories) for 90 

minutes, again at room temperature. Sections were washed with PB (twice) and 0.1M 

sodium acetate (pH6, Sigma) for 10 mins. Light sensitive NovaRED (Vector 

Laboratories) was then used to visualise immunoreactivity of p65. 1ml of NovaRED and 
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60µl of catalyst, glucose oxidase (5mg/ml) per well was added for immunoreactivity. 

When the staining was satisfactory roughly after 8 minutes, sections were placed in dH2O 

to stop the reaction. The sections went through 2 final washes in dH2O for 10 minutes. 

The same protocol was carried out on the same SCN sections similar to day one 

previously mentioned, the only difference was IBA-1 primary antisera replaced p65 and 

was incubated overnight. 

 The final day of staining sees the SCN sections being put through another serious 

of washes and incubated with biotinylated goat anti-rabbit, as above. After the 70 minutes, 

3 more washes were carried out as previous stated with PB and PBX. This was followed 

by SCN sections being incubated with alkaline phosphatase streptavidin (1:500) (Vector 

Laboratories) in 0.1M PBX for 90 minutes, again at room temperature. Sections were 

washed twice with 0.1M PB, followed by 0.1M sodium acetate for 10 mins. Light 

sensitive Vector Blue (Vector Laboratories) was then used to visualise immunoreactivity 

of the IBA-1. 1ml of Vector Blue and 60µl of catalyst, glucose oxidase (5mg/ml) per well 

was added for immunoreactivity for up to thirty minutes. When the staining was 

satisfactory, sections were placed in PB to stop the reaction. The sections went through 3 

final washes in 0.1M PB before mounting took place, followed by dehydrating and 

delipifying steps twenty four hours later. Finally, the slides were cover slipped and 

examination of immunoreactive hypertrophic microglia in the SCN took place by 

qualitative methods. 

 

3.3 Results 

 

3.3.1 Examination of NF-κB components in the SCN and PVN 24 hour post LPS 

treatment in wild type mice 

 

Immunohistochemical analysis was carried out to examine the effects of acute 

LPS (5mg/kg) treatment on the expression of NF-κB components in the SCN. These 

components were investigated to see were they identified as playing a role in mediating 

the effects of LPS on the circadian system. The PVN, a target area of the SCN and one 

which is implicated in the response to LPS treatment was also investigated for any 

alterations in expression of NF-κB components. 
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3.3.1.1 p65 expression in the SCN and PVN following acute LPS treatment. 

 

The SCN and PVN were both examined for p65 expression 24 hours post LPS or 

saline treatment. Analysing levels of p65 immunoreactivity was carried out by IOD, 

followed by statistical analysis using an independent t-test to calculate whether there was 

alterations in the expression of p65 in the SCN and PVN following treatment of either 

LPS or control at ZT4. Results indicate that there was statistically significant effect of 

treatment LPS (24.65 ± 3.66) versus saline (11.51 ± 1.36, P<0.05; Figure 3.1) on p65 

expression levels in the SCN. Further assessment was carried out of p65 expression in the 

SCN subdivisions-core and shell. Significant differences were found in p65 expression in 

the core of LPS mice (27.57± 8.17) when compared to controls (5.93 ± 0.42, P<0.05). 

There was a statistical significant upregulation p65 of expression in the shell of LPS mice 

(23.83 ± 3.15) when compared to controls (12.03 ± 1.35, P<0.05). There was also a 

statistically significant effect of treatment of LPS (38.34 ± 6.92) and saline (20.12 ± 1.94, 

P<0.05; Figure 3.1) on the level of p65 expression in the PVN. 
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Figure 3.1: p65 expression after 24 hours post LPS treatment. (A) Representative 

photomicrographs illustrating of p65 expression in the SCN (scale bar = 100µm) and (B) Bar 

graphs illustrating quantification of levels of p65 immunostained cells at the mid rostro-caudal 

level of the SCN, in the SCN ventrolateral core and in the dorsomedial shell of the SCN of control 

and LPS treatment groups, 24 hours post treatment, showing a significant upregulation of the NF-

κB components p65 in all regions of the SCN in LPS treated animals vs. controls. (C) 

Photomicrographs (scale 100µm) and bar graph showing upregulations of p65 immunostained 

cells in the PVN. * P<0.05. 

 

3.3.1.2 Phosphorylated (p)-IκB expression in the SCN and PVN following acute LPS 

treatment. 

 

The SCN and PVN were both examined for p-IκB expression 24 hours post LPS 

or saline treatment. Analysing levels of p-IκB immunoreactivity was carried out by IOD, 

followed by statistical analysis using an independent t-test to calculate whether there was 

alterations in the expression of p-IκB in the SCN and PVN following treatment of either 

LPS or control at ZT4. Results indicate that there was statistically significant effect of 

treatment LPS (11.44 ± 3.22) versus saline (2.36 ± 0.47, P<0.05; Figure 3.2) on p-IκB 

expression levels in the SCN. Further assessment was carried out of p-IκB expression in 

the SCN subdivisions-core and shell. No significant differences were found in p-IκB 

expression in the core of LPS mice (8.70 ± 3.55) when compared to controls (2.41 ± 0.62, 

P>0.05). There was statistically significant upregulation p-IκB of expression in the shell 

of LPS mice (13.57 ± 4.09) when compared to controls (3.17 ± 0.56, P<0.05). There was 

no statistically significant effect of treatment of LPS (19.30 ± 4.10) and saline (12.62 ± 

1.63, P>0.05; Figure 3.2) on the level of p-IκB expression in the PVN. 
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Figure 3.2: p-IκB expression after 24 hours post LPS treatment. (A) Representative 

photomicrographs illustrating of p-IκB expression in the SCN (scale bar = 100µm) and (B) Bar 

graphs illustrating quantification of levels of p-IκB immunostained cells at the mid rostro-caudal 

level of the SCN, in the SCN ventrolateral core and in the dorsomedial shell of the SCN of control 

and LPS treatment groups, 24 hours post treatment, showing a significant upregulation of p-IκB 

in the mid rostro-caudal level of the SCN and the SCN shell in LPS treated animals vs. controls. 

(C) Photomicrographs (scale 100µm) and bar graph showing p-IκB immunostained cells in the 

PVN. * P<0.05. 

 

3.3.1.3 p-IκK expression in the SCN and PVN following acute LPS treatment. 

 

The SCN and PVN were both analysed for p-IκK expression 24 hours post LPS 

or saline treatment. Immunochemistry was carried out and IOD measurements, followed 
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by statistical analysis using an independent t-test to calculate whether there was 

alterations in the expression of p-IκK in the SCN and PVN, following treatment of either 

LPS or control at ZT4. Results indicate that there was no significant effect of treatment 

LPS (3.89 ± 0.89) compared to saline (1.95 ± 0.67, P>0.05; Figure 3.3) on p-IκK 

expression levels in the SCN. Additional assessment was carried out monitoring p-IκK 

expression in the SCN subdivisions-core and shell. There was no statistically significant 

differences in p-IκK immunosignal throughout the core of LPS mice (0.65 ± 0.09) when 

compared to controls (0.53 ± 0.56, P>0.05). There was statistically significant 

upregulation p-IκK of expression in the shell of LPS mice (4.14 ± 0.84) when compared 

to controls (1.52 ± 0.56, P<0.32). Finally, when analysing the level of p-IκK expression 

in the PVN, no significant alterations between LPS (2.16 ± 0.32) and saline treatment 

(1.57 ± 0.13 P>0.05; Figure 3.3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p
-I

κK
-i

r/
SC

N
 

Saline                           LPS (A)                                                                                    

(B) 

p
-I

κK
-i

r/
SC

N
 C

o
re

 

p
-I

κK
-i

r/
SC

N
 S

h
el

l 



 

 

120 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3: p-IκK expression after 24 hours post LPS treatment. (A) Representative 

photomicrographs illustrating of p-IκK expression in the SCN (scale bar = 100µm) and (B) Bar 

graphs illustrating quantification of levels of p-IκK immunostained cells at the mid rostro-caudal 

level of the SCN, in the SCN ventrolateral core and in the dorsomedial shell of the SCN of control 

and LPS treatment groups, 24 hours post treatment. (C) Photomicrographs (scale 100µm) and bar 

graph showing p-IκK immunostained cells in the PVN. 

 

3.3.1.4 c-Rel expression in the SCN and PVN following acute LPS treatment. 

 

c-Rel expression 24 hours post LPS or saline treatment were analysed in the SCN 

and PVN. Immunochemistry was combined with IOD measurements, and assessed by an 

independent t-test to calculate whether there were alterations in the expression of c-Rel 

in the SCN and PVN, following both treatments at ZT4. The expression of c-Rel in the 

SCN of LPS treated mice were analogous to controls, with mean values of (7.95 ± 0.74) 

and (7.52 ± 1.68) immunoreactive cells/SCN respectively (P>0.05; Figure 3.4). Further 

assessment was carried out monitoring c-Rel expression in the SCN subdivisions in both 

the core and shell. There was no statistically significant differences in c-Rel 

immunosignal throughout the core of LPS mice (6.20 ± 1.13) when compared to controls 

(6.80 ± 1.73, P>0.05). There was no statically significant alterations c-Rel of expression 

in the shell of LPS mice (8.55 ± 1.25) when compared to controls (8.35 ± 1.99, P<0.32). 

In addition, when assessing the PVN, c-Rel expression between LPS (5.86 ± 1.06) and 

saline treatment groups were comparable (5.03 ± 1.07 P>0.05; Figure 3.4). 
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Figure 3.4: c-Rel expression after 24 hours post LPS treatment. (A) Representative 

photomicrographs illustrating of c-Rel expression in the SCN (scale bar = 100µm) and (B) Bar 

graphs illustrating quantification of levels of c-Rel immunostained cells at the mid rostro-caudal 

level of the SCN, in the SCN ventrolateral core and in the dorsomedial shell of the SCN of control 

and LPS treatment groups, 24 hours post treatment. (C) Photomicrographs (scale 100µm) and bar 

graph showing c-Rel immunostained cells in the PVN. 

 

3.3.2 Analysing immediate early gene expressions in the SCN and PVN 24 hour post 

LPS treatment in wild type mice 

 

Immunohistochemical analysis was carried out to examine the effects of acute 

LPS (5mg/kg) treatment on the expression of immediate early gene (IEG) expression in 

the SCN. These IEGs-c-Fos and egr-1-were investigated to see if they are a factor in 

mediating the effects of LPS on the circadian system. The PVN was also targeted for any 
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alterations in the expression of IEGs, since it is implicated in the response to LPS 

treatment. 

 

3.3.2.1 c-Fos expression in the SCN and PVN following acute LPS treatment. 

 

c-Fos expression was evaluated in the SCN and PVN 24 hours post LPS or saline 

treatment. Analysing levels of c-Fos immunoreactivity was carried out by manually 

quantification of immunoreactive nuclei, followed by statistical analysis using an 

independent t-test to assess whether there was alterations in the expression of c-Fos in the 

SCN and PVN following treatment at ZT4. Results indicate that there was statistically 

significant effect of treatment LPS (30.33 ± 9.93) versus saline (0.67 ± 0.67, P<0.05; 

Figure 3.5) on c-Fos expression levels in the SCN. When examining the subdivisions of 

the SCN, the mean number of immunoreactive c-Fos cells in the core of the SCN was 

found not significant between treatment groups, with LPS (5.66 ± 3.48) when compared 

to saline (0.00 ± 0.00, P>0.05). In the shell, mice treated with LPS (24.66 ± 6.83) 

displayed an upregulation of c-Fos in contrast to control mice (0.66 ± 0.66, P<0.05). 

Furthermore, there was also a statistically significant effect of treatment of LPS (37.00 ± 

9.86) and saline (0.333 ± 0.333, P<0.05; Figure 3.5) on the level of c-Fos expression in 

the PVN.  
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Figure 3.5: c-Fos expression after 24 hours post LPS treatment. (A) Representative 

photomicrographs illustrating of c-Fos expression in the SCN (scale bar = 100µm) and (B) Bar 

graphs illustrating quantification of levels of c-Fos immunostained cells at the mid rostro-caudal 

level of the SCN, in the SCN ventrolateral core and in the dorsomedial shell of the SCN of control 

and LPS treatment groups, 24 hours post treatment, showing a significant upregulation of the IEG 

c-Fos in the mid rostro-caudal level of the SCN and the SCN shell in LPS treated animals vs. 

controls.  (C) Photomicrographs (scale 100µm) and bar graph showing c-Fos immunostained cells 

in the PVN. * P<0.05. 

 

3.3.2.2 EGR-1 expression in the SCN and PVN following acute LPS treatment. 

 

EGR-1 expression was evaluated in the SCN and PVN 24 hours post LPS or saline 

treatment. Analysing levels of EGR-1 immunoreactivity was carried out by manually 

quantification of immunoreactive nuclei, using an independent t-test to assess whether 

there was significant alterations in the expression of EGR-1 in the SCN and PVN 

following treatment at ZT4. Results show that there was statistically significant effect of 

LPS treatment (21.00 ± 6.51) compared to saline (0.70 ± 0.37, P<0.05; Figure 3.6) on 

EGR-1 expression levels in the SCN. When examining the subdivisions of the SCN, the 

mean number of immunoreactive EGR-1 cells in the core of the SCN displayed no 

significant alterations between treatment groups, with LPS (4.33 ± 1.72) when compared 

to saline (0.20 ± 0.20, P>0.05). In the shell, mice treated with LPS (16.66 ± 5.06) 

displayed an upregulation of EGR-1 in contrast to control mice (0.90 ± 0.45, P<0.05). 

Furthermore, there was also a statistically significant effect of treatment of LPS (14.00 ± 

5.06) and saline (1.000 ± 0.46, P<0.05; Figure 3.6) on the level of EGR-1 expression in 

the PVN. 
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Figure 3.6: EGR-1 expression after 24 hours post LPS treatment. (A) Representative 

photomicrographs illustrating of EGR-1 expression in the SCN (scale bar = 100µm) and (B) Bar 

graphs illustrating quantification of levels of EGR-1 immunostained cells at the mid rostro-caudal 

level of the SCN, in the SCN ventrolateral core and in the dorsomedial shell of the SCN of control 

and LPS treatment groups, 24 hours post treatment, showing a significant upregulation of the IEG 

ERG-1 in the mid rostro-caudal level of the SCN and the SCN shell in LPS treated animals vs. 

controls.  (C) Photomicrographs (scale 100µm) and bar graph showing EGR=1 immunostained 

cells in the PVN. * P<0.05. 

 

3.3.3 Analysing clock gene and NF-κB components expression in the SCN and PVN 

24 hour post LPS treatment in B6.129s6-Per2tm1Jt/J mice 

 

For assessment of clock gene and NF-κB expression in the SCN and PVN 

immunohistochemical analysis was carried out to examine the effects of acute LPS 
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(5mg/kg). The clock gene protein PER1 and components of the NF-κB pathway-p65 and 

IκB-were investigated to see if they are a factor in mediating the effects of LPS on the 

circadian system. Another area investigated for any alterations in expression was the 

PVN, a target area of the SCN and one which is known to response to LPS treatment. 

 

3.3.3.1 PER1 expression in the SCN and PVN following LPS 24 post treatment. 

 

PER1 expression was assessed in the SCN and PVN 24 hours post LPS or saline 

treatment. Analysing the levels of PER1 was carried out by manually quantification of 

immunoreactive nuclei, followed by statistical analysis using an independent t-test to 

assess whether there was alterations in the expression of PER1 in the SCN and PVN 

following treatment at ZT4. There were comparable results displayed with no statistically 

significant effect of treatment LPS (33.00 ± 2.01) versus saline (33.42 ± 5.20, P>0.05; 

Figure 3.7) on PER1 expression levels in the SCN. When examining the subdivisions of 

the SCN, the mean number of immunoreactive PER1 cells in the core of the SCN was 

similar between treatment groups, with LPS (3.16 ± 1.27) when compared to saline (3.86 

± 0.67, P>0.05).  The expression of PER1 in the SCN of LPS treated mice (29.83 ± 3.04) 

were analogous to controls mice (29.57 ± 5.04, P>0.05) in the shell. Furthermore, there 

was no statistically significant alterations in PER1 expression in the PVN of LPS treated 

mice (20.60 ± 3.50) and saline (22.40 ± 4.06, P>0.05; Figure 3.7). 

 

 

 

 

 

 

 

 

 

 

 

 

Saline                        LPS (A)                                                                                 

(B) 

P
ER

1
-i

r/
SC

N
 

P
ER

1
-i

r/
SC

N
 C

o
re

 

P
ER

1
-i

r/
SC

N
 S

h
el

l 



 

 

126 

 

 

 

 

 

 

 

 

Figure 3.7: PER1 expression after 24 hours post LPS treatment. (A) Representative 

photomicrographs illustrating of PER1 expression in the SCN (scale bar = 100µm) and (B) Bar 

graphs illustrating quantification of levels of PER1 immunostained cells at the mid rostro-caudal 

level of the SCN, in the SCN ventrolateral core and in the dorsomedial shell of the SCN of control 

and LPS treatment groups, 24 hours post treatment. (C) Photomicrographs (scale 100µm) and bar 

graph showing PER1 immunostained cells in the PVN. 

 
3.3.3.2 p65 expression in the SCN and PVN following LPS 24 post treatment. 

 

p65 expression was assessed in the SCN and PVN 24 hours post LPS or saline 

treatment. Analysing levels of p65 immunoreactivity was carried out by IOD, followed 

by statistical analysis using an independent t-test to assess whether there was alterations 

in the expression of p65 in the SCN and PVN following treatment at ZT4. There was 

statistically significant upregulation of p65 expression after LPS treatment (14.35 ± 1.70) 

in the SCN compared to saline controls (8.40 ± 1.74, P<0.05; Figure 3.8). When assessing 

the subdivisions of the SCN, there was no alterations in the mean number of 

immunoreactive p65 cells in the core of the SCN between treatment groups, with LPS 

(18.14 ± 5.18) when compared to saline (9.00 ± 2.12, P>0.05).  Furthermore, there was 

similar expression of p65 in the shell of the SCN of LPS treated mice (12.64 ± 2.51) 

versus controls mice (7.69 ± 1.31, P>0.05). There was upregulation of p65 results 

expression in the PVN of LPS treated mice (22.60 ± 3.50) and saline (11.40 ± 4.06, 

P>0.05; Figure 3.8). 
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Figure 3.8: p65 expression after 24 hours post LPS treatment. (A) Representative 

photomicrographs illustrating of p65 expression in the SCN (scale bar = 100µm) and (B) Bar 

graphs illustrating quantification of levels of p65 immunostained cells at the mid rostro-caudal 

level of the SCN, in the SCN ventrolateral core and in the dorsomedial shell of the SCN of control 

and LPS treatment groups, 24 hours post treatment, showing a significant upregulation of the NF-

κB components p65 in the mid rostro-caudal level of the SCN in LPS treated animals vs. controls. 

(C) Photomicrographs (scale 100µm) and bar graph showing upregulations of p65 immunostained 

cells in the PVN. * P<0.05. 

 

3.3.3.3 p-IκB expression in the SCN and PVN following LPS 24 post treatment. 

 

p-IκB expression was assessed in the SCN and PVN 24 hours post LPS or saline 

treatment. Analysing levels of p-IκB immunoreactivity was carried out by IOD, followed 

by statistical analysis using an independent t-test to assess whether there was alterations 

in the expression of p-IκB in the SCN and PVN following treatment at ZT4. There was 
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significant results displayed when analysing the effect of treatment LPS (11.03 ± 1.98) 

versus saline (4.34 ± 0.90, P<0.05; Figure 3.9) on p-IκB expression levels in the SCN. 

When examining the subdivisions of the SCN, the mean number of immunoreactive p-

IκB cells in the core of the SCN was similar between treatment groups, with LPS (4.78 ± 

1.23) when compared to saline (2.03 ± 0.51, P>0.05).  The expression of p-IκB in the 

SCN of LPS treated mice (11.97 ± 3.31) were statistically significant to controls mice in 

the shell (3.31 ± 0.69, P<0.05). Furthermore, there was no statistically significant 

alterations in p-IκB expression in the PVN of LPS treated mice (17.49 ± 3.10) and saline 

(12.41 ± 1.19, P>0.05; Figure 3.9). 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 3.9: p-IκB expression after 24 hours post LPS treatment. (A) Representative 

photomicrographs illustrating of p-IκB expression in the SCN (scale bar = 100µm) and (B) Bar 

graphs illustrating quantification of levels of p-IκB immunostained cells at the mid rostro-caudal 
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level of the SCN, in the SCN ventrolateral core and in the dorsomedial shell of the SCN of control 

and LPS treatment groups, 24 hours post treatment, showing a significant upregulation of the NF-

κB components p-IκB in the mid rostro-caudal level of the SCN and in the dorsomedial shell of 

the SCN in LPS treated animals vs. controls. (C) Photomicrographs (scale 100µm) and bar graph 

showing no significance of p-IκB immunostained cells in the PVN between treatment groups.        

* P<0.05. 

 

3.3.4 The effects of acute low dose LPS treatment on circadian locomotor behaviour 

in wild type mice. 

  

 In order to examine what effect low dose LPS has on circadian locomotor 

behaviour, mice free running in DD received either LPS (100µg/kg) or saline treatment 

at CT15. Statistical analysis was carried out using an independent t-test to assess whether 

there was a phase shift magnitude. Our results are similar to (Marpegán et al., 2005) 

displaying a statically significant phase delay when animals were administered low dose 

LPS (-0.45 ± 0.14 hrs) compared to saline controls (0.10 ± 0.04 hrs, P<0.05) at CT15. 

There was no alterations in circadian parameters between the LPS and saline control 

treatment groups (Figure 3.10). The mean free running periods was comparable between 

LPS and saline treated controls 23.68 ± 0.15 hrs and 23.77 ± 0.17 hrs respectively 

(p>0.05). There was no significant difference of amplitude between LPS (681.14 ± 68.62) 

and saline treated controls (856.20 ± 73.75, P>0.05). Furthermore, there was little 

variation between the total wheel running activity between the two groups with LPS 

animals displaying activity of (10438.53 ± 2598.08) and saline controls (13345.52 ± 

3111.02, P>0.05). 
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3.10: Phase resetting following application of low dose LPS treatment. (A) and (B) are sample 

double plotted actograms of a control animal and a LPS treated animal free running in DD and 

treated with either saline or LPS at CT15. CT15 treatment is indicated by a purple square, with 

lines indicating the line of best-fit through activity onsets for the 7 days before and 10 days post 

treatment. Note exclusion of transient days from analysis. (C) Bar charts illustrating the average 
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phase shift magnitude, FRP, amplitude and the total wheel running activity of each group 

following saline or LPS treatment. There was a statically significance phase delay at CT15 when 

administered LPS compared to saline. 

 

3.3.5 The effects of acute low dose LPS treatment on SCN and PVN neurochemistry 

in wild type mice 

 

For assessment of clock gene, immediate early gene and NF-κB expression in the 

SCN and PVN immunohistochemical analysis was carried out to examine the effects of 

acute low dose LPS (100µg/kg). The clock gene protein-PER1, IEG-c-Fos and 

components of the NF-κB pathway-p65 and IκB-were investigated to see if low dose LPS 

alters neurochemical responses in the SCN. In addition, we investigated the PVN for any 

alterations in expression, which is a target area of the SCN and one which is known to 

response to LPS treatment. 

 

3.3.5.1 p65 expression in the SCN and PVN following acute low dose LPS treatment. 

 

The SCN and PVN were both examined for p65 expression at CT19, 4 hours post 

LPS or saline treatment, at CT15. Analysing levels of p65 immunoreactivity was carried 

out by IOD. Statistical analysis was calculated using an independent t-test to determine 

were there any alterations in the expression of p65 in the SCN and PVN. Results indicate 

that there was statistically significant effect of treatment LPS (15.27 ± 3.21) versus saline 

(7.29 ± 1.71, P<0.05; Figure 3.11) on p65 expression levels in the SCN. Further 

assessment was carried out of p65 expression in the SCN subdivisions-core and shell. 

There was no significant differences found in p65 expression in the core of LPS mice 

(22.66 ± 5.88) when compared to controls (13.01 ± 4.04, P>0.05). There was no statically 

significant alterations of p65 expression in the shell of LPS mice (14.22 ± 3.46) in 

comparison to saline controls (6.09 ± 1.05, P>0.05). Finally, there was no statistically 

significant effect of treatment of LPS (19.11 ± 2.09) and saline (13.50 ± 2.08, P<0.05; 

Figure 3.11) on the level of p65 expression in the PVN.  
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Figure 3.11: p65 expression 4 hrs after low dose LPS treatment. (A) Representative 

photomicrographs illustrating of p65 expression in the SCN (scale bar = 100µm) and (B) Bar 

graphs illustrating quantification of levels of p65 immunostained cells at the mid rostro-caudal 

level of the SCN, in the SCN ventrolateral core and in the dorsomedial shell of the SCN of control 

and LPS treatment groups, 24 hours post treatment, showing a significant upregulation of the NF-

κB components p65 in the mid rostro-caudal level of the SCN and in the dorsomedial shell of the 

SCN in LPS treated animals vs. controls. (C) Photomicrographs (scale 100µm) and bar graph 

showing upregulations of p65 immunostained cells in the PVN. * P<0.05. 

