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Abstract

More than 30 years after its surprising experimental discovery, the quan-

tum Hall effect remains one of the most active and interesting fields of research

in condensed matter physics. The theory pertaining to the phenomenon com-

prises a hugely varied and fascinating body of work, incorporating frameworks

such as variational trial wavefunctions, topological phases, conformal field the-

ory and more. There are reasons to expect that some phases of the system

harbour nonabelian excitations: particles whose interchange affects the state

of the whole system in a way depending on the order of exchange. This has

been proposed as a suitable basis for noise resistant quantum computing.

The excitations are an emergent property of the totality of the system,

whose main active constituent is the well understood electron. The electrons

act together in such a way as to manifest exotic quasiparticles; these kinds of

strong correlations are a general feature of the system. One can argue that the

quantum Hall effect shows the limits of reductionism.

In this work we focus on trial wavefunctions as descriptions of the phe-

nomenon. Although highly succesful in the past their evaluation is often im-

peded by a feature known as lowest Landau level projection. We approach the

projection from several angles and in this context introduce an effective and

general technique termed energy projection. Using this we examine several

trial wavefunctions that have been difficult to deal with in the past.

The quantity known as the pair correlation function is an important tool

for the analysis of wavefunctions. Its study, however, has often been mainly

qualitative in the literature. We construct an expansion useful for exact char-

acterisation and comparison of pair correlations and show that it has desirable

properties as compared to a similar preexisting expansion. This is then used

to scale pair correlation functions to macroscopic sizes.
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Chapter 1

Introduction

1.1 The Quantum Hall effect

This chapter introduces the quantum Hall effect as a phenomenon and high-

lights features important to this work. The treatments of relevant fundamental

topics in this chapter and the next are based on refs. [1–4].

1.1.1 The classical effect

The classical Hall effect [5] occurs in a conducting slab when a magnetic field

is applied perpendicular to the slab while a current is running through it. The

magnetic Lorentz force will add a perpendicular acceleration to the electro-

static one and give the carriers a curved path, causing charge to build up on

the sides parallel to the current until the resulting electrostatic force cancels the

magnetic one. Resulting is a situation where there is a voltage perpendicular

to the current, and thus a transverse Hall resistivity ρH .

The latter can be determined using a semiclassical model and relativistic

arguments. The charge carriers are modelled as classical particles of charge Q

and density n comprising a current with an average velocity v. In a frame S ′

moving with the current they are stationary and there is no external electric

field, giving the electric and magnetic fields

B′ = −B′ez and E′ = 0 , (1.1)

where B > 0 is the applied magnetic field (pointing in the negative z-direction

to simplify some expressions). Transferring to a second frame S where the

Hall effect is observed, thus moving with a relative velocity −v to S ′, one sees

a charge density j = nQv. The Lorentz transformations give for this frame
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1.1. THE QUANTUM HALL EFFECT

(up to first order in v/c):

B = −Bez and E =
B

nQ
j × ez , (1.2)

indicating zero longitudinal resistivity and a transverse Hall resistivity

ρH =
B

nQ
, (1.3)

proportional to the ratio of magnetic field to carrier density. From this point

on the carriers will be assumed to be electrons: Q = e.

The filling factor ν gives a measure of filled electron states per magnetic

field and is defined as

ν =
n

NΦ

, (1.4)

where NΦ = B/Φ0 is the number of magnetic flux quanta Φ0 = h/e piercing

the sample. In terms of the filling factor the transverse resistivity is

ρH =
h

νe2
. (1.5)

A more realistic model taking disorder into account will include a longitudinal

resistivity, but the estimate (1.5) is robust.

1.1.2 The integer effect

It was discovered that when the sample is effectively two-dimensional, the

external magnetic field is strong and the temperature approaches absolute

zero, the Hall resistivity does not follow (1.5). On certain values of ν it does,

but around these it is constant with the magnetic field, creating plateaus in

a plot of the Hall resistance RH versus B; see figure 1.1. The filling factors

at which the plateaus are observed are indicated with arrows in the figure.

Between plateaus the behaviour of ρH is approximately linear, but depending

on how clean the sample is it may be completely dominated by the plateaus.

Integer filling factors plateaus ν ∈ N were the first to be discovered [6], and

this phenomenon is now called the integer quantum Hall effect (IQHE).

The integer effect can be explained from a single particle perspective.

Charged particles in a magnetic field organise themselves in highly degenerate

kinetic energy levels called Landau levels (LL), whose separation is propor-

tional to B and whose degeneracy per unit area is equal to NΦ (see sections

2.1.1 and 2.2.1). This gives another meaning to ν as the occupation of Landau

6



1.1. THE QUANTUM HALL EFFECT

Figure 1.1: Measurement of the quantum Hall effect. The x-axis shows the perpendicular
magnetic field B, and the primary y-scale gives the transverse Hall resistance Rxy. The
latter has plateaus on certain values of the filling factor ν, which are also accompanied by a
drop in the longitudinal resistance Rxx (superimposed). Level lines besides Rxy and arrows
to Rxx indicate plateaus. Reprinted with permission from ref. [7].

levels. From (1.4) this means that the middle of the IQHE plateau occurs

when ν Landau levels are completely filled.

The following picture of the IQHE depends crucially on disorder; impurities

in the sample that widen the original LL’s and create a potential landscape

within each level together with the steeper confining potential at the edge.

A sketch of this is shown in figure 1.2a. Due to the strong magnetic field

there will be a large gap in kinetic energy, meaning that the electron states

are strongly confined to equipotential lines. Some of these are drawn at the

bottom of the sketch.

Thus the bulk states with energy away from the middle of the widened

Landau levels are localised, either around a “peak” or a “valley”. Those around

the middle on the other hand are extended, as the potential contours reach

from one edge of the sample to the other. In addition all states confined to

equipotentials at the boundary are extended. These are called edge states, and

they have some interesting properties discussed further below.

When the filling factor is an integer ν = n the Fermi energy will lie near

the highest contours associated with the Landau level En−1 (without disorder)

and the lowest contours at En, i.e. close to a point between two original LL’s

and thus in a gap between extended bulk states. This is indicated in a sketch

of the density of states in figure 1.2b.

7



1.1. THE QUANTUM HALL EFFECT

(a) Potential landscape in a Landau level with disorder and confining edges (not to scale).
Electron states will be confined to equipotential contour lines, indicated at the bottom.
Thus the edge states are extended while the bulk states are localised except close to the
middle of the original level.

Density of states

E

Landau levels
without 
disorder

Fermi 
energy

(b) Density of states as a function of en-
ergy. Only the bulk states located around
the original Landau levels (without dis-
order) are extended. The IQHE occurs
when the Fermi energy lies in a gap be-
tween extended bulk states.

y

E

Lowest Landau level
Second Landau level
Third Landau level

Fermi Energy

Available
edge states

(c) Energy levels in a cross section per-
pendicular to the current. The number of
conducting edge states at the Fermi en-
ergy (indicated with crosses) depends on
how many Landau levels lie below.

Figure 1.2: Sketches illustrating the integer quantum Hall effect.
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1.1. THE QUANTUM HALL EFFECT

With the temperature being near zero only states around the Fermi energy

are available, of which the edge states alone are extended and can contribute to

electronic transport. The number of available conducting edge states depends

on how many of the original Landau levels lie below the Fermi energy; as the

corresponding edge states are shifted upwards by the confining potential. A

sketch of a cross section perpendicular to the current in figure 1.2c illustrates

this. It can be demonstrated that the resulting resistivity is equal to (1.5) with

ν = n.

Now to explain the plateaus, i.e. why the resistivity does not change when

the magnetic field and therefore the filling factor ν does. Changing the num-

ber of magnetic flux also changes the number of states in each Landau level,

thus effectively shifting the Fermi energy. Decreasing the magnetic field gives

fewer states per level, meaning that incoming electrons start occupying states

higher in the landscape. But although the Fermi energy moves upwards in the

sketches of figures 1.2b and 1.2c, there are still the same amount of conducting

states available, corresponding to the number of LL’s below the Fermi energy.

Therefore the conductivity does not change and so neither does the resistivity.

This continues until the conducting bulk states at the middle of En, the

next Landau level, become available; at which time the plateau comes to an

end. Subsequently the story repeats but this time with another set of edge

states from En included and thus a higher conductivity and a lower resistance –

those of the next plateau. In an increasing magnetic field an analogous picture

with electrons substituted for holes yields the same conclusions.

According to the reasoning above the current is carried along the edges

when on a QHE plateau. It can be demonstrated that the edge states are

chiral, in the sense that they can only move in one direction. This is done

e.g. by placing the Landau gauge wavefunctions (section 2.2.1) in a potential

of mild disorder plus approximately transversely symmetric edge potentials [4].

Therefore there is no backscattering and the current runs in a sense around

the sample, leading to zero longitudinal resistivity. In addition to the plateaus

the vanishing dissipative resistance is another signature of the quantum Hall

effect, and in fact often more easily detected in experiments. It is also depicted

in figure 1.1.

To summarise, a gap between single particle energy levels without disorder

and edges leads to localised bulk states when the latter are included, with the

exception of the middle of the levels. Considering the effect on this system of

a changing magnetic field in a low temperature, together with properties of

9



1.2. OBJECTIVES AND OUTLINE

the edge states, explains the quantum Hall effect.

The distribution of states in the bulk is often termed a mobility gap. This

emphasises the fact that there may be plenty of accessible electron states at the

Fermi energy but only some of them can carry current. The phase where the

effect occurs is thus characterised by incompressibility from a charge transport

perspective, in the sense that an excitation with energy above some minimal

value, the mobility gap, is necessary to induce a response.

1.1.3 The fractional effect

According to the previous sections there should be nothing special happening

between the integer plateaus, with the resistitivy increasing in a manner some-

where between a step (localised quantum states) and linearly with magnetic

field (the classical case) depending on the relative strength of the disorder po-

tential. But soon after the discovery of the integer effect the same phenomenon

was observed at fractional fillings – first at ν = 1/3 and 2/3 [8], then at many

other odd denominators [9–14] and some even ones [15, 16]. This is called the

fractional quantum Hall effect (FQHE).

The model of the integer effect does not predict any mobility gaps between

integer ν, and it turns out what is lacking is inclusion of electron interactions.

These must act to create an incompressible phase at the observed fractions,

or in other words to form a gap in the bulk in the absence of disorder. The

strength of the interactions thus needs to be at least comparable to that of the

impurities or one will only observe the integer effect. In keeping with this the

fractional effect only occurs in exceptionally clean samples.

The inclusion of interactions makes models and theories of the FQHE more

complicated than those of the IQHE. Prominent examples of the former in-

clude effective field theories (in particular Chern-Simons and conformal field

theories), anyon models, diagonalisation of the Hamiltonian and variational

trial wavefunctions. The latter are the main focus of this work.

1.2 Objectives and outline

As seen in the previous section any model of a plateau in the fractional quan-

tum Hall effect must predict a gap (or at least a mobility gap) in the absence

of disorder, and reproduce other properties such as the filling factor. One cat-

egory of such models that has been strikingly successful since the early days of

FQHE investigations is that of trial wavefunctions. Despite being variational,
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1.2. OBJECTIVES AND OUTLINE

they generally do not have many parameters that are not fixed by constraints

like quantum numbers and symmetries of the system.

Typically a given trial wavefunction scheme will describe a certain series of

filling factors ν and states close to these, which are seen as trial wave functions

for excitations of the incompressible liquid. A gap then implies that there is

a finite difference between the ground state and all excitations, also in the

thermodynamic limit. Usually the trial states indicate that different plateaus

have distinct topological orders.

Tests of the wavefunctions include prediction of gaps at the correct filling

factors and comparison to experimental measurements and other numerical

and analytical models. In addition they have predicted novel properties of the

systems, e.g. fractional quasiparticle charges and both abelian and nonabelian

anyonic particle interchange statistics. Some of these have been confirmed in

experiment while others are still being examined.

Projections

Trial wavefunctions are necessarily simplifications. As long as they are close

to the true wavefunction of the system, for example by being in the same

universality class and thus adiabatically connected to it, this can be a strength;

as it simplifies analysis and extraction of quantities of interest. The analysis

of many prominent wavefunctions is still complicated, however, and usually

requires numerical calculations. Even with modern computers there are often

significant limits to the investigations of the more involved systems.

One common feature that complicates scrutiny of trial states is that of low-

est Landau level projection. It often arises as physical arguments and intuition

suggest a wavefunction that has desirable properties but unphysical compo-

nents in higher Landau levels. The existing technical implementations of this

projection are complicated, however, making the study of some wavefunctions

limited to small systems or even outright intractable.

This is usually amended by utilising approximative projections. In this

work we apply one such to as of yet untested systems, namely the Jain-

Kamilla projection for reverse flux composite fermions (see sections 3.3 and

5.1.2) [17–20]. Its application is expedited by a new algorithm, also described

in ref. [21]. Secondly we introduce an entirely new procedure that incorpo-

rates exact diagonalisation to construct a controlled and remarkably general

approximation (see section 5.1.3), presented in ref. [22]. This paper is a collab-

oration with Fremling, Moran and Slingerland, in which the present author’s
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1.2. OBJECTIVES AND OUTLINE

contributions include all of the analysis in the spherical geometry.

These techniques are then used to study systems and wavefunctions that

have been previously inaccessible. An example of the latter are wavefunctions

termed modified states (section 5.5), following an idea by Girvin and Jach [23].

Pair correlation functions

The pair correlation function g contains a lot of information about multi parti-

cle systems. It gives the probability density of finding two particles depending

on their relative distance, and thus describes both short range and long range

correlations. Pair correlations are often utilised in the study of the quantum

Hall effect to compare and elucidate properties of trial wavefunctions and ex-

act energy eigenstates. They are also instrumental in computing a model of

neutral excited states called the single mode approximation [24], which can

give estimates for the gap.

However the information contained in g is usually presented only in graphi-

cal plots, making reproduction or quantitative comparison difficult. In order to

express the pair correlation function concisely it can be expanded in a suitable

basis.

In section 6.1 it is argued that the existing expansions have some numer-

ically undesirable properties, and in light of this a new basis is constructed.

This is then used to find pair correlations of various systems extrapolated to

the thermodynamic limit, revealing properties of the macroscopic systems.

Software

The results in this work were acquired through extensive numerical computa-

tions performed using specialised programs. Three main collections of software

were utilised:

• Monte Carlo computations on the sphere were performed using

software written by the present author and available at

https://bitbucket.org/jfulse/fqhe_mc_sphere.git and

http://www.thphys.nuim.ie/hammer/. This includes optimised tools

for generation and analysis of MC data for a variety of trial wavefunc-

tions, including ground states and general excited states of the follow-

ing wavefunctions: Laughlin, composite fermions in both flux directions,

Moore-Read and Bonderson-Slingerland.
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1.2. OBJECTIVES AND OUTLINE

• Most exact diagonalisation calculations were done utilising the soft-

ware “Hammer” developed by Niall Moran and available for free at

http://www.thphys.nuim.ie/hammer/. In addition to programs per-

forming diagonalisation of the sphere and the torus it also includes tools

for Monte-Carlo computations of hierarchical states on the torus, the

latter written by Mikael Fremling and partly by the present author.

• Early diagonalisation computations and some additional calcula-

tions, including generation of pseudopotentials and computation of pair

correlation functions from energy eigenstates, were performed using the

DiagHam package: http://nick-ux.lpa.ens.fr/diagham/wiki. This

is a freely available set of utilities for performing calculations on FQHE

systems.

Chapter outline

Following is a summary of the chapter contents:

(2) Summary of relevant background theory used in subsequent chapters.

(3) Review of some common FQHE trial wavefunctions that are investigated

in later sections, either in their original or modified forms.

(4) Description of the numerical methods employed in the analysis, consist-

ing of exact diagonalisation and Monte-Carlo calculations.

(5) Results from the new projection techniques used on existing and mod-

ified trial wavefunctions. These are used to assess the effectiveness of

existing and new projection schemes, and of the wavefunctions them-

selves by comparison to results from diagonalisation. Excited states of

the Bonderson-Slingerland wavefucntion are studied for the first time.

(6) Description of the new pair correlation decomposition basis and results

facilitated by it, including scaling of the pair correlations to the thermo-

dynamic limit.

(7) Summary of the preceding results and suggestions for further research.
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Chapter 2

Relevant background

2.1 The Hamiltonian

The Hamiltonian H is fundamental to nonrelativistic quantum mechanics and

essential in much of the following material. This section motivates the choice

of H used in the remainder and discusses some of its properties.

2.1.1 The single particle case

The Hamiltonian of a charged particle in a classical magnetic field is

H1 =
1

2mb

(
p̂+

e

c
A
)2

+HZ , (2.1)

where mb is the band mass resulting from the periodic ion lattice, e is the

electron charge and A is the vector potential.

The Zeeman term HZ gives the spin coupling. The quantum Hall effect

occurs in a strong magnetic field, and as such the Zeeman energy can be

comparable to both the disorder potential and the interaction energy; the

relevant energy scales for the fractional effect (see the discussion in 2.1.2). It

is often the case, however, that the state in question is completely polarised,

so that the Zeeman energy is a constant and can therefore be ignored. This is

assumed in the remainder of this work (non-polarised trial wavefunctions exist

in the literature but are not considered here).

The operator p̂ = −i~∇ is the canonical, gauge invariant momentum; one

can also define a kinetic momentum π̂ = p̂ + e
c
A. H1 can be expressed in

14



2.1. THE HAMILTONIAN

terms of ladder operators (from here on assuming two dimensions):

a† =
`√
2

(
π̂x + iπ̂y

)
H1 =

1

2mb

π̂2 =
1

2
~ωc
(
aa† + a†a

)
, (2.2)

where a length scale and an energy scale are introduced in terms of the mag-

netic length ` =
√

~c/eB and the cyclotron frequency ωc = eB/mbc respec-

tively. B is the magnitude of the magnetic field piercing the system. Assum-

ing for the moment a flat geometry with the magnetic field pointing in the

z-direction, i.e. B ‖ ez, we have B = |∇ ×A| = ∂xAy − ∂yAx. This gives the

following commutation relations for the ladder operators:

[a, a†] =
`2

2~2
[π̂x + iπ̂y, π̂x − iπ̂y]

=
1

B

(
[∂x, Ay]− [∂y, Ax]

)
=
∂xAy − ∂yAx

B
= 1 . (2.3)

The same holds for other geometries. This familiar commutation relation

implies that H1 is formally identical to the Hamiltonian for a harmonic oscil-

lator, yielding the energy levels

En = ~ωc
(
n+

1

2

)
. (2.4)

In this context these are called Landau levels, and this work will be referring

to E0 as the lowest Landau level (LLL), E1 as the second Landau level (SLL)

and so on.

It can be demonstrated that the operator r̂0 = r + `2ez × π̂/~ commutes

with the Hamiltonian and that r̂0 and π̂ together describe classical cyclotron

motion through Heisenberg’s equations of motion. Thus r̂0 = (x0, y0) is a

constant of motion and a quantum analogue to the classical guiding center [25].

It gives rise to another set of ladder operators b† = (x0− iy0)/
√

2`, again with

[b, b†] = 1. These commute with a† and a, which means that b† and b cycle

through degenerate single particle states within a given Landau level En.

When investigating particular gauges and geometries in section 2.2 it will

be apparent that this degeneracy is huge, as also mentioned in the exposition of

the QHE in section 1.1. For this reason it is meaningful to talk about systems

residing only in the lowest or second Landau level, and systems with e.g. ν < 1

and ν < 3 are accessible in experiment.

The expression for ωc shows that the gap between single particle energy
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2.1. THE HAMILTONIAN

levels is proportional to the magnetic field B. For the quantum Hall effect to

occur this must be strong, leading to a large gap. Therefore an approxima-

tion is usually adapted in which the multiparticle system consists of polarised

electrons residing in the lowest available Landau level.

This means that if the filling factor ν is less than one the electrons are all

in the LLL with the spin aligned opposite to the external field, if ν is less than

two but greater than one they are in the LLL occupying both spin directions

(assuming ~ω is stronger than the Zeeman energy), if ν is less than three they

are all in the LLL or SLL, et cetera. In addition it is a common approximation

to have only one LL - spin combination partially filled, with the exception of

studies explicitly investigating polarisation or Landau level mixing.

2.1.2 The many particle case

The many particle Hamiltonian can be expressed as

H =
∑
i

H1(ri) +
∑
i<j

V
(
|rj − ri|

)
+
∑
i

U(ri) , (2.5)

with the single particle Hamiltonian H1 discussed in the previous section, the

interparticle potential V (assumed to be central), and a disorder potential U .

It was argued above that the electrons can be approximated as fixed in a given

Landau level. This means that the first term of (2.5) is a constant that can

be ignored; this is often described as freezing out of the kinetic energy.

In experimental situations the periodic background potential from the pos-

itive ions has a period much smaller than the size of an electron wavepacket

(see ref. [3] chapter 3); it will therefore be ignored beyond substituting the

electron vacuum mass for the band mass in (2.1). An exception to this is

when scaling interaction energy densities to the thermodynamic limit, where

the background energy is modelled as a constant and included to obtain a well

defined limit (see section 5.2.1).

According to the account in section 1.1 disorder is crucial for the occurrence

of the quantum Hall effect and as such can not be neglected. However it

was also pointed out that the main problem of the FQHE is explaining the

existence of mobility gaps, and thus incompressibility, between integer fillings

ν ∈ N. The plateaus in transverse resistance and vanishing of longitudinal

resistance can be understood if one can infer incompressibility without the

disorder potential U .

Thus the most common model of the fractional quantum Hall effect, used
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2.1. THE HAMILTONIAN

in the remainder of this work, is a Hamiltonian consisting of the interparticle

potential alone. This is usually taken to be the Coulomb interaction:

H =
∑
i<j

V
(
|rj − ri|

)
=
∑
i<j

e2

ε|rj − ri|
, (2.6)

with the dielectric constant ε. Exceptions to this form are effective interactions,

which are sometimes utilised for instance to model the effects of finite width of

the system, or to simulate second Landau level dynamics using lowest Landau

level wavefunctions (these examples are still two body potentials).

A common strategy in quantum mechanics consists of solving the free sys-

tem, which often is feasible, and treating the more complicated interactions

as perturbations. However this approach is ruled out for the fractional quan-

tum Hall effect as the relevant Hamiltonian (2.6) consists of the interaction

term exclusively (another famous example where this is impractical is quan-

tum chromodynamics, where the interactions are too strong to be modelled as

perturbations except at very high energies). This means that treatment of the

model is more challenging and other methods must be brought to bear. But it

also hints at why the system is so interesting in the first place, as the strongly

interacting electron liquid forms exotic states of matter.