 

3.3.5.2 p-IκB expression in the SCN and PVN following acute low dose LPS treatment. 

 

The SCN and PVN were both examined for p-IκB expression 4 hours post LPS or 

saline treatment at CT15. Analysing levels of p-IκB immunoreactivity was carried out by 

IOD. Statistical analysis was calculated using an independent t-test to determine were 

there any alterations in the expression of p-IκB in the SCN and PVN. Results indicate 
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that there was no statistically significant effect of treatment LPS (13.48 ± 2.96) versus 

saline (9.10 ± 1.89, P>0.05; Figure 3.12) on p-IκB expression levels in the SCN. Further 

assessment was carried out of p-IκB expression in the SCN subdivisions-core and shell. 

There was no significant differences found in p-IκB expression in the core of LPS mice 

(19.46 ± 5.59) when compared to controls (15.51 ± 3.54, P>0.05). There was no statically 

significant alterations of p-IκB expression in the shell of LPS mice (13.94 ± 3.60) in 

comparison to saline controls (7.49 ± 2.26, P>0.05). Finally, there was no statistically 

significant effect of treatment of LPS (19.16 ± 2.38) and saline (14.92 ± 3.87, P>0.05; 

Figure 3.12) on the level of p-IκB expression in the PVN. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.12: p-IκB expression 4 hrs after low dose LPS treatment. (A) Representative 

photomicrographs illustrating of p-IκB expression in the SCN (scale bar = 100µm) and (B) Bar 

graphs illustrating quantification of levels of p-IκB immunostained cells at the mid rostro-caudal 

level of the SCN, in the SCN ventrolateral core and in the dorsomedial shell of the SCN of control 
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and LPS treatment groups, 24 hours post treatment in LPS treated animals vs. controls. (C) 

Photomicrographs (scale 100µm) and bar graph showing upregulations of p-IκB immunostained 

cells in the PVN. * P<0.05. 

 

3.3.5.3 c-Fos expression in the SCN and PVN following acute low dose LPS treatment. 

 

 The SCN and PVN were both examined for c-Fos expression 4 hours after 

administration of LPS or saline treatment at CT15. Analysing levels of c-Fos 

immunoreactivity was carried out by manual quantification. Statistical analysis was 

calculated using an independent t-test to determine was there any changes in expression 

of c-Fos in the SCN and PVN. Results indicate that there was statistically significant 

upregulation of c-Fos expression after LPS treatment (20.20 ± 5.28) versus saline (4.83 ± 

2.36, P<0.05; Figure 3.13) in the SCN. Additional assessment was carried out of c-Fos 

expression in the SCN subdivisions-core and shell. There was no alterations found in c-

Fos expression in the core of LPS mice (2.600 ± 1.24) when compared to controls (1.500 

± 0.84, P>0.05). There was statically significant upregulation of c-Fos expression in the 

shell of LPS mice (17.60 ± 4.52) in comparison to saline controls (4.50 ± 2.54, P<0.05). 

There was statistically significant effect of treatment of LPS (49.40 ± 13.44) and saline 

(4.33 ± 1.82, P<0.05; Figure 3.13) on the level of c-Fos expression in the PVN. LPS 

treatment results in c-Fos expression occurring in the dorsal region of the SCN expanding 

into the peri-SCN, displayed below LPS photomicrograph in Figure 3.13. 
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Figure 3.13: c-Fos expression 4 hours post LPS treatment. (A) Representative 

photomicrographs illustrating of c-Fos expression in the SCN (scale bar = 100µm) and (B) Bar 

graphs illustrating quantification of levels of c-Fos immunostained cells at the mid rostro-caudal 

level of the SCN, in the SCN ventrolateral core and in the dorsomedial shell of the SCN of control 

and LPS treatment groups, 24 hours post treatment, showing a significant upregulation of the IEG 

c-Fos in the mid rostro-caudal level of the SCN and in the dorsomedial shell of the SCN in LPS 

treated animals vs. controls. (C) Photomicrographs (scale 100µm) and bar graph showing 

upregulations of c-Fos immunostained cells in the PVN. * P<0.05. 

 

3.3.5.4 PER1 expression in the SCN and PVN following acute low dose LPS treatment. 

 

The SCN and PVN were investigated for PER1 expression 4 hours after LPS or 

saline treatment. The levels of PER1 expression was manually counted for 

immunoreactive nuclei, followed by statistical analysis using an independent t-test to 

evaluate whether there was variations in the expression of PER1 in the SCN and PVN 

following treatment at ZT4. There was comparable results displayed with no statistically 

significant effect of treatment LPS (159.26 ± 16.14) versus saline (126.70 ± 16.66, 

P>0.05; Figure 3.14) on PER1 expression levels in the SCN. When examining the 

subdivisions of the SCN, the mean number of immunoreactive PER1 cells in the core of 

the SCN was similar between treatment groups, with LPS (137.03 ± 12.10) when 

compared to saline (107.06 ± 0.67, P>0.05).  The expression of PER1 in the shell of LPS 

treated mice (143.83 ± 3.04) were analogous to controls mice (129.57 ± 19.19, P>0.05). 

Finally, there was statistically significant alterations in PER1 expression in the PVN of 

LPS treated mice (71.06 ± 9.13) and saline (31.61 ± 5.78, P>0.05; Figure 3.14). 
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Figure 3.14: PER1 expression 4 hours post LPS treatment. (A) Representative 

photomicrographs illustrating of PER1 expression in the SCN (scale bar = 100µm) and (B) Bar 

graphs illustrating quantification of levels of PER1 immunostained cells at the mid rostro-caudal 

level of the SCN, in the SCN ventrolateral core and in the dorsomedial shell of the SCN of control 

and LPS treatment groups, 24 hours post treatment in LPS treated animals vs. controls. (C) 

Photomicrographs (scale 100µm) and bar graph showing upregulations of PER1 immunostained 

cells in the PVN.  

 

3.3.6 The effects of constant darkness on mPer2Luc knock-in mice  

 

 When investigating a locomotor wheel running experiment using mPer2Luc knock-

in mice, unusual FRP’s were observed when mice were transferred from their L:D light 

cycle into DD. As we know mice transferred from L:D into DD usually have a shorter 

FRP daily, with a the FRP usually shorter than  24 hours (Jud et al., 2005). In this study 
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using 16 mice, it was discovered that half the mice had a shorter FRP, while the remaining 

half had a longer FRP of over 24 hours (Figure 3.15). Therefore, behavioural locomotor 

wheel running experiments undertaken in this chapter was carried out using WT mice.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.15: Double plotted actograms, (A) displaying that B6.129S6 mice have shorter FRP 

daily when in constant darkness, while (B) uncovers that constant darkness causes their FRP to 

be longer. The shaded area represents DD conditions.   

 

3.3.7 The effects of acute LPS treatment on SCN and PVN neurochemistry in 

mPer2Luc knock-in mice in the subjective day and night 

   

The IEG-c-Fos and EGR-1-and components of the NF-κB pathway-p65 and IκB-

were investigated to see if acute LPS (5mg/kg) altered neurochemical responses in the 

SCN during the subjective day (ZT6) compared to the subjective night (ZT18). 
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Furthermore, the PVN was examined for any alterations in expression, since it is known 

to response to LPS treatment.  

 

3.3.7.1 p65 expression in the SCN and PVN following LPS treatment at either ZT6 or 

ZT18. 

 

A two way ANOVA was used to assess whether there was a main effect of either 

treatment or time on p65 expression in the SCN, or if there is an interaction effect between 

the two variables. There was no main effect of time (F1, 17=0.255, P=0.622). There was a 

main effect of treatment (F1, 17=6.55, P=0.024). When data was spilt by time, independent 

t-tests revealed a significant difference of p65 expression levels between treatments, at 

ZT6 (LPS, 11.88 ± 1.86 vs. saline, 6.49 ± 1.13, P=0.048) and at ZT18 (LPS, 9.86 ± 2.06 

vs. saline, 6.84 ± 0.70, P=0.252). There was no interaction effect between the two 

variables (F1, 17=0.523, P=0.483, Figure 3.16) on p65 expression levels in the SCN. 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

Figure 3.16: (A) Photomicrographs of the mid rostro-caudal level of the SCN and (B) bar charts 

of the mid rostro-caudal level of the SCN, the SCN ventrolateral core and the dorsomedial shell 
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of the SCN, illustrating the expression of the p65 after treatment with either LPS or control at two 

different timepoints, ZT6 and ZT18. There is significant p65 upregulation in the mid rostro-caudal 

level of the SCN, after LPS treatment compared to control at ZT6. * denotes P<0.05. 

 

Furthermore, there was no interaction effect between the two variables (F1, 

13=0.727, P=0.416, Figure 3.17) on p65 expression levels in the PVN. No main effect of 

time was displayed (F1, 13=1.01, P=0.321), however, there was a main effect of overall 

treatment (LPS, 18.74 ± 2.31 v saline, 11.41 ± 0.90, F1,13=8.32, P=0.018) resulting in 

upregulation of p65 expression levels. ZT6 (LPS, 16.57 ± 2.97 vs. saline, 11.15 ± 1.70) 

and at ZT18 (LPS, 21.64 ± 3.51 vs. saline, 11.68 ± 1.05) both result in (P>0.05). 

 

 

 

 

 

 

 
 

 

 

 

 

Figure 3.17: (A) Photomicrographs and (B) bar chart of the PVN illustrating the expression of 

the p65 after treatment with either LPS or control at two different timepoints, ZT6 and ZT18.  

 

3.3.7.2 p-IκB expression in the SCN and PVN following LPS treatment at either ZT6 or 

ZT18. 

 

Two way ANOVA analysis was used to assess whether there were alterations in 

the expression of p-IκB in the SCN and PVN following LPS 5mg/kg administration at 

two different time point. It was assessed whether there was a main effect of either 

treatment or time on p-IκB expression in the SCN, or if there is an interaction effect 

between the two variables. There was no main effect of time (F1, 16=0.03, P=0.957), nor 

was there a main effect of treatment (F1, 16=2.61, P=0.132). There was significant 

upregulation of p-IκB expression levels post LPS treatment at ZT6 (LPS, 16.96 ± 6.99 

vs. saline, 6.58 ± 1.96, P<0.05). Even though there was upregulation at ZT18 with LPS, 
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14.39 ± 6.50 vs. saline, 8.60 ± 2.23 it was non-significant (P>0.05). There was no 

interaction effect between the two variables (F1, 16=0.21, P=0.654, Figure 3.18) for p-IκB 

expression levels in the SCN. 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

Figure 3.18: (A) Photomicrographs of the mid rostro-caudal level of the SCN and (B) bar charts 

of the mid rostro-caudal level of the SCN, the SCN ventrolateral core and the dorsomedial shell 

of the SCN, illustrating the expression of the p-IκB after treatment with either LPS or control at 

two different timepoints, ZT6 and ZT18. There is significant p-IκB upregulation in the mid rostro-

caudal level of the SCN, after LPS treatment compared to control at ZT6. * denotes P<0.05. 

 

 In addition, it was assessed whether there was a main effect of either treatment 

or time on p-IκB expression in the PVN, or if there is an interaction effect between the 

two variables. There was no main effect of time (F1, 16=1.70, P=0.688), nor was there a 

main effect of treatment (F1, 16=1.48, P=0.247). Furthermore, there was no interaction 

effect between the two variables (F1, 16=0.01, P=0.991, Figure 3.19) for p-IκB expression 

levels in the PVN. 
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Figure 3.19: (A) Photomicrographs and (B) bar chart of the PVN illustrating the expression of 

the p-IκB after treatment with either LPS or control at two different timepoints, ZT6 and ZT18.  

 

3.3.7.3 c-Fos expression in the SCN and PVN following LPS treatment at either ZT6 or 

ZT18. 

 

A two way ANOVA was used to assess whether there was a main effect of either 

treatment or time on c-Fos expression in the SCN, or if there is an interaction effect 

between the two variables. There was a main effect of time (F1, 12=11.42, P=0.008). There 

was no overall significant effect of treatment (F1, 12=4.98, P=0.052). The interaction effect 

between the two variables was (F1, 12=1.30, P=0.284, Figure 3:20) for c-Fos expression 

levels in the SCN. When data was spilt by time, independent t-tests revealed a significant 

difference of c-Fos expression levels between treatments at ZT18, with upregulation of 

c-Fos expression following LPS treatment (LPS, 31.33 ± 3.38 vs. saline, 11.00 ± 1.52, 

P=0.005). Furthermore, there was differences displayed at both time points in relation to 

treatment. Firstly with saline treatment, there was greater c-Fos expression exhibits at 

(ZT6, 38.25 ± 8.62 vs. ZT18, 11.00 ± 1.52, P=0.045). Following LPS treatment, there 

was also significant c-Fos expression during the subjective day when compared to the 

subjective night, (ZT6, 44.83 ± 3.44 vs. ZT18, 31.33 ± 3.38, P=0.049). 
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Figure 3.20: (A) Photomicrographs of the mid rostro-caudal level of the SCN and (B) bar charts 

of the mid rostro-caudal level of the SCN, the SCN ventrolateral core and the dorsomedial shell 

of the SCN, illustrating the expression of the IEG c-Fos after treatment with either LPS or control 

at two different timepoints, ZT6 and ZT18. There is significant  upregulation of c-Fos in the mid 

rostro-caudal level of the SCN, after LPS treatment compared to control at ZT18. There is also 

significant differences of c-Fos expression between timepoints of treatment  *denotes, P<0.05 

and **denotes, P<0.01.  

 

There was no main effect of time displayed in the PVN (F1, 13=0.159, P=0.699). 

There was a main effect of treatment (F1, 13=22.23, P=0.001). When data was spilt by 

time, independent t-tests revealed a significant upregulation of c-Fos expression levels 

between both treatment groups at ZT6 (LPS, 30.66 ± 4.25 vs. saline, 14.25 ± 4.17, 

P=0.043) and ZT18 (LPS, 34.00 ± 7.23 vs. saline, 11.00 ± 3.78, P=0.011). Finally, no 

interaction effect between the two variables were exhibited (F1, 13=0.215, P=0.654, Figure 

3:21) for c-Fos expression levels in the PVN. 
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Figure 3.21: (A) Photomicrographs and (B) bar chart of the PVN illustrating the expression of 

the c-Fos after treatment with either LPS or control at two different timepoints, ZT6 and ZT18. 

There was upregulation of c-Fos expression after administration of LPS at both timepoints. * 

denotes, P<0.05. 

 

3.3.7.4 EGR-1 expression in the SCN and PVN following LPS treatment at either ZT6 or 

ZT18. 

 

A two way ANOVA was used to evaluate whether there was a main effect of 

either treatment or time on EGR-1 expression in the SCN, or if there is an interaction 

effect between the two variables. There was a main effect of time (F1, 17=33.76, P=0.000). 

When data was spilt by treatment, independent t-tests showed a significant difference of 

EGR-1 expression levels between time points for both treatment group, saline (ZT6, 64.50 

± 6.6 vs. ZT18, 26.60 ± 4.4, P=0.003) and LPS (ZT6, 82.80 ± 14.46 vs. 9.00 ± 1.87, 

P=0.003). No main effect of treatment (F1, 17=0.01, P=0.972) was exhibited, however 

when data was spilt between time, an independent t-test displayed down regulation of 

EGR-1 expression following LPS treatment at ZT18 (LPS, 9.00 ± 1.87 vs. saline, 26.60 

± 4.44, P=0.013). The interaction effect between the two variables measured (F1, 17=3.48, 

P=0.085, Figure 3:22) for EGR-1 expression levels in the SCN. 
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Figure 3.22: (A) Photomicrographs of the mid rostro-caudal level of the SCN and (B) bar charts 

of the mid rostro-caudal level of the SCN, the SCN ventrolateral core and the dorsomedial shell 

of the SCN, illustrating the expression of the IEG EGR-1 after treatment with either LPS or 

control at two different timepoints, ZT6 and ZT18. There is significant  upregulation of EGR-1 

in the mid rostro-caudal level of the SCN, after LPS treatment compared to control at ZT18. There 

is also significant differences of EGR-1 expression between timepoints of treatment. **denotes, 

P<0.01. 

 

Further analysis showed that there was no main effect of time displayed in the 

PVN (F1, 14=0.070, P=0.797). There was a main effect of treatment (F1, 14=18.74, 

P=0.001). When data was spilt by time, independent t-tests revealed a significant 

upregulation of EGR-1 expression levels between both treatment groups at ZT6 (LPS, 

66.75 ± 12.02 vs. saline, 5.75 ± 1.75, P=0.014) and ZT18 (LPS, 57.75 ± 17.00 vs. saline, 

8.00 ± 1.47, P=0.027). Finally, no interaction effect between the two variables were 

exhibited (F1, 14=0.193, P=0.669, Figure 3:23) for EGR-1 expression levels in the PVN. 
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Figure 3.23: (A) Photomicrographs and (B) bar chart of the PVN illustrating the expression of 

the EGR-1 after treatment with either LPS or control at two different timepoints, ZT6 and ZT18. 

There was upregulation of EGR-1 expression after administration of LPS at both timepoints. ** 

denotes, P<0.01. 

 

3.3.8 The effects of acute LPS treatment on SCN expression in mPer2Luc knock-in 

mice using double immunostaining 

 

 A qualitative method was used to analysis the double immunostaining technique 

looking at the microglial marker-IBA-1 and a component of the NF-κB pathway-p65 

expression post LPS (5mg/kg) treatment at ZT8. IBA-1 is represented by blue staining 

microglia, whereas p65 is displayed by red staining microglia. There is clear upregulation 

of IBA-1 and p65 post LPS treatment compared to saline when observing the 

photomicrographs (Figure 3.24). 
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Figure 3.24: (A) photomicrographs of the SCN illustrating the immunoreactive microglia 

expression of IBA-1 and p65 expression after LPS or saline treatment at ZT8 (scale bar = 100µm). 

IBA-1 is represented by blue glial staining marked by a yellow circle and p65 is shown by red 

glial staining, with a green circle displaying microglia expression. (B) IBA-1 and p65 

immunostained microglia are shown in higher magnification in the SCNs from saline and LPS 

treated animals (scale bar 50µm). 

 

3.4 Discussion 

 
 The SCN expresses cytokine receptors and regulatory molecules (Beynon & 

Coogan, 2010; Beynon et al., 2009; Lundkvist et al., 1999; Sadki et al., 2007) which 

means that inflammatory mediators induced by peripheral LPS may impact upon the SCN 

causing functional changes and alterations in clock gene expression following this 

immune challenge (Marpegán et al., 2005). LPS causes a fast systemic inflammatory 

response, which in turn results in increased systemic levels of pro-inflammatory cytokines 

such as TNF-α, Il-6 and IL-1β (Benson et al., 2012; Hang et al., 2004; Martich et al., 

1993). Systemic LPS, TNF-α and IL-1β challenges have all been shown to induce robust 

and comparable systemic and brain inflammation (Skelly et al., 2013). Upregulation of 

pro-inflammatory cytokines are displayed in the SCN and hippocampus brain regions as 

a result of prenatal stress or an immune challenge such as LPS administration (Diz-

Saline                          LPS (A) 

(B) 
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Chaves et al., 2013; Leone et al., 2012; Paladino et al., 2015; Rossol et al., 2011). As 

cytokine production increases in the brain, it results in sickness behaviour. When LPS is 

administered at the start of the subjective night (active phase) it induces a greater response 

to both temperature and cytokines in comparison to LPS treatment administered in the 

subjective day. Interaction between the SCN and the immune system is displayed when 

lesions occur to the SCN, as it results in a higher increase to immune response in relation 

to LPS, compared to control SCN (Guerrero-Vargas et al., 2014).  

As discussed in the previous chapter, Bellet et al (2012) established a molecular 

link between the NF-κB pathway and the clock-driven transcriptional pathway. However, 

protein levels of the different NF-κB subunits examined -p65, RelB, p50, and p52- in both 

WT and Clock mutant fibroblast showed no significant upregulation as a result of LPS 

treatment (Bellet et al., 2012). NF-κB activation was understood to be under circadian 

control when studying the NF-κB reporter mice, as an immune challenge resulted in daily 

variations of NF-κB activation during the 24 hour cycle. Investigations carried out in this 

study also showed that BMAL1 is anti-inflammatory via clocks interaction with NF-κB, 

since CLOCK upregulated p65-mediated transcription in fibroblasts following an 

immune challenge independent of BMAL1, however, the co-expression of 

CLOCK/BMAL1/p65 caused BMAL1 to reduce the NF-κB activation by sequestering 

CLOCK (Spengler et al., 2012). Recent studies further add to the fact that BMAL1 has 

anti-inflammatory properties, with mice deficient in Myeloid BMAL1 displaying an 

upregulation of pro-inflammatory microRNA Mir-155 and NF-κB activity following LPS 

treatment (Curtis et al., 2015). Other studies have displayed how the master clock is 

affected by LPS treatment in mice, however, further investigations need to be carried out 

on the pathway involved in the circadian LPS responses, with NF-κB and the LPS 

receptor TLR4 thought to play a role in this circadian effect (Marpegán et al., 2005; 

Marpegan et al., 2004; Paladino et al., 2010).  

This chapter investigated the effect LPS treatment has on the NF-κB pathway, 

IEG’s and clock genes in relation to the neurochemistry of the SCN and PVN. 

Behavioural analysis was also carried out to monitor the effect low dose LPS 

administration plays on locomotor rhythms. Peripheral administration of LPS (5mg/kg) 

lead to acute, evident sickness behaviour. Sepsis scoring was carried out to confirm 

effective induction of sepsis in LPS treated animals when compared to vehicle treated 

controls in this study.  
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3.4.1 The effect acute LPS administration has on the SCN and PVN 

 

3.4.1.1 Expression of NF-κB components in the SCN and PVN post 24 hour LPS 

treatment.  

 

 NF-κB is vital for the body’s immune system. The levels of expression of 

components of NF-κB -p65, p-IκB, p-IKK and c-Rel- were studied in the SCN and PVN 

after administration of an acute peripheral immune challenge using LPS. In this study it 

was established that administration of acute peripheral LPS at ZT4 resulted in significant 

upregulation of the p65 subunit of NF-κB in the SCN when compared to controls, 24 

hours post treatment. Other studies also found comparable findings due to immune 

stimulation using peripheral LPS causing alterations in expression of p65 in the SCN 

(Beynon & Coogan, 2010). This upregulation of p65 expression does not last over time, 

this was displayed in post-sepsis mice, 3 months after LPS treatment mice had similar 

p65 expression levels as controls (O’Callaghan et al., 2012). Furthermore, we discovered 

upregulation of p65 expression in the PVN as a result of LPS challenge. Beynon also 

discovered that there was upregulation of p65 in the PVN 6 hours post LPS treatment 

compared to controls, but this significant increase in p65 levels after 6 hours was not 

displayed in the SCN. Therefore, the autonomic/endocrine response to LPS immune 

challenge seems to occur before the circadian clock (Beynon & Coogan, 2010).  

 IκB controls the activity of NF-κB, which is responsible for the transcription of 

many immune signal molecules. The detection of IκB induction would reveal the extent 

and the cellular location of brain-derived immune molecules in response to peripheral 

immune challenges. In vivo, LPS i.p injections were administered to rats, and caused 

upregulation in IκBα mRNA levels in the SFO, choroid plexus and meninges, two hours 

post LPS treatment. After 24 hours IκBα mRNA levels had attenuated in these brain areas, 

till it subsided towards basal levels (Quan et al., 1997). It was found in this study, that p-

IκB was sensitive to an immune challenge using LPS. Levels of p-IκB were significantly 

upregulated in the SCN as a result of LPS treatment. There are no alterations in p-IκB 

expression in post-sepsis mice, 3 months post LPS, in either the SCN or the CA1 

(Anderson et al., 2015; O’Callaghan et al., 2012). Therefore, it would seem that some 

component of the NF-κB pathway response to an acute immune challenge, however, the 

effects are not long term. It was established that acute LPS administration did not cause 
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alterations to the expression of p-IκB in the PVN. Other studies examining the PVN have 

discovered that LPS induced strong IκBα mRNA expression when compared with vehicle 

(Quan et al., 2003; Quan et al., 2000). 

Two other signalling components of the NF-κB pathway, p-IκK and c-Rel, were 

analysed for sensitivity to a LPS immune challenge. There was minimal p-IκK and c-Rel 

expression in the SCN and PVN at ZT4 in both treatment groups. Therefore, both 

components were not sensitive to this immune signal. No long-term effect was established 

either, with post-sepsis mice also showing similar p-IκK expression with controls in the 

SCN and CA1 (Anderson et al., 2015; O’Callaghan et al., 2012). 

 

3.4.1.2 Expression of IEG’S in the SCN and PVN post 24 hour LPS treatment. 

 

The IEG –c-Fos- is a transcription factor which is frequently used as a marker of 

neuronal activation in neuroscience research (Benito & Barco, 2015; Cruz et al., 2013). 

c-Fos is a useful marker of neuronal activation due to the fact that it is rapid and specific 

to a variety of stimuli such as photic or noxious stimuli. It is also easy to quantify using 

immunohistochemistry techniques (Gao & Ji, 2009). A study reported how c-Fos 

induction is reliant on NF-κB (Nadjar et al., 2005). Stimuli such as LPS (which activate 

the NF-κB pathway) is known to upregulate c-Fos expression in neurons of rodents 2-6 

hours post treatment, in various brain regions such as the central amygdala and nucleus 

of solitary tract (Elmquist et al., 1993; Marvel et al., 2004), and this expression is still 

upregulated 24 hours post treatment in the SCN (Beynon & Coogan, 2010) and PVN 

(Beynon & Coogan, 2010; Ogilvie et al., 1998). However, there is no long term 

modulation of c-Fos expression displayed in the SCN one month after LPS treatment in 

comparison to control mice (O’Callaghan et al., 2012). In this current study, there was 

significant upregulation of c-Fos expression in the vlSCN as a result of an LPS immune 

challenge when compared with vehicle, highlighting the effect of the peripheral immune 

challenge on the SCN. The study of c-Fos induction after LPS administration has been 

examined widely in the PVN (Bienkowski & Rinaman, 2008; Rivest & Laflamme, 1995), 

with the MAPK inhibitor, PD98059, able to attenuate c-Fos upregulation in this brain 

region (Singru et al., 2008). When examined in this current study there was significant 

upregulation of c-Fos expression displayed in the PVN after LPS administration at ZT4.  
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Another IEG –Egr-1- is a DNA binging transcription factor and it is also used as 

a marker of neuronal activation. Studies carried out in our laboratory showed the effect 

of long-lasting effects of sepsis on plasticity-related early gene expression. Post-septic 

mice displayed a significantly lower level of expression of EGR1 in the DG and CA1 

(Anderson et al., 2015). The current study exhibited significant upregulation of 

immunoreactive EGR-1 in the vlSCN due to an LPS immune challenge in comparison to 

control, displayed 24 hours following an immune challenge at ZT4. There was also 

significant upregulation of Egr-1 expression displayed in the PVN after LPS 

administration at ZT4. 

 

3.4.1.3 Expression of clock gene expression in the SCN and PVN post 24 hour LPS 

treatment. 

 

Endotoxins such as LPS have been shown to modify clock gene expression in the 

SCN and PVN in rodents (Okada et al., 2008; Paladino et al., 2015). This change in clock 

gene expression was also displayed in peripheral tissues such as heart and liver, as a result 

of this immune challenge (Murphy et al., 2007; Okada et al., 2008; Yamamura et al, 

2010). LPS administration in peripheral blood leukocytes of humans, results in alterations 

of clock gene expression (Haimovich et al., 2010). Studies carried out in rat have shown 

that LPS (1mg/kg) transiently suppresses the clock gene rPer2 in the SCN for 24 hours 

after treatment (Okada et al., 2008). The Per2-/- mouse is more resistant to endotoxic 

shock caused by LPS in comparison to the WT mouse. They also have reduced pro-

inflammatory cytokines for example IFN-γ and Il-1β, therefore, implying a link between 

the circadian clock and the immune system (Liu et al., 2006). 

  Long term modulation of PER2 expression was witnessed in the SCN, and 

hippocampus areas including the DG and CA1 of post-septic mice (LPS 5mg/kg) one 

month after treatment (O’Callaghan, et al., 2012). Interestingly, when low dose LPS 

(100µg/kg) was administered in WT mice at ZT15, upregulation of PER2 expression 

could be seen in the SCN, however, this was not observed for the other clock gene, PER1. 

LPS treatment at ZT15, displayed no significant alterations for Per1 protein expression 

or Per1 mRNA levels in the SCN (Paladino et al., 2015). Unlike Per2 expression, long 

term alterations in Per1 expression was not observed in the SCN one month post LPS 

treatment when compared to vehicle, this may be due to altered signalling mechanisms. 
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However, changes in Per1 expression did arise in the CA1 as a result of LPS (O’Callaghan 

et al., 2012). In this present study there was no significant modifications of expression of 

the clock gene PER1 displayed between LPS treated mice and controls in the SCN at 

ZT4. Therefore, from past and current studies, results may indicate that the expression of 

clock gene Per1 in the early subjective day and night is not affected by an immune 

challenge in the SCN.  

When carrying out LPS treatment, Paladino and colleagues discovered that Per1 

mRNA was induced in the PVN in the hypothalamic region in the early subjective night 

in young adult mice (Paladino et al., 2010). The PVN is thought to play a role in mediating 

output information from the SCN (Kalsbeek et al., 2010), therefore, in this study it was 

examined whether there was alterations in clock gene PER1 expression within the PVN 

following LPS administration as this may affect rhythmic outputs of these animals. 

Studies exhibited an increase in Per1 expression at ZT15 (Paladino et al., 2015) and ZT22 

(Takahashi et al., 2001) which suggested that the PVN responds to immune stimulation 

and is not time dependent. However, we do not find evidence for disruption of the 

molecular clockwork in young adult mice after an immune challenge during the early-

mid subjective day. It was established that there was no significant alterations in relation 

to PER1 expression when analysing this clock gene in the PVN of LPS treated mice when 

compared to control mice, at ZT4. Hence, this finding suggests that the timing of the 

immune challenge may be crucial, as the subjective day does not seem to be affected by 

high dose LPS.  

 

3.4.2 The direct effect of acute low dose LPS administration on circadian locomotor 

activity and the neurochemistry of the SCN and PVN. 

  

  As previously stated low dose LPS treatment at CT15 resulted in a photic like 

phase delay, with no significant phase shift displayed at any other CT as a result of LPS 

administration (Marpegán et al., 2005; Paladino et al., 2010). Cytokines such as Il-1β and 

TNF-α can cause similar phase delays seen with LPS at CT15. A 100µg/kg LPS treatment 

at CT15 undertaken in our lab also resulted in a significant phase delay of approximately 

45 minutes when compared to saline controls. Marpégan and colleagues tested a variety 

of LPS dose from 25µg/kg to 250µg/kg which all induced phase delays of locomotor 

activity rhythms, 43 and 60 minutes respectively. Mice deficit in the TNFα receptor 1/p55 
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(Tnfr1 KO) still displayed comparable circadian behaviour with WT mice, however, they 

did not produced phase delays of locomotor activity rhythms after LPS administration 

which occurs in WT mice. Hence, there is a Tnfr1- dependent LPS circadian response at 

behavioural level (Paladino et al., 2015). In the current study there was a decrease but it 

was not significant, in rhythms amplitude and total wheel running activity following LPS 

treatment when compared to control. This was due to a temporary suppression of wheel 

running activity as a result of LPS for the few hours post treatment, which has being 

displayed in previous studies (Marpegán et al., 2005).  

 

 Administration of low dose LPS can cause an effect on the neurochemical 

responses in the SCN. A peripheral dose of 100 µg/kg LPS cannot cross the BBB, 

however, it can bind to specific receptors which results in it entering the endothelial cells, 

increasing BBB permeation, which triggers a series of signalling events resulting in the 

induction of pro-inflammatory responses in the brain (Singh & Jiang, 2004). One study 

investigated the effect of low dose (100µg/kg) LPS on hypothalamic mRNA transcription, 

2 hours following treatment, using quantitative PCR. Findings resulted in a significant 

upregulation of IL-1β, TNF-α and IL-6 mRNA expression, as a result of a LPS challenge. 

Comparable findings were also displayed in the hippocampus (Skelly et al., 2013). 

Additionally, it is thought that that the SCN may express TLR4, since LPS applied 

directly to SCN tissue results in alterations to AVP production (Nava et al., 2000). 

The IEG, c-Fos, displays oscillation throughout the day and night cycle under 

basal conditions (Aronin et al., 1990). Photic induction of c-Fos at CT15 results in 

expression throughout the whole SCN, whereas LPS treatment causes c-Fos expression 

in vlSCN at this time point (Marpegán et al., 2005). In this current study a similar result 

was demonstrated with increased c-Fos expression exhibited in the shell region of the 

SCN after low dose LPS administration at CT15. When the SCN was divided into sub 

regions, there was no significant alterations shown in the core between both treatment 

groups. The shell displayed significant alterations between LPS treated and control, 

similar to Marpegán and colleagues. There was significant upregulation of c-Fos 

displayed in the SCN, 4 hours after LPS treatment in contrast to controls. This was similar 

to other studies investigating low dose LPS treatment at both CT15, ZT14 and ZT15 in 

WT mice ( Marpegán et al., 2005; Guerrero-Vargas et al., 2014; Paladino et al., 2015, 

2010). The same LPS dose was administered at ZT2 and ZT3 with no alteration in c-Fos 
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expression displayed in the SCN, between both treatment groups, therefore, the timing of 

treatment is crucial (Guerrero-Vargas et al., 2014; Paladino et al., 2015). Studies suggest 

that Tnf, Tnfr1 and TLR4 are important in the variation of LPS-induced circadian effects 

on the SCN. Mice deficit in Tnfr1and TLR4 did not display LPS induced c-Fos expression 

in the SCN at ZT15 and CT15 respectively (Paladino et al., 2015, 2010).  

Another area examined was the PVN in relation to modulation of IEG expression 

after LPS treatment. Paladino and colleagues recognised that low dose LPS 

administration to TLR4-/- mice at CT15 exhibited a significantly lower expression of c-

Fos cells in the PVN in comparison to WT mice (Paladino et al., 2010). Also Paladino 

and colleagues also established that low dose LPS treatment at ZT15 resulted in a 

significant increase in c-Fos expression in the PVN (Paladino et al., 2015), with low dose 

LPS treatment at ZT14 exhibiting similar findings (Guerrero-Vargas et al., 2014). Using 

Tnfr-/- mice no alterations of c-Fos expression was recognised in the PVN as a result of 

LPS treatment when compared to control (Paladino et al., 2015). In this current study it 

was recognised that low dose LPS treatment at CT15 resulted in significant upregulation 

of c-Fos expression in the PVN.  

 A study was carried out, looking at the effect of low dose i.p LPS (100µg/kg) on 

C57BL/6 mice. Immunohistochemistry was utilised to investigate the expression of p65, 

two hours following this immune challenge. At this time point, differences were exhibited 

near blood vessels in the thalamus, hippocampus and the hypothalamus between 

treatment groups. In saline treated mice, NF-κB p65 expression, was contained to the 

cytoplasm. However, a LPS inflammatory challenge, resulted in nuclear localisation at 

the cerebral vasculature, with p65 staining evident in this area within two hours of an 

immune challenge (Skelly et al., 2013). 

In this current study, the NF-κB component, p65, was investigated in relation to 

the effect of low dose i.p LPS administration at CT15. It was discovered that there was 

significant upregulation of the p65 expression in the SCN, in comparison to control. 

Significant upregulation of p65 expression was displayed in the shell as a consequence of 

low does LPS. However, this effect was not seen between both treatment groups in the 

PVN. In contrast, the component of the NF-κB, p-IκB, had no significant alterations of 

p-IκB expression in the SCN as a whole, or in either of the two sub regions of the SCN, 

nor was there significant change in the PVN as a result of low dose LPS. Other studies 

found that there was upregulation of IκBα mRNA expression in the PVN after a low dose 
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LPS treatment. Quan and colleagues also established that 100µg/kg of LPS along with 

50mg/kg DEX increased the expression levels of  IκBα mRNA further (Quan et al., 2000).  

 LPS has been shown to modulate clock gene expression in the SCN and PVN in 

WT mice, as it induces PER2 expression in the SCN and PER1 expression in the PVN 

(Paladino et al., 2015). There was no alterations when investing the role low dose LPS 

administration had on clock gene PER1 expression on the neurochemistry of the SCN at 

CT15 when examined 4 hours post treatment in this current experiment. Other studies 

also established similar findings with peripheral inoculation of low dose LPS at ZT15. 

The core and shell of the SCN, displayed comparable PER1 expression between both 

treatment groups, 90 minutes post treatment. Furthermore, there was diminutive 

difference between LPS and vehicle treatment groups when analysing Per1 mRNA levels 

(Paladino et al., 2015). Additionally, it was discovered that low dose (50µg/kg) LPS 

administration at ZT22 displayed no alteration to mPer1 mRNA in the SCN of CRF 

neurons, in comparison to controls (Takahashi et al., 2001). 

 In this current study, the PVN exhibited significant upregulation of PER1 

expression after low dose LPS treatment. Comparable findings were visible in Paladino 

and colleagues work, where they found altered PER1 expression in the PVN at ZT15 after 

low dose LPS treatment (Paladino et al., 2015). Other studies displayed upregulation of 

mPer1 mRNA in the PVN of CRF neurons, 1 hour after receiving low dose LPS treatment 

at ZT22. This alteration was not displayed 3 hours later, as mPer1 expression returned to 

basal level. Therefore, there is indications that mPer1 gene expression in the PVN is 

connected to stress-induced responses. (Takahashi et al., 2001).  

 

3.4.3 Expression of IEG’s and NF-κB components in the mid subjective day and 

night in the SCN and the PVN 

 

When examining IEG’s such as c-Fos expression, it is usually located in the 

ventrolateral region of the SCN (vlSCN), with peak c-Fos peptide expression between 

external time 8-11 under an LD cycle (Colwell & Menaker, 1992). There is change in c-

Fos production in basal neuronal activity across the 24 hour cycle in the SCN, with studies 

reporting that c-Fos expression in the vlSCN tends to be high during the light cycle and 

low during the dark phase (Aronin et al., 1990; Colwell & Foster, 1992). In our findings 

it was discovered that during the mid-subjective day c-Fos expression was predominantly 
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in the dorsomedial region of the SCN (dmSCN), whereas during the mid-subjective night 

expression was located in the vlSCN. However, administration of LPS at ZT6, resulted 

in c-Fos expression occurring also in the vlSCN. There was upregulation of FOS 

expression in the SCN at this time point as a consequence of LPS, however, it was not a 

significant increase. When analysing c-Fos expression at ZT18, both treatment groups 

had significantly lower levels of expression during the dark phase in comparison to the 

light phase. LPS treatment did result in significant upregulation of c-Fos expression when 

compared to the control group in the mid subjective night. There was significant 

upregulation of FOS expression in the PVN after LPS treatment at ZT6 and ZT18. 

 

The second IEG transcription factor examined in this experiment was Egr-1. 

There were higher levels of Egr-1 expression in the SCN exhibited during the mid-

subjective day in comparison to the mid-subjective night. However, interestingly there 

was high levels of Egr-1 expression displayed in the SCN in control subjects which would 

not have been expected. At ZT6 there is an extremely high level of Egr-1 expression in 

the SCN, which is conflicting with other studies, which have minimal expression seen at 

this time point in WT vehicle subjects (O’Callaghan et al., 2012). Findings in this current 

experiment may be due to the fact that the mice utilized were B6.129S6-Per2tm1Jt/J. These 

mice have a firefly luciferase (luc) gene inserted in-frame into the 3’ end of the 

endogenous mPer2 gene between exon 23 and the three prime untranslated region 

(3’UTR). It is thought that behaviour or neurochemistry should not be affected in 

B6.129S6 mice in comparison to WT mice (Yoo et al., 2004), however, when we were 

monitoring wheel running behaviour in these mice, they displayed a FRP that was 

advancing while other FRPs exhibited delays daily (n=16). Therefore, in that behavioural 

experiment, we reverted back to WT mice. This leads us to wonder if the high EGR-1 

expression displayed in control mice obtained at ZT6, is caused by this mouse model. 

When the PVN was investigated there was significant upregulation of Egr-1 expression 

displayed as a result of LPS administration when compared to controls at both the mid-

subjective day and night.  

The NF-κB component, p-IκB, was also examined at ZT6 and ZT18 for variations 

of expression in the SCN and PVN after LPS administration. There was significant 

upregulation of p-IκB expression in the SCN at ZT6, but this was not displayed at ZT18, 

24 hours post LPS treatment. A similar finding was discovered using the BALB/C-Tg 
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(IκBα::LUC) reporter mice. An immune challenge using the TLR5 agonist, CBLB502, 

was administered at ZT6, resulting in a significant level of NF-κB activation in the liver, 

which was not displayed at ZT18. This experiment was monitored using in vivo luciferase 

imaging, and Spengler also displayed that NF-κB activation peaked at ZT6, when 

analysing the effect of an immune challenge over a 24 hour period (Spengler et al., 2012). 

In this current study, LPS did not cause any significant alterations in p-IκB expression in 

the PVN in comparison to vehicle at either time point, although, upregulation was 

exhibited at both time points.  

Finally, the NF-κB signalling component, p65, was also analysed in the middle of 

the day and night for alterations in relation to expression in the SCN and PVN after LPS 

treatment. Similarly to p-IκB, there was significant upregulation in the SCN at ZT6 as a 

result of LPS administration. However, there was no significant effect exhibited as a result 

of an immune challenge, administered in the mid subjective night. This again corresponds 

to the (Spengler, 2012) study, emphasising how an immune challenge seems to cause a 

higher NF-κB activation during the mid-subjective day in comparison to night, in the 

SCN. However, LPS did not cause any significant alterations of p65 expression in the 

PVN in comparison to vehicle at either time point.  

 

3.4.4 The effects of acute LPS treatment on SCN expression in mPer2Luc knock-in 

mice using double immunostaining 

 

The microglial marker, IBA-1, was used to investigate the effect long lasting post-

septic had on WT mice in our laboratory 3 months following LPS induced sepsis, in the 

mid subjective day (ZT5-8). Findings, discovered significant upregulation of microglial 

in the SCN and  hippocampal subfields, such as DG, CA1 and CA3 in these post-sepsis 

mice (Anderson et al., 2015; O’Callaghan et al., 2012). Another studied revealed, that 

two months following LPS treatment, sustained microglial activation was exhibited in the 

frontal cortex (Weberpals et al., 2009). Furthermore, a study undertaken in 8 week old 

mice, also displays upregulation of IBA-1 expression in the following brain regions, the 

striatum, frontal cortex, medial septum, and the hippocampal subfields (DG, CA1 and 

CA3) after an acute LPS administration (Noh et al., 2014).  

In this current study, a qualitative method was used to analysis the double 

immunostaining technique looking at IBA-1 and p65 expression in the SCN, 24 hours 
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following LPS (5mg/kg) treatment at ZT8. There was strong upregulation of IBA-1 and 

p65 post LPS treatment in comparison to vehicle, shown in the photomicrographs. Also 

displayed in this experiment when studying the IBA-1 expression post LPS treatment, 

was that the morphology was associated with activated microglia in SCN. This indicates 

that the SCN responds to a peripheral immune challenge within a short timescale.  

LPS treatment has been found to cause upregulation of NF-κB activity in SCN 

astrocytes expression both in vivo and in vitro, with an increase in p65 expression 

displayed (Leone et al., 2006). In this study, the upregulation of p65 expression after an 

immune challenge appears to be in the form of glial cells in the SCN, which would 

correlate to previous findings by Listwak in which minimal NF-κB activity is found in 

neurons, with p65 expression displayed in the cytoplasm and nucleus in very low amounts  

(Listwak et al., 2013). In the current study, p65 expression in control mice exhibited 

morphology in what is thought to be microglial cells in their resting state (Kettenmann et 

al., 2011). Peripheral LPS treatment in this study caused the p65 microglia to become 

activated, displaying a hypertrophic appearance similar to phagocytic cells (Kreutzberg, 

1996).  

 

3.4.5 Conclusion 

 

 The activation of other transcription factors apart from NF-κB such as the MAPK 

as a result of LPS treatment, also play a role is driving an inflammatory response (Barton 

& Medzhitov, 2003). TLRs triggered by LPS can also trigger intracellular signalling 

through MAPKs which comprises of p38, ERK1/2 and JNK, leading to rapid 

transcriptional activation of IL-1β, IL-6, and TNF-α (Huang et al., 2009; Ji et al., 2013; 

Mogensen, 2009). This may account for the fact that some components of the NF-κB 

pathway, such as c-Rel and p-IκK, having minimal response in relation to acute LPS 

administration. 

 NF-κB seems to play a role in mediating LPS effects on circadian rhythmicity 

since the NF-κB inhibitor sulfasalazine can block this pathway. This highlights an 

association with immune suppressors that prevent NF-κB activity by blocking the 

immune-mediated LPS response (Marpegán et al., 2005). Another NF-κB inhibitor, 

PDTC, has also been shown to be involved in preventing NF-κB activity by blocking the 

immune-mediated LPS response. Recent work carried out in our laboratory discovered 
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that the NF-κB inhibitor, PDTC, significantly reduced the effects that LPS administration 

caused on behaviour and on microglial in the neuroimmune system. (Anderson et al., 

2015). Future work that could be undertaken, is to assess whether the NF-κB inhibitors, 

sulfasalazine or PDTC, can block LPS effects in relation to the upregulation of NF-κB 

components -p65 and p-IκB- in the SCN, which we observed in our study.   

 As discussed in the previous chapter, extra care must be taken in interrupting 

results of neuronal NF-κB activity in the CNS, with numerous studies using antibodies 

that are not selective for p65 (Herkenham et al., 2011). Therefore, since antibodies can 

lack efficacy and specificity; experimental results can suffer as a consequence, in terms 

of perpetuating flawed findings. The more recent study (Listwak et al., 2013) found that 

there is minimal NF-κB activity in neurons even after LPS treatment, concluding that 

there is a lack of evidence that the NF-κB pathway plays any major role in the circadian 

clock, with a peripheral immune challenge only seen to cause an upregulation of p65 and 

p-IκB microglial cells in the SCN.  
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Chapter Four 

Assessing how ageing and neuroinflammation impact on the 

roles of NF-κB signalling in the SCN clock and PVN. 

 

4.1 Introduction 

  

 It has been recognised that ageing is concomitant with neuroinflammation which 

is thought to be involved in the decline of neuronal function (Godbout & Johnson, 2009). 

The NF-κB signalling pathway is implicated in ageing, (Tilstra et al, 2011) with ageing 

thought to be involved in increased brain NF-κB activity (Toliver-Kinsky et al., 1997). 

Ageing in humans and mammals may impact on NF-κB function in the SCN in the 

hypothalamus. NF-κB plays is vital in the body’s immune system, therefore, targeting 

NF-κB by using inhibitors have been investigated as an approach to treating acute and 

chronic inflammatory conditions, and it is thought that this method may help in the 

treatment of neurodegenerative diseases such as AD and PD (Flood et al., 2011; Chen et 

al., 2005; Sung et al., 2004).   

 The aim of this chapter is to examine whether there are interactions in the 

circadian timekeeping system between aged and young mice, and also to assess whether 

ageing or neuroinflammation will alter the signalling properties of NF-κB in the SCN and 

PVN.  

 

4.1.1 Neuroinflammation in the normal ageing brain and neurodegenerative brain 

 

In the normal healthy ageing brain, a low-grade neuroinflammation is displayed 

(Godbout & Johnson, 2009), with astrocytes and microglial becoming more active or 

reactive as ageing progresses (Godbout & Johnson, 2006). Infection or a traumatic brain 

injury in an otherwise healthy ageing brain can result in a higher risk of memory 

deficiencies when compared to the younger adult brain (Barrientos et al., 2015). The 

normal healthy hippocampus of aged rats have primed microglial, so if an immune 

challenge does occur through infection (Godbout et al., 2005), surgery (Rosczyk et al., 
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2008), or a stressor (Buchanan et al., 2008), the inflammatory response is exaggerated in 

comparison to younger adult rats (Barrientos et al., 2015). 

 

Figure 4.1: The effect an immune challenge has on microglial of young adult and aged 

animals, adapted from (Barrientos et al., 2015). Pro-inflammatory cytokines are released for 

roughly 24 hours to deal with the immune challenge. There is very little memory impairment in 

these young animals with LTP, BDNF and Arc attenuated slightly. However, aged microglia are 

primed displaying markers of activation including MHCII, CD86 and CD11b, ready for a 

subsequent challenge. When this challenge occurs, aged microglia have an increased 

neuroinflammatory response. In this instance, pro-inflammatory cytokines are released lasting 

over a week. LTP, BDNF and Arc are decreased significantly, and long term contextual and 

spatial memory is compromised.  

 

 A lot of emphasis has gone into the role neuronal loss plays in ageing. Equally, 

glial cells can also account for the development of senescence. Neuroinflammation in 

ageing is caused by microglial activation and the production of inflammatory cytokines 

leading to deficits in synaptic function which results in impaired learning and memory. 
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As discussed previously ageing results in cognitive decline with microglial activation 

playing a role. Even though microglia activation is vital in response to CNS injury there 

is also negative consequences resulting from over-activation of microglial, where 

releasing pro-inflammatory and cytotoxic factors for example Il-1 and nitric oxide can 

play a factor in neurodegenerative diseases (Lehnardt et al., 2003). Microglia can cause 

neuron damage and over production of microglia can result in uncontrolled neurotoxicity 

(Qin et al., 2007). Studies confirm a higher increase in pro-inflammatory cytokines and 

microglial cells in the brain after an immune challenge such as LPS administration in 

aged mice in comparison to young adult mice. Immunohistochemistry studies displayed 

a higher level of microglial cells in the hippocampus areas of aged mice including the 

dentate gyrus, CA1, CA2 and CA3 regions with an increase in IL-1β following LPS 

treatment. There was also disruption to the hippocampal processing in aged mice when 

compared to young adult mice (Chen et al., 2008). 