Much of this thesis is focused on the study of variational trial wavefunc-

tions, often using comparison between results from these and exact results

from solving the Hamiltonian (2.6) as an important benchmark. In this the

latter is taken as the more realistic model of the physical system; however it

should be kept in mind that this Hamiltonian is in itself an approximation to

the physical one, which in particular will vary with the experimental setup.

Pseudopotentials

Following Haldane [26] the Hamiltonian in (2.6) can be conveniently parametrised

in terms of pseudopotentials VL (this review based on ref. [27]). Since H is a

two body potential it is sufficient to concentrate on two particle wavefunctions

through the decomposition Ψ(r1, . . . , rNe) =
∑

k ψk(r1, r2)φk(r3, . . . , rNe). This

is followed by a further decomposition into center of mass and relative parts:

ψ(ri, rj) =
∑
rs

Arsψ
CM
r

(ri + rj
2

)
ψrels (rj − ri) . (2.7)

The Hamiltonian acts only on the relative part, for which a basis can be

constructed as |L; i, j〉 where L is the relative angular momentum between
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2.2. GEOMETRY AND SINGLE PARTICLE WAVEFUNCTIONS

particle i and j. This is assuming the relative angular momentum opera-

tor commutes with the Hamiltonian, which is true in particular for the disk

and sphere geometries widely used in describing the FQHE (on the torus the

symmetry is less pronounced and two parameters are necessary; yielding pseu-

dopotentials Vkm [28]). Being a complete set, the basis can be used to rewrite

H as

H =
∑
i<j

∑
LL′

|L; i, j〉〈L; i, j|V |L′; i, j〉〈L′; i, j| =
∑
i<j

∑
L

VLPL , (2.8)

where rotational invariance of V has been assumed to require L = L′ and PL
projects onto angular momentum L. Having identical particles means that

the pseudopotentials VL = 〈L; i, j|V |L; i, j〉 are independent of the indices i

and j, yielding a compact representation of any potential observing the above

assumptions. Note that only pseudopotentials with odd L are relevant for

fermions, while the same is true with even L for bosons. This is because the

basis functions |L; i, j〉 are antisymmetric and symmetric for odd and even L

respectively.

Since a lower relative angular momentum corresponds to a higher proba-

bility of the particles being closer together, the pseudopotentials also give an

intuitive picture of the given interaction. The particles will avoid being at the

typical distances associated with the largest pseudopotentials; or from another

point of view VL is the energy cost of having two particles with relative angular

momentum L. With this in mind it is straightforward to construct effective

interactions. A common one called the hardcore potential sets V1 = 1 and the

rest VL>1 = 0 (the corresponding bosonic version sets V0 = 1).

Returning to the quantum Hall effect, closed expressions have been found

for VL in general Landau levels for the most common geometries (see ref. [29]

for the sphere). This often allows a straightforward adaption of a model from

one Landau level to another, most commonly used from the LLL to the SLL.

2.2 Geometry and single particle wavefunctions

Although the classic experimental setup is rectangular, different spatial geome-

tries have been used to elucidate different features of the quantum Hall effect.

Below is a review of the most common ones and their single particle wavefunc-

tions, with special attention to the spherical one due to its importance in the

remainder.
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2.2. GEOMETRY AND SINGLE PARTICLE WAVEFUNCTIONS

2.2.1 The slab and the disk

The most natural geometry to describe experiments is a rectangular slab, here

in a coordinate system with the external voltage at the boundaries in the

y-direction, giving rise to a current along the same. An infinitely long slab

with no disorder has a symmetry in the x-direction, which is preserved in the

Landau gauge vector potential A = Byex, leading to the Hamiltonian

Ĥ =
1

2mb

(
p̂− eA

)2
=

1

2
~ωc
[(
y/`− `kx

)2
+
p̂2
y`

2

~

]
. (2.9)

The symmetry means that p̂x is conserved and can be replaced by its eigenvalue

kx, reducing (2.9) to a one dimensional shifted harmonic oscillator in

y′ = y/`− `kx with the Landau energy levels En in 2.4. The fact that there is

no dependence on kx means that the energy levels are massively degenerate,

with a degeneracy depending on the surface area through the number of states

one can fit with y′(`kx).

The energy eigenstates are plane waves along x with a harmonic oscillator

centered at y′:

ψn,kx =

(
1

π22n(n!)2

) 1
4

eikxx exp
(
− 1

2
y′2
)
Hn(y′) , (2.10)

where Hn are the Hermite polynomials. These are delocalised along x and

localised around `kx along y; showing a connection between x-momentum and

y-position. From here on natural units are adopted unless otherwise noted:

~ωc = ` = 1 . (2.11)

Another gauge useful for the form it gives the wavefunctions and for its

utility with the simple circular disk geometry is the symmetric gauge:

A =
1

2
B × r . (2.12)

The resulting Hamiltonian has the energy eigenfunctions

ψnm = (−1)n

√
n!

π2m+1(n+m)!
zmLmn

(
|z|2/2

)
e−
|z|2

4 (2.13)

with the complex coordinate z = x + iy, associated Laguerre polynomials

Lmn (z) and an angular momentum quantum number m ∈ {−n,−n + 1, . . .}.
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Physical observables are gauge independent, and ψmn has the same Landau

energy eigenvalues En. The Laguerre polynomials can be expressed in a series

representation as [30]

Lmn (z) =
n∑
k=0

(−1)k(n+m)!

(n− k)!(m+ k)!k!
zk . (2.14)

The functions in (2.13) are symmetric along concentric circles, and from

Lmn (z) = ±zn/n! +O(zn−1) one may estimate their extent through the expec-

tation value of the squared radius r2 = |z|2:

√
〈r2〉 ≈

√
m+ 2n+ 1 . (2.15)

Reintroducing the magnetic length `, this means that in a single Landau level

one can fit approximately N states in an area A = 2π〈r2〉 = 2π`2(N + n), or

in other words that the Landau level degeneracy per unit area is

d ∼ 2π`2 = NΦ , (2.16)

which is a huge number in macroscopic systems. A magnetic field around

B ∼ 10 T as in the experiment in fig. 1.1 corresponds to NΦ ∼ 1015.

Section 2.1.1 argues that in describing quantum Hall systems with ν ≤ 1,

and sometimes also ν > 1 using effective Hamiltonians, the many body wave-

function can be approximated as a superposition of LLL single particle wave-

functions. Using Lm0 = 1 with (2.13) shows that these in turn are superposi-

tions of near holomorphic wavefunctions

ψ(z, z∗) =
∑

k ckz
me−

|z|2
4 = f(z)e−

|z|2
4 , (2.17)

i.e. all dependence on z∗ is in the Gaussian factor. This is fortituous as the

analysis of holomorphic functions can be brought to bear, and a function space

where the Gaussian is part of the integral measure is sometimes used so as to

deal with holomorphic functions exclusively.

The many particle state consisting of a completely filled lowest Landau

level, i.e. ν = 1 and Ne = NΦ − 1, has a particularly simple form. It can be

demonstrated that filling a Slater determinant with the states ψ0m in (2.13)

gives the result

Ψν=1 =
∏
i<j

(zi − zj)e−
1
4

∑
i |zi|2 . (2.18)
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The polynomial part of this expression appears as a factor in many trial wave-

functions.

When presented with a many body wavefunction Ψ in the lowest Landau

level its filling factor can be identified through the highest power pmax of a

single coordinate. The function Ψ will be a superposition of single particle

wavefunctions ψ0m ∼ zm (2.13), of which the one with the largest extent is

somewhat loosely defined as the edge of the disk. This is also the one with the

highest power, and with (2.15) and the comments below in mind this means

that the number of available states inside the boundary, and thus the number

of flux quanta piercing the sample is

NΦ ≈ pmax . (2.19)

This is then used to find the filling factor ν = Ne/NΦ.

2.2.2 The sphere

Placing the system on a sphere has the advantage that there are no boundaries

while the single particle wavefunctions stay relatively simple. Because of this

all the calculations in later sections are done on this geometry, first introduced

in ref. [26]. The electrons are located on a spherical shell, naturally described in

the regular spherical coordinate system with radius, polar angle and azimuthal

angle (R, θ, φ). The radius of the sphere R is given in terms of ` and assumed

constant. There are two gauges typically used in the literature, the Wu-Yang

gauge AWY [31] and the spinor gauge AS:

AWY = − NΦ

2eR

(
cot θ +

1

sin θ

)
eφ

AS = − NΦ

2eR
cot θ eφ . (2.20)

The latter are more convenient when utilising the spinor coordinates intro-

duced below, and will be used throughout this work.

The field B is uniform and points radially outwards, arising from a Dirac

monopole in the center of the sphere. It can be shown that NΦ, the num-

ber of magnetic flux quanta piercing the surface, must be an integer so that

the singularity associated with the monopole has no observable effect. It is

convenient to define the quantity Q ∈ {1
2
, 1, 3

2
, 2, . . .} through

NΦ = 2Q . (2.21)
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Considering the flux through the surface shows that R =
√
Q. One may

fix R since it commutes with the Coulomb Hamiltonian

Ĥ =
~

2mR2
|Λ̂|2 , (2.22)

with the tangential momentum operator

Λ̂ = R×
(
− i∇+

e

~c
A(R)

)
. (2.23)

Inspecting the commutation relations leads to the total angular momentum

and its z-component

L̂ = Λ̂ +Q
R

R

L̂z = −i∂φ . (2.24)

In the remainder R is usually left out of the expressions.

It can be demonstrated that {H,L2, Lz} is a commuting set, and simulta-

neous eigenfunctions can be found as

φQnm = NQnm(−1)Q+n−muQ+mvQ−m
n∑
s=0

(−1)s
(
n

s

)(
2Q+ n

Q+m+ s

)
|u|2s|v|2n−2s ,

(2.25)

comprising the spherical single particle wavefunctions. The above introduces

the spinor coordinates

u = cos
(θ

2

)
ei
φ
2 and v = sin

(θ
2

)
e−i

φ
2 (2.26)

and the normalisation

NQnm =

√
2Q+ 2n+ 1

4π

(Q+ n+m)!(Q+ n−m)!

n!(2Q+m)!
. (2.27)

Again n indexes the energy Landau levels En =
(
n + 1/2

)
~ωc, connected to

the L2 angular momentum eigenvalues through n = l − Q. Thus the angular

momentum has a minimum value: l ∈ {Q,Q+1, . . .}. The eigenstate relations

are

L̂2φnm = l(l + 1)φnm

L̂zφnm = mφnm . (2.28)
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The z-component quantum number takes values m ∈ {−l,−l+ 1, . . . , l}. This

means that the number of states in Landau level n are

d(n) = 2(n+Q) + 1 . (2.29)

For multiparticle eigenstates Ψ the total angular momentum quantum num-

bers are denoted by L and M :

L̂2Ψ(z1, . . . , zNe) = L(L+ 1)Ψ(z1, . . . , zNe)

L̂zΨ(z1, . . . , zNe) = MΨ(z1, . . . , zNe) . (2.30)

The notation above is slightly awkward, but will hopefully be clear from the

context.

From (2.25) it is evident that, similarly to the disk, the lowest Landau level

wavefunctions are holomorphic in (u, v). As in (2.18) in the previous section

the unnormalised ν = 1 Slater determinant wavefunctions can be found as

Ψν=1 =
∏
i<j

(uivj − ujvi) . (2.31)

Another coordinate system sometimes used on the sphere is that of the

stereographic coordinate z = x + iy. A line is extended from a chosen pole

to the particle, and z is where the line intersects a plane through the equator.

This plane is taken to be the complex plane. Choosing the south pole leads

to z = tan(θ/2) exp(iφ) = v/u . The north pole is mapped to the origin and

the south pole to infinity. In terms of stereographic coordinates the ν = 1

wavefunction in the Wu-Yang gauge is

Ψν=1

∏
i<j

(zi − zj)
∏
i

(1− |zi|2)−Q , (2.32)

In the spinor gauge there is an extra factor
∏

j exp(iφj); for convenience the

Wu-Yang gauge is usually employed when working in stereographic coordi-

nates.

The function in (2.32) is the formally the same as (2.18) on the disk, up to

the last factor in both. In fact, in the limit of inifinte radius, where the sphere

becomes a plane, they become equal. Owing to the ubiquitousness of these

geometric factors multiplying the holomorphic polynomials of the LLL single

particle wavefunctions, they are omitted in the remainder. Wavefunctions

are generally presented in terms of zi, which then stands for either complex
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coordinates on the disk without the geometric factor, spinor coordinates on

the sphere with the substitution (zi− zj)→ (uivj − ujvi), in the spinor gauge,

or stereographic coordinates on the sphere in the Wu-Yang gauge and omitting

the geometric factor.

There are two natural distance measures on the sphere. Evaluating the

distance from the north pole they are the arc length ra = Rθ, which follows the

curvature of the surface, and the chord length rc = 2R sin(θ/2), which draws a

line through the three-dimensional embedding space. While the former might

seem more physical, the latter is mostly used in the literature and simplifies

most expressions. In particular, it makes the connection between common trial

wavefunctions and distance between particles more clear. In the limit of an

infinite system they become the same two dimensional Cartesian distance.

Chord length is used throughout this work and the subscript is dropped:

r ≡ rc. The distance between two particles can then be expressed as

r12 = 2R|u1v2 − u2v1| . (2.33)

It is convenient to also define a dimensionless distance η ∈ [0, 1]:

η12 =
r12

2R
= |u1v2 − u2v1| . (2.34)

The sphere has a well defined surface area, in contrast with the disk. There is

no analogue to the disk wavefunctions extending outside the region designated

as the system boundary as in the end of section 2.2.1. The corresponding

derivation of filling factor ν from highest power of a coordinate using (2.19)

therefore becomes rigorous on the sphere:

NΦ = pmax . (2.35)

Most trial wavefunctions, however, do not match exactly the filling factor they

are intended to describe when using this formula. It is said that they have a

shift S, defined by

NΦ = ν−1Ne − S . (2.36)

It turns out that S is not only an artifact of the trial wavefunctions, but

constitutes a physically relevant quantity that describes the system’s response

to the curvature of the configuration space. It emerges also in flat geometries

through its conjectured connection to the Hall viscocity [32], given as ηH =

Sn/4 with electron density n [33]. This has been confirmed numerically for
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the Laughlin, Moore-Read and hierarchical ν = 2/5 wavefunctions on the

torus [33, 34]. The fact that ηH can potentially be computed directly from

the Hamiltonian means that S is another quantity useful in comparing trial

wavefunctions.

2.2.3 The torus

The flat torus is a rhombus with opposite sides indentified, i.e. with periodic

boundary conditions. It has the same topology and global geometry as the

geometrical torus or donut shape. It was first introduced in the context of the

FQHE in ref. [35], and is useful for having no boundaries and no curvature,

and the access to a geometric parameter τ which facilitates computation of

the Hall viscosity.

The toroidal single particle wavefunctions are infinite linear combinations

of Landau gauge functions (2.10) and complicated in general. Many of them

can be adopted from the corresponding disk or sphere versions by changing

(zi − zj)→ θ
(
(z1 − z2)/L|τ

)
and adding a center of mass factor, where L and

τ parametrise the torus geometry (τ = i corresponds to rectangular tori). The

antisymmetric θ-functions are quasiperiodic in two directions [36]. However

the center of mass factor can in general be challenging to construct.

Ref. [22] introduces a new LLL projection technique and demonstrates that

it is viable both on the sphere and torus geometries. The material concerning

the sphere is presented in section 5.1.3. The analysis on the torus, however,

was mostly done by the other authors and is excluded here. In light of this a

more in-depth introduction to toroidal wavefunctions is deemed unnecessary.

2.2.4 The second Landau level

When describing states in partially filled higher Landau levels, it is common to

approximate both spin directions of the levels below the topmost as completely

filled and inert (unless specifically investigating LL mixing etc). An analogy

may then be used in which the topmost level is modelled using states from the

lowest Landau level. This is helpful because the single particle wavefunctions

in the LLL have a simpler form, as seen in sections 2.2.1 and 2.2.2, and because

doing so means that most of the methods that exist for dealing with the lowest

Landau level can be transferred almost directly.

In particular this applies to states with filling factors 2 < ν < 3, i.e. in

the second Landau level and with spin up. This region of fillings is especially
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interesting: firstly, unlike in the lowest Landau level (possibly except for under

special circumstances [14,37,38]), even denominator states have been observed.

Secondly, several models predict that some plateaus contain nonabelian quasi-

particles (see sections 3.1.2 and 3.4.2).

When performing exact diagonalisations (section 4.1) in the SLL it is com-

mon to utilise LLL single particle wavefunctions but to exhange the LLL pseu-

dopotentials for SLL ones. This is reasonable because the levels are isomorphic

apart from the pseudopotential values, and in particular the actual wavefunc-

tions are not used when diagonalising in momentum space. The only caveat

is the size of the Landau levels on the sphere, where each level has two more

states than the one below, as seen in (2.29). To compensate for this, when

diagonalising a system in the second Landau level at physical flux NΦ, lowest

Landau level wavefunctions are used with the SLL pseudopotentials evaluated

at flux NΦ − 2.

When it comes to quantities like overlap between states, with no explicit

dependence on the flux, this gives good results as is. The Coulomb energy,

however, depends on the flux through the radius R of the sphere: E ∝ R−1 =

N
−1/2
Φ . Thus when using eigenvalues in the second Landau level obtained using

the method above, this is compensated for by the following correction:

E →
√
NΦ − 2

NΦ

E . (2.37)

Lowest Landau level wavefunctions, with their holomorphic properties, are

used rather than the corresponding SLL functions. Also in this case a correc-

tion is usually applied to aquire more accurate values for the energy. Rather

than using the Coulomb interaction (2.6) an effective potential is utilised,

whose pseudopotentials computed in the LLL basis are equal to those of the

Coulomb interaction pseudopotentials in the SLL basis [39, 40].

2.3 Pair correlation functions

A useful quantity in describing many-particle states is the pair correlation

function ρ2(r1, r2), giving the probability density for finding one particle at r1

and another at r2. It is defined as

ρ2(r1, r2) =
Ne(Ne − 1)

ρ2

∫ ∏
i>2

dSi |Ψ(r1, . . . , rN)|2 , (2.38)
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Figure 2.1: Pair correlation functions computed using Monte Carlo. The trial wavefunc-
tions are (a) Laughlin at ν = 1/3 and Ne = 22 particles, (b) Laughlin at ν = 1/5 and
Ne = 22, (c) Composite fermions at ν = 2/5 and Ne = 20 and (d) Moore-Read at ν = 5/2
and Ne = 20.

where it is assumed that |Ψ| is symmetric in particle interchange and that the

density expectation value ρ is constant in space. As long as one is working

on the sphere this is reasonable. Dividing by the density squared ensures

that (2.38) is normalised to one when the two particles are uncorrelated; this

makes the asymptote identical for different filling factors but means that ρ2 is

not strictly speaking a probability amplitude.

The physics of many states considered in the remainder is symmetric in

rotations of the sphere (with exceptions for some excitations), and therefore

the pair correlation must be as well. In other words ρ2 should only depend on

the length of the relative distance r12 ≡ r2−r1, yielding as a natural measure

the quantity

g(r12) =
Ne(Ne − 1)

Aρ2

∫ ∏
i>1

dSi |Ψ(r2 − r12, r2, . . . , rN)|2 , (2.39)

where A is the surface of the sphere. In the remainder this is what is referred

to as the pair correlation function. Some examples of g(r) for different trial

wavefunctions are shown in figure 2.1

Much information can be gained from the pair correlation. Fermionicity

requires g → 0 as r → 0, but the size and shape of the correlation hole

at the origin varies. In particular some states characterised by pairing will
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have a shoulder in the slope after the hole (see figure 2.1d for an example).

Furthermore there is often oscillation after the maximum, signalling the onset

of crystallisation as ν decreases: contrast ν = 1/3 in figure 2.1a with

ν = 1/5 in figure 2.1b. Finally, incompressibility implies suppressed long range

correlations. This means that one should expect g → 1 within a moderate

distance scale, independent of system size, for FQHE ground states.

Apart from being interesting in its own right the pair correlation can be

used to compute the energy gap in the single mode approximation [24]. This

is an approach in which the lowest energy band of neutral excitations can be

estimated using only the ground state wavefunction Ψ. The excitation with

momentum k is modelled as a density wave modulation of Ψ projected to the

lowest Landau level:

Φk = PLLL
Ne∑
j=1

e−ik·rjΨ . (2.40)

This in turn yields an expression for the variational energy that can be calcu-

lated using g(r).
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Chapter 3

Review of trial wavefunctions

The main bulk of this work focuses on fractional quantum Hall effect trial wave-

functions. A number of schemes for generation of such have been proposed,

some of which are discussed in this chapter.

3.1 Ground states and excitations

The first thing one expects from a trial wavefunction procedure is a description

of the ground state, i.e. the lowest energy state of the electron system at an

exact QHE plateau in terms of Ne and NΦ (bar deviations from the shift on

the sphere). It must have the correct universal properties, and other features

like the energy can be compared to experiment and other theoretical models.

In addition to this the low energy dynamics are important; described by

excited state wavefunctions in the predominant trial schemes. Usually these

are realised as quasiparticles, meaning that although the behaviour arises from

the electron system as a whole, they are modelled as emergent particles that

are often localised in either space or momentum or both.

In order to explain the quantum Hall effect a model should exchibit incom-

pressibility, or in other words predict a gap. This can be tested by comparing

the energies of excited state trial wavefunctions to that of the ground state.

3.1.1 Quasiparticles

An excited state can be charged; altering the ratio of the number of electrons

to the flux, relative to the ground state. Thus the system deviates from the

middle of the FQHE plateau (which we are thinking of as the ground state,

although one could argue that these ”excited states” are ground states at other

fillings). Likewise they can be neutral, meaning that they are on the middle of
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3.1. GROUND STATES AND EXCITATIONS

the plateau but have a higher energy. These kinds of elementary excitations,

when realised as quasiparticles, are labelled quasiholes (for heightened flux),

quasielectrons (for lowered flux) or excitons (neutral). Excitons are usually

constructed by combining a quasihole and a quasielectron; other states can be

described using different combinations.

As seen below some of the proposed quasiparticles have fractional charge.

The total system has an integer number of fundamental charges, being com-

posed of electrons in three dimensions. But the emergent quasiparticles can act

as independent entities with charge that is a fraction of this – as an example,

introducing a flux quantum locally at ν = 1/m will create a Laughlin quasi-

hole (section 3.2.2) of charge e/m in the bulk and its antiparticle on the edge.