The SCN’s anatomy and physiology are altered in the normal healthy ageing brain 

and even more so in neurodegenerative brain due to molecular abnormalities (Biello, 

2009; Harper et al., 2005).  The responsible mechanisms for SCN discrepancies in ageing 

are not yet fully understood. The lifespan of Bmal1-/- KO mice is significantly decreased, 

and they also develop age-related complications when compared to WT mice (Kondratov 

et al., 2006). The consequences of ageing at a molecular level are, diminished expression 

of Clock and Bmal1 in the SCN of rodents, which form part of the molecular machinery 

of the circadian clock (Kolker et al., 2003; Kolker et al., 2004). Kolker’s laboratory 

discovered that although there were alterations of Clock and Bmal1expression over 24 

hours in DD, between both aged groups, this was not presented in Per genes. However, 

there was a reduction in Per1 expression in the SCN following photic stimulation (Kolker 

et al., 2003). Asai and colleagues showed that circadian expression of rPer1, rPer2 and 

rCry1 mRNA were similar in the SCN and PVN of both young and aged rats. However, 

it was established that there was a decrease in Per1 and Per2 expression in the SCN of 

aged rats after photic induction. This may be due to impaired behavioural photic 

entrainment in aged rats (Asai et al., 2001).  

When fetal SCN transplants were placed into aged rats it resulted in better 

circadian behavioural rhythms (Li & Satinoff, 1998; Van Reeth et al., 1994). This further 

emphasised the impact ageing has on the circadian clock. In vitro studies have shown that 

ageing also results in alterations to the phase shifting abilities of neurotransmitters in the 
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SCN of mice (Biello, 2009). The GABAergic network displays changes in the SCN in 

ageing animals in comparison to controls (Palomba et al., 2008). Biello proved that 

alterations at the level of the SCN in aged rodents plays a role in how it responses to 

certain photic stimuli and non-photic stimuli that are involved in coordinating the 

circadian clock. There is increased levels of pro-inflammatory cytokines for example IL-

1β in normal healthy ageing (Godbout & Johnson, 2009) with the levels of cytokines 

dramatically increasing in neurodegenerative ageing brains for instance AD (Shaftel et 

al, 2008). In the normal healthy ageing brain, there is low-grade inflammation activity 

(Deng et al., 2006; Godbout & Johnson, 2009).  

As discussed briefly, alterations in the ageing brain is thought to cause a rise in 

NF-κB activity. Kinsky and colleagues used electrophoretic mobility shift assays and 

western analysis to measure transcription factor NF-κB in aged and young rat brain 

tissues. They found that there was an increase in basal levels of NF-κB DNA-binding 

activity in the hippocampus and basal forebrain, with significant higher levels displayed 

at two and a half years of age (Toliver-Kinsky et al., 1997). Other studies have established 

that NF-κB becomes more active in the mediobasal hypothalamus (MBH) as mice age, 

with minimal hypothalamic NF-κB in young mice. NF-κB was labelled with GFP in 

young, middle-aged and aged mice, with proliferation of NF-κB exhibited as mice got 

older (Zhang et al., 2013). Immunohistochemistry was also carried out on the neuronal 

marker NeuN which showed noticeable NF-κB activation in neurons in aged mice. 

Whether this is due to NF-κB playing an important role in ageing or due to NF-κB being 

a side effect of some other aspect of ageing needs to be investigated further.  

MBH-IKKβ mice had a shorter lifespan than controls and they had more of an 

age-related decline in terms of cognitive and physical health. In contrast, MBH-IκBα mice 

lived roughly 7 months longer, and had improved cognition and movement when 

compared to controls. When IKK-β, which activates NF-κB, was supressed in the 

hypothalamus in middle-old aged mice it prevented a surge of microglial cells in contrast 

to controls. There was a reduction in Iba-1 and TNF-α in middle-old and old aged mice 

where IKKβ was knockout. The IKKβ knockout mice also had cognitive and physical 

improvements in comparison to controls. In addition, the lifespan increased by 20-23% 

in ageing mice where IKK-β was suppressed throughout the brain. NF-κB counteracts the 

hormone gonadotropin releasing hormone (GnRH) resulting in a decrease in new brain 

cell growth and also halts the mice reproductive system. GnRH slowed down ageing when 
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injected into mice and also created the growth of new neurons (Zhang et al., 2013). For 

that reason, inflammation as a result of NF-κB can prompt the ageing process to begin. If 

GnRH can result in hippocampal neurogenesis which is important in terms of memory it 

may be worth investigating the role of NF-κB and GnRH in people with AD in relation 

to new possible treatments. The ageing process could be hastened or slowed down by 

either stimulating or inhibiting the immune pathway IKKβ/NF-κB in the hypothalamus 

in mice. These finding suggest that the hypothalamus plays a role in systemic ageing 

which is mediated by IKKβ/NF-κB pathway.  

An increase in microglial cells occurred in the MBH as age increased. NF-κB was 

activated along with an over production of TNF-α in these microglial cells, suggesting 

that they are inflammatory. In young mice, over production of the cytokine TNF-α was 

generally localised to hypothalamic microglia. However, in aged mice TNF-α became 

widespread throughout the MBH and affected neurons. Since TNF-α can activate 

IKKβ/NF-κB, this may account for the IKKβ/NF-κB arbitrated microglia and neuron 

crosstalk which controls systemic ageing. Additionally, Iba-1 which is expressed in 

microglial cells was also upregulated in aged mice. Therefore, microglia in the 

hypothalamus use IKKβ/NF-κB in which they play a role in ageing in this brain region. 

(Zhang et al., 2013).  

NFκB1-/- have a higher incidence of age related phenotypes when compared to 

controls at 12 months. NF-κB1-/- mice have increased brain GFAP staining in comparison 

to NF-κB1+/+. Furthermore, the lifespan in NF-κB1-/- mice is attenuated in contrast to 

controls (Bernal et al., 2014). Lu and colleagues discovered that NF-κB1-/- mice aged 

between 6 and 10 months had significantly reduced body weight in comparison to control 

mice and they were beginning to die due to ageing (Lu et al., 2006). 

 

 Inflammation and microglia activation are observed in neurodegenerative diseases 

including PD, HD, MS and AD, and inflammation increases as each disease progresses 

(Boutajangout & Wisniewski, 2013; Xiao-Hua Deng et al., 2010; Ekdahl et al., 2003; 

Frank-Cannon et al., 2009). Furthermore, neuronal loss and tangles were observed in the 

SCN of AD patients (Stopa et al., 1999). NF-κB has been implicated in neurodegenerative 

diseases. Neurotoxicity in AD can occur due to excess NF-κB activity (Chen et al., 2005). 

In AD patients, activation of NF-κB has been displayed in early stage plaque formation 

and it plays a role in the expression of the APP gene. NF-κB is activated by Aβ, ROIs and 
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inflammatory cytokines in the brain which results in inducing a number of genes with 

relevance for AD. Therefore, NF-κB may be involved in the development of this disease. 

Future studies into a novel drug target may halt the progression of this disease 

(Kaltschmidt et al., 1997; Mushtaq et al., 2015). Using immunohistochemistry techniques 

the distribution of NF-κB in brain regions of AD and control post-mortem cases were 

examined using a polyclonal antibody against the NF-κB p65 subunit. The hippocampal 

formation and cerebral cortex region of AD patients displayed strong neuronal staining 

for NF-κB in neurons, neurofibrillary tangles and dystrophic neuritis. In the normal 

ageing brain there was only weak staining detected in some neurons, therefore, increased 

expression of NF-κB seems to occur in brain areas affected by AD (Terai et al., 1996). 

 

4.1.2 Circadian rhythms perturbations in the normal ageing brain  

 

Disruption of circadian rhythms in the normal ageing brain can cause increased 

wakefulness during the night and sleeping during the day in elderly patients. This 

fragmented sleep pattern attenuates their quality of life (Biello, 2009; Crowley, 2011). 

Perturbation of the circadian timing system as a result of ageing and neurodegeneration 

can impact on the ageing (Coogan et al., 2013; Wu & Swaab, 2007). The circadian timing 

system becomes progressively disturbed in the normal ageing human and mammal brain 

resulting in diminished amplitude and total activity (Hofman & Swaab, 2006; Nakamura 

et al., 2011; Swaab et al, 1996). There is also alterations in period length and altered 

phase-angle of entrainment in ageing compared to young (Hofman, 2000; Van Someren, 

2000). There has been a variety of studies investigating chronic jet lag showing that 

dysfunction of the circadian timekeeping system can result in perturbed immune function 

(Castanon-Cervantes et al., 2010; Filipski et al., 2003; Filipski et al., 2006; Sukumaran et 

al., 2010). Chronic jet lag in aged mice increased the rate of mortality. Davidson and 

colleagues displayed that phase advancing the light schedule caused a higher mortality 

rate than when phase delaying the light schedule in aged mice (Davidson et al., 2006). 

 Alterations in the SCN due to ageing may cause circadian dysfunction which may 

result in reduced circadian neural activity. Nakamura and colleagues investigated one of 

the main neural outputs of the SCN, the subparaventricular zone (SPZ) in middle-aged 

mice compared to young mice. Findings established that there was a decrease in neural 

activity rhythms in the SCN and SPZ (Nakamura et al., 2011). Chronic low-grade 
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neuroinflammation can be seen to arise in the SCN (Deng et al., 2010). The ageing SCN 

has variations in the neural and temporal organisation, along with a reduced photic input 

to the clock (Biello, 2009). A reduced number of AVP expressing neurons in the SCN 

were displayed in ageing patients (Swaab et al., 1985) along with a decline of the sleep-

wake cycle. Therefore, AVP may play a role in the output of the SCN (Kalsbeek et al., 

2010). Ageing can affect the SCN by causing changes in serotonin rhythms (Jagota & 

Kalyani, 2010), altered neuropeptide content such as VIP (Kawakami et al., 1997) and 

AVP (Roozendaal et al., 1987), and GABAergic networks in the SCN (Palomba et al., 

2008).  

 

4.1.3 Circadian rhythms perturbations in neurodegenerative diseases 

 

 In neurodegenerative diseases such as HD, PD and AD, disruption to circadian 

rhythms and sleep is an early symptom (Harper et al., 2005; Hatfield et al., 2004; Naismith 

et al., 2011; Wulff et al., 2010). When comparing neurodegenerative diseases, such as 

AD, to normal ageing there is differences between their circadian rhythms. Hatfield and 

colleagues carried out studies using actograms to show that patients with severe AD have 

a more fragmented pattern of the rest/activity cycle and lower amplitude when compared 

to AD patients in their early stage of disease and the normal ageing brain (Hatfield et al., 

2004). There is also perturbations in the phase and amplitude of the sleep rhythm (Satlin 

et al., 1991; Satlin et al., 1995; van Someren et al., 1996; Witting et al., 1990). As a result 

of these circadian alterations in AD patients, they display a greater cognitive decline, 

nocturnal insomnia, sleeping during the day, and confusion (Moe et al., 1995; Pollak & 

Perlick, 1991). 

 In AD patients, studies carried out showed that there is a decreased light input into 

the SCN. This is due to the degeneration of the retina and optic nerve which are involved 

in light input into the SCN (Hinton et al., 1986; Sadun & Bassi, 1990; Trick et al., 1989). 

This may result in the disruption to patient’s circadian rhythms. In healthy aged subjects, 

male and female, there is a decline in AVP expressing neurons in the SCN when 

compared to young subjects as discussed previously (Hofman et al., 1996). However, 

there was a further AVP decrease reported in AD patients (Liu et al., 2000; Wu et al., 

2007) and this decrease in the SCN also occurred at an earlier onset then normal ageing 

patients (Swaab et al., 1985). Furthermore, an attenuated amount of VIP was recognised 
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in the SCN in middle-aged males in comparison to younger males. In female AD patients, 

there was a decrease in VIP expressing neurons in the SCN when compared to controls. 

Therefore, Zhou established that VIP neuron expression in the SCN both was age related 

and AD related (Zhou, 1995). However, there has been conflicting results in relation to 

VIP and AVP immunoreactive neurons in the SCN of AD patients. Recent studies using 

immunohistochemical methods have shown that AD patients have a similar number of 

VIP and AVP neurons comparable to normal aged patients (Lim et al., 2014). Using other 

scientific methods such as in situ autoradiograms which count AVP mRNA expressing 

neurons (Liu et al., 2000) and immunohistochemical cell density expressed as a 

neuron:glia ratio (Harper et al., 2008), AD patients displayed attenuated levels of AVP 

expressing neurons in the SCN when compared to controls. The AD mouse model 3xTg 

also presented a decline in VIP and AVP expressing neurons in the SCN in comparison 

to control subjects (Sterniczuk et al., 2010). The decreases in VIP and AVP expression 

can change SCN neuronal function which might impact on AD patients (Hughes et al., 

2004). All of these variations of the circadian system in AD patients may be due to 

underlying neuroinflammation. 

 Studies looking at circadian CLOCK gene polymorphisms linked to the 

fragmentation of the sleep-wake cycle in AD patients have been investigated. The 122 

circadian-related polymorphisms resulted in largely negative outcomes (Yesavage et al., 

2011). In other studies, research examining CLOCK gene expression was carried out 

across the day in the following brain areas: bed nucleus of the stria terminalis (BNST), 

cingulate cortex and the pineal gland in post-mortem brains of AD patients and aged 

subjects. There was significant diurnal variations in RNA expression levels of PER1, 

PER2, and BMAL1 between AD patients and aged controls proposing that the temporal 

synchronisation between oscillations is altered in the brain of AD patients (Cermakian et 

al., 2011). The alteration in clock gene coordination that was displayed in the tissues of 

Alzheimer’s patients may play a factor in the fragmented sleep patterns that occur with 

AD. This study is of contrast to the work of Wu and colleagues who discovered rhythmic 

clock gene expression in the pineal glands of controls found no rhythmicity in AD patients 

(Wu et al., 2006). Investigating the role of CLOCK genes further is necessary to 

understand the role they may play in AD patients.  

 In PD patients between 60-90% reports sleep disturbances including fragmented 

sleep with a higher number of awakening and they experience rest tremors and dyskinesia 
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(Crowley, 2011; Stocchi et al., 1998; Thanvi et al., 2007). As AD and PD progresses, the 

altered sleep patterns worsen further, this can cause problems for families, as carers also 

will have disrupted sleep patterns which will impact on their own health (Wulff et al., 

2010). Studies of neurological diseases such as HD, used R6/2 mice to display significant 

changes in the activity-rest cycle in comparison to WT. After 5 months, the HD mouse 

model exhibited patterns of arrhythmia throughout the 24 hour cycle (Reddy & O’Neill, 

2010). An earlier study, also used the transgenic model of HD mice R6/2, Morton and 

colleagues established the fragmented sleep pattern which, in the end resulted in a total 

breakdown of circadian behaviour by week 13 (Morton et al., 2005). Sleep and circadian 

dysfunction does not only impact on the patient but also on many carers (Van Someren, 

2000). Actiwatch-neurologica measured activity in HD patients and carers and they had 

similar, significantly increased nocturnal activity when compared to controls (Morton et 

al., 2005). Therefore, treatment to deal with sleep disturbances due to molecular 

abnormalities will hopefully be of benefit to neurodegenerative patients and carers. It is 

important to increase our knowledge of the process that causes the sleep-wake cycle 

disruption as this may result in improved treatments or therapies for AD, PD, and HD. 

 

4.2 Materials and methods 

 

4.2.1 Animals and housing 

 

 The animal models that were used in the following experiments were the male 

C57BL/6 strain of mouse and the B6.129S6-Per2tm1Jt/J. The adult C57BL/6 male aged 6-

8 weeks old (24-30g) were grouped house on arrival (3 per cage) from Charles Rivers, 

UK or Harlan, UK both designated breeding establishments. Homozygous B6.129S6-

Per2tm1Jt/J were also group housed, aged 6-8 weeks old (24-30g) and were obtained from 

a breeding colony that was established in Maynooth University. Behavioural analysis was 

undertaken by single housed mice as outlined in section 2.2.2.  

 

4.2.2 Treatments 

 

 This chapter involves mice that have been treated with the endotoxin LPS from 

gram negative bacteria, Escherichia coli (Sigma, Ireland) or saline (NaCl).  
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4.2.2.1 Acute high grade inflammation induction 

 

 LPS was administrated into the abdominal cavity of mice. Mice were treated with 

a single (5mg/kg i.p dissolved in 0.9% sterile saline) injection of LPS or with an equal 

volume of sterile saline control (0.9% NaCl, 0.12ml). LPS treatment elicited the full 

spectrum of sickness behaviour evident 1 hour after treatment in these ageing mice. 

Roughly 10% of LPS 5mg/kg treated mice display a significant moribundity requiring 

euthanasia or mortality in the first 72 hours following treatment. Ageing mice display a 

comparable level of sickness behaviour to adult mice, though they do take longer to 

recover after LPS treatment (Chen et al., 2008; Godbout et al., 2005). 

 

4.2.2.2 Chronic high grade inflammation induction  

 

 LPS was administrated into the abdominal cavity in this animal model of sepsis. 

Mice were treated with a single (5mg/kg i.p dissolved in 0.9% sterile saline) injection of 

LPS or with an equal volume of sterile saline control (0.9% NaCl, 0.12ml). LPS treatment 

elicited the full spectrum of sickness behaviour evident 1 hour after treatment in adult 

mice. Roughly 10% of LPS 5mg/kg treated mice display a significant moribundity 

requiring euthanasia or mortality in the first 72 hours following treatment.  

 

4.2.3 Sepsis scoring 

 

 A sepsis score was calculated for LPS and control animals immediately after and 

1 hour post treatment and subsequently at regular intervals for 24-48 hours post treatment 

pending on experiment. Scores were assigned on a five-point scale assessing alterations 

on the parameters of behaviour, appearance, dehydration and respiration. Each parameter 

was then graded on a scale of 0-4; 0 absent; 1, mild; 2, moderate; 3, severe; 4, very severe. 

The scores reverted back to zero roughly 48 hours post LPS treatment. If any animals 

displayed a high sepsis score or significant moribundity at this point they were humanely 

culled.  
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4.2.4 Analysis of circadian behavioural parameters in aged mice 

Adult C57BL/6 male mice aged 16 months (n=6) and 3 months (n=6) were single 

housed in running wheels and allowed to habituate for two weeks in L: D 12:12 before 

experiment analysis took place. Both aged and young mice were then kept in L: D 12:12 

conditions for a further two weeks to assess actogram data and circadian behavioural 

parameters such as rhythm amplitude and total wheel running activity undertaken. In 

order to assess the integrity of the retinohypothalamic tract or RHT transmission from it 

in ageing mice, the phase angles of entrainment were examined for each animal in both 

age groups under the 12:12 LD photoperiod, since alterations in RHT transmission impact 

upon the phase angle of entrainment. The average phase angles of entrainment for each 

animal was established and statistical analysis was carried out using independent t-tests. 

  The next step was that both groups were placed into DD for two weeks and 

allowed free run. Both aged and young mice were analysed for their FRP, rhythm 

amplitude and total wheel running activity. The Chronobiology Kit Chi Squared 

procedure was used to measure FRP and rhythm amplitude for all mice, and analysed 

using independent t-tests. To establish locomotor activity levels, the total daily wheel-

running revolutions were calculated each day for all mice for 14 days in both LD and DD, 

using the Chronobiology Kit. The maximum wheel-running revolutions per minute 

observed per cycle was then averaged over the 14 day period for each animal. Statistical 

analysis for both groups were assessed using independent t-tests. 

 

4.2.5 SCN neurochemistry in aged mice compared to young mice 

 

B6.129S6-Per2tm1Jt/J mice were group housed 3 per cage. Young mice at four 

months (n=8) and aged mice at 16 months (n=11) were placed in a 12:12 L: D cycle. In 

order to examine the effect ageing has on the SCN and PVN, both young and aged brains 

were perfused at ZT6 and ZT18. All brains were subsequently processed for 

immunohistochemistry staining (section 2.2.4) for components of NF-κB-p65, p-IκB, p-

IKK and c-Rel. Quantitative analysis was carried out similar to (section 2.2.5). The mean 

of each group was confirmed and analysed by using a two way ANOVA. Results are 

stated by IOD ± standard error of mean, with P<0.05 accepted as statistical significant.  
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4.2.6 The effects of acute LPS treatment on SCN neurochemistry in aged mice  

 

C57/BL6 aged mice (14-16 months) were group housed and allowed to habituate 

for two weeks in L: D 12:12 conditions prior to experiment. In order to examine the 

effects acute LPS treatment causes in the ageing SCN and PVN, expression of the clock 

gene protein PER1 and NF-κB components- p65, p-IκB- were analysed. C57BL/6 mice 

were treated with a single dose of LPS (n=5) (5mg/kg i.p, dissolved in 0.9% sterile saline) 

injection into the abdominal cavity or with an equal volume of sterile saline (n=5) control 

(0.9% NaCl, 0.12ml) at ZT4. Each brain was perfused 24 hours later. All brains were 

subsequently processed for immunohistochemistry staining (section 2.2.4). Quantitative 

analysis was carried out similar to (section 2.2.5). The mean of each group was confirmed 

and analysed by using an independent t-test. Results are stated by cell number mean value 

or IOD ± standard error of mean, P<0.05 is accepted as statistical significant.  

 

4.2.7 The effects of chronic LPS treatment on SCN neurochemistry in aged mice 

 

C57/BL6 mice (two months old) were group housed and administered a single 

dose of LPS injection (5mg/kg i.p dissolved in 0.9% sterile saline) into the abdominal 

cavity or with an equal volume of sterile saline control (0.9% NaCl, 0.12ml) at ZT4. After 

16 months mice were perfused at ZT4 in order to assess the effects of chronic LPS 

treatment. All brains were subsequently processed for immunohistochemistry staining for 

p65 and p-IκB (section 2.2.4). Quantitative analysis was carried out similar to (section 

2.2.5). Mean IOD were analysed using an independent t-test. Results are stated by IOD ± 

standard error of mean, with P<0.05 accepted as statistical significant.  

 

4.3 Results 

 

4.3.1 Analysis of circadian behavioural parameters in aged mice 

 

 The basic parameters were calculated in both aged and young mice under L: D 

12:12 conditions. Comparison of mean amplitude between aged and young animals by 

independent t-test found no significant differences between both groups, with amplitude 

of 1640.22 ± 136.15 and 1938.35 ± 103.09 respectively (P>0.05). Independent t-test was 
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also carried out to analyse the total wheel running activity for a period of 14 days while 

placed under 12:12 L: D cycle. There were significant alterations seen in total wheel 

running activity in aged animals (11586.19 ± 1708.6) in contrast to young animals 

(20402.58 ± 2564.1, P<0.05) which is displayed in below actograms (Figure 4.2). 

 

          

 

Figure 4.2: Locomotor activity rhythms under LD and DD. (A) and (B) are sample double  

plotted actograms from a young and aged animal respectively, showing their locomotor behaviour 

under 12L:12D for two weeks and constant darkness (DD) conditions for a further two weeks. 

 

When placed in LD conditions for two weeks, the rhythm amplitude was 

attenuated in aged mice (1640.21 ± 136.15) when compared to young adult mice, 

(1938.35 ± 103.09). This however was not significant. There were significant differences 

seen in total wheel running activity in aged animals (11586.19 ± 1708.59) in contrast to 

young adult animals (20402.57 ± 2564.1, P<0.05) under LD conditions. These results are 

displayed in previous actograms (Figure 4.2). Furthermore, the phase angle of 

entrainment was significant when comparing both groups, aged (-33.86 ± 1.93) compared 

to young adult mice (-13.99 ± 1.65) (Figure 4.3). 
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Figure 4.3: Bar graphs showing (A) the average amplitude, (B) the average total wheel running 

activity and (C) the phase angle of entrainment of aged and young mice placed in LD for two 

weeks (n=6-7 per group). There was dampened total wheel running activity (P<0.05) and a 

delayed onset of wheel running activity (P<0.001) in aged mice. 

 

 When placed in DD conditions for two weeks, comparison of the mean free 

running period between aged and young mice was assessed using an independent t-test. 

Aged mice display a lengthened free running period, however, independent t-test found 

no statistically significant difference between aged and young, with free running periods 

of 23.96 ± 0.06 hrs and 23.73 ± 0.09 hrs respectively (P>0.05). Under housing in DD 

conditions, independent t-tests showed rhythm amplitude to be significantly different 

between aged (1113.68 ± 88.4) and young adult mice (1511.13 ± 110.1, P<0.05). In 

addition, there were significant differences also seen in total wheel running activity in 

aged animals (13036.19 ± 2321.2) in contrast to young adult animals (21522.57 ± 1503.8, 

P<0.05) when placed into DD conditions. These results are also displayed in previous 

actograms (Figure 4.4).  
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Figure 4.4: Bar graphs showing (A) the FRP (B) the average amplitude and (C) the average total 

wheel running activity of aged and young mice placed in DD for two weeks (n=6-7 per group). 

There was significant dampened average amplitude and reduced total wheel running activity in 

aged mice (P<0.05). There was a lengthened FRP in aged animals (P>0.05).  

 

Table 5: Assessment of core circadian parameters under LD and DD conditions. Table 

displays rhythm amplitude, FRP and total wheel running activity for young and aged animals in 

LD and DD conditions. * denotes, P<0.05.  

 

 Young Aged 

Rhythm amplitude in LD 1938.35 ± 103.09 1640.22 ± 136.15 

Total wheel running activity in LD 20402.58 ± 2564.1 11586.19 ± 1708.6 * 

Phase angle of entrainment in LD (min) -13.99 ± 1.65 -33.86 ± 1.94 *** 

FRP in DD (h) 23.73 ± 0.09 23.96 ± 0.06 

Rhythm amplitude in DD 1511.13 ± 110.1 1113.68 ± 88.4 * 

Total wheel running activity in DD 21522.57 ± 1503.8 13036.19 ± 2321.2 * 

 



 

 

174 

 

4.3.2 SCN and PVN neurochemistry in aged mice compared to young wild type mice 

 

4.3.2.1 p65 expression in the SCN and PVN of aged and young mice at ZT6 or ZT18. 

 

A two-way ANOVA was used to assess whether there was a main effect of either 

age or time on p65 expression in the SCN, or if there is an interaction effect between the 

two variables. There was no main effect of time (F1,22=0.283, P=0.601) nor was there a 

main effect of age (F1,22=5.65, P=0.029). There was no significant interaction effect 

between the two variables (F1,22=3.619, P=0.073, Figure 4.5) for p65 expression levels in 

the SCN.  

 

Figure 4.5: (A) Photomicrographs and (B) bar charts of the SCN illustrating the expression of 

the p65 in young and aged mice at two different timepoints, ZT6 and ZT18 (scale bar 100µm). 

There is p65 upregulation in aged mice compared to control at ZT18. * denotes P<0.05. 

 
  When assessing the PVN it was revealed that there was no main effect of time 

(F1,16=0.919, P=0.357). There was also no main effect of age (F1,16=0.001, P=0.976). 

Finally, there was no significant interaction effect between the two variables (F1,16=2.093, 

P=0.174, Figure 4.6) in relation to p65 expression in the PVN. 
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Figure 4.6: (A) Photomicrographs and (B) bar charts of the PVN- illustrating the expression of 

the p65 in young and aged mice at two different timepoints, ZT6 and ZT18 (scale bar 100µm). 

There is no significant p65 upregulation between age groups. 

 

4.3.2.2 p-IκB expression in the SCN and PVN of aged and young mice at ZT6 or ZT18. 

 

A two-way ANOVA was used to assess whether there was a main effect of either 

age or time on p-IκB expression in the SCN, or if there is an interaction effect between 

the two variables. There was no main effect of time (F1,18=0.027, P=0.872). There was an 

overall main effect of age (F1,18=5.98, P=0.028). An independent t-test revealed that 

young (10.51 ± 1.41) compared to aged (5.00 ± 1.38, P=0.017). There was no significant 

interaction effect between the two variables (F1,18=0.004, P=0.949, Figure 4.7) for p-IκB 

expression levels in the SCN.  

Figure 4.7: (A) Photomicrographs and (B) bar charts of the SCN, illustrating the expression of 

the p-IκB in young and aged mice at two different timepoints, ZT6 and ZT18 (scale bar 100µm). 

There is no significant p-IκB alterations between age groups. 
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Investigation of the PVN then took place, where there was found to be no main 

effect of time (F1,17= 0.616, P=0.447). There was also no main effect of age (F1,17= 1.150, 

P=0.303). A significant interaction effect was found between the two variables (F1,17= 

5.422, P=0.037, Figure 4.8). An independent t-test revealed that young (13.71 ± 4.36) 

compared to aged (29.18 ± 4.35, P=0.042). 

  

 

 

 

 

 

 

 

 

 

 

Figure 4.8: (A) Photomicrographs and (B) bar charts of the PVN, illustrating the expression of 

the p-IκB in young and aged mice at two different timepoints, ZT6 and ZT18 (scale bar 100µm). 

There is significant upregulation of p-IκB between young compared to aged at ZT18. 

 

4.3.2.3 p-IκK expression in the SCN and PVN of aged and young mice at ZT6 or ZT18. 

 

A two way ANOVA was used to assess whether there was a main effect of either 

age or time on p-IκK expression in the SCN, or if there is an interaction effect between 

the two variables. There was no main effect of time (F1,16=0.849, P=0.375). There also no 

main effect of age (F1,16=2.88, P=0.115). There was no significant interaction effect 

between the two variables (F1,16=0.126, P=0.728, Figure 4.9) for p-IκK expression levels 

in the SCN. 
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Figure 4.9: (A) Photomicrographs and (B) bar charts of the SCN, illustrating the expression of 

the p-IκK in young and aged mice at two different timepoints, ZT6 and ZT18 (scale bar 100µm). 

There is no significant alteration of p-IκK expression between both groups.  

 

In addition, a two-way ANOVA was used to assess whether there was a main 

effect of either age or time on p-IκK expression in the PVN, or if there is an interaction 

effect between the two variables. There was no main effect of time (F1,12=4.527, 

P=0.066). There also no main effect of age (F1,12=0.521, P=0.491). There was no 

significant interaction effect between the two variables (F1,12=1.169, P=0.311, Figure 

4.10) for p-IκK expression levels in the PVN.  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.10: (A) Photomicrographs and (B) bar charts of the PVN, illustrating the expression of 

the p-IκK in young and aged mice at two different timepoints, ZT6 and ZT18 (scale bar 100µm). 

There is no significant alteration of p-IκK expression between both groups.  
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4.3.2.4 c-Rel expression in the SCN and PVN of aged and young mice at ZT6 or ZT18. 

 

A two-way ANOVA was used to assess whether there was a main effect of either 

age or time on c-Rel expression in the SCN, or if there is an interaction effect between 

the two variables. There was no main effect of time (F1,18=2.261, P=0.155). There also no 

main effect of age (F1,18=2.217, P=0.159). There was no significant interaction effect 

between the two variables (F1,18=0.040, P=0.844, Figure 4.11) for c-Rel expression levels 

in the SCN. 

 

 

 

 

 

 

 

 

 

Figure 4.11: (A) Photomicrographs and (B) bar charts of the SCN, illustrating the expression of 

the c-Rel in young and aged mice at two different timepoints, ZT6 and ZT18 (scale bar 100µm). 

There is no significant alteration of c-Rel expression between both groups.  

 

PVN analysis also used two-way ANOVA to assess whether there was a main 

effect of either age or time on c-Rel expression, or if there is an interaction effect between 

the two variables. There was no main effect of time (F1,14=3.917, P=0.076). There was 

also no main effect of age (F1,14=0.032, P=0.862). There was no significant interaction 

effect between the two variables (F1,14=0.141, P=0.715, Figure 4.12) for c-Rel expression 

levels in the PVN. 
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Figure 4.12: (A) Photomicrographs and (B) bar charts of the PVN, illustrating the expression of 

the c-Rel in young and aged mice at two different timepoints, ZT6 and ZT18 (scale bar 100µm). 

There is no significant alteration of c-Rel expression between both groups.  

 

4.3.3 The effects of acute LPS treatment on SCN and PVN neurochemistry in aged 

mice 

 

4.3.3.1 PER1 expression in the SCN and PVN following LPS 24 post treatment. 

 

 The SCN and PVN of aged mice were both examined for PER1 expression 24 

hours post LPS or saline treatment. Analysing levels of PER1 immunoreactivity was 

carried out by manual count, followed by statistical analysis using an independent t-test 

to calculate whether there were alterations in the expression of PER1 in the SCN and 

PVN following treatment of either LPS or control at ZT4. Results indicate that there was 

no significant effect of treatment LPS (22.20 ± 5.46) versus saline (24.60 ± 3.94, P>0.05; 

Figure 4.13) on PER1 expression levels in the SCN. Further assessment was carried out 

of PER1 expression in the SCN subdivisions-core and shell. No significant differences 

were found in PER1 expression in the core of LPS mice (3.40± 1.53) when compared to 

controls (5.20 ± 0.86, P>0.05). There was no significant change of PER1 expression in 

the shell of LPS mice (18.8 ± 4.35) when compared to controls (19.4 ± 3.41, P>0.05). 

There was also no statistically significant effect of treatment of LPS (22.5 ± 4.11) and 

saline (15.75 ± 5.54, P>0.05; Figure 4.13) on the level of PER1 expression in the PVN. 
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Figure 4.13: PER1 expression after 24 hours post LPS treatment in aged mice. (A) 

Representative photomicrographs illustrating of PER1 expression in the mid rostro-caudal level 

of the SCN (scale bar = 100µm) and (B) bar charts of the mid rostro-caudal level of the SCN, the 

SCN ventrolateral core and the dorsomedial shell of the SCN, illustrating the expression of the 

PER1 after treatment with either LPS or control. (C) Photomicrographs and bar graphs illustrating 

quantification of levels of PER1 immunostained cells in aged sections of the PVN of control and 

LPS treatment groups, 24 hours post treatment. There was no significant alterations of PER1 

expression between treatment groups.  

 

 

4.3.3.2 p65 expression in the SCN and PVN following LPS 24 post treatment. 

 

 The SCN and PVN of aged mice were both examined for p65 expression 24 hours 

following LPS or saline treatment. Analysing levels of p65 immunoreactivity was carried 

out by IOD. Statistical analysis using an independent t-test to calculate whether there 
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were differences in expression of p65 in the SCN and PVN following treatment of either 

LPS or control at ZT4 was carried out. Results indicate that there were significant 

alterations following treatment of LPS (14.37 ± 1.74) versus saline (7.06 ± 1.10, P<0.01; 

Figure 4.14) on p65 expression levels in the SCN. In addition, assessment of the core and 

shell for p65 expression was undertaken. There was no significant differences found in 

p65 expression in the core of LPS mice (14.96± 1.90) when compared to controls (11.04 

± 1.86, P>0.05). There was statically significant upregulation of p65 expression in the 

shell of LPS mice (14.14 ± 1.96) when compared to controls (5.87 ± 1.04, P<0.01). There 

was also a statistically significant effect of treatment of LPS (19.42 ± 3.31) and saline 

(10.00 ± 1.78, P<0.05; Figure 4.14) on the level of p65 expression in the PVN. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.14: p65 expression after 24 hours post LPS treatment in aged mice. (A) 

Representative photomicrographs illustrating of p65 expression in the mid rostro-caudal level of 

the SCN (scale bar = 100µm) and (B) bar charts of the mid rostro-caudal level of the SCN, the 

SCN ventrolateral core and the dorsomedial shell of the SCN, illustrating the expression of p65 
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after treatment with either LPS or control. (C) Photomicrographs and bar graphs illustrating 

quantification of levels of p65 immunostained cells in aged sections of the PVN of control and 

LPS treatment groups, 24 hours post treatment (scale bar 100µm). There was significant 

upregulation of p65 in the mid rostro-caudal level of the SCN, the dorsomedial shell of the SCN 

and the PVN after LPS treatment. 

 

4.3.3.3 p-IκB expression in the SCN and PVN following LPS 24 post treatment. 

 

 The SCN and PVN of aged mice were both examined for p-IκB expression 24 

hours post LPS or saline treatment. Analysing levels of p-IκB immunoreactivity was 

carried out by IOD, followed by statistical analysis using an independent t-test to calculate 

whether there were alterations in the expression of p-IκB in the SCN and PVN following 

treatment of either LPS or control at ZT4. Results indicate that there was no significant 

effect of treatment LPS (8.90 ± 1.70) versus saline (7.28 ± 2.23, P>0.05; Figure 4.15) on 

p-IκB expression levels in the SCN. Further assessment was carried out of p65 expression 

in the SCN subdivisions-core and shell. No significant differences were found in p-IκB 

expression in the core of LPS mice (12.11± 2.37) when compared to controls (7.62 ± 2.97, 

P>0.05). There was no statistically significant upregulation of p65expression in the shell 

of LPS mice (9.11 ± 1.77) when compared to controls (6.19 ± 1.77, P>0.05). There was 

also no statistically significant effect of treatment of LPS (21.34 ± 2.46) and saline (26.06 

± 5.34, P>0.05; Figure 4.15) on the level of p-IκB expression in the PVN. 
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Figure 4.15: p-IκB expression after 24 hours post LPS treatment in aged mice. (A) 

Representative photomicrographs illustrating of p-IκB expression in the mid rostro-caudal level 

of the SCN (scale bar = 100µm) and (B) bar charts of the mid rostro-caudal level of the SCN, the 

SCN ventrolateral core and the dorsomedial shell of the SCN, illustrating the expression of p65 

after treatment with either LPS or control. (C) Photomicrographs and bar graphs illustrating 

quantification of levels of p65 immunostained cells in aged sections of the PVN of control and 

LPS treatment groups, 24 hours post treatment.  

 

4.3.4 The effects of chronic LPS treatment on SCN neurochemistry in aged mice 

 

4.3.4.1 p65 expression in the SCN and PVN following LPS treatment post 16 months. 

 

 The SCN and PVN of aged mice (16 months) were both examined for p65 

expression following an acute LPS or saline treatment administered at 3 months at ZT4. 

Analysing levels of p65 immunoreactivity was carried out by IOD. Statistical analysis 

using an independent t-test to calculate whether there was differences in expression of 

p65 in the SCN and PVN following chronic treatment of either LPS or control. Results 

indicate that there was no significant alterations following treatment of LPS (21.55 ± 

5.25) versus saline (15.21 ± 2.45, P>0.05; Figure 4.16) on p65 expression levels in the 

SCN. In addition, assessment of the core and shell for p65 expression was undertaken. 

There was no significant difference found in p65 expression in the core of LPS mice 

(25.47± 4.09) when compared to controls (14.87 ± 4.31, P>0.05), nor was there 

significant alterations of p65 expression in the shell of LPS mice (22.44 ± 6.88) when 

compared to controls (15.52 ± 2.66, P>0.05). There was also no statistically significant 

effect of treatment of LPS (22.39 ± 4.57) and saline (11.86 ± 1.46, P>0.05; Figure 4.16) 

on the level of p65 expression in the PVN. 
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Figure 4.16: p65 expression 16 months post LPS treatment in aged mice. (A) Representative 

photomicrographs illustrating of p65 expression in the mid rostro-caudal level of the SCN (scale 

bar = 100µm) and (B) bar charts of the mid rostro-caudal level of the SCN, the SCN ventrolateral 

core and the dorsomedial shell of the SCN, illustrating the expression of p65 after treatment with 

either LPS or control after 16 months. (C) Photomicrographs and bar graph illustrating 

quantification of levels of p65 immunostained cells in aged sections of the PVN of control and 

LPS treatment groups, 16 months post treatment.  

 

4.3.4.2 p-IκB expression in the SCN and PVN following LPS treatment post 

treatment. 

 

            The SCN and PVN of aged mice (16 months) were both examined for p-IκB 

expression following an acute LPS or saline treatment administered at 3 months at ZT4. 

Analysis of levels of p-IκB immunoreactivity was carried out by IOD. Statistical analysis 
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using an independent t-test to calculate whether there were differences in expression of 

p-IκB in the SCN and PVN following chronic treatment of either LPS or control. Results 

indicate that there was no significant alterations following treatment of LPS (4.17 ± 1.93) 

versus saline (5.77 ± 0.80, P>0.05; Figure 4.17) on p-IκB expression levels in the SCN. 

In addition, assessment of the core and shell for p-IκB expression was undertaken. There 

were no significant differences found in p65 expression in the core of LPS mice (4.85 ± 

1.98) when compared to controls (11.86 ± 4.47, P>0.05), nor was there significant 

alterations of p-IκB expression in the shell of LPS mice (3.40 ± 1.18) when compared to 

controls (3.18 ± 0.81, P>0.05). There was also no statistically significant effect of 

treatment of LPS (19.26 ± 4.66) and saline (21.61 ± 7.32, P>0.05; Figure 4.17) on the 

level of p-IκB expression in the PVN. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.17: p-IκB expression after 16 months post LPS treatment in aged mice. (A) 

Representative photomicrographs illustrating of p-IκB expression in the mid rostro-caudal level 

of the SCN (scale bar = 100µm) and (B) bar charts of the mid rostro-caudal level of the SCN, the 

p
-I

κB
-i

r/
P

V
N

 
(A)                                                                             Saline                      LPS 

(C) 

p
-I

κB
-i

r/
SC

N
 

p
-I

κB
-i

r/
C

o
re

 

p
-I

κB
-i

r/
Sh

el
l 

(B)                                                                             

Saline         LPS 



 

 

186 

 

SCN ventrolateral core and the dorsomedial shell of the SCN, illustrating the expression of p-IκB 

after treatment with either LPS or control after 16 months. (C) Photomicrographs and bar graph 

illustrating quantification of levels of p-IκB immunostained cells in aged sections of the PVN of 

control and LPS treatment groups, 16 months post treatment. 
 

4.4 Discussion 

 

 The circadian clock plays a role in the synchronisation of physiology and 

metabolism in humans and animals, however, the circadian clock is not resilient to the 

ageing process which results in the decline of the circadian clocks synchronisation ability 

(Costa & Ripperger, 2015). Age related alterations in behavioural rhythms may be due to 

a disrupted central pacemaker, or may involve changes along the input pathway such as 

the RHT, IGL and the GHT. Deterioration in any of these input components as a result of 

ageing can cause circadian rhythm changes (Weinert, 2000). Finally, it may also involve 

reduced coupling between the SCN and its output pathways (Biello, 2009; Ruby et al., 

1998). The PVN was also investigated due to the fact it is one of the main projection areas 

for the SCN and is implicated in circadian regulation of autonomic and endocrine function 

(Buijs et al., 2003; Mavroudis et al., 2013; Saper et al., 2005). 

 

4.4.1 Examination of locomotor rhythm behaviour in the normal ageing and 

neurodegeneration  

 

As discussed previously, ageing in humans and mammals can cause disruptions 

and deterioration in circadian rhythms, with a decrease in amplitude and activity of 

rhythmic behaviour. In the current study, findings showed a decrease in the total wheel 

running activity in aged mice when placed in LD. Similar finding were displayed in 

relation to activity in LD, when comparing mice aged 3 months to 18 months old (Farajnia 

et al., 2012). After transferring into DD, a decrease in amplitude and total wheel running 

activity were also discovered. 

  Fragmentation of sleep in ageing subjects also occurs, with difficulty staying 

awake during the daytime, and sleep loss during the night which results in diminished 

quality of life for subjects (Hofman & Swaab, 2006; Nakamura et al., 2011; Swaab et al., 

1996). The fragmentation of sleep in increased further in neurodegenerative diseases such 

as AD (Bonanni et al., 2005; Vitiello & Borson, 2001), PD (Kudo et al., 2011) and HD, 
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(Morton, 2013; Morton et al., 2005; Reddy & O’Neill, 2010) and, as each disease 

progresses, evidently so does sleep disturbance with higher nocturnal awakening and 

diurnal naps (Bliwise et al., 1995).  This fragmentation of activity-rest cycle sleep in 

neurodegenerative diseases usually leads to the institutionalisation of affected patients 

(Reddy & O’Neill, 2010). However, in the current study this was not recognised when 

analysing resting periods of normal ageing mice in comparison to young mice which can 

be seen in actograms (Figure 4.2). Locomotor activity is low in both groups when in their 

resting phase. Perhaps the low locomotor activity during the aged mice resting period was 

due to the fact that the mice used in this study were 16 months old. If older animals were 

used in this study, for example 24 months old mice, they may have had a more fragmented 

pattern in their resting phase, with recent findings displaying a higher incidence of 22-24 

month old mice awake at the end of their resting period in comparison to controls 

(Farajnia et al., 2012; Wimmer et al., 2013). Furthermore, if the mice used in this 

experiment had been a neurodegenerative model there may also have been disturbances 

in their resting phase (Kuljis et al., 2012; Wulff et al., 2010). Another finding from the 

current study through observation from the actograms (Figure 4.2), was that there was an 

evident increase in fragmentation across the 12 hour active phase in ageing animals, with 

activity times being shorter than young adult mice. There was also longer periods of rest 

intervening between activity bouts, displayed in these ageing animals. Similar finding of 

fragmentation were demonstrated in 19-22 month old ageing mice (Valentinuzzi et al., 

1997). 

The double plotted actograms also demonstrated the reduction of total wheel 

running activity in ageing mice when compared to young mice in this current study 

whether in LD or DD. Other studies carried out also show a reduction in locomotor 

activity due to age in comparison to young mice (Farajnia et al., 2012; Godbout & 

Johnson, 2009). In addition, an immune challenge of LPS injections in ageing mice 

exacerbated locomotor activity further, causing an added significant decrease between 

both groups (Godbout & Johnson, 2009). 

 Evident change is displayed in aged subjects circadian rhythms locomotor 

activity when investigating the phase angle of entrainment to the LD cycle (Turek et al., 

1995). Entrainment to the LD cycle is of vital importance to circadian clocks, and it can 

be affected by age dependent variations in period and photic sensitivity. Some studies 

have shown that aged hamsters exhibit earlier locomotor activity onset when light offset 
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occurred, when compared to young adult hamsters (Turek et al., 1995; Zee et al., 1992). 

Whereas, other findings suggest aged mice in LD displayed a delayed activity onset after 

lights turn off in comparison to controls (Possidente et al., 1995; Valentinuzzi et al., 

1997). In this current study similar results were recognised when evaluating ageing mice 

entrained to a 12:12 LD cycle. There was a significant delay in wheel running activity 

onset when light offset arose in ageing mice. The significant delayed phase angle of 

entrainment in ageing mice is consistent with the lengthening of the FRP displayed in this 

current study. 

Activity rhythms and circadian amplitude were studied to compare ageing in 

rodent subjects. The first study was undertaken in 1912 which found a decrease in 

amplitude as ageing progressed in rats (Slonaker, 1912.)  There were also decreases found 

in the activity rhythm and amplitude in ageing mice and this reduction continued as 

ageing progressed (Valentinuzzi et al., 1997; Weinert & Weinert, 1998). Reduction in 

amplitude in aged animals was discovered when analysing the electrical activity rhythms 

in SCN slice cultures (Aujard et al., 2001; Li & Satinoff, 1998; Ruby et al., 1998; 

Watanabe et al., 1995). When analysing the circadian locomotor rhythms during wheel 

running activity in this current study, it was found that amplitude had significantly 

decreased in aged mice when compared to young adult mice when they were placed in 

DD. This result was comparable to findings by Nakamura and colleagues who also found 

an amplitude decline of circadian locomotor rhythms in similar ageing mice (Nakamura 

et al., 2011).  

When examining the FRP in wheel running rhythms in the current study, there 

was a lengthening of the FRP in ageing mice. However, this was found not to be 

significant when compared to young mice in DD. This correlates to findings from 

previous studies. When investigating the period length in wheel running rhythms, there 

were no alterations between aged mice and control (Kolker et al., 2004; Wax, 1975; 

Weinert, 2000). There has been more inconsistent results found when investigating the 

FRP of wheel running in mice compared to other rodents, with some studies finding 

lengthened FRP’s (Mayeda et al., 1997; Possidente et al., 1995; Valentinuzzi et al., 1997) 

and others discovering a shortening of FRP (Daan & Pittendrigh, 1976). In general, 

previous studies have reported that the period of the circadian locomotor activity rhythms 

is shortened in ageing rats and hamsters when compared to control subjects (Pittendrigh 

& Daan, 1974; Rosenberg et al., 1991; Witting et al, 1994). There is also variations 
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reported in human studies. Period lengthening was reported in one study even though it 

is thought that the period shortens during human ageing (Kendall et al., 2001). Whereas, 

other studies exhibit no significant difference of period between aged and young human 

subjects, with an average period of 24.8 hours (Czeisler et al., 1999). 

The variations between findings when studying the affect ageing has on circadian 

rhythms is still unclear. Disparities between results may also be due to the fact different 

rodents are used in these studies. Another reason for these inconstancies may be due to 

that fact that studies used mice ageing from 16 months to 24 months which could be the 

reason for variations of FRP, re-entrainment and entrainment results. A variation in period 

length displayed from different studies, may also be due to the fact that some studies were 

not monitored for a long enough duration. Finally, different laboratories have used 

different experimental conditions such as altered LD cycles for example 12:12 

(Valentinuzzi et al., 1997), 14/10 (Scarbrough et al., 1997; Turek et al., 1995) and 16/8 

(Possidente et al., 1995) which could also impact on findings.  

 

4.4.2 Examination of SCN and PVN neurochemistry in the normal healthy ageing 

mice 

 

Reduced p50 DNA binding was displayed in aged mice when compared to young 

in wildtype mice (Bernal et al., 2014). Whereas other studies established that there is 

increased in nucleus-located NF-κB binding to DNA in the cerebellum and in the frontal 

cortex of aged rats. There were no alterations in the nuclear level of p50, p52 and p65 

proteins components of the NF-κB displayed between the different age groups (Korhonen 

et al., 1997). Basal levels of NF-κB DNA-binding increased in the hippocampus and basal 

forebrain when comparing young and aged rats, whereas no significant difference was 

observed in the cortex and cerebellum between the two groups at 3 months and 30 months 

old respectively. When investigation took place of individual NF-κB proteins using 

supershift analysis by EMSA, only p65 and p50 were present in the brain areas studied. 