This has been confirmed in experiment through tunnelling of the edge excita-

tions [41–43]. Even more intriguingly, some quasiparticle states are predicted

to have fractional statistical phase; in other words they are anyons.

3.1.2 Anyons

In two dimensions the possible multiparticle states are not limited to bosons

or fermions: they can also acquire exchange angles θ intermediate between 0

and π through interchange. Symbolically,

Ψ(r2, r1) = eiθΨ(r1, r2) . (3.1)

The theoretical possibility of anyons was originally deduced from a config-

uration space perspective in ref. [44]. Rather than using coordinate symbols

with no direct physical meaning and a configuration space which is a cartesian

product of single particle spaces, as implied in (3.1), the authors considered

the space obtained by taking the single particle space product and then identi-

fying points where identical particles are interchanged. The connectedness of

this space depends on the number of spatial dimensions and leads to different

possibilities for exchange phases. Another argument notes that a two dimen-

sional space gives the possibility of angular momentum which is not integer or

half-integer, again yielding anyonic statistics [45].

The anyonic nature of quasiparticles has not been observed conclusively

in experiment but evidence pointing in this direction exists [46, 47]. Some

suggested states have nonabelian statistics [48, 49]. This means that braiding

of the quasiparticles interchanges distinct states with the particles in the same

positions, and the order of braiding matters when there are three or more
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quasiparticles.

If realised in nature anyons could supply useful systems for topologically

protected qbits in fault tolerant quantum computing, e.g. by encoding the in-

formation in nonabelian states. Global braiding operations are thus necessary

to alter the qbit states, which then are protected from local noise [50–52].

Different trial wavefunctions predict different species of anyons, and discern-

ing which ones are more likely to describe the physical system is therefore

important.

3.2 Laughlin and the hierarchy

3.2.1 Laughlin

The first to be observed and most prominent of the FQHE filling fractions

was ν = 1/3 [8], another early one was 1/5 [10], and a few years later 1/7

followed [13]. Laughlin’s wavefunction [53] pertains to these ν = 1/m plateaus.

His starting point was a trial wavefunction of Jastrow factors: Ψ =
∏

i<j f(zi−
zj). Since it should conserve angular momentum and be fermionic f(z) must

be a homogeneous odd polynomial; imposing the correct filling factor and

restricting to the lowest Landau level leaves a unique function

ΨL
m =

∏
i<j

(zi − zj)m , (3.2)

leaving out the geometric Gaussian factors as mentioned in the discussion

below equation (2.31). The flux in the system can be found using (2.35):

NΦ = pmax = m(Ne − 1). From (2.36) this means that the filling factor is

ν = 1/m as it should, while the shift on the sphere is S = m.

This wavefunction matches the exact system to a remarkable degree, as

has been demonstrated in extensive numerical studies. Incompressibility can

be argued from an upper bound on the gap estimated from the excited state

trial wavefunctions in the following section, or from employing what is known

as the plasma analogy:

Similarly to the correspondence between quantum theory and statistical

mechanics, Laughlin pointed out that |ΨL
m|2 is formally identical to the energy

Em in the Boltzmann weight exp(−Em) for a two dimensional classical one-

component plasma with particle charge to temperature ratio m. The Gaussian

factor, left out in (3.2), yields a homogeneous background charge. The plasma
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3.2. LAUGHLIN AND THE HIERARCHY

is known to be screening at parameters corresponding to the fractional quan-

tum Hall effect.

In the Coulomb system a phase transition occurs when m& 7, moving from

an incompressible electron liquid to a crystalline state known as a Wigner

crystal [54]. A similar transition also takes place for the trial wave function

(3.2), but not until m& 70, as can be seen using the plasma analogy and results

from the two dimensional plasma [55].

Pseudopotentials (section 2.1.2) offer additional insight into Laughlin’s

wavefunction ΨL
m. Focusing on a pair of particles i and j, the factor (zi− zj)m

shows that they have relative angular momentum exactly equal to m, and

the pseudopotentials VL with L < m do not pick up any contribution to the

energy. Thus ΨL
m is the highest density zero energy eigenstate of potentials

where VL = 0 for L ≥ m and VL > 0 for L < m; in particular the 1/3 state is

a ground state for the hardcore potential (V1 = 1 and VL = 0 for L > 1).

3.2.2 Laughlin quasiparticles

A quasihole occurs when the ratio of flux to electrons is higher than at the

plateau; Laughlin achieved this by raising the flux by one while keeping the

number of electrons constant. This means that there is one extra single particle

state available relative to the ground state that is unused by the electrons (or

a superposition of such), so that the highest power of a single coordinate is

raised by one. The original suggestion is localised in space:

Ψm,qh =
Ne∏
i=1

(zi − z0)Ψm . (3.3)

The quasihole is located around z0, where the electron density is the lowest.

This excitation has charge Q = e/m and exchange angle θ = π/m. An

intuitive way to justify this assertion is to imagine creating an extra electron

at z0; this would give a factor
∏Ne

i=1(zi−z0)m. Since (3.3) is 1/m of this factor,

it is in a way “1/m missing electrons.” Laughlin deduced the charge more

rigorously using the plasma analogy; a calculation of both using the Berry

phase is in [56].

A natural guess for a localised quasielectron is the conjugate of the above

(since the inverse factor would be singular), however this implies that the

wavefucntion is no longer limited to the lowest Landau level. Projection to

the latter is thus in order. As seen in section 5.1 this projection is given by
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z∗ → ∂z (with normal ordering), and this is reasonable since we need less flux

relative to number of electrons and derivatives will lower the powers of the

coordinates. The Laughlin quasielectron is therefore

Ψm,qe =
Ne∏
i=1

(∂zi − z0)Ψm . (3.4)

This is more computationally intensive than the quasihole due to the compli-

cated expression arising from the derivatives, and has been shown not to be

as good as the quasihole in numerics [57]. Its charge and exchange angle is

Q = −e/m and θ = π/m.

3.2.3 The Haldane-Halperin hierarchy

Shortly after the state at filling ν = 1/3 was observed other odd denominator

plateaus not following the ν = 1/m pattern were found as well [9, 11, 12], and

an extended trial wavefunction scheme was required to describe these. The

hierarchy construction [26, 58] produces wavefunctions for other filling factors

by using quasiparticles over the Laughlin wavefunction. Intuitively, once there

are enough quasiparticles they condense into their own Laughlin state, being

charged particles in similar conditions to the electrons that form the underlying

Laughlin fluid. If the quasiparticle coordinates are wk, the 1st level hierarchy

wavefunction can be written as

ΨHH
1 =

∫ Nqp∏
k=1

d2wk Φ∗(w1, . . . , wNqp)Ψ
L
Nqp(z1, . . . , zNe, w1, . . . , wNqp) , (3.5)

where Φ is a pseudowavefunction that guides the motion of the quasiparticles,

since the above is a superposition of localised quasiparticle with weight Φ (it is

convenient to have Φ be a holomorphic function, however we need conjugates

w∗ for the integral not to vanish – hence the conjugate on Φ∗ in (3.5)). As

described above the pseudowavefunction will be of a Laughlin type, as is the

0th level wavefunction ΨL
Nqp

.

One may then build subsequent levels of hierarchy states ΨHH
k with k > 1

by iterating this procedure, creating unique trial wavefunctions for any fill-

ing factor. It can be argued that the stability of the state depends on the

denominator of the filling fraction [58].

As written above the wavefunctions are unwieldy due to the integrals, but

using methods from conformal field theory (section 3.4.1) these have been
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Figure 3.1: Sketch of six electrons occupying two Landau levels on the sphere. The index
n gives the LL while m denotes the angular momentum.

simplified. Explicit expressions exist on the disk [59–61], the sphere [62] and

the torus [63, 64]. In general these require explicit antisymmetrisation, which

makes numerical investigations more time consuming.

3.3 Jain’s composite fermions

3.3.1 Ground states

The composite fermion (CF) approach [3,17] uses intuition from the conceptu-

ally simpler integer quantum Hall effect to generate trial wavefunctions for a

series of fractional states. The starting point is the ground state wavefunction

for electrons corresponding to an integer number n Landau levels completely

filled:

Φq
n = Det[φqi (zj)] . (3.6)

The single particle wavefunction indices i = (k,m) run over Landau level

k ∈ {0, . . . , n − 1} and angular momentum m ∈ {−k, . . . , k}, and the coordi-

nate indices are j ∈ {0, . . . , Ne−1}. Bearing in mind the number of states per

LL on the sphere, (2.29) shows that Φq
n has flux 2q = Ne/n− n. A sketch on

the sphere with n = 2 and Ne = 6, is shown in Fig. 3.1.

These states are noninteracting, and so far have flux corresponding to inte-

ger fillings. To model fractional states with electron interactions, even powers

of Jastrow factors
∏

i<j(zi − zj)2p with p ∈ N are attached to the wavefunc-

tion, adding magnetic flux through the Berry phase. Since the determinant

is antisymmetric these are fermion states; to create bosons one may use odd

powers 2p − 1 instead of 2p. The inclusion of these factors has the effect of

lowering the probabilities of configurations where the electrons are less spread

out, informally “keeping them further apart” – thereby modelling repulsive

interactions. The flux attachment procedure adds 2p(Ne − 1) to the highest

power of the coordinates. The result is a magnetic flux NΦ, filling factor ν and
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shift S given by

NΦ = 2q + 2p(Ne − 1) =
Ne

n
− n+ 2p(Ne − 1) ,

=⇒ ν =
n

2pn+ 1
,

S = 2p+ n . (3.7)

When n = 1 this reduces to the Laughlin states, thereby forming a subset of

the composite fermion series. As yet the n > 1 states are not good models for

the FQHE since the determinant Φn contains single particle wavefunctions in

higher Landau levels. This is remedied by projecting the whole state, yielding

the composite fermion ground state wavefunctions

ΨCF
ν = PLLL Φq

n

∏
i<j

(zi − zj)2p . (3.8)

Additional filling factors can be accessed by reverse flux states, obtained by

having the initial magnetic field on the electrons point in the opposite direction

(inwards on the sphere). This gives the magnetic flux, filling factor, shift and

wavefunction

NΦ = −Ne

n
+ n+ 2p(Ne − 1) ,

ν =
n

2pn− 1
,

S = 2p− n ,
ΨCF
ν = PLLL Φ−|q|n

∏
i<j

(zi − zj)2p , (3.9)

where now q < 0. Reversing the flux amounts to complex conjugating the

electron determinant before projection.

Many of the most prominent lowest Landau level FQHE plateaus are in-

cluded in the CF series ν = n/(2pn ± 1), but not all, notably the fraction

ν = 4/11 [14]. It is possible to generate composite fermion wavefunctions for

these as well by considering partially filled Landau levels in the determinants

Φq.
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(a) Ground state at L = 0
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(b) Quasihole at L = −3/2
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(c) Quasielectron at L = −3/2
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(d) Exciton at L = −1

Figure 3.2: Sketches of composite fermion states at effective flux 2|q| = 1 and various total
angular momenta. Circles with two arrows symbolise electrons with two fluxes attached. The
ground state in (a) corresponds to n = 2 CF Landau levels filled, yielding a filling factor
ν = 2/5 (assuming 2p = 2 flux attached and original flux in the regular direction q > 0).
The remaining figures symbolise excitations of this.

3.3.2 Excited states

The ground state wavefunctions provide trial states with an intuitive picture of

composite fermions occupying CF Landau levels. The composite fermions can

be thought of as emergent particles of the electron system, correlated through

flux attachment and lowest Landau level projection. The flux 2q felt by the

composite fermions is called the effective flux. A sketch of this can be seen in

Fig. 3.2a.

This provides a natural way to create quasiparticle states by altering the

determinant of single particle wavefunctions. To form quasiholes it is necessary

to lower the ratio of electrons to magnetic flux, which can be accomplished

by removing composite fermions from the ground state, and contrarily for

quasielectrons (note that for the reverse flux states adding a CF creates a

quasihole and vice versa). These constitute charged excitations.

Excitons, being neutral excitations, can be modelled by adding a quasihole

and a quasielectron simultaneously. Sketches of these three kinds of excitations

are displayed in figures 3.2b, 3.2c and 3.2d respectively. The trial states can

be expressed as

ΨCF
exc = PLLL Φq

exc

∏
i<j

(zi − zj)2p . (3.10)

The total angular momentum L of the state is obtained by adding those of the

individual composite fermions present, which shows that quasiholes contribute

the negative angular momentum of the removed states.

A quasihole at level k in the determinant Φq will increase the maximum

power of every particle in that level by one (after which the determinant anti-
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symmetrises over the particles, removing the association of a given particle to a

CF LL as it must be for fermions). Doing this in every level increases the max

power in general by one, like the Laughlin quasihole. It can be demonstrated

that this is exactly a delocalised Laughlin quasihole; i.e. a superposition of

localised functions as in (3.3). Thus creating n CF quasiholes is the same as

creating one Laughlin quasihole.

From the above discussion it is clear that composite fermion quasiholes are

smaller excitations than Laughlin’s variant, with the former in an intuitive

sense comprising 1/n of the latter. They therefore have smaller excitation en-

ergy. The CF quasielectron wavefunction is further distinct from the Laughlin

one and performs better in numerics [65,66].

The composite fermion model is not guaranteed to yield useful trial wave-

functions, although it has the right universal properties. Quantitative and

qualitative numerical investigations show that they are highly favourable, how-

ever, by examining properties like ground state energies, overlaps with Coulomb

eigenstates, energy gaps and energy spectra [18,67–69].

Qualitative arguments imply that the quasiparticles have interchange an-

gles θ = 2p
2pn+1

[3]; this can also be shown using clustering arguments intro-

duced by Su [70]. These angles are confirmed through numerical calculations

for ν = 1/3 and 2/5 in [71,72].

3.4 Bonderson-Slingerland

Composite fermions wavefunctions are very successful at describing plateaus

in the lowest Landau level. In addition they can figure as components in a

set of proposed wavefunctions describing states in the second level, outlined in

this section.

3.4.1 Conformal field theory

Correlators of conformal field theories (CFT) [73] have proven to be another

fertile ground for construction of fractional quantum Hall trial wavefunctions.

The physical motivation, however, is fairly intricate and only a minimal sum-

mary is attempted here.

What is perhaps the clearest connection between CFT and FQHE states

arises when considering the edge states [74]. A theory of the low energy FQHE

dynamics can be written down in the form of an effective Chern-Simons theory

[75, 76]. It allows computation of various quantities, including the resistivity,
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but is not automatically gauge invariant when placed on a geometry with

an edge. This can be amended by adding a boundary term to the action,

which turns out to describe excitations in the form of gapless bosonic edge

modes. The dynamics of these modes are characterised by a 1 + 1 dimensional

conformal field theory of free bosons.

It can also be argued that correlators in conformal field theories yield real

space wavefunctions for the quantum Hall bulk [48]; and that these theories

are the same as those applied to the edge although strictly speaking the dimen-

sionality is different (1 + 1 and in a sense 2 + 0 respectively). Thus the FQHE

may embody a principle of holography, which makes intuitive sense from the

point of view of charged quasiparticles: any excess charge in the bulk must be

compensated on the edge and vice versa.

Motivation and derivations from fundamentals aside, the fact remains that

many prominent fractional quantum Hall trial wavefunctions can be generated

using CFT, including the Laughlin state and its excitations. These techniques

also produce explicit hierarchy wavefunctions without the integrals in (3.5),

and the filling factors in the series ν = n/(2pn ± 1) reduce to the composite

fermion wavefunctions – suggesting that the two may be different formulations

of the same framework [77]. A caveat to the latter claim is that there is some

freedom going from the conformal field theory to the real space functions, in

particular placement of derivatives, and appropriate choices have to be made

to identify composite fermion and hierarchy wavefunctions.

3.4.2 Moore-Read

After succesfully reproducing several existing trial states Moore and Read in-

quired whether conformal field theory could also provide novel wavefunctions.

In what was originally a demonstration that this is the case and that the re-

sult is consistent with the quantum Hall effect they constructed the following

function [48]:

ΨMR
q = Pf

( 1

zi − zj

)∏
i<j

(zi − zj)q , (3.11)

using the pfaffian Pf(A) =
∑

σ∈S2n

∏n
i=1Aσ(2i−1)σ(2i) of an antisymmetric

2n× 2n matrix. ΨMR
q has coordinate powers corresponding to the filling frac-

tion ν = 1/q with shift S = q+1 on the sphere. The pfaffian is antisymmetric,

however, meaning that in order to describe fermions q must be even – thus

describing an even denominator state.

Though it was originally meant as an example it was proposed [78] that
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this state with q = 2 might describe the prominent plateau at ν = 2 + 1/2

observed in the second Landau level [15] (where the increase by two in ν

corresponds to filling both sets of spin states in the lowest Landau level).

Numerical calculations confirm that this is the case and ΨMR
2 turns out to

be very competitive at this filling factor [79, 80], as does its particle-hole dual

[81–83].

Intriguingly the underlying CFT shows that (3.11) supports quasiparti-

cles with nonabelian statistics, as alluded to in section 3.1.2. In particular

the elementary excitation is a charge ±e/(2q) nonabelian anyon of the Ising

type. These can fuse to abelian charge ±e/q Laughlin-type quasiparticles. It

has been demonstrated, however, that Ising anyons do not facilitate univer-

sal quantum computation unless one also includes topologically unprotected

operations [84].

Much like the Laughlin wavefunction, the Moore-Read state is the low-

est density ground state of a model Hamiltonian, but one which discourages

nearing of triplets of particles rather than pairs as with the hardcore interac-

tion [78]:

V3 =

triples∑
ijk

δ(zi − zj)δ(zi − zk) . (3.12)

This is most easily seen for the ν = 1 state at q = 1, which has zero energy in

the above potential.

Compaired to Laughlin’s wavefunction the Moore-Read state is thus char-

acterised by pairing in that it strongly deters triplets rather that pairs from

approaching (the fermionic state at q = 2 also necessarily vanishes when pairs

coincide but to a lower power than the corresponding Laughlin state). This is

recognised also by considering the pfaffian in (3.11), the single terms of which

lowers the powers of the relative binomials. Finally the pairing shows up in

the pair correlation function as the correlation hole has a distinct shape with

a “shoulder” allowing the pairs closer together (see figure 2.1d). This concept

was generalised to a set of k-body clustered states by Read and Rezayi [85], of

which (3.11) corresponds to k = 2.

Excited states

Several schemes have been proposed for explicit wavefunctions for the excited

states. One suggestion for quasiholes consists of the ground states of (3.12) at

altered magnetic flux NΦ, and these perform fairly well in numerical calcula-

tions [86, 87]. Constructions based on CFT [88] and vanishing properties [89]
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also give expressions for quasielectrons and excitons. The most relevant pro-

posal for the purposes of this work, however, uses the fact that ΨMR
1 can

be written as two symmetrised layers of ν = 1/2 Laughlin wavefunctions to

propose the excited states [90]

ΨMR
exc = S

(
ΨCF
exc,1(z1, . . . , zNe/2)×ΨCF

exc,2(zNe/2+1, . . . , zNe)
)∏
i<j

(zi−zj) . (3.13)

ΨCF
exc,i for i = 1, 2 are bosonic composite fermion excited states (3.10) at ν = 1/2

of the first and second half of the electrons, respectively, and S symmetrises

over all possible divisions of the particles into these two groups. A similar

construction was presented in [91]. These states match the exact spectra rea-

sonably well and observe state counting predicted through other means [86,92].

Note that all the mentioned proposals generate the same quasiholes, while the

quasielectrons and excitons are different.

3.4.3 A second Landau level hierarchy

After observing that few of the second Landau level plateaus are well described

by the corresponding lowest Landau level states, Bonderson and Slingerland

[93] considered a hierarchy similar in spirit to that of Haldane and Halperin

(section 3.2.3) but built on the ν = 5/2 Moore-Read state; suggesting that the

SLL in general might be characterised by pairing. The state at ν = 5/2 is the

most prominent state in the SLL (with competition from ν = 7/3 and 8/3),

and as such play the role of the ν = 1/3 Laughlin state in the lowest Landau

level hierarchy.

This second Landau level hierarchy, called the BS wavefunctions, has more

possibilities than the LLL one as the 0th level has several species of quasi-

particles; the authors mostly focus on the simplest case where the condensing

particles are of the Laughlin type with charge ±e/2. In this case one may

build trial wavefunctions for the observed states ν = 8/3 and 12/5 [94] in the

1st hierarchy level and ν = 19/8 [16] in the 2nd level.

Inspired by the correspondence between the lowest Landau level hierarchy

wavefunctions and composite fermions, some of the BS ground state wave-

functions can be simplified to take the form of CF wavefunctions multiplying

a bosonic Moore-Read state:

ΨBS−CF = ΨMR
1 ΨCF . (3.14)
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The fact that multiplying factors amounts to adding powers, and the relations

(3.7) and (3.9), imply that these have magnetic flux, filling factor and shift

NΦ = (2p+ 1)(Ne − 1)±
(Ne

n
− n

)
− 1

=⇒ ν =
n

(2p+ 1)n± 1

S = 2p+ 2± n , (3.15)

with the composite fermion parameters n (number of filled CF Landau levels)

and p (number of attached flux quantum pairs) and the sign ± corresponding

to regular and reverse flux CF respectively. This series includes ν = 12/5 and

19/8 but not ν = 8/3.

The functions in (3.14) are not identical to the hierarchical Bonderson-

Slingerland wavefunctions, differing in the placement of the projection oper-

ators. They are expected to be in the same universality class, however, and

should have similar properties – either way ΨBS−CF is a trial wavefunction

that can be tested numerically.

Testing the BS states

The special case ν = 12/5, i.e. incorporating a reverse flux ν = 2/3 CF factor

with n = 2 and p = 1, is tested numerically in [95]. At the time of writing there

were three main trial wavefunction contenders at this filling; namely the lowest

Landau level hierarchy, the Bonderson-Slingerland state, and the particle-hole

conjugate of the Read-Rezayi state with k = 3. Since then another state has

been promoted [96] (again using particle-hole conjugation) which is a special

case of the construction in ref. [97]. Of these only the quasiparticles of the

Read-Rezayi state are applicable for universal quantum computation without

additional unprotected gates, however. It is therefore crucial to determine

which of these, if any, describe most closely the real system.

The Read-Rezayi wavefunction has been demonstrated to be favourable in

numerical investigations [85, 98]. Ref. [95] examines exact excitation gaps as

a function of the spherical shift and variational energies and overlaps of the

Bonderson-Slingerland state with the second Landau level Coulomb ground

state. Additional optimisations of the BS state through replacement of the

pfaffian by improved pair wavefunctions [99] and perturbations of the Coulomb

potential are also employed. The results indicate that both the Bonderson-

Slingerland and Read-Rezayi states are viable trial states, but does not con-
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clusively settle the issue; in fact suggesting that different physical realisations

may be described by one or the other.

The ν = 12/5 and ν = 13/5 states have also been studied for larger systems

using density matrix renormalisation group techniques in ref. [100]. It is argued

that the Read-Rezayi state matches the system to a large degree by examining,

among other things, entanglement spectra and the energies of the excitations.

Only ground states of ΨBS−CF have been studied, however, and it is of

interest also to investigate how close its excitations match the real system. The

formulation in (3.14) suggests two natural sets of quasiparticles: exciting the

composite fermion sector as in (3.10) or the pfaffian sector as in (3.13). Both

of these are constructed and compared to results from exact diagonalisation in

section 5.4.
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Chapter 4

Numerical methods

The numerical results in the following chapters are obtained through Monte

Carlo computations and exact diagonalisation, where the latter is mostly used

to assess the results aquired through the former. This chapter reviews these

methods and how we use them on the sphere.

4.1 Exact diagonalisation

Knowing the energy eigenvalues and eigenstates can tell us a lot about a sys-

tem, and these can be obtained using exact diagonalisation of the Hamiltonian

H. In the context of the quantum Hall effect the method was first applied on

the torus [35]. The word “exact” in this case can refer both to the fact that

the numerical computation is usually performed to machine precision and that

it yields the exact solution of the eigenvalue problem of H. This section gives

a short description of the procedure; all the diagonalisation calculations in

this work were done using code developed by other authors (see below). The

computations are done on the sphere with the relevant Hamiltonian (2.22).

The first step is to build a multiparticle basis, which can be done using

Slater determinants Φn of single particle wavefunctions φk, in our case given

in (2.25). These can be expressed as Φn = A
[⊗Ne

k=1 φnk
]

with the antisym-

metrisation A and a chosen occupation n of the single particle functions. The

Hamiltonian matrix to be diagonalised is then

Hnm = 〈Φn|H|Φm〉 =

i,j∈n, k,l∈m∑
i+j=k+l

Aijkl〈Φn|c†ic†jckcl|Φm〉 , (4.1)

where we have assumed that H is a two-body operator to simplify the ex-

pression in terms of second quantised creation operators c†k. The constraint

43



4.1. EXACT DIAGONALISATION

i + j = k + l expresses momentum conservation. Going to position space one

can then compute the coefficients as

Aijkl =

∫ ∫
dΩ1dΩ2 φ

∗
i (r1)φ∗j(r2)V

(
|r2 − r1|

)
φk(r1)φl(r2) , (4.2)

assuming a central potential V (necessary when using pseudopotentials but

not in general). The matrix Hnm can be constructed from the coefficients Aijkl

using efficient algorithms in terms of the creation operators.

Computationally the procedure is resource intensive because it involves

diagonalisation of large matrices, whose dimension equals that of the lowest

Landau level Hilbert space. Its size is given by the number of ways to distribute

Ne fermions over NΦ states, i.e.
(
NΦ

Ne

)
. This increases exponentially with Ne,

as can be seen defining ξ ≡ ν−1 and using NΦ ≈ ξNe:

(
NΦ

Ne

)
∼ 1

2πNe

√
ξ

ξ − 1

(
ξξ

(ξ − 1)ξ−1

)Ne
. (4.3)

The system sizes suitable for diagonalisation are thus limited. This can be

alleviated somewhat using symmetries of the Hamiltonian. One constructs a

new basis Φ′n in which H is block-diagonal, each block corresponding to a sector

of the symmetry. The procedure is then performed within the smaller blocks.

The numerical tools that we have utilised incorporate the Krylov-Schur [101],

Arnoldi [102] and Lanczos [103] algorithms; with the diagonalisation done in

such a way that when retrieving a chosen number of eigenvalues and eigenstates

they are ordered with respect to increasing energy.

For our purposes we are often interested in obtaining all states of a given

system with certain angular momentum numbers (L,M) of the operators L2

and Lz, see (2.30). Getting the desired total z-component value M is straight-

forward, since M is the total degree of the polynomial, which is the sum of

the degrees of the single particle wave functions. It is thus sufficient to use a

restriction on the single particle wavefunctions ψk included in the basis states

Ψn. A fast recursive algorithm for selecting these can be constructed.

In order to separate out states with a certain eigenvalue L = L0 we consider

states with the maximal value of the z-component M = L0 and add a term

to the Hamiltonian: H → H + εL̂2 with ε ∈ R (recall the notation L̂2ΨL =

L(L+ 1)ΨL). When ε is large enough this means that the lowest energy states

also have the lowest L-values. In this way the states retrieved are ordered with

increasing L, starting at L = L0. The correct eigenvalues can be reconstructed
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by subtracting the contribution from εL̂2.

For our purposes exact diagonalisation has two functions: constructing

the energy projection (section 5.1.3) and comparison with results from trial

wavefunctions. In the latter case the eigenvalues and eigenstates are seen as

the exact solutions of the model and can be used as a measure of how well the

trial states represent the system. The latter can then be used to study system

sizes and quantities which are inaccesible or hard to compute through exact

diagonalisation.

4.2 Monte Carlo

Monte Carlo (MC) computation is a broad term that is used in general of any

calculation that involves random numbers, but we will use it to refer more

specifically to evaluating integrals by interpreting them as expectation values.

The presentation below is based on [104].

4.2.1 Approximating integrals

As the simplest example consider approximating
∫ b
a
f(x)dx by drawing n uni-

formly distributed random numbers x between a and b, evaluating f(x), and

taking the average. As n→∞ we will get the exact value, with the error de-

creasing with n. Using the standard deviation of the mean as an error estimate

we get

ε = σm ≈
σ0√
n− 1

∼ n−1/2 , (4.4)

where σ0 is the spread of the function over our random values. Thus in general

the error of Monte Carlo computations goes as the inverse square root of the

number of samples. This is not particularly impressive, but the main strength

of MC calculations is that this also holds for higher dimensional integrals;

which entail picking random points in a higher dimensional space but getting

the same general n-dependence in the error. Other methods of numerical

integration are in general much slower in higher dimensions.

The naive method above is not efficient, however, since it prescribes pick-

ing all numbers with equal probabilities. We may then spend a lot of time

adding very small numbers that do not change the average much. This can

be mitigated by using what is known as importance sampling: we rewrite the

integral as ∫ b

a

f(x) =

∫ b

a

f(x)

P (x)
P (x)dx , (4.5)
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where P (x) is some chosen valid probability distribution. This has the form

of an expectation value, which means that it can be approximated by drawing

samples x from the distribution P (x) and then taking the average over the

remaining factor of the integrand:∫ b

a

f(x)

P (x)
P (x)dx ≈ 1

n

n∑
k=1

f(x)

P (x)

∣∣∣∣
x=x

(p)
k

, (4.6)

where x
(p)
k is the k’th random sample drawn from P (x). Again the error

estimate will go as n−1/2, but by choosing P cleverly we can make σ0 smaller.

In general we want to have a distribution function that is similar to the original

integrand, to sample most often the values that will contribute the most to

the estimate.

Markov chains and detailed balance

The next step is to find a way to generate samples from the probability dis-

tribution. We use a Markov process, where one generates a sample k from a

previous one j using a transition probability Tj→k; and in this way constructs

a set of samples iteratively. This is a non-deterministic method that, given

certain restrictions on the T ’s, yields a set drawn from the correct probability

distribution P .

Firstly the T ’s have to be valid probabilities; i.e.

∑
j

Tj→k = 1 ∀ k . (4.7)

Secondly, it must be possible to reach any state k from another j where they

both occur in P , or we could end up in a situation where we never generate

a sample that should have nonzero probability. This is known as ergodicity.

Lastly we have to satisfy detailed balance:

If pt(k) is the probability for the system to be in state k at iteration t,

equilibrium of the Markov chain is described by (using (4.7)):

pt+1(k) =
∑
j

pt(j)Tj→k , (4.8)

so that the transition frequency into and out of a state are equal. But although

this describes an equilibrium we are not guaranteed that the samples generated

from the process are drawn from the correct probability distribution P because
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we may end up in a limit cycle. This is avoided by imposing the condition of

detailed balance:

pt+1(k)Tk→j = pt(j)Tj→k ∀ j, k , (4.9)

or in terms of the sampling probabilities:

P (xk)Tk→j = P (xj)Tj→k ∀ j, k . (4.10)

This means that the probability of going from a given state to another equals

the probability of the opposite.

The Metropolis algorithm

The Metropolis algorithm [105] is a Markov chain that from a given state j

proposes a random state k and then accepts or rejects it depending on the two

states according to Tj→k in a way that satisfies the necessary conditions. The

transition probabilities are

Tj→k =

{
P (xk)/P (xj) : P (xk) < P (xj)

1 : P (xk) ≥ P (xj)
. (4.11)

One may check that detailed balance is satisfied by substituting (4.11) into

(4.10) and testing the two cases P (xk) < P (xj) and the opposite.

We will be computing quantum mechanical expectation values

〈O〉 =
∫
dΩ O|Ψ|2 and overlaps 〈ψ|φ〉 =

∫
dΩ ψ∗φ, where dΩ is the measure

over the multidimensional configuration space, a cartesian product of spheres.

In each case we seek the best choice for the probability P (Ω); in the simplest

case of an observable that can be computed for a single wavefunction, for

example the variational energy, the best choice is usually P = |Ψ|2:

〈U〉 =

∫
dΩ U(Ω)|Ψ(Ω)|2 ≈ 1

n

n∑
k=1

E(Ωk)

∣∣∣∣
Ω=Ω

(|Ψ|2)
k

, (4.12)

and we see that the summand is simple while the sampling distribution is

similar to the integrand and should be a good choice for importance sampling.

We work with wavefunctions, and thus probabilities, where the normali-

sation is unknown. But from (4.11) we see that this does not matter for the

Metropolis algorithm since it only involves fractions of probabilities. In effect

this means that the last factor P in (4.5) will always be normalised. For a

simple case as in (4.12) where the resulting summand does not depend on any-
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thing that needs to be normalised this is the end of the story, but other cases

are more complicated.

Normalisation

As an example we consider the overlap between two wavefunctions ψ and

φ. We assume that their normalisation is unknown and denote unnormalised

quantities with tildes:

Nψ =

∫
dΩ |ψ̃|2 , (4.13)

and correspondingly for Nφ. First of all we cannot use the complex ψ∗φ as a

probability distribution. This is a common problem for Monte Carlo integrals,

and means that we have to choose a different P – a natural choice in this case

would be P = |ψ|2 or P = |φ|2. Secondly we have to take into account that

the sampling probability is automatically normalised while in general we do

not know the probability norm Np =
∫
dΩ P̃ . This leads us to

〈ψ|φ〉 =

∫
dΩ ψ∗φ =

Np√
NψNφ

∫
dΩ

ψ̃∗φ̃

P̃
P ≈ Np

n
√
NψNφ

n∑
k=1

ψ̃∗φ̃

P̃

∣∣∣∣
k

, (4.14)

where the MC summand only depends on unnormalised and thus known quan-

tities, and ‘|k’ is an abbreviation for setting Ω = Ω
(p)
k . We can estimate the

normalisation in a similar way:

Nψ = Np
∫
dΩ
|ψ̃|2
P̃

P ≈ Np
n

n∑
k=1

|ψ̃|2
P̃

∣∣∣∣
k

, (4.15)

and correspondingly forNφ, so that in the end we have the normalised estimate

〈ψ|φ〉 ≈
∑n

k=1
ψ̃∗φ̃

P̃

∣∣∣
k√∑n

k=1
|ψ̃|2
P̃

∣∣∣
k

∑n
k=1

|φ̃|2
P̃

∣∣∣
k

. (4.16)

Different integrals require different ways of handling the normalisation. The

factors in a Gram-Schmidt orthogonalisation, for instance, can be estimated

as

〈ψ̃|φ̃〉
〈ψ̃|ψ̃〉

≈
∑n

k=1
ψ̃∗φ̃

P̃

∣∣∣
k∑n

k=1
|ψ̃|2
P̃

∣∣∣
k

. (4.17)

There are other quantities for which it is hard to construct an efficient nor-

malised expression; e.g. computing Nψ itself. The naive way, i.e. using
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P = |ψ̃|2, does not work because it leads to a circular situation where one has

to know the result in advance in order to find it. Therefore it is necessary to

choose another P for which the Monte Carlo computation will not converge as

fast. Similar reasoning shows why we cannot simply use P = E|ψ|2 in (4.12).

Sampling strategy

Although a Markov chain satisfying ergodicity and detailed balance guaran-

tees that one will generate samples for the chosen probability after an infinite

number of iterations, we have to start accumulating samples at some point.

How long we has to wait until the chain reaches an equilibrium and we can

start sampling depends on the probability and the integrand (i.e. which ob-

servable is being computed), and has to be checked empirically. We begin in

some initial state and then start running the chain, plotting the result from

each sample, and note when it stabilises (with smaller random fluctuations).

After doing this a few times one can estimate how many initial iterations are

necessary; this is referred to as the thermalisation time.

Naive error estimates assume that the individual samples are statistically

independent, but that is not generally the case when sampling from consec-

utive Metropolis iterations. In our case we will move a single electron for

every iteration, meaning that they are clearly dependent. Although there are

methods to estimate errors from dependent samples (see section 4.2.3) it is not

efficient to sample every iteration after thermalisation, and instead we wait for

a number of iterations between sampling. The optimal value of this number

gives a balance between getting close to independent samples and not waiting

longer than necessary, and an estimate can be obtained by comparing compu-

tation time and error for different sampling intervals. Usually it turns out to

be of order ∼ Ne, allowing each particle a few steps between every sampling.

Finally, it is not always efficient even when possible to use the squared

wavefunction itself as a probability in computing an observable, as in (4.12).

This may be because the wavefunction is computationally intensive and it

would save time to only compute it on the iterations we sample, or because

we already have generated a set of configurations that we would like to use

for computing several integrals. In that case we use an estimate analogous to

(4.16) for the relevant observable. The convergence will usually be slower than

using the squared wavefunction itself, but keeping the considerations above in

mind the computation can still be more efficient.
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4.2.2 Monte Carlo on the sphere

When proposing a step for the Metropolis algorithm on the sphere the simplest

procedure is choosing a random electron and then testing a random move in

terms of spherical coordinates (θ, φ)→ (θ+∆θ, φ+∆φ) of a random steplength

up to a certain maximum and with periodic boundaries.

As described above this will not satisfy detailed balance, however, because

the configuration space of an electron on the sphere is curved while (θ, φ)-

space is rectangular, and these steps will be biased because steps in θ are not

symmetric. One way of getting around this is to make the step in a different

way than a simple one in angle space, for example in the flat three dimensional

Cartesian space and then projecting onto the sphere in an unbiased way. This

makes the algorithm more time consuming, however, and instead we have

constructed a curved space Metropolis algorithm.

To analyse the situation we break the transition probability Tj→k in (4.10)

into two parts: tj→k, the probability of testing a move from j to k, and aj→k,

the probability of accepting it. Implementing detailed balance with these quan-

tities then amounts to

Tj→k = tj→kaj→k ⇒
P (j)tj→kaj→k = P (k)tk→jak→j , (4.18)

where again P (xj) is the probability to be in state xj. In the analysis of

section 4.2.1 we implicitly assumed that tj→k = tk→j, which is not the case

with steps in the angle space. To compensate for this we alter aj→k away from

the straightforward Metropolis implementation (4.11):

Consider a step (θj, φj)→ (θk, φk) and its reverse. Even if we are choosing

any angle within the steplength all with the same probability, if θk is closer

to the equator than θj, the associated area we are stepping into is larger and

the chance of choosing (θk, φk) is smaller than that of choosing (θj, φj) in the

reverse situation. The volume element on the sphere is dS = sin θdθdφ, and

assuming that the step length is relatively small, we estimate

tj→k ∝
1

sin θk
. (4.19)

This leads us to the following variant of the Metropolis algorithm, where we

50



4.2. MONTE CARLO

are free to make the steps uniformly in angle space:

aj→k =


P (xk) sin θk
P (xj) sin θj

: P (xk) sin θk
P (xj) sin θj

< 1

1 : P (xk) sin θk
P (xj) sin θj

≥ 1

. (4.20)

To confirm that this satisfies detailed balance we first assume that

P (xk) sin θk < P (xj) sin θj, so that we have the first condition in (4.20). We

fill in (4.18), keeping in mind that for the right hand side the step is from k

to j and so everything in (4.20) has to be reversed and its second condition is

true:

P (j)
1

sin θk

P (xk) sin θk
P (xj) sin θj

= P (k)
1

sin θj
· 1 , (4.21)

showing that the condition is satisfied. We can then assume P (xk) sin θk ≥
P (xj) sin θj and perform the same analysis. Numerical testing confirms that

this gives the same results as stepping in an unbiased way from the outset.

Note that the procedure outlined above is not guaranteed to work near

the poles, where one should rather test steps in a curved biconic shape (like

a bowtie on the sphere). After testing this, however, we concluded that the

resulting correction is much smaller than the typical error.

The optimal maximum step length can be found empirically by comparing

errors and computation times (and making sure that we do not end up in a

local minimum), and for our computations we find that an ideal one gives

an acceptance of ∼ 50%. This corresponds to a relatively short step length,

indicating that the analysis of detailed balance above is applicable.

4.2.3 Error estimation

The most naive estimate for the error is given by the standard deviation of

the mean of the Monte Carlo summand over the samples, as in (4.4). However

this is only valid for independent samples and observables that are defined

for a single MC sample. Counterexamples to the latter are normalised energy

eigenstate overlaps (necessary for the energy projection in section 5.1.3), where

the sum of the squares of all the lowest Landau level overlaps is involved, or

energy eigenvalues from a diagonalised subspace of excited states (see section

5.2.1).

One method of estimate the error in cases like the above is called binning

errors. It is computed by separating the samples into nb bins, computing the

relevant observable O in each bin, and finding the standard deviation of the
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mean over the bins, i.e.

εbin =

√
〈O2

b 〉 − 〈Ob〉2
nb − 1

, (4.22)

where Ob is the value computed for the observable in bin b.

This gives a measure of the spread of the data and can be computed in more

involved cases like the ones mentioned above – and we can see that dependency

of the samples is supressed by treating bins of samples as independent rather

than individual ones. The best justification however is a comparison to brute

force estimates, which in testing are within a factor of two of the bin esti-

mates. Brute force in this context refers to actually computing the final result

a number of times and taking the standard deviation of the outcomes.

The estimate (4.22) depends on the number of bins nb. An optimal number

can be found by plotting it against the error estimate and noting which range

of nb gives a stable result. All Monte Carlo errors in this work are estimated

using bin errors.

Usually it is expected that the jackknife and bootstrap methods of estimat-

ing the errors (see ref. [104]) will give better results than the bin error described

above. Regarding the calculations in this work, however, it was found that the

latter gave better estimates when compared to brute force calculation of the

error: the jackknife and bootstrap results were consistently closer to the naive

estimate (4.4).
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Chapter 5

Results from trial wavefunctions

This chapter contains most of our numerical results. Various fractional quan-

tum Hall effect trial wavefunctions are studied in different contexts and em-

ploying different projection methods; the implications of the results are then

discussed.

5.1 Lowest Landau level Projection

Several of the prominent fractional quantum Hall trial wavefunctions incorpo-

rate a projection to the lowest Landau level, in particular composite fermions

and CFT hierarchy wavefunctions. As we will see this is in general resource

intensive, and often comprises the main obstacle to fast evaluation of the wave-

functions.

After reviewing the analytic procedure we will present a commonly used

approximation for the projection of composite fermion states and show an

improvement of this. Subsequently we propose and test an entirely new and

general method of projection.

5.1.1 Exact projection

Assuming a Fock space represention of the state the projection is straightfor-

ward: simply eliminate constituents in higher Landau levels. With trial wave-

functions, however, one usually works with real space representations Ψ(zk, z
∗
k)

where the components in different LL’s are not as cleanly separated. Girvin

and Jach [23] showed that the projection can be accomplished with real space

functions on the disk using the following operation:

PLLLΨ(z1, z
∗
1 , . . . , zNe , z

∗
Ne) = :Ψ(z1, 2∂1, . . . , zNe , 2∂Ne): , (5.1)
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where : indicates a normal ordering that shifts all conjugate coordinates z∗ to

the left before substitution with derivatives. Note that these derivatives act

only on the polynomial part and not the implicit Gaussian factors (or alterna-

tively the normal ordering places the Gaussians to the left of the differential

operators). The procedure in (5.1) is natural in the sense that it maps general

functions to holomorphic ones, which as pointed out above (2.17) reside in

the lowest Landau level. Following ref. [3] the proof of (5.1) can be stated as

follows:

Consider a general single particle wavefunction on the plane, reinstating the

Gaussian factor: ψ(z, z∗) =
∑

j,k cjkz
jz∗k exp(−|z|2/4). We want to confirm

that the projected function PLLLψ(z, z∗) = :ψ(z, ∂z):, where the derivatives do

not act on the Gaussian part, have the same overlaps with any lowest Landau

level wavefunction as the unprojected function. To check this we compare with

the angular momentum basis functions φm(z, z∗) = zm exp(−|z|2/4):

〈φm|ψ〉 =

∫
dS z∗me−

1
4
|z|2
∑
j,k

cjkz
jz∗ke−

1
4
|z|2

=
∑
j,k

cjk

∫
dS z∗mzj(−2∂z)

ke−
1
2
zz∗

=
∑
j,k

cjk

∫
dS e−

1
2
zz∗(2∂z)

k(z∗mzj)

=
∑
j,k

cjk

∫
dS e−

1
4
|z|2z∗me−

1
4
|z|2(2∂z)

kzj = 〈φm|PLLLψ〉 , (5.2)

where we have used that the boundary terms vanish in the partial integration

of the third line. The generalisation to multiparticle states is straightforward.

The spherical version is similar, with (u∗k, v
∗
k)→ (∂uk , ∂vk) in terms of spinor

coordinates (2.26) (up to normalisation) [18]. On the torus the projection is

more complicated because derivatives do not adhere to the periodic boundary

conditions, necessitating superpositions of translation operators [64].