Using Western blot analysis, p65 and p50 were measured in nuclear and cytoplasmic 

extracts from 3 and 30 months old hippocampi. The NF-κB subunit, p65, levels increased 

in nuclear extracts with age, while levels attenuated in the cytoplasm. However, p50 

nuclear extract levels were comparable between young and aged rats, with low 

cytoplasmic levels arising in both groups (Toliver-Kinsky et al., 1997).  
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Using immunohistochemistry in our studies we found that there was no significant 

difference of p65 expression between young mice and ageing mice in the SCN or PVN in 

either the subjective day and night. This may be due to the fact that the animals used in 

this study were ageing 16 months old mice, and perhaps we would have seen a significant 

upregulation of p65 expression had the mice been between 24-30 months old. Kinsky and 

colleagues had also examined NF-κB DNA binding levels of 18 month old rats and found 

no significant alterations compared to 3 months old rats. Therefore, the exact age may 

play a role in findings.  

Other NF-κB proteins such as c-Rel, p52 and Rel B had no effect on 

oligonucleotide-binding intensity, therefore, not binding to NF-κB sequence mofit within 

the hippocampus and basal forebrain. Western analysis also confirmed similar results 

with no detection occurring for the 3 proteins  (Toliver-Kinsky et al., 1997). In our study, 

p-IκB levels were not significantly different between the two age groups of mice in the 

SCN in either the subjective day or night. However, there was an upregulation of p-IκB 

in the PVN in the subjective night when comparing ageing and young animals. This may 

be due to the fact that there is an oscillation alteration at ZT18 in ageing animals when 

compared to controls. Furthermore, our analysis using immunohistochemistry found that 

the NF-κB protein c-Rel and p-IκK had low levels of nuclear staining observed in the 

SCN or PVN under basal conditions at both time points and age groups. To develop 

treatments to increase lifespan in healthy ageing, understanding the roles molecular 

ageing and anti-ageing mechanisms play is essential. 

 

4.4.3 Examination of SCN and PVN neurochemistry 24 hours post LPS treatment 

in ageing mice 

 

 The levels of expression of NF-κB were also studied in the ageing SCN and PVN 

after administration of an acute peripheral immune challenge using LPS. As discussed in 

the previous chapter, LPS induces a systemic inflammatory response, which in turn 

increases systemic levels of pro-inflammatory cytokines such as TNF-α and IL-1β. NF-

κB controls the transcription of genes involved in acute phase and inflammatory 

responses, for example TNF-α, IL-1, 2, and 6 and the immunoglobulin light chain κ gene 

(Toliver-Kinsky et al., 1997). Activating the peripheral innate immune system using LPS 

produces an exaggerated neuroinflammatory response and extends sickness behaviour 
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(Godbout et al., 2005a). The PVN contains the LPS receptor TLR4 (Laflamme & Rivest, 

2001), therefore, the PVN may be directly stimulated by and respond to an LPS immune 

challenge in the ageing brain.  

Studies have displayed that the use of α-tocopherol administered i.c.v for 3 

consecutive days before a LPS i.p injection, resulted in reduced levels of NF-κB in the 

brain and also improved the recovery of sickness behaviour induced by LPS (Godbout et 

al., 2005b). Hence, antioxidants such as α-tocopherol can lessen NF-κB activity, and may 

play a vital role in attenuating inflammation in diseased aged brains.  

The NF-κB component, p65, translocate to the nucleus from the cytoplasm when 

stimulated by LPS (Moynagh, 2005b). The SCN and PVN were sensitive to immune 

challenge in this study as the levels of p65 expression were significantly upregulated in 

the SCN and PVN in ageing mice compared to controls after 24 hours. Previous studies 

had established that there was an upregulation of p65 in the SCN and PVN post 24 hours 

treatment of LPS. A study carried out by Beynon, also discovered that there was 

upregulation of p65 in the PVN 6 hours post LPS treatment compared to controls, but this 

significant increase in p65 levels after 6 hours was not observed in the SCN. Therefore, 

the autonomic/endocrine response to LPS immune challenge seems to occur before the 

circadian clock (Beynon & Coogan, 2010). When investigating p-IκB levels after an acute 

peripheral immune challenge, there were no significant alterations displayed in the SCN 

nor was there any in the PVN in comparison to saline controls. In the previous chapter 

we established that p-IκB was significantly upregulated in the SCN after an LPS immune 

challenge in animals aged 3 months compared to saline controls, therefore, this result may 

be due to expression patterns changing as mice age.  

The use of R6/2 mice, the transgenic model of HD, can be used to study 

pathophysiological alterations in the circadian clock. There was variation of expression 

of the circadian clock genes mBmal1 and mPer2 in the SCN. Firstly, the mRNA levels of 

mBmal1 were reduced and lacked a significant circadian oscillation. Secondly, when 

monitoring the expression of mPer2 the circadian nadir of this gene was attenuated in this 

mouse model compared to WT mice at week 16. There was also marked disruption of 

expression of the circadian clock gene mPer2 in the striatum and motor cortex (Morton 

et al., 2005). IHC was used to investigate PER2 expression rhythms within the SCN, to 

determine if ageing affected the molecular machinery necessary to produce circadian 

oscillations. There was similar PER2 immunoreactivity displayed throughout the SCN at 
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four different time points in the 24 hour cycle in both the ageing mice and controls. Hence, 

ageing did not seem to cause disruption to the molecular clockwork when examining 

PER2 expression in vivo, (Nakamura et al., 2011) nor did it affect Per1 expression over a 

24 hour period in hamsters (Kolker et al., 2003). Another study also established that the 

circadian clock gene Per1 was elevated in the PVN following LPS administration, 

however, this was not seen in the SCN in young adult mice (Takahashi, 2001). 

Since the PVN is thought to be involved in mediating output information 

communicated from the SCN (Kalsbeek et al., 2010), we examined whether there was a 

change in clock gene PER1 expression within the PVN following LPS administration, as 

this may affect rhythmic outputs of ageing animals. When analysing the SCN in our study 

of ageing mice compared to controls 24 hours post LPS administration, PER1 expression 

in both age groups were similar in the early subjective day. Comparable results were also 

obtained when analysing clock gene expression in the PVN, with no significant PER1 

alterations displayed between aged and young adult mice. Therefore, we do not find 

evidence for disruption of the molecular clockwork in ageing mice after an immune 

challenge with this in vivo assay. 

 

4.4.4 Examination of SCN and PVN neurochemistry 16 months following LPS 

treatment in ageing mice 

  

Chronic inflammation is associated with normal and pathological ageing (Jurk et 

al., 2014). Inflammation’s function is to protect the body’s defence but can end up 

attaching itself leading to chronic inflammatory diseases (Neriah & Karin, 2011). 

Inflammation and microglial activation play a role in the pathogenesis of many chronic 

human diseases in the ageing including neurodegenerative diseases AD, HD, and PD 

(Nguyen et al., 2002). NF-κB activation is involved in these neurodegenerative diseases. 

In AD patients, activated NF-κB has been found in neurons and glial cells in Aβ plaque 

surrounding areas in the brain (Kaltschmidt et al., 1997; O’Neill & Kaltschmidt, 1997). 

Furthermore, NF-κB is activated in cultured neurons and glia by Aβ stimulation (Akama 

et al., 1998; Bales et al., 2000; Kaltschmidt et al., 1997). Studies have found that amyloid 

can be attenuated in vitro and in transgenic mice using NF-κB inhibitors (Chen et al., 

2005; Eriksen et al., 2003; Sung et al., 2004), suggesting a role for NF-κB in the 

pathogenesis of AD. Targeting NF-κB has also been investigated in relation to treatment 
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for PD. Flood and colleagues discovered that inhibitors specific for IKKβ or IKKγ were 

able to inhibit neurodegeneration of TH+ DA- producing neurons in both the murine and 

primate models of PD. Therefore, it would suggest that targeting the NF-κB pathway to 

control chronic inflammation through the inhibition of the IKK complex, may be a vital 

therapeutic method to halt and reverse DA neuron loss in PD (Flood et al., 2011). 

Chronic inflammation was administered by a peripheral i.p single dose of 5mg/kg 

LPS in 3 month old WT mice based on previous studies of endotoxin shock. Previous 

studies displayed that a single LPS treatment can cause sepsis shock resulting in long 

lasting neuroinflammation and progressive neurodegeneration, with upregulation of 

TNF-α and components of IL-1β system occurring, therefore, inducing a chronic effect 

as a result of acute treatment (Qin et al., 2007; Weberpals et al., 2009). Qin and colleagues 

injected LPS into both WT mice and mice lacking the TNFα receptor (TNF-α R1/R2-/-). 

TNF-α mRNA and protein was raised for up to 10 months when examined in the brain 

when analysing WT mice. Furthermore, application of LPS activated microglial in WT 

mice. LPS administration did not activate microglial or increase pro-inflammatory 

cytokines in mice lacking the TNFα receptor. This proves the importance of the TNFα 

receptor in transferring peripheral inflammation in the form of LPS across the BBB to the 

brain to allow for activation of microglial and increased pro-inflammatory cytokines. 

When a systemic injection of TNFα was administered to WT mice it created TNFα 

mRNA and protein in the brain, along with pro-inflammatory factors such as IL-1β and 

NF-κB p65 subunit. Once again mice lacking TNFα receptors were not able to induce 

TNFα or other pro-inflammatory factors in the brain (Qin et al., 2007).  

Our findings found that the NF-κB component, p65, was not statistically 

significant in the SCN and PVN, 13 months post LPS treatment in 16 month old mice. 

Another component of the NF-κB pathway, p-IκB, showed no significant difference in 

chronic inflammation in the SCN or PVN of aged mice.  Similar results were obtained by 

O‘Callaghan and colleagues when examining the chronic effects of sepsis on the SCN 

neurochemistry 3 months post LPS treatment. Two markers p65 and p-IκB did not show 

that NF-κB signalling is chronically upregulated in the SCN 3 months post LPS treatment 

(O’Callaghan et al., 2012). Studies carried out by the Qin group were comparable to ours, 

as they found no significant level of induced NF-κB p65 expression after administration 

of a single peripheral dose of  LPS, at 5mg/kg post 10 months treatment in the brain (Qin 

et al., 2007). Chronic neuroinflammation caused by peripheral LPS application is 
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transferred from the peripheral to the brain by TNF-α (Qin et al., 2007) which may explain 

some upregulation of NF-κB p65 in the SCN and PVN in the above experiments. Qin and 

colleagues demonstrated that mice lacking TNF-α failed to display neuroinflammation in 

the brain following a single dose of peripheral LPS.  

In conclusion, the findings from this chapter do not indicate any permutations in 

the signalling properties of NF-κB in either the SCN or PVN of healthy ageing mice, in 

either the subjective day or night. There were changes in the circadian timekeeping 

system between ageing and young adult mice when monitoring their wheel running 

activity, and this may be a result of disruption to the central pacemaker, or due to 

alterations along the input pathway such as the RHT, IGL and the GHT. When monitoring 

the effect following an acute LPS treatment on the neurochemistry of the SCN and PVN 

after 24 hours in ageing mice, the NF-κB subunit p65 was upregulated in ageing mice. 

Other components of NF-κB such as p-IκB and clock genes PER1 were not altered 

following an acute LPS treatment in ageing animals. Finally, when analysing acute LPS 

application, 16 months post treatment, there is no variations in the signalling properties 

of NF-κB displayed in this study in both the SCN and PVN. It would be of interest for 

future studies to investigate what effect older aged mice have on the normal healthy brain, 

as 24 month old mice may in fact have significant upregulation of NF-κB signalling 

components including p65, since NF-κB activity was seen to increase in the MBH the 

more mice aged (Zhang et al., 2013). Another future study of interest would be to see 

how circadian rhythms may be affected in NF-κB KO models with regard to ageing, 

whether their circadian parameters are diminished or stronger than WT ageing mice.  
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Chapter Five 

Analysing PER2::LUC and NF-κB::LUC mice in the SCN 

using in vitro techniques 

 

5.1 Introduction  

 

 Transgenic or knockout animals are commonly used tools to model inflammation 

and disease in the immune system using in vivo and in vitro techniques (Ngo et al., 2013; 

Picciotto & Wickman, 1998; Wang et al., 2013; Yoshida et al., 2014; Zhu et al., 2015). 

Knockout mice enable the study of a deleted or inactivated gene, by homologous 

recombination in certain tissues of the body (Capecchi, 2001; Sikorski & Peters, 1997; 

Vogel, 2007). There are multiple mutant mice available for research including various 

knockout and knockin mice. Humans have high levels of genetic homology with mice 

(Guénet, 2005; Pennacchio, 2003), therefore, these mutant mice are vital for investigating 

how a gene may be the cause or contributing factor to certain diseases in humans. 

Furthermore, some mutant mice are utilised to model neurodegenerative diseases (Aguzzi 

et al., 1996; Kudo et al., 2011; Lee et al., 1996; Nazem et al., 2015; Sterniczuk et al., 

2010; Tilstra et al., 2011). 

Alternatively, transgenic knockin reporter mice generally have a fluorescent tag, 

such as GFP (Kuhlman et al., 2000; LeSauter et al., 2003) or luciferase to produce 

bioluminescence (Yamazaki & Takahashi, 2005; Yoo et al., 2004), which can be excited 

with a bioluminescent substrate, and leads to co-expression of a light signal and a target 

gene, which has been inserted into their genome. Using PER1::GFP transgenic mice, it 

was established that GFP expression is rhythmic in the SCN, both in vivo and in vitro 

(LeSauter et al., 2003). Real-time luminescence monitoring of gene expression rhythms, 

using luciferase, was first carried in plants and cyanobacteria (Kondo et al., 1993; Millar 

et al, 1992). The enzyme luciferase, emits lights, by catalysing the oxidation of the 

substrate luciferin to oxyluciferin (Welsh et al., 2005). For this reaction to occur, it 

requires ATP, O2 and Mg2+ (Aflalo, 1991; Baldwin, 1996; de Wet et al., 1987; McNabb 

et al., 2005; Thompson et al., 1991), and this reaction result in the release of a photon at 

562 nm in 90% of catalytic series (Aflalo, 1991). Luciferase is known to have a 

moderately short half-life in mammalian cells, 3-4 hours (Leclerc et al., 2000). It has 
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become a standard method for both in vivo and in vitro reporting of transcriptional activity 

in mammalian cells (de Wet et al., 1987). Luminescence reporting is a useful system for 

analysing circadian studies. It is utilised in non-invasive assays of circadian oscillations, 

and it decreases the number of experimental animals necessary for each study. Cultured 

SCN explants have been reported to oscillate for up to nearly 2 years (Yamazaki & 

Takahashi, 2005). Several luminescent reporter lines using the firefly Luc gene, have been 

generated for the study of circadian rhythms in vivo and in vitro, including PER1::LUC 

rats, PER1::LUC mice and c-Fos::LUC mice (Asai et al., 2001; Geusz et al., 1997; 

Wilsbacher et al., 2002; Yamaguchi et al., 2000; Yamazaki et al., 2000). 

PER2::LUC mice are generally utilised as reporter mice to investigate the circadian 

expression of the PER2 gene. The luminescence can be measured by using media which 

contains luciferin substrate, which correlates with the expression of the PER2 gene. 

Photomultiplier tubes (PMTs) are regularly used to measure the luminescence in either 

tissue or cell cultures (Yamazaki & Takahashi, 2005). In this chapter investigations took 

place using real-time luminescence reporting of circadian gene expression in two mice 

models, PER2::LUC knockin mice and NF-κB::LUC mice. Studies monitoring the effects 

of either an immune challenge, ageing or NF-κB inhibitors had on SCN slice cultures 

were carried out.  

The PER2::LUC mice model is widely used in chronobiology in recent years to 

great effect. This model has a firefly luciferase (luc) gene is inserted in-frame into the 3’ 

end of the endogenous mPer2 gene, between exon 23 and the three primed untranslated 

region (3’UTR) of the B6.129S6-Per2tm1Jt/J. Expression of mPER2::LUC fusion protein 

in real-time can be seen, with the SCN and peripheral tissues in explant cultures 

displaying robust and self-sustained circadian rhythms for up to 3 weeks. Mice that 

contain the PER2::LUC fusion gene displays similar circadian rhythms and also 

behavioural phase shifts, as a result of light, with WT mice, therefore, normal clock 

function is not altered in this knockin mouse model. The PER2::LUC knock-in mice are 

a valuable strain to show real-time reporting of circadian gene expression. Circadian 

patterns of Per2::Luc fusion protein expression is exhibited in the SCN along with 

peripheral tissues including cornea, liver, pituitary, kidney, and lung (Yoo et al., 2004). 

Another useful mouse model was established for monitoring NF-κB activation in 

vivo (Carlsen et al., 2002). This transgenic NF-κB::LUC mice model contains the firefly 

(luc) gene which is driven by two NF-κB binding sites from the kappa light chain 
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enhancer in front of a minimal fos promotor (Voll et al., 2000). Therefore, this knockin 

mouse model expresses luciferase in all cells and tissues where NF-κB is present.  

Real-time in vivo imaging can be carried out in a similar NF-κB knock-in mouse 

containing three NF-κB binding sites from the kappa light chain enhancer in front of a 

minimal fos promotor. This mouse model by i.v injection of luciferin, resulting in a 

bioluminescent reaction due to the presence of NF-κB transcriptional activity in tissues 

and cells (Mann, 2002). Carlsen and colleagues established that administration of LPS or 

TNF-α resulted in a rise in luminescence in organs including skin, lungs, spleen, and the 

small intestine. The liver, kidney, and heart also was affected however, exhibiting less 

NF-κB activity. Additionally, this study involving in vivo imaging displayed chronic 

inflammation in the form of NF-κB activity in joints, which was comparable with R.A 

(Carlsen et al., 2002).  

 

Bioluminescence expression can be obtained also from peripheral mammalian 

oscillators including the liver, lung and pineal (Guenthner et al., 2014; Pezük et al., 2012; 

Yamazaki et al., 2002). When NF-κB activity was monitored in untreated living mice 

following i.v. injection of luciferin, luminescence was identified in the lymph nodes, the 

thymus and along the small intestine (Carlsen et al., 2002). Circadian rhythm can be 

observed using a luciferase reporter system, with bioluminescence remaining rhythmic 

for between 1 to 2 weeks in Rat-1 cells transfected with an mBmal1::luc reporter and 

primary fibroblasts cultured from PER2::LUC knockin mice. Circadian rhythm 

dampening was exhibited in these peripheral oscillators. This is due to the fact that 

peripheral cells need to be resynchronised following a few days in culture, to be able to 

retain circadian rhythmicity (Welsh et al., 2004).  

Circadian expression of clock genes has been displayed in various peripheral 

tissues including the heart, liver, lung, kidney, pineal, pituitary, and cornea, even in the 

absence of the SCN (Abe et al., 2002; Carlsen et al., 2002; Gibbs et al., 2009; Gibbs et 

al., 2014; Li et al., 1999; Tahara et al., 2012; Yamazaki et al., 2002; Yoo et al., 2004). 

Studies have shown how isolated hippocampal microglia display rhythmic expression of 

circadian clock genes (Fonken et al., 2015). Further studies, using PER2::LUC mice, 

showed how hippocampus cultures isolated from the SCN displayed rhythmic Per2 

expression (Wang et al., 2009), therefore, this brain region is able to produce independent 
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circadian oscillations. However, it has been established that the overall hippocampal 

functioning still is dependent on SCN input (Phan et al., 2011). 

Certain tissues, circadian rhythm expression does not continue under constant 

conditions without the input of the SCN (Balsalobre et al., 2000; Yamazaki et al., 2000). 

With regard to whether the liver can maintain circadian rhythms independently to the 

SCN, reports have been varied. Researchers analysing the liver in rodents in vivo, have 

acknowledged that non-photic stimuli, such as feeding, during their normal fasting time 

can entrain circadian rhythms in this organ. This is independent from the SCN as no phase 

shift was observed in the master circadian clock (Stokkan et al., 2001). Additional studies 

carried using in vitro techniques, established that liver explants from PER2::LUC 

transgenic mice expressed circadian rhythms for over 20 days in vitro (Yoo et al., 2004) 

while PER1::LUC rats maintained rhythmicity for approximately seven cycles in culture 

(Yamazaki et al., 2000). However, certain studies suggest that culture preparations and 

surgeries might result in the synchronising of liver explants (Guo et al., 2006; Saini et al., 

2013; Tahara et al., 2012).  

 

Aims of this chapter are to: 

 

 Provide corroborative evidence for roles of NF-κB signalling in the circadian 

timekeeping system, using both PER2::LUC and NF-κB::LUC mice by: 

 

1. Investigating how pharmacological perturbations of the NF-κB system as a result of an 

immune challenge may impact on Per2 expression SCN slice cultures. 

 

2. Examining whether NF-κB activity is required for rhythmic Per2 expression, by 

administrating NF-κB inhibitors to SCN slice cultures.  

 

3. Studying does age impact on the role of NF-κB in the circadian clock. 

 

4. Investigating does SCN slice cultures from NF-κB::LUC mice display any evidence for 

circadian regulation of NF-κB mediated transcription. 
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5.2 Materials and methods 

 

5.2.1 Animals and Housing 

 

5.2.1.1 B6.129S6-Per2tm1Jt/J strain 

 

 Homozygous B6.129S6-Per2tm1Jt/J male and female mice were used in the 

following experiments. A mPer2Luc knock-in homozygous breeding colony was 

maintained in Maynooth University, after been obtained from JAX mice (USA) via 

Charles River (U.K) as previous stated in section (3.2.1). Mice were ear punched and 

weaned at 21 days, animals were group housed (n=3) based on their sex. In addition, 

cages were equipped with appropriate environmental enrichment and were placed in a 

12:12 L: D cycle. Mice were between 2 and 4 months old when used for experiment. 

However, in ageing in vitro experiments mice were between 14 and 16 months. The 

homozygous B6.129S6-Per2tm1Jt/J mice display no alterations in their circadian 

behaviour or in entrainment parameters (Yoo et al., 2004).  

 

5.2.1.2 B10.Cg-H2kTg(NFκB/Fos-luc)26Rinc/J strain 

 

The B10.Cg-H2kTg(NFκB/Fos-luc)26Rinc/J male and female mice were also used 

in real-time experiments. This mouse model contains the firefly (luc) gene which is driven 

by two NF-κB binding sites from the kappa light chain enhancer in front of a minimal fos 

promotor (Voll et al., 2000). SCN slice cultures from NF-κB::LUC mice were examined 

for circadian regulation of NF-κB-mediated transcription. Hemizygous individuals were 

attained from JAX mice (USA) via Charles River (U.K), and a breeding colony was 

established in Maynooth University. Weaning and housing was carried out similar to 

section (5.2.1.1). Homozygous mice are not viable. Hemizygous were crossed with wild 

type mice, therefore, giving either hemizygous offspring with the transgene or wild type 

offspring. Genotyping was carried out in Maynooth University on offspring mice using 

ear punches to establish if they were hemizygous or wild type. Tissue was stored at -20°C 

in individual Eppendorf tubes until PCR was carried out. Male and female mice were 

between 2 and 4 months when used for experimental purposes. 
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Figure 5.1: Genotyping using gel electrophoresis: PCR and gel electrophoresis techniques were 

used to distinguish between WT and hemizygous mice. From gel information we can see that 

there was 4 positive for the transgene (572 base pair).  

 

5.2.2: Drug treatments  

 

5.2.2.1 PDTC 

 

 Treatment of the NF-κB inhibitor, PDTC (Sigma Ireland) (n=21) or the control 

DMSO (n=23) was administered to PER2::LUC SCN slices for cell culturing to mice 

between 2 and 4 months. Application of PDTC (10µM) (Riera et al., 2015; Schreck et al., 

1992) or DMSO (0.005%) took place at approximately ZT6, six hours after lights were 

turned on (ZT0 = 7am). The same dose of PDTC was administered to aged mice (n=6) in 

a separate experiment. 

 

5.2.2.2 Sulfasalazine  

 

 Another NF-κB inhibitor, sulfasalazine (Abcam) (10µM) (n=7) was 

administered to PER2::LUC SCN cultures, aged between 2 and 4 months compared to 

DMSO control  (Weber et al., 2000). Again application of treatment to SCN slices took 

place at roughly ZT6.  
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5.2.2.3 LPS 

 

 SCN slices from mPer2Lucknock-in mice and NF-κB::LUC mice were treated 

with either LPS (100ng/ml) (n=8) or DMSO (0.005%) (n=8) (Gibbs et al., 2014; 

Guenthner et al., 2009; Wahl et al., 1998). In young mice aged between 2 and 4 months, 

application of treatment was administered at approximately ZT6. The same LPS dose was 

given to aged mice (n=7) and control (n=7) at similar times. NF-κB::LUC mice also 

received LPS (n=3) or DMSO (n=3) treatment, prior to incubation or 2 days post 

incubation in two separate experiments. 