The projection conserves angular momentum and filling factor. However,

even given a wavefunction that is relatively simple before projection, the

derivatives will in general produce very complicated polynomials. This com-

plexity grows quickly with the number of particles and imposes a strong limit

on the system sizes that can be computed in practice.
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5.1.2 Jain-Kamilla projection

Early studies of composite fermion states [65,67,106–109] were able to investi-

gate different aspects using exact projection, including ground state energies,

energy gaps, Coulomb state overlaps and excitation spectra. These analyses,

however, were necessarily using a limited number of electrons. Larger systems

became available with the approximation known as Jain-Kamilla projection.

The composite fermion wavefunction (3.8) can be rewritten by taking the

Slater determinants from the flux attachment into the CF determinant:

ΨCF
ν = PLLL Φq

n

∏
i<j

(zi − zj)2p = PLLL

∣∣∣∣∣∣∣∣
φq1(z1)Jp1 φq1(z2)Jp2 . . .

φq2(z1)Jp1 φq2(z2)Jp2
...

. . .

∣∣∣∣∣∣∣∣ , (5.3)

where φi are single particle wavefunctions and Ji =
∏

j 6=i(zi − zj). Jain and

Kamilla [18] proposed to approximate this wavefunction with

ΨCF−JK
ν =

∣∣∣∣∣∣∣∣
PLLL φq1(z1)Jp1 PLLL φq1(z2)Jp2 . . .

PLLL φq2(z1)Jp1 PLLL φq2(z2)Jp2
...

. . .

∣∣∣∣∣∣∣∣ , (5.4)

so that the projection acts on individual elements of the determinant rather

than the whole wavefunction. This gives a different expression with fewer

derivatives. Numerical testing shows that it gives a good description of the

FQHE system [18,19,68], however, which is what matters in the end. Following

is a detailed account of the procedure.

Regular flux

We will call the elements in the determinant of (5.4) composite fermion or-

bitals ηqn,m,j, where n, m and j are the Landau level, angular momentum and

coordinate index of the single particle elements; keeping in mind that each

orbital then depends on the positions of all the electrons. Using the single par-

ticle expressions, Jain and Kamilla showed that for the regular flux composite

fermions these orbitals are given by

ηqn,m,j =Nqnm(−1)q+n−m
(NΦ + 1)!

(NΦ + n+ 1)!

n∑
s=0

(−1)s
(
n

s

)
×(

2q + n

q +m+ s

)(
∂

∂uj

)s
uq+m+s
j

(
∂

∂vj

)n−s
vq−m+n−s
j Jj , (5.5)
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with the normalisation

Nqnm =

√
2|q|+ 2n+ 1

4π

(|q|+ n−m)!(|q|+ n+m)!

n!(2|q|+ n!)
. (5.6)

They also constructed an efficient algorithm for computing ηqn,m,j.

Reverse flux

The procedure above was extended to reverse flux composite fermions by

Möller and Simon [19], who found a similar expression for the orbitals:

η
−|q|
n,m,j =Nqnm(−1)n

(NΦ + 1)!

(NΦ − 2q + n+ 1)!

n∑
s=0

(−1)s
(
n

s

)
×(

2|q|+ n

|q|+ n−m− s

)(
∂

∂uj

)|q|+m+s

usj

(
∂

∂vj

)|q|−m+n−s

vn−sj Jj . (5.7)

Using this they demonstrated that also the reverse flux Jain-Kamilla projected

CF states are good trial wavefunctions. The extra powers in the derivatives

make these expressions more computationally intensive than the corresponding

positive flux ones, however. This limits the accessible system sizes in practical

computations.

The situation was improved by Davenport and Simon by rewriting 5.7 and

letting the derivatives act [20]:

η
−|q|
n,m,j =Nqnm(−1)n

(NΦ + 1)!

(NΦ − 2|q|+ n+ 1)!

∏
k 6=j

uk

n∑
s=0

(
n

s

)(
2|q|+ n

q +m+ s

)
Ne−1−|q|+m−n+s∑

t=|q|+m+s

ejt(−1)t
(Ne − 1− t)!

(Ne − 1− t− |q|+m− n+ s)!
v
Ne−1−t−|q|+m
j

t!

(t− |q| −m− s)!u
t−|q|−m
j , (5.8)

with the elementary symmetric polynomials

ejt(zk 6=j) =



ik 6=j∑
0<i1<i2<...<it≤Ne

zi1 · · · zit : t ≤ Ne

0 : t > Ne

, (5.9)

in terms of the stereographic coordinates zk = vk/uk. They constructed an ef-
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ficient algorithm for computing the wavefunctions using the recursive relations

ejt(zk 6=j) =
1

t

t∑
r=1

(−1)r+1pr(zk 6=j)et−r(zk 6=j)

ejt(zk 6=j,l) = ejt(zk 6=j)− zlejt−1(zk 6=j,l) , (5.10)

where we have the power sum polynomials pr(xk) =
∑

i x
r
i .

For reverse flux states this algorithm is faster than the one described in

5.1.2, but there is an issue because as electron k moves towards the south pole

we have

zk
θk→π−−−→∞ . (5.11)

To circumvent the resulting numerical precision issues one can employ high pre-

cision variables and let the memory per coordinate be dynamically determined

from the configurations, but this slows down the computations considerably.

New algorithm for reverse flux

In our code, we eliminated the need for high precision variables in (5.8) by

rewriting the expression in terms of uk and vk exclusively. Note that

∏
k 6=j

uke
j
t({zk 6=j}) =

∑
i1,...,it 6=j

( ∏
k 6=j,i1,...,it

uk

)
vi1 · · · vit , (5.12)

of which one example when Ne = 4 and j = 2 would be

t = 0 → u1u3u4

t = 1 → u1u3v4 + u1v3u4 + v1u3u4

t = 2 → u1v3v4 + v1u3v4 + v1v3u4

t = 3 → v1v3v4

. (5.13)

An algorithm that computes these can be constructed as follows:

• For 0 ≤ j ≤ Ne, define f jt,0 =

{
1 : t = 0

0 : t 6= 0
.

• Iterate n from 1 to Ne and set

f jt,n =

{ f jt,n−1 : n = j

f jt,n−1un : n 6= j and t = 0

f jt,n−1un + f jt−1,n−1vn : n 6= j and t > 0

.

• Finally we have
∏
k 6=j

uke
j
t = f jtN .
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Although this algorithm uses computation time of order O(N3
e ) while the

one outlined in (5.10) uses O(N2
e ), this proves to be much faster in testing

because high precision variables are no longer necessary. It has been brought

to our attention that Mukherjee and Mandal have arrived upon the same

algorithm [21], presented in their study of the plateaus ν = 4
13

, 5
17

and 3
10

.

5.1.3 Energy projection

The Jain-Kamilla projection facilitates computation of many favourable trial

wavefunctions but also has some adverse properties. It projects to the lowest

Landau level in an uncontrolled manner; a clear understanding of its inner

workings is lacking. In particular it is not an orthogonal projection, as can be

seen by noting that the orthogonal projection is unique and comprised by (5.1).

This means that wavefunctions that only differ by unphysical components in

higher Landau levels are projected to different states.

Moreover there are many states for which Jain-Kamilla projection is not

applicable and no practical method of lowest Landau level projection exists.

Examples of this include modified states (defined in section 5.5) and all states

on the torus requiring projection, where the JK approximation is ruled out

[110].

Therefore a more general and controlled approach to projection is desirable.

In this section we develop such a method, viable for systems up to sizes that

are amenable to exact diagonalisation, and demonstrate its effectiveness. The

procedure is also presented in ref. [22].

Method

We express the projected wavefunction in terms of the lowest Landau level

eigenstates |k〉 of a suitable Hamiltonian:

PLLLΨ ≈
M∑
k=1

ck|k〉 , (5.14)

where M is a chosen cutoff and the coefficients are found as

ck =
〈k|Ψ〉√∑M
j=1 |〈j|Ψ〉|2

. (5.15)

In cutting off at k = M and normalising the coefficients ck we approximate the

LLL content of Ψ that is not captured in (5.14) to be negligible. This can be
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achieved by using a sufficiently high M and choosing a Hamiltonian with which

the overlaps with Ψ fall off rapidly with k; usually the Coulomb potential is a

natural choice. Note that the approximation is completely controlled through

the parameter M , and that using all the eigenstates yields the exact projection.

We define the quantity

f =
∣∣〈Ψ|PLLLΨ〉

∣∣2 =
M∑
k=1

|ck|2 (5.16)

as the total lowest Landau level content bar the cutoff. The average size of

the coefficients then depends on this as

|cj| ∼
√
f

M
, (5.17)

giving an approximate norm of the projected wavefunction as

|PLLLΨ| =

√√√√ M∑
k=1

|ck|2 ∼
√
f . (5.18)

It is pertinent to have a rough estimate of the necessary computational

effort for the projection. The diagonalisation needed to obtain the M eigen-

states is generally not the bottleneck of the calculations and will be ignored.

We approximate the errors δk on |ck| to be independent and equal (neither of

which are true, but this is sufficient for our purposes). The Monte Carlo error

EΨ on |PLLLΨ| can then be estimated using error propagation with (5.14):

EΨ ∼

√√√√ M∑
k=1

δ2
k ∼ ε

√
M . (5.19)

As a benchmark we impose an upper bound of order
√
f on EΨ. Using (4.4)

this gives for the required number of MC samples

NMC ∼
1

ε2
∼ M

f
. (5.20)

The size of the full Hilbert space, i.e. the number of Fock states, is given

by
(
NΦ

Ne

)
, while evaluation of determinants is generally requires order ∼ O(N3

e )

computations. Therefore we estimate the amount of calculations necessary to

compute all the real space Slater determinants to be of order ∼ N3
e

(
NΦ

Ne

)
. As

seen in section 4.1 this is an overestimate: in practice there are usually ways
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to limit the Fock space, sometimes dramatically, using symmetries – e.g. by

restricting to an (L̂2, L̂z)-subspace corresponding to that of Ψ.

The Fock states can be reused in computing the M energy eigenstates.

Requiring ∼ Ne Monte Carlo steps between each sample, as argued in section

4.2.1, gives a total number of necessary computations n in order to attain

EΨ ∼
√
f as

n ∼ Ne(N
3
e +M)

(
NΦ

Ne

)
NMC ∼ NeM(N3

e +M)

(
NΦ

Ne

)
f−1 . (5.21)

This limits the sizes that can be reached, but as we will see still allows scrutiny

of many novel and untested states.

The results using energy projection in later sections are all obtained using

the Coulomb Hamiltonian and M = 100 eigenstates, except for the cases where

the relevant lowest Landau level subspace is smaller than this, in which case

it is not cut off and there is no approximation (only MC error).

One might ask whether, if construction of LLL Fock states and real space

overlaps with these are viable, it is not better to project by expressing the

wavefunction as a superposition of the Fock states themselves and thus avoid

diagonalisation altogether. This turns out to be much less efficient, however.

The main reason for this is that the Coulomb ground states, and thus also ac-

curate trial wavefunctions, have comparable overlaps with a significant fraction

of the Fock states; the individual overlaps are small.

Even if this was not the case there is no natural cutoff point in the Fock

space. Therefore we assume use of the full Hilbert space of size
(
NΦ

Ne

)
. Per-

forming a similar analysis to the one preceding (5.21) shows that the number

of samples needed to get an error EΨ of the same order as the norm of the

result is n ∼ N4
e

(
NΦ

Ne

)2
f−1. With M comparatively small and the binomial co-

efficient growing exponentially with Ne, this n is in general much larger than

the corresponding number (5.21) for energy projection.

Testing the method

To minimise the error involved in cutting off the Hilbert space at M , the

size of the overlaps 〈ψ|φn〉 with the eigenstates φn of the chosen Hamiltonian

should decrease rapidly with n. To test this we find overlaps between the

eigenstates and the Laughlin wavefunction (section 3.2.1) and the composite

fermion ground state wavefunction (section 3.3.1), with modification factors

parametrised by the scalar d. These factors are introduced in section 5.5 and
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(a) Regular Laughlin ν = 1/3 and d = 0
at Ne = 10 electrons
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(b) Modified Laughlin ν = 1/3 and
d = 2 at Ne = 10 electrons.
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(c) Composite fermion ν = 3/7 and
d = 2 at Ne = 12 electrons.
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(d) Reverse flux composite fermion
ν = 2/3 and d = 0 at Ne = 16 particles.

Figure 5.1: Measure of the effectiveness of the energy projection. The upper panels show
squared overlaps between trial wavefunctions and Coulomb eigenstate n. The middle panel
of (a) and the lower panels of (b), (c) and (d) give the saturation of energy E and LLL
content fn = |〈Ψ|PLLLΨ〉|2 with number of included states n. Note that we expect f → 1
for states completely contained in the LLL and f < 1 otherwise. The lower panel of (a)
shows the saturation of E and f relative to EL and 1 respectively (in log scale). In this
context ‘Laughlin’ refers to exact values from diagonalising the hardcore potential and EL

is its energy.

take the form

Ψd = Ψ
∏
i<j

|zi − zj|2d , (5.22)

where Ψ is the unmodified wavefunction. This introduces additional com-

ponents in higher Landau levels. The upper panels of figure 5.1 show the

absolute squared overlaps for a chosen set of states, using the lowest Landau

level Coulomb Hamiltonian.

Figures 5.1a and 5.1b display the Laughlin state at ν = 1/3 with modifi-

cation factor d equal to 0 and 2 respectively (see section 5.5). In the former

case the true overlaps can be obtained to machine precision using diagonali-

sation of the hardcore potential (section 2.1.2) and these are also displayed,
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labelled ‘Laughlin’. For d = 0 this is a test of the Monte Carlo estimate and

for d = 2 it shows that the overlaps decrease with d, which is natural since the

LLL content does as well. In figures 5.1c and 5.1d we see the overlaps for two

composite fermion states, the former with a modification factor d = 2. It is

evident in all of the plots that the overlaps decrease quickly with n (note the

log scale).

Another measure of the error due to the cutoff is shown in the second panels

of figure 5.1; namely the saturation of Coulomb energy En and total lowest

Landau level content fn with the number n of eigenstates included. It is clear

that the values stabilise very quickly.

In the case of the regular Laughlin state at d = 0, the energy is known

to machine precision from diagonalisation, and since it is fully in the LLL we

have f = 1. En and fn are compared to these values in the last panel of figure

5.1a in a log scale plot, and again the saturation with n is rapid. Note that

fn − 1 reaches an approximate plateau around 10−4 where almost all of the

wavefunction is contained in the previous eigenstates and adding more states

only gives a miniscule increase. These eigenstates have high energy eigenvalues,

however, which explains why there is no corresponding plateau in the energy

|En − EL|.
It is desirable that the precise choice of Hamiltonian not be crucial for the

energy projection, implying that the method is general. It is known that the

regular Laughlin wavefunctions are not good trial wavefunctions for the second

Landau level Hamiltonian, which has very different properties than the lowest

level; making it a suitable comparison. The upper panels of Figure 5.2 contrast

absolute squared overlaps with eigenstates from the lowest and second Landau

level.

As expected the overlap with SLL states does not decrease as rapidly as that

with LLL functions. However it is still fast enough for the energy projection

to remain viable. This is emphasised in the lower panels, which show the

saturation of E and f with number of included states. A stable value is

approached within relatively few states.

In closing we note that the energy projection can possibly be used for other

purposes than lowest Landau level projection, e.g. explicit symmetrisation or

antisymmetrisation, as is necessary when using for example CFT generated

hierarchy states and excited states of the Moore-Read wavefunction (see section

3.4.2). In addition, in reference [22] we demonstrate that the approach works

just as well on the torus, where a projection method is especially in demand.
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(b) Modified Laughlin ν = 1/3 and
d = 2 at Ne = 10 electrons.

Figure 5.2: Comparison of overlaps with lowest and second Landau level eigenstates. The
upper panels give the absolute squared overlaps while the lower panels give the accumulative
LLL content fn.

5.2 Quantities to be computed

In this section we expound upon the quantities that will be studied for different

wavefunctions in the following sections.

5.2.1 Energy spectra

The Coulomb interaction energy (2.6) is straightforward to compute by Monte

Carlo but does not have a well defined thermodynamic limit, increasing without

bounds as Ne → ∞. In order to facilitate interpolation we divide by the

number of particles and add the energy resulting from a constant neutralising

background, which on the sphere is given by [3]

Vbb + Veb = −Ne

2R
. (5.23)

The index ‘bb’ stands for the interaction of the background with itself and ‘eb’

for that between the electrons and the background. The resulting energy den-

sities usually have an approximately linear evolution with 1/Ne. This division

by Ne followed by backround energy subtraction is performed for all energies

in the following sections; which are usually denoted simply by ‘E’ in the plots.

The values are given in units of e2

ε`
.

In addition, since the electron density ρ is size dependent through the

spherical shift (2.36) and the energy is proportional to ρ1/2, we sometimes

apply the following correction to further linearise the behaviour:

E −→ E

√
ρ∞
ρN

= E

√
νNΦ

Ne

. (5.24)
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This shifts the individual values without impacting the limit. In the following

sections this is applied whenever scaling to the thermodynamic limit is desired,

and indicated in the text.

Sometimes we are concerned with the energy spectrum of a space of trial

wavefunctions rather than a single one, for example when considering exci-

tations where there are several states in the same energy band (see the next

paragraph) and at the same angular momentum numbers L and M , as defined

in (2.30). We will be dealing mostly with variations of the composite fermion

wavefunctions, and therefore describe how to deal with these (see also section

5.8.4 and chapter 6 of ref. [3]):

Energy band in this context refers to the energy of the CF trial state before

flux attachment and LLL projection, i.e. the occupation of the CF Landau

levels. The computed energy of the final state is not fully determined by its

band due to the effects of flux attachment and projection, but varies with

angular momentum L. This variation is often small enough, however, that

bands separated by finite gaps can be observed also in the final results.

In some cases it is possible to pick out approximate energy bands also in the

exact spectrum computed by diagonalisation. For incompressible states there

is usually one clear band above the ground state, corresponding to a single

exciton, and sometimes more. For compressible states, e.g. a single quasihole or

quasielectron, there is generally a clear lowest band. With increasing numbers

of quasiparticles the bands become less defined as one would expect. Therefore

a comparison between the number of states in the trial state energy bands and

in the tentative exact bands comprises a qualitative test of the model.

The single-determinant excited states (3.10) are automatically eigenstates

of L̂z but not of L̂2, which we need in order to compare to exactly diagonalised

spectra. Therefore we construct superpositions |L,M, k〉 using Clebsch-Gordan

coefficients. The index k differentiaties between distinct states with the same

angular momentum. To find states with a given value L, we first identify all

the single-determinant states with M = L, denoted |M = L, j〉. Then we

compute the nullspace of the raising operator L̂+ = L̂x+ iL̂y within this space:

|L,L, k〉 ∈
{

ker
(
L̂+

)
: |M = L, j〉

}
. (5.25)

States |L,M, k〉 with general angular momenta can then be found using the

lowering operators L̂− = L̂x − iL̂y:

L̂−|L,M, k〉 =
√

(L+M)(L−M + 1)|L,M − 1, k〉 . (5.26)
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Constructing the null states |L,L, k〉 involves an arbitrary choice of basis

for ker(L̂z), however, and it is not clear a priori how to choose a good set of

trial wave functions for energy eigenstates. Such can be obtained, however, by

diagonalising the Coulomb Hamiltonian within the space of states spanned by

|L,M, k〉 for all k at the chosen (L,M).

Diagonalisation within a trial state space

Firstly the superpositions |L,M, k〉 are not in general linearly independent,

or even nonzero, due to dependencies introduced through flux attachment and

projection. To identify the number of independent states we count the number

of nonzero eigenvalues of the overlap matrix

Gjk = 〈L,M, j|L,M, k〉 . (5.27)

The number of independent states is in itself a nontrivial measure of whether

the trial wavefunction scheme is a good one. We start out with an overly high

number of states that is then reduced through a procedure after which the re-

sulting number is hard to predict; hopefully ending up with the same number

of states as in the tentative exact energy band (where such can be identi-

fied). It has been demonstrated that this works well for regular flux composite

fermions [67, 69]. There is a caveat in that due to Monte Carlo error and

approximative projection the overlap matrix (5.27) usually does not have any

eigenvalues exactly equal to zero, but there is generally a clear break between

a set of small and large eigenvalues respectively [90].

We use an orthogonal basis, constructed using the Gram-Schmidt proce-

dure. The Hamiltonian is then diagonalised after finding its matrix elements

in the orthogonal basis, resulting in the states

|L,M, j〉E , (5.28)

with E for energy eigenstate.

A final consideration comes from the fact that states with the same an-

gular momentum numbers (L,M) but different composite fermion bands also

can be linearly dependent. One approach would be to do the diagonalisation

separately in each band, but this means that variational energies sometimes

can be lower than the exact ones. This happens because, although the trial

states are orthogonal after the Gram-Schmidt procedure, also between bands,

the states in higher CF bands will not be orthogonal to the exact lower states.
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Therefore we believe it is clearer to orthogonalise within the space of all

states for each set of quantum numbers (L,M), independent of composite

fermion energy bands. The number of states depends on how many bands we

include. This results in variational energies which are always higher than the

exact ones. To confirm that this choice not significantly impact the outcome

we compare to the results from diagonalising within each band in section 5.3.1.

5.2.2 Eigenstate overlaps

Another measure of the quality of a trial wavefunction is the overlap with

eigenstates |ξi〉 obtained through exact diagonalisation. We find the wave-

functions (5.25) and take the overlap 〈ξi|L,M, k〉E with the exact states at

the corresponding quantum numbers and energy band. When there are sev-

eral wavefunctions in the same band with the same quantum numbers we use

states (5.28) obtained through diagonalisation of the Hamiltonian and use the

geometric mean of the overlaps as a measure. This can be computed as [67]

S∏
i,j=1

〈ξi|L,M, j〉1/SE = Det
[
〈ξi|L,M, k〉

]1/S
, (5.29)

where S is the number of states in the subspace. Note that the right hand side

of (5.29) uses the state (5.25) before diagonalisation (no subscript E), which

simplifies the calculation. We consistently report the absolute squares of the

overlaps and geometric means.

5.2.3 Pair correlation functions

A plot of the pair correlation g(r) (2.39) given a real space wavefunction Ψ can

be obtained in a straightforward manner. Approximating g(r) using averages

gi over bins [ri, ri+1] and taking the mean over all electron pairs j and k yields

the Monte Carlo estimate

gi =

∫ ri+1

ri
dSr g(r12)∫ ri+1

ri
dSr

≈
2
∑

m
|Ψ̃|2

P̃

(∑
j<k

[
Hi(rjk)−Hi+1(rjk)

])∣∣∣
m

AiNeρ
∑

m
|Ψ̃|2
P̃

∣∣∣
m

, (5.30)

over MC samples m drawn from probability P (see section 4.2). Note that the

factors Ne(Ne− 1) in (2.39) are cancelled by the number of pairs in the mean,

i.e. Ne(Ne− 1)/2. We have defined the area Ai of bin i, the average density of
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the whole system is ρ, and we use the Heaviside step function

Hi =

{
0 : r < ri

1 : r ≥ ri .
(5.31)

The fact that we are taking the mean over all electron pairs means that

each Monte Carlo sample contributes ∼ N2
e data points, which improves the

statistical convergence. Note that a single term in the numerator of (5.30)

amounts to counting how many pairs are separated by a distance corresponding

to bin i.

5.3 Reverse flux composite fermions

The ground state energies, exciton gaps and dispersions of reverse flux com-

posite fermion states are investigated in [19, 20], and we focus here on other

states and properties. This includes more general energy spectra and overlaps

with exactly diagonalised eigenstates. We also perform a comparison between

the Jain-Kamilla and energy projections.

5.3.1 Energies

With the fast algorithm for reverse flux composite fermion states constructed

in section 5.1.2 we probe the excitation spectrum of several systems, in a

similar way to what has been done for positive flux states in [67–69]. Both the

Jain-Kamilla projection and the energy projection are employed to see what

effect the former has on the wavefunctions; the results are in figure 5.3.

Also in the figures are spectra obtained from exact diagonalisation of the

Coulomb Hamiltonian. These are colored alternatingly red and blue in accor-

dance with composite fermion energy bands (i.e. with the number of states in

consecutive bands for each L) to aid the comparison.

The figures 5.3a and 5.3b correspond to incompressible ground states and

their neutral excitations in the form of one and two excitons, at n = 2 and

3 filled Landau levels respectively (i.e. at filling factors ν = 2/3 and 3/5).

The figures 5.3c, 5.3d, 5.3e and 5.3f show charged excitations in the form of

quasielectrons and quasiholes together with one band of excitons. This marks

the first time charged excitations, relevant for conductance measurements, have

been studied for reverse flux states.

The first thing to note is that, similarly to regular flux composite fermions
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Figure 5.3: Exact Coulomb energy spectra at various sizes and filling factors together
with variational spectra of corresponding CF trial wave functions, using Jain-Kamilla and
energy projection. The figure subtitles give the parameters (Ne, NΦ); the states can be
interpreted as (a) ν = 2/3, (b) ν = 3/5, (c) ν = 2/3 with one quasihole, (d) ν = 2/3 with
two quasiholes, (e) ν = 2/3 with two quasielectrons and (f) ν = 2/3 with three quasielectrons
or ν = 3/5 with three quasiholes. States of the exact spectra have been colored blue and
red alternatingly in correspondence with CF energy bands. The MC errors are invisible on
the scale of the figures.
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Figure 5.4: Relative difference between variational energy E and Coulomb energy EC when
the diagonalisation is performed on Jain-Kamilla projected states of angular momentum
L using all bands (blue circles) and within each band (red crosses). Subtitles give the
parameters (Ne, NΦ); the states are (a) ν = 2/3 and (b) ν = 3/5.

and simpler reverse flux states, the trial wavefunctions are good in the sense

that they fit the low lying spectrum well. The numbers of states produced by

the trial wavefunctions match those of the exact spectrum, to the extent that

the exact bands can be distinguished. Quantitatively the numerical values are

close, especially for the lower energy states.

Since the Hamiltonian is diagonalised within the space of all states with the

same angular momenta (L,M) one could argue that this mainly shows that

lower energy states of the trial states as a collection are accurate; as a test

on individual states or CF energy bands we also perform the diagonalisation

within each band.

A comparison between these two methods is shown in figure 5.4, with plots

of (E−EC)/EC for the two incompressible states in figure 5.3. E is the energy

from the diagonalised trial states and EC is the eigenvalue of the Coulomb

Hamiltonian. We see that the difference between the two methods is relatively

small; diagonalising within each band gives slightly less accurate energies but

they are still matching to within a few percent. As mentioned in section 5.2.1

the latter are lower than the Coulomb energy when there are states at lower

bands but the same (L,M). Finally it should be noted as a miminal check that

the states of higher CF bands never have energies below those of lower bands;

the order of bands is intact (excepting the states which through overlaps prove

to actually reside in the lower bands, see the discussion below (5.28)).

Since the ground states and single excitons of reverse flux states are known

to perform well [19, 20], the same was expected of the fuller spectra. But it is

informative to test this as in the above, especially in light of the fact that the

states before projection have increasing components in higher Landau levels
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as one implements higher excitations. This makes the projection more severe,

and especially so for reverse flux states.

Another aim with this data is a test of the Jain-Kamilla projection as

compared to the exact projection. The latter is possible since in these cases

the energy projection is exact up to MC error as the full space of energy

eigenstates has been used in the expansion (i.e. there is no cutoff). We observe

that the variational energy of the Jain-Kamilla projected state is always higher

but very close to the full projection, and on the scale in the plot they are often

identical. But the difference is significant and grows with higher excitations, in

conjunction with the increasing wavefunction content in higher Landau levels

and corresponding complexity of the projection. This marks the first time the

Jain-Kamilla projection has been tested to this extent.

There are examples, however where Jain-Kamilla projected states yield

lower variational energies than their energy projected counterparts. Some

examples of this are seen in sections 5.4 and 5.5.3 below.

5.3.2 Overlaps

The overlap between a trial state and the exact eigenstate carries information

distinct to that of the Coulomb energy, which depends on the overlaps with all

the states within the relevant subspace and the Coulomb eigenvalues. Table

5.1 lists the overlaps for states corresponding to those in figure 5.3.

The overlaps again indicate that the reverse CF trial states match the exact

system to a high degree. The Jain-Kamilla projected states are close to the

energy projected ones, with the latter always having a slightly higher overlap.

This effect is stronger for higher energy states which have more content in

higher Landau levels. These considerations support the conclusions drawn

from examining the energy spectra.

In addition we note that for higher band states, the lower L wavefunc-

tions are often those with the smallest overlaps. This is also reflected in the

variatonal energies. This is probably because these represent states where the

fundamental excitations (quasiholes and quasielectrons) have a higher prob-

ability of being closer together, and interactions between them play a bigger

role – while these interactions are neglected in the regular CF model. It is

possible to also take these into account using interactions between composite

fermions [111]. This effect is not completely unequivocal, however, as evi-

denced by the fact that the decrease in overlap is not monotonic.
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(a) (10,15)

Band L O2
JK O2

EP

1 0 0.97470(3) 0.9881(3)

2 0.8290(2) 0.882(2)
3 0.96595(4) 0.979(1)

2 4 0.95328(6) 0.9736(8)
5 0.98727(2) 0.9950(10)
6 0.9168(1) 0.950(1)

0 0.7776(4) 0.8685(8)
1 0.96289(5) 0.971(2)
2 0.8385(2) 0.8838(8)
3 0.9021(1) 0.929(1)
4 0.8687(2) 0.9079(7)

3 5 0.9382(1) 0.946(3)
6 0.9052(2) 0.9401(4)
7 0.9198(2) 0.9483(5)
8 0.9649(5) 0.9763(4)
9 0.9502(1) 0.971(2)
10 0.9126(3) 0.941(2)

(b) (9,16)

Band L O2
JK O2

EP

1 0 0.997120(3) 0.9987(2)

2 0.97193(2) 0.9830(7)
2 3 0.93118(5) 0.9542(7)

4 0.92257(8) 0.9486(7)
5 0.98844(1) 0.9937(6)

0 0.8450(1) 0.905(2)
1 0.6931(3) 0.726(2)
2 0.8618(1) 0.8945(5)
3 0.90250(9) 0.9233(9)

3 4 0.8487(1) 0.8839(6)
5 0.9145(1) 0.9382(7)
6 0.8884(2) 0.9174(5)
7 0.9572(1) 0.978(1)
8 0.97651(6) 0.977(1)

(c) (9,13)

Band L O2
JK O2

EP

1 2.5 0.97230(3) 0.9866(6)

1.5 0.96685(6) 0.980(3)
2.5 0.92390(9) 0.956(4)
3.5 0.9075(3) 0.9403(5)

2 4.5 0.9256(4) 0.9541(4)
5.5 0.9920(3) 0.9957(5)
6.5 0.97562(4) 0.984(1)
7.5 0.9358(1) 0.963(2)

(d) (10,16)

Band L O2
JK O2

EP

1 0.97285(3) 0.9834(9)
1 3 0.89744(10) 0.9298(10)

5 0.97480(3) 0.9863(6)

1 0.8590(3) 0.915(1)
2 0.8428(4) 0.8925(8)
3 0.8859(5) 0.9195(8)

2 4 0.8799(1) 0.9139(10)
5 0.8939(3) 0.9216(9)
6 0.9587(2) 0.9752(9)
7 0.9286(1) 0.9541(8)
8 0.94937(5) 0.965(2)

(e) (11,17)

Band L O2
JK O2

EP

1 3.5 0.95701(3) 0.9774(6)

0.5 0.94536(6) 0.968(1)
1.5 0.8330(2) 0.8711(7)
2.5 0.8633(1) 0.9042(8)
3.5 0.8136(1) 0.859(1)

2 4.5 0.88378(10) 0.9229(8)
5.5 0.94891(6) 0.9708(9)
6.5 0.94118(7) 0.9658(8)
7.5 0.96751(3) 0.980(1)
8.5 0.92969(9) 0.959(2)

(f) (9,15)

Band L O2
JK O2

EP

1.5 0.8779(1) 0.9192(10)
1 2.5 0.98241(2) 0.9928(6)

4.5 0.98291(2) 0.9901(4)

0.5 0.8400(2) 0.900(3)
1.5 0.8362(1) 0.890(1)
2.5 0.8694(1) 0.916(1)

2 3.5 0.95572(5) 0.9757(6)
4.5 0.8763(1) 0.9196(7)
5.5 0.93292(8) 0.9552(8)
6.5 0.93745(7) 0.954(1)
7.5 0.94391(6) 0.966(1)

Table 5.1: Squared ground state overlaps (geometric means of overlaps where applicable).
Subtitles give the parameters (Ne, NΦ); the states can be interpreted as (a) ν = 2/3, (b)
ν = 3/5, (c) ν = 2/3 with one quasihole, (d) ν = 2/3 with two quasiholes, (e) ν = 2/3
with two quasielectrons and (f) ν = 2/3 with three quasielectrons or ν = 3/5 with three
quasiholes.

71



5.4. BONDERSON-SLINGERLAND

5.4 Bonderson-Slingerland

Reference [95] contains numerical investigations of the ν = 12/5 Bonderson-

Slingerland ground state (3.14), but as yet no study of the excited states has

been performed. The left column of figure 5.5 (labelled δV1 = 0) shows the

exact spectrum computed by diagonalisation, together with the energies of the

ground state and the first band of excitons, for three system sizes.

The first excited energy band is modelled using excitations both in the

composite fermion and pfaffian sectors, as described in section 3.4.3. A possible

generalisation of this would be to diagonalise the Hamiltonian in the space of

both kinds of excitations; this is not attempted here. Both Jain-Kamilla and

energy projection is utilised.

Since we need the phase of the wavefunction for overlaps, the identity

|Pf(M)| = |
√

Det(M)| is not sufficient to compute the pfaffian ground state,

and we have implemented the algorithm in ref. [112] to compute the pfaffian

factors. For excited Moore-Read components a recursive algorithm is utilised

to symmetrise the two composite fermion states.

As indicated in section 2.2.4, it is not trivial to obtain an estimate for the

variational Coulomb energy when using lowest Landau level wavefunctions to

model second Landau level states. A common strategy is to use an effective

interaction whose pseudopotentials evaluated in the LLL equal those of the

Coulomb potential evaluated in the SLL. Such an interaction has so far only

been constructed for planar wavefunctions [39,40], however, giving small errors

in the results (although this makes no difference in the thermodynamic limit).

The energy projection offers an alternative with no use of planar functions,

also for the Jain-Kamilla projected states. In the latter case the projection

itself is then redundant as the states already reside completely in the lowest

Landau level, but expressing them in terms of energy eigenstates makes it

straightforward to compute the energy from second Landau level eigenvalues.

In other words, we express the state as in (5.14), with the states |k〉 as SLL

Coulomb energy eigenstates, giving the variational energy

〈E〉 =
∑
k

|ck|ESLLk , (5.32)

where ESLLk are the second Landau level Coulomb eigenvalues. After this the

correction in (2.37) is applied to compensate the offset in the sphere radius.

The ground state energies in figure 5.5 are not as close to the exact eigen-
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Figure 5.5: Low lying spectra of ν = 12/5 systems in the second Landau level ob-
tained through exact diagonalisation, together with variational energies from Bonderson-
Slingerland trial wavefunctions (intended to describe the lowest energy state at each L).
Data in the left column uses the pure Coulomb interaction, while the right column corre-
sponds to a perturbation δV1. The value of the perturbation is chosen to give the optimal
ground state energy as per ref. [95] (note that for Ne = 12 this occurs at δV1 = 0). Trial
state excitations are made in both the composite fermion and pfaffian sectors, and both
Jain-Kamilla projection (JK) and energy projection (EP) have been employed. Subtitles
give the parameters (Ne, NΦ) and δV1. The MC errors are invisible on the scale of the
figures.
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Ne / L 0 1 2 3 4 5 6 7 8

8 13 13 17 42 45 69 70 91 90
10 97 97 187 377 463 645 722 891 955
12 902 902 2405 4185 5662 7384 8787 10437 11741

Table 5.2: Number of multiplets at a given number of electrons Ne and angular momentum
L for the Bonderson-Slingerland ν = 12/5 state. The number of magnetic flux quanta is
given by NΦ = 5Ne/2− 2.

values as e.g. the CF trial wavefunctions in 5.3 (note that the variational states

are intended as trial wavefunctions of the lowest energy states at each L), but

still have relatively low values. This point is emphasised by considering the

total number of states at angular momentum L = 0, which is displayed in the

second column of table 5.2. We note that the variational energies lie between

the two lowest states with the exception of the energy projected state at system

size Ne = 12.

In fact the energy projected wavefunctions have higher variational energy

than the Jain-Kamilla projected ones for all ground states. This is the opposite

result as compared to the reverse flux composite fermion wavefunctions studied

in section 5.3, although these BS states have the latter as a factor. One

might question whether the same is true if the energy projection is applied

to the CF factor before multiplication with the bosonic pfaffian, rather than

projecting the entire state as is done here. This would require multiplication

in momentum space, however, and is not attempted in this work.

Similar observations hold true for the excitons. The variational energies

are not ideal matches but still relatively low when taking into account the

number of states at each L, displayed in table 5.2. The excess variational

energies are comparable to those of the ground states; slightly larger at low

relative angular momenta where the interactions between quasiparticles (not

part of this model) are expected to be the strongest. The JK projected states

have lower energies than the EP ones for excitations in the composite fermion

sector, while the opposite is true for pfaffian excitations.

Most interestingly, however, is the fact that the pfaffian excitons generally

have lower energy than the CF versions (with a striking exception at L = 4

for Ne = 12 electrons). This is significant because the former have nonabelian

statistics, and if the physical system should turn out to be essentially described

by the Bonderson-Slingerland state, it may have consequences for experimental

detection of nonabelions.

The physically realised system will in general not have the exact form
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of the Coulomb Hamiltonian H (2.6) restricted to the second Landau level,

due to effects from the finite width of the sample, random disorder, finite

temperature and magnetic field, Landau level mixing, etcetera. One way to

vary the potential away from H is to perturb the pseudopotentials; in the

simlest case by varying δV1, which is also the largest and thus most significant.

There is no reason a priori to assume that the regular Coulomb potential yields

a better description of the physical system than the altered one. Studying a

trial wavefunction in the perturbed setting then corresponds to examining

whether there is a region in the Hamiltonian space, close to the Coulomb

potential, in which the wavefunction yields a good fit.

Such an analysis is performed in ref. [95], with the conclusion that a per-

turbation δV1 = 0.005 results in a better fit with the wavefunction at system

size Ne = 8, and that δV1 = 0.02 does the same for Ne = 10. For Ne = 12

electrons the regular Coulomb potential with δV1 = 0 is the optimum. The

effect of the former two perturbations on the excitons are displayed in figures

5.5b and 5.5d.

It is clear that the same perturbations also yield improvements of the ex-

cited states. This is most impressive for the pfaffian excitons at Ne = 10

electrons, where especially the L = 2 state energy is significantly lower than

at δV1 = 0, and the excess variational energy is particularly small for the EP

state at L = 4. We also note that for this system the energy projected ground

state has a lower energy than the JK projected one.

5.4.1 Quasiholes

Having studied the BS wavefunctions at flux corresponding to incompressible

states, we turn to quasiholes, i.e. at a relatively higher flux. One extra flux

quantum is added, which corresponds to adding two quasiholes. These are

realised either both in the pfaffian sector or both in the composite fermion

sector (note that the latter implies adding quasielectrons in the reverse flux

CF determinant).

The results, displayed in figure 5.6, are analogous those from the excitons in

the previous sections. The variatonal energies, while a fair amount higher than

the exact eigenvalues, are low compared to the entire spectrum. Generally

quasiholes in the pfaffian have lower energies than those of the composite

fermions, and energy projection yields better values than JK projection for

the former and vice versa for the latter.

We note that the trial states with excitations in the pfaffian sector correctly
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Figure 5.6: Exact low lying spectra of systems corresponding to excited BS states at
filling ν = 12/5 with two quasiholes, i.e. at one extra flux, together with the variational
energies of said states (note that the variational states are intended as trial wavefunctions
of the lowest energy states at each L). The two quasiholes are both realised in the same
sector, corresponding to the CF or pfaffian part respectively, and both Jain-Kamilla (JK)
and energy projection (EP) is utilised. Where not shown the errors are invisible on the scale
of the figures.

predict the angular momentum of the lowest energy state at sizes Ne = 8 and

10, respectively L = 2 and 3. This is not the case for system size Ne = 12,

however, where the exact spectrum has a minimum at L = 0 while the pfaffian

excitation energies at L = 0 and 4 are equal up to error.

5.5 Modified states

In [23] it is noted that a trial wavefunction may be modified by a factor∏
i<j f(|zi−zj|), inserting lowest Landau level projection if not already present,

without changing the universal properties of the state – thus introducing addi-

tional parameters that may improve the wavefunction. Taking a wavefunction

Ψ as the starting point, we investigate the construct

Ψd = PLLLΨ
∏
i<j

|zi − zj|2d , (5.33)

76



5.5. MODIFIED STATES

with a modification factor d ∈ R. These states have never before been studied

because evaluation becomes intractable with the exact projection and there is

no analogous approximation scheme to Jain-Kamilla.

The energy projection, however, is in principle indifferent to the form of the

wavefunction before projection; as long as low LL content or other properties

do not slow down the Monte Carlo convergence beyond applicability. This

means that we can implement Ψd even for noninteger and negative d. The

only constraint is that it must be limited to

d > − NΦ

2(Ne − 1)
(5.34)

to avoid the wavefunction becoming singular, as can be seen by considering

the powers of the coordinates.

Naively a higher d will increase the correlations as the electrons are kept

further apart (note explanation of this approximate term in section 3.3.1).

This picture is complicated by the LLL projection, however, which makes the

result harder to predict: in fact for the Laughlin state the Ne = 2 and 3

wavefunctions with modification factor d = 1 reduce to the regular d = 0

states.

Note that the energy can never go below the exact Coulomb value regardless

of the value of d. Moreover, as seen in section 3.2.1, raising the power can

drive the system to a phase transition; although again the projection makes

the result unclear. It seems the only way to discern the effect of modifying

a trial wavefunction is by numerical investigation. Ref. [22] contains such a

study by the present author together with Fremling, Moran and Slingerland;

results from this paper constitute most of the next section.

5.5.1 Laughlin at filling ν = 1/3

As a first test we attempt modification of the Laughlin state at filling ν = 1/3,

which has stood as a paradigmal trial wavefunction for the fractional quantum

Hall effect since its construction. The initial question is whether it can be

improved with a nonzero factor d and if so which value is optimal.

Figure 5.7a exhibits the variational energy of the modified state as as a

function of d for system sizes Ne ∈ {5, . . . , 11}. It shows a dramatic improve-

ment; note that the lower limits of the y-scales are the exact Coulomb energies.

The minima lie somewhere between d = 1 and 1.5, increasing with system size.

The lower right plot scales the optimal value of d with 1/Ne → 0 for values
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Ne > 6, where the worst finite size effects seem to have abated. The result

is an interpolated estimate dmin = 1.487(8) in the thermodynamic limit. The

fact that the modification factor has a well defined limit for macroscopic sizes

gives confidence that the form of (5.33) is physically relevant.

In a sense it is no surprise that constructing a trial wavefunction with an

additional parameter enables improvement. But the remarkable property of

the data in figure 5.7a is the degree to which d 6= 0 can lower the variational

energy, which suggests that the parameter d captures important properties of

the Coulomb state which is not fully reflected by the Laughlin wavefunction.

Figure 5.7b shows that the difference in energy relative to the Coulomb state

is considerably lowered using the state wih optimal d versus the regular one at

d = 0.

Another perspective is illustrated in figure 5.8, where the energy per particle

is plotted against 1/Ne for a range of modification factors up to d = 5. This

allows us to interpolate the energy to the thermodynamic limit by using the

constant term in a linear least squares fit as the energy in the infinite system.

The interpolated results, shown in the figure, indicate that the improvement

in variational energy is stable with system size and thus physically relevant.

The fit includes system sizes Ne = 6 to 11 to avoid the distinct finite size

effects at Ne = 5, and the evolution with 1/Ne is fairly linear until we reach

d > 2. Whether the curve approaches linearity also for larger d at bigger sizes

is unclear with the current data.

Note that the errors reported on the energies in thermodynamic limit in

figure 5.8 only take into account the error from Monte Carlo and curve fitting,

and not from the cutoff in the Hilbert space in the energy projection (these

are likely negligeable, however, and zero for systems below Ne = 9) and more

importantly further deviation with larger sizes Ne.

Figure 5.9 shows squared ground state overlaps for the modified states at

different Ne and d and confirms that the optimum is around d = 1.3 for these

system sizes. Again these results indicate that the trial wavefunctions are

greatly enhanced by altering d; in particular the squared ground state overlap

is extremely high around the maximum and does not decrease notably with

the number of particles even up to Ne = 11.