 

5.2.2.4 NMDA 

 

 NF-κB::LUC mice received NMDA (Sigma) (20µM) (n=3) or DMSO (n=3) 

treatment after 2 days of incubation (Asai et al., 2001; Pennartz et al., 2001; Shibata et 

al., 1994). Treatment to SCN cultures was carried out at ZT14. 

 

5.2.3 Tissue preparation and cell culturing techniques  

 

 Prior to the experiment, distilled water was autoclaved at 120°C for 15 minutes. 

70% ethanol was used to sterilize any equipment used in the procedure, followed by 

placing certain items under ultra violet (UV) light in a sterile tissue culture hood for 30 

minutes to guarantee sterilization. The procedure needs to be done as quickly as possible 

to ensure that the SCN tissue remained living.  

 Mice were culled between ZT6 and ZT10 by cervical dislocation. This cell 

culture procedure required recording medium consisting of Dulbeccos Modified Eagles 

Medium (DMEM, with L-glutamine, 1000mg glucose, without phenol red, supplemented 

with 3.5g of D-glucose powder, Sigma), 4.7ml sodium bicarbonate solution, (7.5%, 

Sigma), supplemented with 10mM Hepes buffer (pH 7.2, Sigma), and 2.5ml of Penicillin-

streptomycin (10,000 unit/ml- 10,00µg/ml, Gibco). These solutions were adjusted to a 

final volume of 1 litre using autoclaved Milli-Q water and mixed well. Glassware was 

covered in tinfoil as DMEM is light sensitive, and stored at 4°C pre-experiment. 0.1mM 

bettle luciferin potassium salt (Promega, U.S.A) was added to a certain volume of 

recording medium (for example: 6µl of luciferin in 6mls of recording medium) and placed 



 

 

202 

 

into a water bath at 37°C at the beginning of the experiment. Brains from PER2::LUC or 

NF-κB::LUC mice were carefully but promptly removed and placed on filter paper 

(Whatman, GE Healthcare UK Limited) which were placed in a petri dish. Drops of 

Hank’s Balanced Salt Solution (HBSS) were placed on the brain to keep it cold. The 

HBSS was placed in glassware surrounded by ice to keep as cold as possible throughout 

the experiment. HBSS consists of (100ml Hank’s balanced salt solution 10X, H1641, 

Sigma, U.S.A.; 10ml 1M HEPES buffer (Sigma), 4.7ml sodium bicarbonate solution 

(7.5%, Sigma), and 10ml of penicillin- streptomycin (10,000 unit/ml-10,000 µg/ml, 

Gibco, Invitrogen, U.S.A., which were all dissolved in autoclaved Milli-Q water and the 

total final volume of HBSS was adjusted to 1 litre and mixed thoroughly. Using a single 

edged razor blade brains were cut caudally and rostrally to remove the cerebellum and 

preoptic region respectively. The brain was placed with the caudal end attached using 

glue (Henkel) onto a mental block of a manual Vibratome (World Precision Instruments). 

The double edged blade (Camden Instruments Limited) was angled at 120o  with the 

ventral part of the brain facing it. The brain attached to block was placed into the 

vibroslice and immersed in ice cold HBSS to allow to cut for sections. The live brain was 

cut through till the optimum mid SCN region of 300µm in thickness was achieved. The 

paired SCN nuclei and retrochiasmatic area were identified and isolated from the slice 

using two single edged razor blades. This tissue was transferred to the sterile tissue culture 

hood and placed in a sterile petri dish with recording medium. A 35mm petri dish 

(Corning, U.S.A) was set up containing 1ml of (sterile recording medium and luciferin) 

+ treatment or control. A Millicell culture membrane (Millipore, Ireland) was placed into 

petri dish, with the SCN tissue placed aseptically onto this membrane, prior to the 

luciferase activity assay. A 40mm coverslip (VWR) was then placed on the top of petri 

dish and sealed using autoclaved vacuum grease (Sigma) which was applied around the 

edge of dish. This ensured an airtight environment, stopping evaporation of the medium 

which resulted in appropriate nutrition, moisture and oxygen supply for the SCN tissue. 

The next step was to place each petri dish into a 37°c incubator (Memmert, Schwaback) 

which contains fitted PMT detector assemblies (Hamamtsu Photonic. U.K., LTD.) The 

incubator was waterproof and light tight. This system allowed for continuous monitoring 

of bioluminescence rhythms from individual SCN tissue culture explants for a period of 

up to two weeks. 
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5.2.4  Bioluminescence and statistical analysis  

 

 Evaluating the bioluminescence emitted from each SCN tissue culture was 

calculated by the programme Living Image 3.2 software (PMTmonTTL software by Dr. 

Shin Yamazaki). This allowed for the bioluminescence value to be recorded for one of 

every two minutes over a seven day period. Data sets were de-trended, with the 24hr 

running average been subtracted from the raw data. A 24 hour running average was then 

calculated from the de-trended data, from which a 3hr running average was then 

calculated. Using this 3 hr running average, it allowed for analysis using downloaded 

software called www.circadian.org which was developed by Dr. R. Refinetti. The Cosinor 

(Cosinor.exe, version 2.03) and LSP (Lsp.exe, version 2.07) software were both utilised 

to calculate the mean amplitude, mesor, acrosphase of rhythm (using Cosinor) and the 

circadian period of rhythm (using LSP). The mesor is a circadian rhythm-adjusted mean 

based on the parameters of a cosine function fitted to the raw data, while the acrophase 

represents the time at which the peak of a rhythm takes place. 

 Each individual SCN tissue culture obtained a mean value for the period, 

amplitude, mesor and acrophase of the bioluminescence. For all the following cell tissue 

culture experiments, the mean value calculated for each tissue culture from both treatment 

groups were analysed, using an independent t-test. Results were stated as mean value ± 

standard error of the mean, with statistical significance been accepted at P<0.05. 
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5.3 Results 

 

5.3.1 Application of NF-κB inhibitor PDTC to young SCN tissue cultures in vitro in 

PER2::LUC mice. 

 

  The cosinor method was used to calculate the mean amplitude, mesor and 

acrophase of PER2::LUC rhythms for PDTC and DMSO treated SCN tissue cultures. The 

mean value for each individual SCN tissue culture in relation to their period, amplitude, 

mesor and acrophase of the bioluminescence rhythm was calculated, and evaluated 

between the two groups using an independent t-test. Bioluminescence was reported in 

relative light unit (RLU). Rhythm amplitude was found to be comparable between PDTC 

(3226.84 ± 316.58) and DMSO (3837.35 ± 528.56, P>0.05) SCN tissue cultures. Similar 

results also occurred when analysing the acrophase values with PDTC (16.55 ± 1.62) and 

DMSO (16.32 ± 1.96, P>0.05) for PER2::LUC rhythms. The mesor values for the 

PER2::LUC rhythms were found to be significant between PDTC (2489.01 ± 17.68) and 

DMSO (1120.68 ± 166.38, P<0.05) cultures. The Lomb-Scargle periodogram procedure 

was utilised to measure the circadian period of the PER2::LUC rhythm for PDTC and 

DMSO controls. When comparing the mean PER2::LUC period values there was no 

significant differences between the two treatment groups (PDTC, 24.10 ± 0.35 hrs vs. 

DMSO, 24.00 ± 0.22 hrs, P>0.05) (Figure 5.2).  
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Figure 5.2: Circadian rhythms of PER2::LUC expression in PDTC and DMSO control in 

young SCN tissue cultures.  (A) Representative multiple line plot of de-trended  

PER2::LUC bioluminescence rhythms from SCN tissue cultures treated with either PDTC (n=21) 

or DMSO (n=23). The bioluminescence is plotted from the start time of culture preparation. (B) 

Bar graphs displaying PER2::LUC period, amplitude, acrophase and mesor values. There was no 

differences displayed between the PER2::LUC rhythms of PDTC or DMSO treated cultures in 

any circadian parameter studied, apart from the mesor value. ** denotes P<0.01. 

 

5.3.2 Application of NF-κB inhibitor sulfasalazine to young SCN tissue cultures in 

vitro in PER2::LUC mice. 

 

 A second NF-κB inhibitor sulfasalazine was utilised to examine if this inhibitor 

may have altered circadian parameters. The cosinor method was used to calculate the 

mean amplitude, mesor and acrophase of PER2::LUC rhythms for sulfasalazine and 

DMSO treated SCN tissue cultures. The mean value for each individual SCN tissue 

culture in relation to their period, amplitude, mesor and acrophase of the bioluminescence 

rhythm was calculated, and evaluated between the two groups using an independent t-

test. The mean rhythm amplitude was not significant between sulfasalazine (4880.37 ± 

997.88) and DMSO (3741.21 ± 712.32, P>0.05), SCN tissue cultures. Similar results also 

occurred when analysing the acrophase values with sulfasalazine (15.46 ± 2.27) and 

DMSO (13.09 ± 2.97, P>0.05) for PER2::LUC rhythms. No significant alterations of 

mesor values for the PER2::LUC rhythms were found between sulfasalazine (3108.40 ± 

(B) 
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1007.14) and DMSO (1053.43 ± 232.19, P>0.05) cultures. The Lomb-Scargle 

periodogram procedure was utilised to measure the circadian period of the PER2::LUC 

rhythm for sulfasalazine and DMSO controls. When comparing the mean PER2::LUC 

period values were no differences between the two treatment groups (sulfasalazine, 23.91 

± 0.57 hrs vs. DMSO, 23.87± 0.20 hrs, P>0.05) (Figure 5.3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3: Circadian rhythms of PER2::LUC expression in sulfasalazine and DMSO 

control in young SCN tissue cultures. (A) Representative multiple line plot of de-trended 

PER2::LUC bioluminescence rhythms from SCN tissue cultures treated with either sulfasalazine 

(B) 
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(n=7) or DMSO (n=7). The bioluminescence is plotted from the start time of culture preparation. 

(B) Bar graphs displaying PER2::LUC period, amplitude, acrophase and mesor values. There was 

no alterations displayed between the PER2::LUC rhythms of sulfasalazine or DMSO treated 

cultures in any circadian parameter studied. 

 

5.3.3 Examining young adult PER2::LUC mice in comparison to ageing PER2::LUC 

mice SCN explants  

 

 The cosinor method was used to calculate the mean amplitude, mesor and 

acrophase of PER2::LUC rhythms for young adult and ageing SCN tissue cultures. The 

mean value for each individual SCN tissue culture in relation to their period, amplitude, 

mesor and acrophase of the bioluminescence rhythm was calculated, and evaluated 

between the two groups using an independent t-test. There was a significant alteration of 

rhythm amplitude found between young adult (4260.65 ± 321.61) and ageing (2662.74 ± 

496.74, P<0.01) SCN tissue cultures. Comparable results occurred when analysing the 

acrophase values of young adult (16.16 ± 3.91) and ageing (11.25 ± 1.62, P>0.05) for 

PER2::LUC rhythms. The mesor values for the PER2::LUC rhythms were found to be 

similar between young adult (1214.03 ± 175.35) and ageing (989.30 ± 230.39, P>0.05) 

cultures. The Lomb-Scargle periodogram procedure was utilised to measure the circadian 

period of the PER2::LUC rhythm for young adult and ageing SCN explants. When 

comparing the mean PER2::LUC period values there was no significant differences 

between the two treatment groups (young adult, 23.94 ± 0.09 hrs vs. ageing, 23.63 ± 0.21 

hrs, P>0.05) (Figure 5.4).  
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Figure 5.4: Circadian rhythms of PER2::LUC expression in young adult and aged 

PER2::LUC mice SCN tissue cultures. (A) Representative multiple line plot of de-trended 

PER2::LUC bioluminescence rhythms from SCN tissue of either young adult (n=19) or ageing 

SCN explants (n=13). The bioluminescence is plotted from the start time of culture preparation. 

(B) Bar graphs displaying PER2::LUC period, amplitude, acrophase and mesor values. There was 

no differences displayed between the PER2::LUC rhythms of young adult or ageing treated 

cultures in any circadian parameter studied, with the exception of amplitude. ** denotes P<0.01. 

 

5.3.4 Application of NF-κB inhibitor PDTC to aged SCN tissue cultures in vitro in 

PER2::LUC mice. 

 

 The cosinor method was used to calculate the mean amplitude, mesor and 

acrophase of PER2::LUC rhythms for PDTC and DMSO treated SCN tissue cultures. The 

mean value for each individual SCN tissue culture in relation to their period, amplitude, 

mesor and acrophase of the bioluminescence rhythm was calculated, and evaluated 

between the two groups using an independent t-test. Rhythm amplitude was not 

significant between PDTC (4435.95 ± 811.69) and DMSO (2400.90 ± 348.94, P>0.05) 

SCN tissue cultures. Similar results also occurred when analysing the acrophase values 

with PDTC (19.03 ± 3.68) and DMSO (17.83 ± 2.81, P>0.05) for PER2::LUC rhythms. 

The mesor values for the PER2::LUC rhythms were found to be significant between 

PDTC (5526.71 ± 100.36) and DMSO (727.66 ± 106.31, P<0.05) cultures. The Lomb-
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Scargle periodogram procedure was utilised to measure the circadian period of the 

PER2::LUC rhythm for PDTC and DMSO controls. When comparing the mean 

PER2::LUC period values were no differences between the two treatment groups (PDTC, 

23.82 ± 0.73 hrs vs. DMSO, 23.48± 0.28 hrs, P>0.05) (Figure 5.5). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5: Circadian rhythms of PER2::LUC expression in PDTC and DMSO control in 

aged SCN tissue cultures. (A) Representative multiple line plot of de-trended PER2::LUC 

bioluminescence rhythms from SCN tissue cultures treated with either PDTC (n=10) or DMSO 
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(n=11). The bioluminescence is plotted from the start time of culture preparation. (B) Bar graphs 

displaying PER2::LUC period, amplitude, acrophase and mesor values. Treatment of SCN slice 

cultures from PER2::LUC mice with PDTC does not alter circadian rhythmicity of PER2::LUC 

expression compared to vehicle controls. There was however significant differences between 

treatment groups mesor value. ** denotes P<0.01.  

 

5.3.5 Application of LPS to young SCN tissue cultures in vitro in PER2::LUC mice. 

 

The cosinor method was used to calculate the mean amplitude, mesor and 

acrophase of PER2::LUC rhythms for LPS and DMSO treated SCN tissue cultures. The 

mean value for each individual SCN tissue culture in relation to their period, amplitude, 

mesor and acrophase of the bioluminescence rhythm was calculated, and evaluated 

between the two groups using an independent t-test. The mean rhythm amplitude was 

upregulated as a result of LPS treatment (4389.33 ± 997.88) compared to DMSO (2611.47 

± 841.54, P>0.05) on SCN tissue cultures, but it was not statistically significant. No 

significant results occurred when analysing the mesor values with LPS (1302.64 ± 

265.74) and DMSO (678.53 ± 265.21, P>0.05) for PER2::LUC rhythms. The acrophase 

values for the PER2::LUC rhythms were not found to be significant between LPS (8.84 

± 0.283) and DMSO (12.41 ± 2.18, P>0.05) cultures. The Lomb-Scargle periodogram 

procedure was utilised to measure the circadian period of the PER2::LUC rhythm for LPS 

and DMSO controls. When comparing the mean PER2::LUC period values were similar 

between the two treatment groups (LPS, 23.62 ± 0.21 hrs vs. DMSO, 23.82± 0.24 hrs, 

P>0.05) (Figure 5.6). 
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Figure 5.6: Circadian rhythms of PER2::LUC expression in LPS and DMSO control in 

young SCN tissue cultures. (A) Representative multiple line plot of de-trended PER2::LUC 

bioluminescence rhythms from SCN tissue cultures treated with either LPS (n=7) or DMSO 

(n=7). The bioluminescence is plotted from the start time of culture preparation. (B) Bar graphs 

displaying PER2::LUC period, amplitude, acrophase and mesor values. There was no alterations 

displayed between the PER2::LUC rhythms of LPS or DMSO treated cultures in any circadian 

parameter studied. 

 

5.3.6 Application of LPS to aged SCN tissue cultures in vitro in PER2::LUC mice.  

 

The cosinor method was used to calculate the mean amplitude, mesor and 

acrophase of PER2::LUC rhythms for LPS and DMSO treated SCN aged tissue cultures. 

The mean value for each individual SCN tissue culture in relation to their period, 

amplitude, mesor and acrophase of the bioluminescence rhythm was calculated, and 

evaluated between the two groups using an independent t-test. The mean rhythm 

amplitude was comparable between LPS (2818.88 ± 798.55) and DMSO (2887.18 ± 

900.98, P>0.05) SCN tissue cultures. There was no significant difference when analysing 

the mesor values between LPS (910.11 ± 343.99) and DMSO (1213.55 ± 413.43, P>0.05) 

for PER2::LUC rhythms. The arcophase values for the PER2::LUC rhythms were found 

to be significant between LPS (10.37 ± 0.27) and DMSO (15.44 ± 2.88, P>0.05) cultures. 

The Lomb-Scargle periodogram procedure was utilised to measure the circadian period 

of the PER2::LUC rhythm for LPS and DMSO controls. The mean PER2::LUC period 
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values were similar between the two treatment groups (LPS, 23.51 ± 0.39 hrs vs. DMSO, 

23.77± 0.32 hrs, P>0.05) (Figure 5.7). 

 

 

 

 

 

 

 

 

 

  

 

 

Figure 5.7: Circadian rhythms of PER2::LUC expression in LPS and DMSO control in aged 

SCN tissue cultures. (A) Representative multiple line plot of de-trended PER2::LUC 

bioluminescence rhythms from SCN tissue cultures treated with either LPS (n=7) or DMSO 

(n=7). The bioluminescence is plotted from the start time of culture preparation. (B) Bar graphs 

displaying PER2::LUC period, amplitude, acrophase and mesor values. There was no alterations 

displayed between the PER2::LUC rhythms of LPS or DMSO treated cultures in any circadian 

parameter studied. 
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5.3.7 Examining NF-κB::LUC SCN slice cultures in vitro for circadian regulation of 

NF-κB mediated transcription. 

 

 SCN slice cultures from NF-κB::LUC mice do not display any evidence for 

circadian regulation of NF-κB mediated transcription (Figure 5.8). Therefore, in the 

following experiments we looked at the affects of LPS and NMDA treatment on SCN 

cultures from NF-κB::LUC to establish if either of these can alter bioluminescence levels. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.8: (A) Sample graph of raw traces from NF-κB::LUC SCN slices. (B) Sample graph of 

de-trended and smoothed data. 
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5.3.8 Examining NF-κB::LUC SCN slice cultures in vitro following LPS applications  

  

 LPS was administered to SCN cultures at the beginning of the experiment, and 

this resulted in an increased in bioluminescence when compared to DMSO controls 

(Figure 5.9). Previous studies have demonstrated that SCN explants are directly 

responsive to LPS treatment, including how LPS cause upregulation of p65 in SCN 

astrocytes in vitro (Leone et al., 2006), therefore, we expected to see some effect between 

treatment groups. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.9: (A) Sample graph of raw traces from NF-κB::LUC SCN slices treated with LPS or 

control DMSO at the beginning of experiment. (B) Sample graph of de-trended and smoothed 

data from NF-κB::LUC slices after LPS or DMSO application. There is upregulation of 

bioluminescence in LPS treated slices compared to controls. 
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5.3.9 Examining NF-κB::LUC SCN slice cultures in vitro following LPS applications 

after two days in culture 

 

 LPS that was administered to SCN cultures 2 days after bioluminescence 

recordings had commenced, caused a slight upregulation in bioluminescence in 

comparison to DMSO controls (Figure 5.10). 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

Figure 5.10: (A) Sample graph of raw traces from NF-κB::LUC SCN slices treated with LPS or 

control DMSO after two days in culture. (B) Sample graph of de-trended and smoothed data from 

NF-κB::LUC slices. LPS or DMSO control was administered two days into the experiment. 

Upregulation is displayed in graph (A) after LPS administration. 
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5.3.10 Examining NF-κB::LUC SCN slice cultures in vitro following NMDA 

applications after two days in culture 

 

 NMDA was administered to SCN cultures 2 days after bioluminescence 

recordings had begun, this resulted in a slight upregulation of NF::LUC bioluminescence 

which was not displayed in control cultures (Figure 5.11). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.11: (A) Sample graph of raw traces from NF-κB::LUC SCN slices treated with NMDA 

or control DMSO after two days in culture. (B) Sample graph of detrended and smoothed data 

from NF-κB::LUC slices. NMDA or DMSO control was administered two days into the 

experiment. There was a small upregulation in bioluminescence after application of NMDA. 
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5.4 Discussion 

 Due to the presence of clock circadian machinery in most cells of the body, it has 

permitted circadian studies to be carried out in cell cultures. The use of cells isolated from 

humans or animal’s tissue has allowed for advances in vitro studies. Isolated SCN 

explants are important to study to establish whether alterations in the circadian system 

are caused by changes within SCN properties, or whether it is a result of changes to 

input/output to and from the SCN. In this study we have investigated the bioluminescence 

of circadian rhythms using a luciferase reporter system in PER2::LUC and NF-κB 

knockin mice. Another important use of luciferase imagining, is that it can be carried out 

in vivo to analyse gene expression in the transgenic animal (Collaco et al., 2005; Hiler et 

al., 2006; Spengler et al., 2012).   

Due to the close link between the molecular clock and the immune system, mice 

with a disrupted circadian clock often show disrupted immune responses also. The 

circadian and NF-κB pathways have been shown to contain a direct molecular link 

between each other, with both pathways coupled through the CLOCK protein, and this 

protein functions as a positive regulator of NF-κB–responsive promoters. Spengler and 

colleagues displayed that CLOCK causes an upregulation in NF-κB–mediated 

transcriptional activation, independent of BMAL1. Clock-/- and WT mice, expressing the 

κB-Luc reporter were compared, with Clock-/- mice exhibiting reduced immune 

responses in the form of the NF-κB subunit, p65, as a result of cultured hepatocytes and 

MEFs been administered CBLB502 and TNF-α respectively. Therefore, CLOCK 

upregulates NF-κB mediated transcription in various cells (Spengler et al., 2012). 

Therefore, it would be interesting to establish if an LPS immune challenge, in vitro, on 

SCN cultured, exhibits upregulation of NF-κB mediated transcription.  

 

5.4.1 Does pharmacological perturbations of the NF-κB system, using in vitro 

techniques, impact on per2 expression in young adult mice? 

 

5.4.1.1 Circadian parameters in transgenic young adult knockin mice 

 

 SCN cultures from young adult mice were cut from the mid rostro-caudal for 

analysing. SCN cultures were normally prepared at ZT5, with studies displaying that the 
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peak phase was not reset at this time point, based on in vitro and in vivo studies, with 

regard to Per1 expression (Asai et al., 2001; Miyake et al., 2000; Yoshikawa et al., 2005). 

Previous studies have described conflicting findings with regard to the behavioural FRP 

and the period of PER2::LUC, Per1-Luc and Per1-Gfp oscillations in SCN slices (Aton 

et al., 2004; Hughes et al., 2008; Mickman et al., 2008; Molyneux et al. , 2008).  

In the current study, bioluminescence imaged from SCN control cultures displayed 

no signs PER2 expression rhythms damping during the first 5-7 days. When examining 

SCN control cultures in young adult mice during these experiments, the average period 

obtained was 23.9 ± 0.2 hrs. A similar period finding (23.6 ± 0.1 hrs) was established 

when monitoring circadian rhythms of PER2::LUC expression in the SCN (Guilding et 

al., 2009).  

 

5.4.1.2 The effect blocking the NF-κB pathway has on young adult culture in vitro 

 

Since excessive or deregulated NF-κB activation can lead to the development of 

pathological inflammation which can result in acute and chronic diseases occurring 

(Häcker & Karin, 2006; Karin & Greten, 2005; Wullaert et al., 2011), it is vital to target 

therapeutic repression of this pathway by using NF-κB inhibitors (Liu et al., 1999; 

Mariappan et al., 2010; Varghese et al., 2003; You et al., 2013). Previous studies in vivo, 

have documented that NF-κB inhibitors can block the effects of both an immune 

challenge (Marpegán et al., 2005) and photic induction (Marpegan et al., 2004). However, 

in vivo studies, undertaken in this project did not establish similar findings using the NF-

κB inhibitor, PDTC. Therefore, it was necessary to investigate further the role the NF-κB 

pathway plays in the circadian timing system, using in vitro techniques. 

In the current study, treatment of the NF-κB inhibitor, PDTC, to SCN slice cultures 

from Per2::LUC mice does not alter circadian rhythmicity of PER2::LUC expression 

compared to vehicle treated controls. Furthermore, a second NF-κB inhibitor, 

sulfasalazine, also exhibited no alterations in circadian parameters including amplitude, 

FRP, and acrophase. Both inhibitors did exhibit a significant alteration in mesor value 

between both treatment groups. However, it would seem that inhibiting the NF-κB 

pathway causes little effect on circadian processes in vitro.  
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5.4.1.3 An immune challenge on PER2::LUC young adult cultures 

 

  In vivo studies carried out using transgenic κB::LUC mice, demonstrated that NF-

κB activation can be evaluated in living animals using luciferase as a reporter. 