A natural question is why the modified states perform so well. The original

motivation was that the correlations would be improved as factors |zi − zj|
contribute to keeping the electrons apart, and a natural measure for this is the

pair correlation function g(r). It is plotted at size Ne = 10 in figure 5.10 for
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Figure 5.7: Examining the variational energy of modified states as a function of d.
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Figure 5.10: Pair correlation functions for the modified Laughlin states with Ne = 10
electrons and different modification factors d. Dashed lines are unprojected states (UP) and
solid lines are energy projected states (P). (a) shows g(r) plotted against the chord length
r and (b) subtracts the regular Laughlin d = 0 state and includes the exact result from
diagonalisation of the Coulomb interaction.

chosen values of d before and after lowest Landau level projection.

In figure 5.10a the dashed lines show the unprojected states and it is clear

that the intuition of the action of the modification before projection is correct;

the correlation hole becomes wider with increasing d. In addition the oscilla-

tions already present in the regular Laughlin state are substantially increased,

suggestive of the local onset of crystalline order. Examining the projected

states plotted with solid lines, however, reveals that LLL projection eliminates

most of the effect of the modification factors. The amplified oscillations are

still discernible to an extent, while the alteration of the correlation hole is

practically invisible on this scale.

Part of the effect of the LLL projection can be understood from the fact

that there is a limit to how much states can be localised in the lowest Landau

level. In particular the projection of the Dirac delta function is a coherent state

of finite extent [23]. This imposes a constraint on the size of the correlation

hole between two particles.

Figure 5.10b shows the pair correlation functions of the modified states, and

the Coulomb state obtained from exact diagonalisation, with that of the regular

d = 0 Laughlin state subtracted. It illustrates the fact that the Coulomb state

has stronger oscillations relative to the regular Laughlin state and that the

modification factor in d assists in modeling these.

The state at d = 1.3 is particularly close to the Coulomb state, especially

at low r, in line with earlier observations; in about half of the plot the former is

obscured by the latter. Note however that at higher r the d = 2 state becomes

as competitive or more, possibly related to the progression of optimal d at
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Figure 5.11: Plots of energy versus modification factor d for Laughlin states at ν = 1/5,
1/7 and 1/9 at system size Ne = 6. The errors are invisible on the scale of the figures.

larger sizes noticed in the lower right plot of figure 5.7a.

As mentioned above, a number of the numerical results presented here have

been collected in ref. [22]. This paper also shows similar data for the torus

geometry. The conclusions from the latter are analogous, although finite size

effects appear larger on the torus; this indicates that the benefits of the energy

projection and the modified states do not depend on the chosen geometry.

Finally one might ask how the results are affected by looking at modified

Laughlin states at the filling factors ν = 1/5, 1/7 and 1/9, i.e. using m = 5, 7

and 9. Figure 5.11 shows the energies plotted against d for these three states

at Ne = 6 particles, and we see that the results are again greatly improved

by d 6= 0. The minima, however, occur at increasing values of d: around

dmin = 4.945 for ν = 1/5, dmin = 9.325 for ν = 1/7 and dmin = 12.931 for

ν = 1/9.

These considerations can possibly throw some light on the transition be-

tween the incompressible electron liquid of the fractional quantum Hall effect

and the Wigner crystal (section 3.2.1). From experiment this is expected to

occur between densities corresponding to ν = 1/7 and 1/9. This can also be

seen from the excited trial wavefunctions at ν = 1/9 by the fact that they have

lower energies than the ground state, implying that the latter is unstable [18].
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The regular Laughlin ground state itself, however, does not predict a tran-

sition between ν = 1/7 and ν = 1/9; from the plasma analogy and knowledge

of the one-component two dimensional plasma (see section 3.2.1) this does not

occur until the exponent, giving the ratio between plasma charge and temper-

ature, reaches m& 70 [55]. The properties of the plasma can be expected to be

altered by the modification factor, however. Before projection, |ΨL
d |2 for d > 0

corresponds exactly to the Boltzmann weight of a two dimensional plasma at

higher charge to temperature ratio than for d = 0, but with the wavefunction

describing the same FQHE filling factor as the latter.

We do not expect a potential phase transition to vanish as a result of the

projection, although this is not confirmed analytically. The modified Laughlin

state closest to the ground state at ν = 1/9 might not quite reach plasma

parameters corresponding to a crystal for the plasma (the thermodynamic

limit is yet to be examined), but it appears to be significantly closer than the

regular Laughlin wavefunction.

5.5.2 ν = 1/3 as a reverse flux composite fermion state

The Laughlin ν = 1/3 state with modification factor d = 1 is a special case, as

it can also be seen as a reverse flux composite fermion state. The expressions

for the reverse state in (3.9) with n = 1 and p = 2, i.e. a single filled CF

Landau level with 2p = 4 flux attached, gives the exact same state as the

modified state (5.33) using d = 1 and Laughlin’s wavefunction (3.2) at m = 3.

We already know from section 5.5.1 that the modified Laughlin state with

d = 1 handled using the energy projection gives an improvement of the state;

with this we are in a position to examine how these results are affected by

utilising Jain-Kamilla projection instead. The latter can be implemented using

the algorithm in section 5.1.2 and its generalisation to p = 2 states in ref. [21].

Considering the fact that the Laughlin ν = 1/3 state is the most prominent

FQHE trial wavefunction, the question of whether the also well-established but

little studied reverse flux CF state gives a better description should be handled

with care. With this in mind we examine the ground state and first band of

excitations projected both using energy and Jain-Kamilla projections, where

the neutral excited states of the Laughlin wavefunction are taken to be excitons

of regular flux composite fermions. Note that this leaves us with four distinct

trial wavefunctions: the regular flux p = 1 CF state and the reverse flux p = 2

CF state, both using the two different projections.
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Figure 5.12: The ν = 1/3 state as a regular flux CF d = 0 wavefunction and as a reverse
flux CF d = 1 wavefunction, projected using Jain-Kamilla (JK) and energy (EP) projection.
The system size is Ne = 10 electrons.

Energies

Figure 5.12 displays results for Ne = 10 electrons. The plot in 5.12a shows the

energies from exact diagonalisation as well as the variatonal energies from the

trial states. On this scale the differences are not clear; to alleviate this figure

5.12b shows the variatonal energies with the exact energies subtracted. As seen

earlier the energy projected reverse flux wavefunction has a significantly lower

ground state energy, and this is true for the Jain-Kamilla projected version as

well although the difference is smaller.

But for the excitons there is no clear trend as to which state yields the

lowest values, apart from the Jain-Kamilla projected reverse flux states, which

have significantly higher energies. This is not the case for the corresponding

energy projected state, showing that this property is not intrinsic to the reverse

flux composite fermion state. Figure 5.12c displays the squared overlaps of the

trial wavefunctions with the exact states, and the results are in line with the

observations above.
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Figure 5.13: The ν = 1/3 state as a regular flux CF d = 0 wavefunction and a as reverse
flux CF d = 1 wavefunction, projected using Jain-Kamilla and scaled to the thermodynamic
limit. The errors are invisible on the scale of the figures.

As mentioned in section 5.3.2 the excited trial states at lower L are often

less accurate because they do not take into account interactions between exci-

tations, which are expected to be more important at lower angular momentum

where the particles have a higher probability of being closer together. This is

especially pronounced in figure 5.12, where the overlap and variational energy

are both markedly worse at L = 2.

The fact that the d = 1 state can be computed also using the Jain-

Kamilla projection means that we have access to bigger system sizes than

those amenable to diagonalisation, and that the thermodynamic limit can be

investigated more throughly. The limit was already studied using the data in

figure 5.8, with the conclusion that d 6= 0 states are more favourable also for

macroscopic systems, but because of the restricted system sizes for the energy

projection, finite size effects cannot be completely ruled out.

Figure 5.13a shows variational energies of the regular and reverse flux CF

states projected using Jain-Kamilla, for system sizes up to Ne = 66 electrons.

The thermodynamic limit 1/Ne → 0 shows unequivocally that the d = 1

state is significantly more favourable also for macroscopic systems, with val-

ues E∞ = −0.4097544(9) and E∞ = −0.4099282(8) for the d = 0 and d = 1

wavefunctions respectively (as seen earlier the improvement using energy pro-

jection, and for different values of d, are even better). Considering this, the

overlaps between the two states displayed in figure 5.13b are surprisingly high.
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Gaps

The gap to neutral excitations, modeled using CF excitons, is examined in

figure 5.14. Similarly to the conclusions following figure 5.12 we see from the

plot in 5.14a that the Jain-Kamilla projected reverse flux states have a higher

energy at some values of the total angular momenta L, generally at values

after and close to the minimum. The plot for Ne = 40 particles in addition

shows a small range of L-values where the regular flux energy is higher.

The gaps, i.e. the difference between the energies of the ground state and the

lowest exciton, are displayed in figure 5.13b. They are equal within statistical

error for the two states. This is true also in the thermodynamic limit, with

estimates of ∆∞ = 0.0665(3) and ∆∞ = 0.0659(4) for the regular and reverse

flux states respectively (note that this seems to disagree with the results in

ref. [107] for the regular flux gap; the discrepancy stems from the fact that

we use the lowest exciton energy while the latter reference uses that of the

highest angular momentum exciton at L = Ne. Using the same state we get

equal results).

5.5.3 Modified composite fermions

Having confirmed that the modified Laughlin states offer significant improve-

ment over the regular versions, we turn to composite fermions and investigate

whether the same holds true. The modified version of the wavefunction (3.8)

is

ΨCF
ν,d = PLLL Φq

n

∏
i<j

(zi − zj)2p
∏
i<j

|zi − zj|2d , (5.35)

where Φq
n is a determinant filling n CF Landau levels, with the magnetic field

pointing into the sphere when q < 0. The filling factor is ν = n/(2pn± 1).

There is some freedom of interpretation in how to implement the lowest

Landau level projection in (5.35). The only known way to project the last

factor for general d is using the energy projection, which amounts to exact

projection in all the examples in this section because the Hilbert space sizes

allow incorporating all energy eigenstates (which means that bigger systems

would also be within computational reach). The composite fermion part of

the function, however, can be projected either using the Jain-Kamilla approx-

imation or the (exact) energy projection. In section 5.3 it was demonstrated

that, for the reverse flux states at d = 0, these give very similar results with

the exact projection slightly better in general.
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Figure 5.14: Exciton gap ∆ at filling factor ν = 1/3 as a function of system size Ne for the
regular flux CF p = 1 state and the reverse flux CF p = 2 state. The errors of the ground
state and exciton energies in (a) are invisible on the scale of the figures.

The end results of approximate projection of some factors followed by exact

projection of the rest versus exact projection of the entire state are hard to

predict a priori. We will treat them as two sets of trial wavefunctions that are

distinct but related; in particular they are very likely in the same universality

class. These two sets can then be numerically tested. Below they are referred

to as the EP state and the JK-EP state, signifying the projection of the entire

function using energy projection and a combination of that and Jain-Kamilla

projection respectively.

A third possibility would be to project the regular composite fermion state
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Figure 5.15: Energies of different modified composite fermion states as a function of d,
both using exact projection of the entire state (EP, in red) and Jain-Kamilla projection of
the normal CF factor followed by exact projection (JK-EP, in blue). Least square fits using
polynomials of order 3 are shown with dashed lines. The minima of the fits are displayed
where they can be found. Subtitles give the parameters (Ne, NΦ); the states are (a): ν = 2/5,
(b): ν = 3/7, (c): ν = 2/3 and (d): ν = 3/5. The energies of the exact states correspond to
results from diagonalisation (green, solid line).

and the modification factor separately by energy projection and then multi-

ply them. This requires multiplication in momentum space, however, and we

concentrate on the first two options.

Energies

Figure 5.15 displays variational ground state energies of the two sets of trial

wavefunctions plotted against the modification factor d. The figures 5.15a and

5.15b show the regular flux states ν = 2/5 and ν = 3/7, while 5.15c and

5.15d show the reverse flux states ν = 2/3 and ν = 3/5. The exact Coulomb

eigenvalues are also displayed.

The first thing to note is that modification factors d 6= 0 again contribute

to lowering the variational energy. But although the amount varies for the

different states the improvement is in general not as drastic as that manifested

in the Laughlin states in section 5.5.1. It is also clear that the choice of

projection method matters, as both the quantitative and qualitative behaviour
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is different for the two versions; manifested in the individual values and shapes

of the interpolated curves respectively. The lowest energies obtained for each

filling factor are comparable with the two methods, however.

The JK-EP states, although kept from being singular by the constraint

(5.34), have very poor Monte Carlo convergence for d < 0, and the resulting

values are not displayed. This is maybe not so surprising since the Jain-

Kamilla projection lowers the powers of the coordinates in the function, which

is then apparently unable to support well an inverse factor of absolute Slater

determinants before projection.

The most interesting feature, however, is the qualitatively different be-

havour of the regular and reverse flux composite fermion wavefunctions. Most

strikingly, the reverse flux EP states obtain the minimum energy with negative

modification factors, i.e. dmin < 0. In fact, due to the constraint on negative

values of d, the fitted curves do not have clear minima in the sense that the

regular flux wavefunctions do; the lowest d possible also gives the lowest energy.

Although they cannot support negative values of d the reverse flux JK-EP

states also show a subtle departure from the regular flux states, in that the fit

using a third degree polynomial is not as good. In particular the curve is not

as symmetric around its minimum.

These qualitative differences show that the choice of projection method,

although in principle a question of technical implementation, can have a sig-

nificant impact on the resulting state. We also note that the non-orthogonality

of the Jain-Kamilla projection is what allows these wavefunctions, which only

differ in higher Landau level components, to project to different LLL functions.

Finally it is striking that the orthogonal (exact) projection is not always the

method to give the most beneficial results, as is clear at various values of d in

the plots of figure 5.15.

Pair correlations

As demonstrated in section 5.5.1, the effect of the modification factors can

be illuminated by examining the pair correlation functions g(r). This is also

true when considering the contrast between regular and reverse flux CF states.

Figures 5.16 (regular flux) and 5.17 (reverse flux) show the pair correlations of

the same choice of wavefunctions as figure 5.15, with the EP states in the left

columns and the JK-EP states on the right. The pair correlation of the exact

Coulomb ground state is included, and the function gd=0 corresponding to the

regular wavefunction with d = 0 is subtracted.
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Figure 5.16: Pair correlation functions of modified regular flux composite
fermion states at different modification factors d together with the correspond-
ing Coulomb eigenstates. The pair correlations of the unmodified states at
d = 0 are subtracted. Wavefunctions in (a) and (c) are projected using en-
ergy projection while those in (b) and (d) are using a combination of energy
projection and Jain-Kamilla projection. Note the different scales.

For the regular flux states one may draw similar conclusions to those fol-

lowing the pair correlations of the ν = 1/3 Laughlin state in figure 5.10. The

Coulomb state has a differently sized correlation hole and oscillations relative

to the d = 0 composite fermion state, and the modified d 6= 0 wavefunctions

assist in modelling this. The pair correlation functions of the modified trial

states closest to that of the Coulomb state are not as close as in the Laughlin

case, however, in line with the results for the energy in figure 5.15.

We also note that it is not as clear which state has the lowest variational

energy from simply looking at the pair correlation. Taking the regular EP state

at filling ν = 3/7 in figure 5.17c as an example, one might think that with the

Coulomb interaction being short range the state with the best fit around small

r gives the lowest energy. That would seem to indicate a fairly high factor d is

90



5.5. MODIFIED STATES

favourable, maybe around d = 2. The energy, however, has a minimum value

around dmin = 0.2329. Possibly this is due to the heightened value of g(r)

relative to the Coulomb state around r ≈ 3 for the higher d states.

No significant qualitative differences between EP and JK-EP states can be

surmised from the plots in figure 5.16, possibly apart from the fact that the

difference between the results for the two sets of wavefunctions is greater for

ν = 3/7 than for 2/5. This is not surprising since ν = 3/7 has a larger content

in higher Landau levels before projection, and we have already seen that the

Jain-Kamilla and energy projections have a larger deviation in that case.

The same observation can be applied to the plots in figure 5.17: being

reverse flux states they have larger content in higher LL’s before projection

and thus the difference between EP and JK-EP states is larger than for the

regular flux states of figure 5.16.

For the reverse flux EP states in figures 5.17a and 5.17c we see that the

oscillations of the pair correlation functions of states with d > 0 relative to

that of d = 0 have the opposite phase to that of the Coulomb state. This

is rectified by using a negative modification factor d < 0, in line with the

variational energies being lower for reverse flux EP states in figure 5.15.

Interestingly the Jain-Kamilla projection achieves something similar in this

case: the JK-EP states of figures 5.17b and 5.17d, yield modified wavefunctions

with d > 0 whose relative oscillations of the pair correlation function are in

the same phase as the Coulomb state.

Generalised modified states

The conclusions of the previous sections can be summed up by saying that the

modified composite fermion states do not yield as significant improvements

relative to the regular states at d = 0 as does the modified Laughlin wavefunc-

tions. This is reflected both by the fact that the variational energies are not

lowered as much and the fact that the pair correlations do not have the same

degree of resemblance to that of the Coulomb state.

Therefore one might ask if generalisations of the modified CF states (5.35)

could better approximate the physics at these filling factors. Keeping in mind

that the Laughlin state is realised as a composite fermion wavefunction with

n = 1 CF Landau levels filled, a reasonable guess is that it would be favourable

to modify the CF orbitals in different levels independently. This would then

result in several modification factors dk for k = 1, 2, . . . , n.

A natural construction in this vein becomes apparent when considering the
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Figure 5.17: Pair correlation functions of modified reverse flux composite
fermion states at different modification factors d together with the correspond-
ing Coulomb eigenstates. The pair correlations of the unmodified states at
d = 0 are subtracted. Wavefunctions in (a) and (c) are projected using en-
ergy projection while those in (b) and (d) are using a combination of energy
projection and Jain-Kamilla projection. Note the different scales.

Haldane-Halperin hierarchy of wavefunctions (section 3.2.3), and their classi-

fication in terms of K-matrices due to Wen [74]. These are square matrices

whose dimension is equal to the hierarchy level, suggesting a single modifica-

tion factor d for the first level, comprised by the Laughlin wavefunction, and

in general one per level. Note that composite fermion wavefunctions filling n

CF Landau levels are analogous to level n hierarchy wavefunctions in the cor-

respondence between the two [77]. This framework was used for the modified

Laughlin wavefunctions on the torus examined in ref. [22].
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Chapter 6

Pair correlation functions

decomposed

The pair correlation function contains a lot of information, but this is usually

presented only in graphical plots, making reproduction or quantitative com-

parison difficult. In order to summarise the functions in a more quantitative

manner they can be expanded in a suitable basis. If the coefficients are well

behaved this can also facilitate interpolation to the thermodynamic limit. In

this chapter one such basis is constructed and applied to study different trial

wavefuncions.

6.1 Planar decomposition

Girvin defined a decomposition of g(r) on the disk, i.e. utilising multiparticle

wavefunctions expanded in planar symmetric gauge orbitals [113]. By using

transversal and rotational symmetries he constructed the sum

g(r) = 1− e−r2/2 +
∞∑

m=1, odd

2

m!

(r
2

)2m

cme
−r2/4 . (6.1)

The basis functions

fm =
2

m!
(r/2)2m exp(−r2/4) (6.2)

are centered around r = 2
√
m. They are chosen so that only a limited number

of coefficients are necessary for a good fit, since g → 1 when 0� r < 2R then

implies cm → 0 when m� 1.

The first two terms of (6.1) correspond to g1, the pair correlation func-

tion of the state ν = 1 [114]. Consequently the coefficients can be seen as
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a measure of the deviation of a state’s two particle correlations from that of

ν = 1. In addition physical arguments from charge neutrality, screening and

compressibility yield constraints on cm.

The simplest way to find the coefficients cm is to use a least squares fit with

chosen sample points and a cutoff K in number of functions so that m ≤ K.

The pair correlation function can then be reproduced to a high accuracy with

relatively few coefficients, and (6.1) yields a good representation of a given

function g(r).

The properties of the coefficients themselves, however, are not as favourable.

It is possible [24] but problematic to obtain numerically stable coefficients. By

stable we mean that the values of cm do not change significantly with the

parameters; consisting of the choice and number of sample points, number

of functions K and system size Ne. This is necessary in order to use the

coefficients to uniquely characterise a given state and to scale them to the

thermodynamic limit.

The situation can be improved by the following method, which in partic-

ular eliminates the need for arbitrarily chosen sample points. Using the basis

functions (6.2), we have

cm =
∑
k

M−1
mk〈fk|g − g1〉 , (6.3)

where Mjk = 〈fj|fk〉 is the overlap matrix, necessary since the functions fk are

non-orthogonal. The ensuing Monte Carlo calculations are similar to (5.30):

〈fk|g〉 ≈
2
∑

m
|Ψ̃|2

P̃

(∑
i<j fk(rij)

)∣∣∣
m

AiNeρ
∑

m
|Ψ̃|2
P̃

∣∣∣
m

. (6.4)

The resulting coefficients are different from those obtained using least square

fits, and more stable. But the improvement is not adequate for consistent

characterisation of a trial state or for scaling, as is demonstrated in detail in

section 6.3.

Other possible steps include raising the number of MC samples, using very

large system sizes, incorporating the constraints on cm, and normalising the

functions. However none of these result in a notable improvement, and faced

with this situation we opt for constructing a new basis.
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6.2. SPHERICAL ORTHOGONAL DECOMPOSITION

6.2 Spherical orthogonal decomposition

To obtain a decomposition that gives stable coefficients unhampered by nu-

merical problems we use two measures. Firstly, since all our computations

are done on the sphere, we construct a decomposition similar to (6.1) but us-

ing spherical instead of planar functions. Secondly, to make the coefficients

more independent of each other and hopefully more stable, we formulate an

orthogonal basis from these functions using the Gram-Schmidt procedure. The

reasoning behind this is that the overlap between the planar fk makes it pos-

sible to decompose very similar functions using very different coefficients. As

an example of this one can get near zero functions using various large ck, while

for an orthogonal basis one would expect them to be small.

Similarly to the planar version we would like the decomposition to consist

of g1, the ν = 1 pair correlation function, plus a sum over basis functions.