Additionally, mice in this study received LPS i.v. (2mg/kg) to monitor luciferase activity 

in peripheral tissues following an immune challenge. LPS treatment caused high NF-κB-

dependent luminescence in the skin, lungs, small intestines and spleen. Activity was also 

exhibited in the heart, kidney and liver (Carlsen et al., 2002). Another immune stimuli, 

TNF-α, is known to be involved in activating the JNK pathway or the NF-κB pathway 

(Deng et al., 2003; Pękalski et al., 2013). SCN astrocyte cultures of PER2::LUC mice 

were administered TNF-α, to allow for assessing how SCN astrocytes responded to an 

immune challenge using this stimuli. It was established that application of TNF-α results 

in alterations to the amplitude of PER2 expression rhythms and also causes phase shifts, 

which was time- dependent (Duhart et al., 2013). Furthermore, (Guenthner et al., 2009) 

also displayed that LPS has no effect on PER2 rhythms in the mouse SCN with regard to 

rhythm damping or circadian period.  

In this current study, an assessment was carried out to monitor what effect LPS had 

on PER2::LUC knock-in mice. LPS was administered to PER2::LUC SCN cultures which 

resulted in no significant alterations of PER2 oscillation properties, between treatment 

group and control. There was an increase in the amplitude of PER2::LUC SCN explants 

after LPS treatment in comparison to control, though, overall there was no significant 

changes in amplitude. There was also no significant alterations in the mesor value. LPS 

treatment did however, reduce both the FRP and the acrophase, but again this was not 

significant. Therefore, even though LPS activates the NF-κB pathway, it does not seem 

to effect PER2 oscillation properties in young adult SCN cultures, with no evidence 

established that the NF-κB pathway may play a role in transducing immune events in the 

SCN using in vitro techniques. In chapter three, in vivo studies displayed that another 

clock gene, PER1, showed no alteration of expression following LPS administration at 

ZT4 in PER2::LUC mice.  

Future studies could assess if there is any variations to PER2 oscillation properties 

in vivo after an immune challenge, since in this study the SCN is isolated, therefore, the 

culture is not influenced by signalling from peripheral or non- SCN oscillator site. 

Consequently, LPS treatment administered in vivo, may result in alterations in the 
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circadian system at levels downstream from the SCN or variations at the level of input to 

the SCN.  

 

5.4.2 Does pharmacological perturbations of the NF-κB system impact on per2 

expression in ageing studies using in vitro techniques? 

 

5.4.2.1 Circadian parameters in transgenic ageing knockin mice 

 

Ageing affects the SCN as well as peripheral oscillators using PER1::LUC rats in 

vitro (Davidson et al., 2008). Previous studies in vivo have uncovered the effect ageing 

has on circadian function, with ageing resulting in amplitude reduction in aged animals 

when investigating the electrical activity rhythms in SCN slice cultures (Aujard et al., 

2001; Biello, 2009; Li & Satinoff, 1998; Ruby et al., 1998; Watanabe et al., 1995). These 

age-related changes in electrical activity might be a result of variations in the amplitude 

and regularity of molecular components of the SCN clock such as Per1 and Per2 

(Yamazaki et al., 2002). Individual SCN neurons explants from aged mice displayed a 

decline in amplitude of firing rate. They also had increased variability in period in 

comparison to young adult SCN cultures (Aujard et al., 2001). We hypothesised that 

ageing in PER2::LUC mice may also effect SCN properties in vitro.  

We have already reproduced similar results to (Nakamura et al., 2011) and (Weinert 

& Weinert, 1998) in the previous chapter, with regard to wheel running activity patterns 

carried out in aged mice. It was established that aged mice had abnormal rhythms, in 

terms of diminished amplitude and a reduction in total wheel running activity. Therefore, 

to establish if circadian parameters were affected in vitro, a study was carried out to 

monitor basal levels of PER2::LUC SCN aged cultures in comparison to young adult SCN 

explants. A study was carried out by Yamazaki and colleagues using PER1::LUC rats, in 

which rhythmicity of SCN cultures lasted up to seven weeks. The FRP of the SCN was 

significantly reduced in aged PER1::LUC SCN cultures when compared to young adult 

SCN culture (Yamazaki et al., 2002). However, in this current study, it was discovered 

that ageing in SCN PER2::LUC explants did not lead to significant alterations in FRP, 

mesor or acrophase. Additionally, there was a significant decrease in amplitude exhibited 

in aged SCN PER2::LUC cultures when compared to young adult SCN cultures, similar 

to results obtained by Nakamura also using PER2::LUC mice (Nakamura et al., 2011). 
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Experiments carried out using in vivo techniques also established alterations in amplitude 

between the two age groups  (Nakamura et al., 2011; Valentinuzzi et al., 1997; Weinert 

& Weinert, 2010).  

This was not significantly found in the Yamazaki study (2002), when investigating 

the amplitude of PER1::LUC SCN cultures of rats, which is in contrast to in vivo 

locomotor behavioural studies. This contrast in amplitude reduction between the current 

study and Yamazaki may be due to different rodents been utilised or the fact that two 

different PER proteins are been investigated. Hence, the molecular component, PER2, 

may be more affected by ageing. Weinert found that the amplitude of night-day 

expression of mPer2 in the SCN was reduced in aged mice, however, this was not found 

to be the case in the expression of mPer1 (Weinert et al., 2001).  However, contrasting in 

vivo results were provided by Asai, who found that rPer2 along with rPer1 had similar 

amplitude between young and aged rats (Asai et al., 2001).  

 

5.4.2.2 The effect blocking the NF-κB pathway has on ageing cultures in vitro  

 

 The effect ageing has on the brain in terms of NF-κB function in the SCN clock 

was analysed in vitro. As discussed previously, the NF-κB signalling pathway is 

associated with ageing, (Tilstra et al, 2011) with ageing studies displaying increased 

brain NF-κB activity in certain brain regions including the hippocampus and basal 

forebrain (Toliver-Kinsky et al., 1997). Investigations were carried out to see what effect 

pharmacological inhibition of the NF-κB pathway had on circadian processes in vitro in 

aged PER2::LUC SCN explants. Administration of the NF-κB inhibitor, PDTC, to aged 

SCN cultures, exhibited no alterations of circadian parameters, apart from the mesor. 

There was no significant difference in FRP, amplitude and acrophase evident between the 

two groups, PDTC and vehicle. Therefore, similar to young adult SCN explants, it would 

appear that inhibition of the NF-κB pathway causes little effect on circadian processes in 

vitro in aged SCN explants. 

 

5.4.2.3 An immune challenge on PER2::LUC aged cultures 

 

 An investigation took place to establish whether LPS treatment on aged SCN 

cultures, had a similar effect on PER2 expression rhythms as they do in young adult SCN 
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cultures. There was no alterations exhibited in the amplitude of PER2 expression rhythms 

in SCN explants after LPS treatment. Additionally no significant changes was displayed 

in the mesor value either. Similarly to young adult SCN cultures, LPS treatment in aged 

slices, caused a decrease in both the FRP and the acrophase, but again this effect was non-

significant. Therefore, LPS does not seem to effect PER2 oscillation properties in aged 

SCN cultures either. 

 In chapter four, in vivo studies exhibited no alterations in PER1 expression 

following LPS administration in the aged SCN. A study using in vivo techniques such as 

IHC, to display PER2 expression, showed ageing did not appear to cause disruption to 

the molecular clockwork (Nakamura et al., 2011).  

 

5.4.3 Is there circadian rhythms in NF-κB::LUC SCN explants? 

  

 In the current study, firstly we established that SCN cultures from NF-κB::LUC 

mice do not exhibit any evidence for circadian regulation of NF-κB mediated 

transcription. Additionally, an investigation took place to see how NF-κB::LUC SCN 

cultures would react to LPS treatment. A study carried out in vivo had previously shown 

how LPS administered to transgenic mice by i.v injection, caused a rise in luminescence 

in peripheral tissues, demonstrating NF-κB activation (Carlsen et al., 2002). Furthermore, 

previous in vitro studies that have administered LPS directly to SCN explants cause 

upregulation of the NF-κB component p65 in SCN astrocytes (Leone et al., 2006), 

therefore, we hypothesised that LPS would alter bioluminescence levels. We established 

that LPS treatment administered to SCN cultures at the beginning of the experiment 

resulted in a higher level of bioluminescence in comparison to SCN DMSO controls. 

Secondly, when LPS was administered two days into the experiment, this results in a 

spike in bioluminescence for SCN cultures for 12 days, when compared to controls. 

 NMDA is a glutamate receptor agonist and has been shown to induce phase shifts 

in circadian rhythms in vitro in the SCN of rats (Ding et al., 1994; Shibata et al., 1994). 

Ding and colleagues also displayed how application of NMDA antagonists inhibits the 

effect of glutamate in vitro, which is involved in photic entrainment (Ding et al., 1994). 

Furthermore, NMDA receptors are identified as playing a role in mediating the effect of 

light on circadian behaviour, since several NMDA antagonists are known to block photic 

phase shifts displayed in behavioural in vivo studies (Colwell et al., 1991; Colwell et al., 
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1990). Application of NMDA was seen to increase the electrical firing rate in SCN WT 

mice cultures (vanderLeest et al., 2009).  

Various studies have shown how NF-κB can be modulate by the glutamate 

receptor NMDA (Furukawa & Mattson, 1998; Zou & Crews, 2006), with glutamate 

neurotoxicity connected with an upregulation of NF-κB DNA binding. Neurotoxicity 

could be attenuated by agents that reduce NF-κB DNA binding (Zou & Crews, 2006). 

NF-κB can be activated in the hippocampus by glutamate (Kaltschmidt et al., 2005), 

with studies showing that this is a result of NMDA causing IκB-α degradation following 

ischemia (Shen et al, 2003; Nakai et al., 2000). In vitro studies displayed also how 

synaptic activation of NF-κB by NMDA can occur in cellbellar granule neurons 

(Guerrini et al., 1995). Since NMDA is known to modulate NF-κB, we tested what 

effect NMDA treatment would have on SCN NF-κB driven luc rhythms, two days after 

bioluminescence recording had begun. NMDA treatment resulted in upregulation of 

bioluminescence for the following 5 days. Another future study to carry out is to treat 

PER2::LUC young adult and aged explants with NMDA to demonstrate photic-like 

resetting of circadian rhythms.  

 

5.4.4 Conclusion 

 

 The data collected in this chapter would suggest that while the NF-κB pathway 

may be involved in circadian function in peripheral clocks, it does not seem to play a key 

role in the SCN clock in vitro, adding to our previous findings established in vivo. Further 

studies could investigate if the NF-κB pathway plays a role in vitro in other brain regions, 

including the hippocampus and cortex, by investigating what effect LPS treatment has on 

the PER2::LUC cultures with regard to circadian oscillations, and also to establish if NF-

κB inhibitors can block any effects that may occur due to this immune challenge. Since 

circadian control of hippocampal function seems to rely on SCN derived signals (Phan et 

al., 2011), one would not be surprised if no alterations, in circadian oscillations, from 

PER2::LUC cultures occurred from the hippocampus, due to the lack of evidence of NF-

κB playing a role in the SCN.  

   

In conclusion, even though studies have stated that there is basal expression of NF-

κB in the CNS (Kaltschmidt et al., 1997; Kaltschmidt et al., 1994), other findings have 
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contradicted these previous studies, stating that immunohistochemistry and western blots 

used nonspecific antibodies for their studies, in relation to NF-κB expression. This 

resulted in certain antibodies which have been previously published, failing in specificity 

(Herkenham et al., 2011). A recent studies in vitro exhibits how IκB mRNA expression 

in microglia from the hippocampus was investigated, with findings displaying no 

temporal differences in young adult rats (Fonken et al., 2015). Other in vivo studies have 

shown how there is minimal NF-κB activity in neurons (Listwak et al., 2013) and in the 

MBH of young adult mice (Zhang et al., 2013). To further back up these results, this 

chapter using in vitro studies displays no evidence of the NF-κB pathway playing a role 

in the SCN. Bioluminescence expression from PER2::LUC cultures was not effected by 

blocking the NF-κB pathway using inhibitors, nor does an immune challenge result in 

any significant alterations in circadian oscillation properties. These results obtained were 

similar for both young adult and aged cultures. No circadian oscillations were exhibited 

when investigating the reporter NF-κB::LUC mice in the circadian timing system, further 

highlighting how this pathway has little or no effect in the SCN. 
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Chapter Six  

General Discussion  

 

The overall objective at the beginning of this thesis was to investigate if the NF-

κB pathway played a role in the circadian clock, since there has been little investigation 

carried out previously on the regulation of SCN function by the NF-κB pathway. Chapter 

two conducted experiments to see if there was circadian regulation in NF-κB components 

in the SCN. Furthermore, photic regulation of the NF-κB component, p65, was 

investigated, along with pharmacological inhibition of the NF-κB pathway on circadian 

processes in vivo were also examined. Chapter three and four investigated the effects that 

an immune challenge had on young adult and ageing mice respectively, using behavioural 

techniques and IHC techniques. While lastly, chapter five, used in vitro techniques to 

further establish firstly, the effects of an immune challenge and secondly, 

pharmacological inhibition of the NF-κB pathway had on young adult and ageing SCN 

cultures.  

Other signalling pathways have been identified as playing a key role in conveying 

events at the SCN neuronal membrane to core nuclear clockworks. These pathways 

include those involving MAPK (Coogan & Piggins, 2003) and protein kinase C (Bonsall 

& Lall, 2013; Lee et al., 2007). A molecular link between the NF-κB pathway and the 

clock-driven transcriptional pathway was uncovered (Bellet et al., 2012). Evidence from 

previous studies had suggested that there was constitutive NF-κB activity in neurons in 

various brain regions, including the hypothalamus (Bhakar et al., 2002; Joseph et al., 

1996; Kaltschmidt & Kaltschmidt, 2009; Kaltschmidt et al., 2005; Kaltschmidt et al., 

1994; Meffert & Baltimore, 2005; O’Neill & Kaltschmidt, 1997). However, recent 

evidence suggests that this may not be the case, with minimal NF-κB activity displayed 

in neurons (Listwak et al., 2013).  Previous findings of constitutive NF-κB activity in 

neurons, are thought to be due to non-selective antibodies used in the previous studies, 

which was previously discussed in chapter two and three (Herkenham et al., 2011). 

Therefore, care needs to be taken when interpreting results in IHC with regard to NF-κB 

activity in neurons. In the CNS it has been established that astrocytes are the main cell 

type subject to NF-κB regulation (Lian et al., 2012), with findings from ( Leone et al., 

2006) showing that an immune challenge can cause upregulation of NF-κB activity in 
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SCN astrocytes. Our results seemed to represent an immune challenge causing NF-κB 

activity in the form of microglial cells demonstrated from their phagocytic morphology.  

A considerable amount of evidence was ascertained in relation to the interaction 

between the circadian system and the immune system in recent years, with cytokine 

receptors of the immune system expressed rhythmically in the SCN (Beynon & Coogan, 

2010), along with evidence for SCN regulation by TNF-α, LPS and interferon-γ (Kwak 

et al., 2008; Nygård et al., 2009; Paladino et al., 2010). Too further add to these findings, 

current literature has contributed that there is clear communication between the circadian 

system and the immune system, showing that TNF-α modulates mammalian circadian 

rhythms (Cermakian et al., 2013; Duhart et al., 2013; Fonken et al., 2015; Paladino et al., 

2015).  

Standard techniques to detect and analyse protein include Western blotting and 

enzyme-linked immunosorbent assay (ELISA) which allow for objective analysis with 

regard to quantitation (Aydin, 2015; Kurien & Scofield, 2006). Another major 

development over the past 20 years was the invention of Real-time PCR (RT PCR), which 

has revolutionised biological science (Deepak et al., 2007). This technique is extremely 

sensitive and allows for the quantification of the mRNA encoding the protein of interest 

(Bustin, 2000). There are also limitations involved with these three techniques (Guardigli 

et al., 2005). The majority of this project used immunohistochemistry (IHC) techniques 

to investigate if the NF-κB pathway played a role in the SCN. IHC technique is a widely 

used method of protein detection which is fast and sensitive when utilizing an appropriate 

detection antibody (Guardigli et al., 2005; Ramos-Vara, 2005). However, limitation do 

occur using this method, with regard to the fact that IHC only allows qualitative or semi-

quantitative analysis of protein expression. Furthermore, the quantification of 

immunostaining is seen as subjective (Matos et al., 2010; Yaziji & Barry, 2006). 

Nonetheless, one main advantage that IHC has over its counterparts, is that it can 

demonstrate the location of the antigen within a cell or tissue (Ramos-Vara, 2011), which 

helped establish if LPS activated NF-κB to move from the cytoplasm into the nucleus, in 

our immune challenge studies. 

The second technique used in this project was real-time luminescence reporting 

of circadian gene expression in mammals. The main advantage using this non-invasive 

assay, is that it allows for the measurement of real-time expression of circadian genes. In 

this study PER2::LUC mice permitted us to be able to monitor circadian rhythms of the 
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PER2 protein, to analyse immune challenge and ageing studies (Yamazaki & Takahashi, 

2005; Yoo et al., 2004). 

The administration of the NF-κB inhibitor PDTC by i.p injection, at both CT15 

and CT22, could not block photic induction exhibited in our study. PDTC throughout this 

study resulted in conflicting findings when compared to other literature (Anderson et al., 

2015; Marpegan et al., 2004), with both studies either attenuating the effects of LPS or 

photic induction in the SCN. The administration of oral PDTC in the drinking water of 

mice also not alter any behavioural circadian parameters, nor did it cause affect at a 

molecular level, with no alterations of diurnal rhythms in PER1, c-Fos and p65 expression 

in the SCN or PVN. This further emphasises that pharmacological inhibition of this 

pathway does not seem to affect circadian processes when carried out by in vivo 

techniques. The administration of PDTC and Sulfasalazine to PER2::LUC mice in vitro 

also highlights our previous findings, as both inhibitors did not affect any circadian 

parameters when administered to young adult SCN cultures, therefore establishing that 

blocking the NF-κB pathway is of little benefit to the SCN. 

The effects of acute LPS treatment have been shown to impact upon the SCN 

(Leone et al., 2006; Marpegán et al., 2005; Paladino et al., 2010) and also effect the PVN 

(Laflamme & Rivest, 2001). In the current study, in vivo results showed that acute 

neuroinflammation was found to alter some signalling properties of NF-κB in the SCN 

and PVN. Components of the NF-kB pathway, p65 and p-IκB, may have a role in 

transducing immune events in the SCN. Other literature also found that peripheral LPS 

caused an upregulation of p65 in the SCN and PVN (Beynon & Coogan, 2010) and in 

SCN astrocytes (Leone et al., 2006). We confirmed similar behaviour findings to 

(Marpegán et al., 2005) with low dose LPS, causing phase delays at CT15, which is time-

dependent. Recent behavioural findings have displayed the importance of the TNFα 

receptor 1/p55 and the TLR4 receptor, for transmitting the effects of LPS to the SCN by 

a series of signalling events, resulting in the induction of pro-inflammatory responses in 

the brain (Paladino et al., 2015, 2010).  

At a molecular level it has been identified that the marker of neuronal activation, 

c-FOS, did not exhibit LPS induced FOS expression in the SCN, as a result of mice deficit 

in Tnfr1and TLR4 (Paladino et al., 2015, 2010). Therefore, highlighting the importance 

of these receptors at a behavioural and molecular level with regard to the master circadian 

clock, for example, if LPS cannot bind to TLR4, then NF-κB signalling cascade won’t be 
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activated. An interesting finding with regard to low dose peripheral LPS administration 

was that it only caused upregulation in p65 expression, but not p-IκB, therefore the effects 

of LPS is dose dependent on the NF-κB pathway. Other findings witnessed in this study 

was that LPS is time dependent, with upregulation of p65 and p-IκB expression displayed 

through the subjective day (ZT4-8) in the SCN, this was not exhibited during the 

subjective night, hence displaying diurnal variation. Interestingly, in vitro studies using 

PER2::LUC young adult SCN cultures displayed no alterations to circadian parameters 

as a result of an immune challenge using LPS, but there was an increase in 

bioluminescence in LPS challenged NF-κB::LUC mice.  

Ageing and chronic neuroinflammation was not found to alter the signalling 

properties of NF-κB in the SCN. We had hoped to find that ageing and chronic 

neuroinflammation might impact on the roles of NF-κB signalling in the SCN clock, since 

previous literature has already found that ageing can cause deterioration to the circadian 

timekeeping system (Weinert, 2000), and that the NF-κB signalling pathway is associated 

with ageing (Tilstra et al., 2011). Ageing has shown elevated levels in NF-κB/p65 DNA 

binding in peripheral tissues such as liver, kidney and cerebellum (Giardina & Hubbard, 

2002; Kim et al., 2000; Korhonen et al., 1997). Recent studies have established that NF-

κB increases as mice age in the mediobasal hypothalamus (MBH) when compared to 

young mice. NF-κB expression was investigated in young, middle-aged and aged mice, 

with a substantial increase of NF-κB expression exhibited as mice aged. The same study 

reveals that when IKK-β was inhibited in the hypothalamus in middle-old aged mice it 

reduced the number of microglial cells in comparison to controls. Additionally, Iba-1 and 

TNF-α decreased in middle aged and old aged mice where IKKβ was deficit. The IKKβ-

/- mice also exhibited improvements with regard to their cognitive and physical wellbeing 

when compared to controls (Zhang et al., 2013). Another interesting finding from the 

Zhang study was that life expectancy increased up to 23% where IKK-β was inhibited, 

and MBH-IκBα mice had their life expectancy increased by approximately 7 months. In 

Nfkb1−/− mice have early onset ageing, with a decrease in their lifespan compared to 

Nfkb1+/+ mice (Bernal et al., 2014). Therefore, findings from previous literature support 

that the NF-κB signalling pathway seems to be involved with ageing. Even though we did 

not find any significance in p65 expression between ageing and young adult mice in the 

SCN of healthy mice, this is likely to be due to the fact that the animals were only 16 

months. Furthermore, other signalling properties of the NF-κB pathway including c-Rel, 
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p-IκB and p-IκK were not altered. Ageing mice did however display abnormalities in their 

behaviour locomotor rhythms in vivo, and circadian parameters were affected in vitro, 

when investigating basal levels of PER2::LUC SCN ageing cultures.  

We established that an acute immune challenge caused by LPS increased p65 

expression significantly in the SCN and the PVN, with similar results obtained from 

previous literature (Beynon & Coogan, 2010). LPS administration did not affect another 

signalling properties of the NF-κB pathway, p-IκB, in ageing mice. Additionally, chronic 

LPS administration was analysed to find out if NF-κB signalling is chronically 

upregulated. The data presented in this current study shows the two markers, p65 and p-

IκB, do not show any alterations in expression between the two age groups in the SCN or 

PVN 16 months following treatment. This is comparable to findings found in other 

studies, regarding the SCN following chronic LPS dose after 3 and 10 months 

respectively (O’Callaghan et al., 2012; Qin et al., 2007). In vitro investigations using 

PER2::LUC mice, also added to the in vivo findings obtained, with ageing SCN culture 

explants not found to alter circadian parameters if challenged with LPS. In vivo results 

ascertained that there was no changes to PER1 expression after LPS treatment in ageing 

mice, therefore, we do not find evidence for disruption of the molecular clockwork in 

ageing mice after an immune challenge. The NF-κB inhibitor, PDTC, also did not 

significantly affect any circadian parameters when administered to ageing SCN explants 

when compared to controls with regard to period, amplitude and acrophase. This further 

emphasises that inhibiting the NF-κB pathway does not affect the circadian timing system 

in vitro with regards to ageing. 

 In conclusion, we have examined expression of constituents of the pathway across 

the circadian cycle in the SCN, have examined the effects of pharmacological inhibition 

of the pathway on circadian processes in vivo and in vitro and have examined whether 

there is evidence for circadian regulation of NF-kB-mediated transcription in the SCN.  

The findings gathered from these studies, suggests that there is lack of evidence that the 

NF-κB pathway is involved in the basal functioning of the SCN clock or in photic 

resetting. Some evidence obtained in this project suggests that the NF-κB pathway may 

have a role in transducing immune events in the SCN. To conclude, while the NF-kB 

pathway may be involved in circadian function in peripheral clocks, it does not appear to 

play a major role in the SCN clock. 
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 Future investigations could look at the role NF-κB plays in non-photic clock 

resetting. Additionally, studies could be carried out in terms of the effect other NF-κB 

inhibitors have on the circadian clock, and whether they can block phase shifts as a result 

of photic induction in the early and late subjective night. Since NF-κB plays a vital role 

in regulating the immune and inflammatory response, it is essential to be careful in the 

study for new NF-κB inhibitor treatments aimed at various diseases, as blocking the NF-

κB pathway for an extended period may result in severe side effects (Yamamoto & 

Gaynor, 2001). Certain inhibitors may also block other intracellular pathways causing 

dysfunction to other signalling cascades, therefore, caution needs to be taken (Gilmore & 

Herscovitch, 2006). Future studies into pharmacological treatment in identifying specific 

inhibitors of IKK activity may play a key role in alleviating inflammation, autoimmune 

diseases and cancer. However, from the data obtain in this study, we conclude that the 

NF-κB pathway does not play a significant role in the normal running or resetting of the 

SCN clock.  
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