With this in mind we find g1 on the sphere:

g1(η) = 1− (1− η2)2Q , (6.5)

in terms of the unit distance η (2.34). The calculation can be found in appendix

A; as far as we are aware this result has not appeared in the literature. In the

limit of infinite radius we regain the planar ν = 1 function:

lim
2Q→∞

g1(r) = 1− e−r2/2 . (6.6)

6.2.1 Decomposition basis

As a starting point we write the wavefunction in a form exposing the depen-

dence on particle 1 and 2:

Ψ =

2Q∑
j<k

ajk(z3, . . . , zNe)
(
φj(z1)φk(z2)− φk(z1)φj(z2)

)
, (6.7)

where the antisymmetry of Ψ under exchange of z1 and z2 is explicit and

ajk ∈ C. Using that the state is isotropic we can assume that particle 1

is at the north pole without loss of generality. With the distance between

the particles measured in unit length η = r
2R

we then have for the spinor

95



6.2. SPHERICAL ORTHOGONAL DECOMPOSITION

coordinates:

(u1, v1) =
(
1, 0
)

(u2, v2) =
(√

1− η2eiφ2/2, ηe−iφ2/2
)
, (6.8)

where φ2 is the azimuthal coordinate of the second particle. Using this together

with (A.8), the first term in the brackets of (6.7) is zero unless j = 2Q, while

the same holds true for the second term with k = 2Q. Since j < k ≤ 2Q the

first term vanishes, and we end up with

Ψ = −
2Q−1∑
j=0

aj,2Q(1− η2)
j
2η2Q−jei(j−Q)φ2 . (6.9)

Substituting this into (2.38) and using the fact that g(η) should be inde-

pendent of φ2 then yields

g(η) =

2Q−1∑
k=0

Ak(1− η2)kη4Q−2k , (6.10)

where Ak = Ne(Ne−1)
ρ2

∫ ∏
i>2 dΩi |ak,2Q|2. In order to extract the terms of g1

(A.9) we define expansion coefficients by Ak =
(

2Q
k

)
+ dk. After reordering

the terms by k → 2Q − k so that the functions with low indices are centered

around the north pole, we end up with

g(η) = 1−
(
1− η2

)2Q
+

2Q∑
k=1

dkfk(η)

fk(η) = (1− η2)2Q−kη2k . (6.11)

This constitutes a spherical decomposition of the pair correlation; next we

want to orthonormalise it. Following the Gram-Schmidt procedure with the

integral measure dS = 8πηdη for the inner products yields the following basis:

g(η) = 1− (1− η2)2Q +

2Q∑
n=1

cnGn(η)

Gn(η) = Nnη2(1− η2)2Q−nJ
(2,4Q+1−2n)
n−1 (1− 2η2)

Nn =

√
(4Q+ 2− n)(4Q+ 1− n)(4Q− 2n+ 1)

4πQn(n+ 1)
, (6.12)

in terms of the Jacobi polynomials J
(α,β)
k (z). In a series representation the
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Figure 6.1: Solid lines: The first 3 odd orthogonal basis functions Gn(η) (6.12), plotted

at 2Q = 20. Dashed lines: The basis functions in the thermodynamic limit G
(∞)
n (η) (6.14).

The coordinate η = r/2R with 2R2 = 2Q = 20 has been employed in order to compare with
the finite functions.

Jacobi polynomials are given as [30]

J
(α,β)
k (z) =

Γ(α + k + 1)

k!Γ(α + β + k + 1)

k∑
j=0

(
k

j

)
Γ(α + β + k + j + 1)

Γ(α + j + 1)

(z − 1

2

)j
.

(6.13)

A proof that the functions in 6.12 are orthonormal can be found in appendix

B. In practice we use a subset of the functions by imposing a cutoff K so that

n ∈ {1, . . . , K}.
One of the reasons for constructing a new decomposition is to enable scal-

ing of the coefficents to the limit Ne → ∞. This is only meaningful if the

corresponding limits of the functions in (6.12) exist, which indeed they do:

Through (2.36) the limit implies NΦ = 2Q→∞, so that the radius of the

sphere becomes infinite and the geometry approaches a plane. Then writing

2Q ≈ Ne/ν and reverting to the chord length r through η = r
2R
≈ r√

2Ne/ν
, we

find the limits

G(∞)
n (r) = lim

Ne→∞
Gn(η) =

e−r
2/2r2√

πn(n+ 1)
L2
n−1

(
r2
)
, (6.14)

where Lst(x) are the associated Laguerre polynomials (2.14). The functions

G
(∞)
n are orthonormal with respect to the planar integration measure given by

dS = 2πrdr. Some of the basis functions are plotted in figure 6.1 (solid lines

for finite systems and dashed lines for the limits).

Since the basis functions are orthogonal the coefficients can be found using
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the simpler special case of (6.3):

cn = 〈Gn|g − g1〉 . (6.15)

With this in mind the following result is useful:

〈Gn|g1〉 = Nn(−1)n+1 8πQ
[
(2 + 4n)Q+ 1− n(n− 1)

]
(4Q+ 2)(4Q+ n− n)(4Q+ 1− n)

. (6.16)

6.2.2 Condition number

Assuming that the orthogonal spherical basis is stable, as is argued in the sec-

tion after this one, it is worthwhile to have a quantitative argument showing

that the non-orthogonal one is not. The condition number C gauges the sta-

bility of a map between two quantities: if it is big it means that a small change

in one induces a large change in the other. As a rule of thumb, if C ∼ 10k, up

to k digits of accuracy may be lost in the map [115].

For a linear transformation a 7→Mb the condition number is defined as

CM = ||M ||·||M−1|| , (6.17)

where in our case we use the Euclidian norm.

Transforming between the two spherical bases involves the Gram matrix

Mnk defined through Gn(η) =
∑n

k=1Mnkfk(η), and from (6.11) and (6.12) this

is given as

Mnk = Nn

√
8π(4Q− 2n)!(2n− 1)

4Q+ 1

(2 + n− 1)!

(4Q+ 2− n)!(n− 1)!

×
(
n− 1

k − 1

)
(4Q+ 1− n− k)!

(k + 1)!
. (6.18)

Figure 6.2 plots CM for this matrix at some chosen values of the flux 2Q

against the number of functions included K, i.e. the dimension of M . For

a given flux the condition number grows faster than exponentially with the

dimension, quickly becoming very large. This indicates that if the orthogonal

coefficients are accurate the non-orthogonal ones will be very imprecise.
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Figure 6.2: Condition number of the matrix in (6.18) at chosen values of 2Q, plotted
against dimension K.

6.3 Testing the decomposition

As a demonstration we decompose the Laughlin ν = 1/3 state at Ne = 22

electrons using 6 × 106 samples. The expansion is found using both a least

squares fit and the inner product methods in (6.3) and (6.15), for both the

planar decomposition in (6.1) and the orthogonal spherical one in (6.12).

We use either a cutoff K in the number of functions or the maximum

number appropriate for the respective decompositions. On the naturally finite

geometry of the sphere this is straightforward: Kmax = 2Q, as seen in (6.12).

For the disk we note that the basis functions fk ∝ r2k exp(−r2/4) have their

maximum at r = 2
√
k (with odd k) and that trying to fit using functions that

extend much beyond the system radius, i.e. r > 2R, gives poor results. With

this in mind we impose a limit Kmax = d(2Q+ 2)/4e, where d··e indicates the

ceiling function.

Figure 6.3 shows the pair correlation gMC , computed using Monte Carlo,

and gdc, decomposed using the different expansions and methods, using up to

K = 25 coefficients. In the upper panel they are superimposed and visually

indistinguishable; the difference is displayed in the lower panel. Note that all

the decompositions have a similar small deviation near the end although they

are not all visible.

The coefficients themselves are plotted in figure 6.4a. It is immediately

striking how much the orthogonal spherical coefficients are independent of the

method used to find them, in contrast to the planar ones. The latter also

grow much larger (note the logarithmic scale). The spherical functions follow

a pattern where coefficient n = 3, 8 and 15 are smaller than the trend of their
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Figure 6.3: Pair correlation function g(η) of Laughlin ν = 1/3 at Ne = 22 electrons
computed using Monte Carlo (MC) and then decomposed (dc) using up to 25 coefficients.
Both expansions on the disk and sphere (orthogonal) are used with the coefficients found
using least squares (LS) and inner product (IP). The lower panel gives the difference between
the correlation function expressed as bins and the expansions.

neighbours.

The Monte Carlo errors σn of individual coefficients are plotted in 6.4b,

and the relative errors in 6.4c. The errors of the spherical decompositions are

generally smaller than those of the planar ones, with some relative errors on

the former being a bit larger than the general trend owing to the smaller size

of the coefficients.

To compare with the pair correlation approximated with bins as in (5.30)

we define the measure

ε =

√√√√∑
j

(
gdc(ηj)− gMC(ηj)

)2

gdc(ηj)
, (6.19)

where ηj are points from the north pole to the south pole corresponding to

equidistant chord length. gMC is the function that is approximated by the least

square fits, and thus for the least square method ε constitutes an expression for

the fit error. The approximation obtained from the inner product method, on

the other hand, is as fundamental as the bin approximation of gMC , and so in

these cases ε can in principle be seen as a consistency check between different

approximations of the pair correlation. We also use it as an indication of how

many basis functions are necessary in order to give as good a fit as the bin

approximation.

Figure 6.4d shows the dependence of ε on the number of included func-

tions K for the different expansions. The value decreases fast for both de-

100



6.3. TESTING THE DECOMPOSITION

0 5 10 15
n

103

102

101

100

101

102

103

104

lo
g(
|c
n
|)

(a) Absolute values of expansion coeffi-
cients cn.

0 2 4 6 8 10 12 14 16 18
n

104

103

102

101

100

101

102

103

σ
n

(b) Absolute MC errors σn of the coeffi-
cients cn.

0 2 4 6 8 10 12 14 16 18
n

104

103

102

101

100

|σ
n
/c
n
|

(c) Relative MC errors σn/cn of the co-
efficients cn.

0 5 10 15 20 25
K

102

101

100

ε

(d) The measure ε as defined in (6.19)
versus the number K of functions in-
cluded in expansion.

Sphere (IP)
Sphere (LS)

Disk (IP)
Disk (LS)

Figure 6.4: Decomposition of the Laughlin ν = 1/3 state at Ne = 22 electrons and 6×106

samples done using the planar (6.1) and orthogonal spherical (6.12) expansions. Note the
abbreviations IP (inner product) and LS (least squares) for the method used to obtain the
coefficients. All the plots are in logarithmic scale.

compositions but faster for the planar one, which also reaches a region of no

improvement earlier. Note that the error of the least squares fit using planar

functions is seen to increase with K after a certain value, indicating that this

is the optimal number of functions in this case.

From the above considerations we can conclude that both expansions give

relatively good representations of the pair correlation, with the orthogonal

spherical version having the most advantages. But more important for us is

the issue of the stability of the coefficients. We first look at the response to

altering the cutoff K in number of functions included.

Figure 6.5 shows the evolution of the different coefficients as more are

added, relative to their final value. This is done using least squares on both

geometries and inner products on the disk. The plots are given a shift in the y-

axis corresponding to function index n to make them visually distinguishable;
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Figure 6.5: Evolution of the pair correlation expansion coefficients quantified as the relative
difference between the value cKn when a number K are included and the final value cfn. The
plots feature an offset between coefficients, with the lowest n on top, and thus the actual
values are not displayed. The y-scale of (a) is narrower than that of (b) and (c); the offsets
are the same and the rightmost points are all equal to one.

because of this the actual values are not displayed. However note the difference

in scale on the y-axis of the three plots: they all have the same shift and the

rightmost values are equal to one.

It is clear that while the planar expansions have a large variation in cn

with K, slightly less so for the inner product method, even the least squares

fit gives very stable cn using the orthogonal spherical basis (although less so

for the extra small ones). Using the inner product method with the orthogonal

spherical basis gives completely stable coefficients that have no variation with

K.

Finally we want to confirm that the decomposition coefficients have a well

defined thermodynamic limit. Figure 6.6 shows the first 15 orthogonal spher-

ical coefficients obtained through inner products, plotted against 1/Ne (the

rest of the coefficients cn for higher n follow a similar pattern). Linear (red

line) and parabolic (green line) least square fits are superimposed, and the

latter appears to give a good fit in general. The value of the parabolic curve

at 1/Ne = 0 then gives an estimate of the coefficients in the thermodynamic
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Figure 6.6: Expansion coefficients of the Laughlin ν = 1/3 wavefunction in the orthogonal
spherical decomposition, obtained using inner products, plotted against 1/Ne. The first 15
coefficients are shown together with linear (red, dotted) and parabolic (green, solid) least
squares fits.

limit.

As a contrast the first 9 coefficients for the planar expansion, using inner

products, are displayed in figure 6.7. The coefficients do not have a similar

well defined limit and this gets worse for higher n. This confirms that the

orthogonal spherical basis is far more stable than the planar one both in terms

of number of functions included K and system size Ne. After these consider-

ations we can turn to examination of various pair correlation functions in the

thermodynamic limit.

6.4 Pair correlation functions in the thermo-

dynamic limit

In this section we apply the orthogonal spherical expansion basis to scale the

pair correlation functions of some of the most prominent trial wavefunctions to

the thermodynamic limit. The number of basis functions 2Q at a given system

103



6.4. PAIR CORRELATION FUNCTIONS IN THE THERMODYNAMIC LIMIT

0.00 0.02 0.04 0.06 0.08 0.10
1.02

1.00

0.98

1

0.00 0.02 0.04 0.06 0.08 0.10
0.2

0.4

0.6

0.8
2

0.00 0.02 0.04 0.06 0.08 0.10
0.0

0.5

1.0

1.5

2.0
3

0.00 0.02 0.04 0.06 0.08 0.10
10

5

0

5
4

0.00 0.02 0.04 0.06 0.08 0.10
20

0

20

40

60
5

0.00 0.02 0.04 0.06 0.08 0.10
300

200

100

0

100
6

0.00 0.02 0.04 0.06 0.08 0.10
200

0
200
400
600
800

7

0.00 0.02 0.04 0.06 0.08 0.10
4000
3000
2000
1000

0
1000

8

0.00 0.02 0.04 0.06 0.08 0.10
5000

0

5000

10000

15000
9

Figure 6.7: Expansion coefficients for the planar decomposition obtained through inner
products, plotted against 1/Ne. The first 9 coefficients are shown together with linear (red,
dotted) and parabolic (green, solid) least squares fits.

size Ne goes to infinity in the macroscopic limit. However, since quantum Hall

effect states have the property that g(η) → 1 for 0 � η < 1, the number

of functions required for a good description of the pair correlation is limited.

This is indicated in figure 6.4d.

The number of coefficients necessary for a good description depends on

the radius for which there are deviations from g = 1, since the reach of a

basis function Gn increases with n. This radius is related to the size of the

correlation hole, which as a rule of thumb is larger for lower filling fractions,

corresponding to lower densities. Therefore especially low density systems,

such as the state with filling ν = 1/7, require more coefficients.

In line with the above the size of individual coefficients cn generally decrease

with n. As a rough guide to how many coefficients K to include we impose

an approximate cutoff around the point where the errors become comparable

to the size of the coefficients themselves, for the numbers of samples used in

our computations (up to n ∼ 108 for smaller systems). With this approach we

interpolate the pair correlations of the Laughlin wavefunction at filling factors

ν = 1/3, 1/5 and 1/7, the regular flux composite fermion state at ν = 2/5 and

the Moore-Read wavefunction at filling ν = 2 + 1/2. The scaled coefficients

are displayed in tables 6.1 and 6.2, and the resulting pair correlation functions

are plotted together with the finite system versions in figure 6.8.

As discussed above the number of included coefficients is inversely related

to the density, for ν = 1/7 in particular we judge that K = 98 functions

is sufficient although the errors are still not quite at the same sizes as the
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coefficients. The most obvious feature of the tabulated coefficients is that

the sizes of the coefficients increase with decreasing filling fraction. This is

in line with the fact that they measure the deviation from the denser ν = 1

state (which is described by cn = 0 for all n, see section 6.8b), having larger

correlation holes and stronger oscillations due to the decreasing density.

Focusing on the trial states for systems in the lowest Landau level, i.e. the

plots in figures 6.8b, 6.8c, 6.8d and 6.8e, we see a smooth progression of pair

correlations with the number of particles Ne. The functions for individual

system sizes are clearly converging towards the thermodynamic limit, with

decreasing differences between plots corresponding to increasing system size.

The second Landau level Moore-Read state in figure 6.8a, however, shows

a more complicated behaviour. The graph for the function in the macroscopic

limit is significantly removed from the finite size pair correlations, whose dif-

ference is also increasing with number of particles Ne at these sizes. The

coefficients still have a well defined behaviour with system size, however, as

shown in figure 6.9. These considerations are striking since the Moore-Read

state is characterised by pairing of the electrons, and it would be interesting to

see the behaviour at higher Ne – presumably the differences between functions

start decreasing at some point.

With these expansion coefficients we have a systematic fingerprint of the

chosen trial states in the macroscopic limit. Several immediate further uses

come to mind, including computing the single mode approximation [24] of the

neutral gap in the macroscopic limit, scaling the pair correlations of Coulomb

states, and scaling the density profiles of quasiholes, whose form is closely

related to the pair correlation function.
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n ν = 2 + 1/2 ν = 2/5 n ν = 2/5 n ν = 1/3

1 −1.2070(1) −2.02170(9) 39 0.0007(4) 1 −2.6446(1)
2 0.5840(1) 0.6356(3) 40 −0.0025(6) 2 1.0031(1)
3 −0.1156(4) 0.1962(2) 41 0.0011(5) 3 0.0593(2)
4 −0.1180(1) −0.3787(2) 42 −0.0010(1) 4 −0.4101(4)
5 0.1928(2) 0.2634(2) 43 −0.002(2) 5 0.3950(2)
6 −0.1778(2) −0.0916(7) 44 −0.0017(5) 6 −0.2611(6)
7 0.1246(3) −0.0376(8) 45 −0.0016(7) 7 0.1238(7)
8 −0.0659(2) 0.1006(6) 46 0.0017(2) 8 −0.0212(2)
9 0.0176(2) −0.1098(7) 47 0.0010(9) 9 −0.0343(3)
10 0.0159(2) 0.0885(1) 48 −0.0013(4) 10 0.0593(4)
11 −0.0323(2) −0.0541(4) 49 0.0014(8) 11 −0.0663(9)
12 0.0358(2) 0.020(1) 50 0.0012(8) 12 0.0560(4)
13 −0.0326(3) 0.005(1) 51 0.0003(3) 13 −0.0424(3)
14 0.0292(3) −0.025(2) 52 0.0023(9) 14 0.0251(3)
15 −0.0197(1) 0.036(1) 53 0.002(1) 15 −0.0111(3)
16 0.0115(2) −0.0423(5) 54 0.0015(9) 16 0.0057(6)
17 −0.0069(7) 0.0431(4) 55 0.0003(3) 17 0.0018(5)
18 0.0003(1) −0.0395(10) 56 −0.0017(8) 18 −0.0103(7)
19 0.0007(3) 0.032(1) 57 −0.007(2) 19 0.0121(3)
20 −0.0048(6) −0.024(1) 20 −0.0092(3)
21 0.0044(3) 0.016(1) 21 0.0097(2)
22 −0.0049(4) −0.0052(9) 22 −0.0057(3)
23 0.0065(3) 0.00002(−) 23 0.0043(4)
24 −0.00428(8) 0.0057(1) 24 −0.0044(7)
25 0.0064(2) −0.0092(3) 25 0.0034(4)
26 −0.0037(2) 0.0118(6) 26 −0.0002(−)
27 0.0034(4) −0.0125(10) 27 0.0009(3)
28 −0.0028(3) 0.0122(9)
29 0.0011(3) −0.0109(10)
30 −0.0009(8) 0.0086(6)
31 −0.0002(−) −0.0073(4)
32 −0.0004(1) 0.0033(4)
33 −0.0027(5) −0.0022(5)
34 0.0008(−) 0.0026(2)
35 −0.0004(3) 0.0003(−)
36 0.0009(4) −0.0022(2)
37 −0.0007(2) 0.0009(10)
38 0.0024(2) 0.00008(−)

Table 6.1: Expansion coefficients cn for the Moore-Read wavefunction at filling
ν = 2 + 1/2, the composite fermion state at ν = 2/5, and the Laughlin

wavefunction at ν = 1/3.
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n ν = 1/5 n ν = 1/5 n ν = 1/7 n ν = 1/7

1 −3.56130(7) 50 0.0181(8) 1 −3.73174(3) 50 −0.098(3)
2 2.84379(6) 51 −0.0166(6) 2 3.4642(1) 51 0.092(5)
3 −1.8247(1) 52 0.013(2) 3 −3.0896(2) 52 −0.074(4)
4 0.7120(1) 53 −0.0167(3) 4 2.4519(3) 53 0.059(4)
5 0.1694(2) 54 0.0160(5) 5 −1.5897(5) 54 −0.052(4)
6 −0.6835(3) 55 −0.0154(5) 6 0.6610(4) 55 0.033(3)
7 0.8748(5) 56 0.013(2) 7 0.1619(1) 56 −0.021(2)
8 −0.8482(5) 57 −0.011(3) 8 −0.7726(5) 57 0.0049(6)
9 0.6996(2) 58 0.0065(4) 9 1.1408(8) 58 0.005(1)
10 −0.5023(5) 59 −0.0047(7) 10 −1.289(1) 59 0.0162(5)
11 0.3068(3) 60 0.0041(3) 11 1.270(2) 60 0.030(3)
12 −0.1353(4) 61 0.002(2) 12 −1.1457(9) 61 −0.034(4)
13 −0.0042(7) 62 −0.004(2) 13 0.9610(5) 62 0.044(3)
14 0.1071(6) 63 0.0039(6) 14 −0.744(1) 63 −0.051(5)
15 −0.174(1) 64 −0.0067(3) 15 0.5197(7) 64 0.036(3)
16 0.2117(7) 65 0.001(1) 16 −0.3082(5) 65 −0.040(1)
17 −0.2255(3) 66 −0.0073(7) 17 0.1247(3) 66 0.040(3)
18 0.2176(4) 67 0.006(1) 18 0.027(1) 67 −0.040(4)
19 −0.1965(6) 68 −0.0033(9) 19 −0.154(1) 68 0.040(5)
20 0.1691(4) 69 0.007(1) 20 0.2573(9) 69 −0.040(5)
21 −0.1362(4) 70 −0.003(1) 21 −0.328(1) 70 0.039(4)
22 0.1026(6) 71 22 0.372(1) 71 −0.039(3)
23 −0.0680(6) 72 23 −0.395(2) 72 0.036(4)
24 0.0387(8) 73 24 0.401(1) 73 −0.038(3)
25 −0.0098(4) 74 25 −0.3924(9) 74 0.038(3)
26 −0.0111(5) 75 26 0.3686(5) 75 −0.039(1)
27 0.0266(10) 76 27 −0.3364(6) 76 0.0384(8)
28 −0.0456(5) 77 28 0.3011(9) 77 0.0345(4)
29 0.0526(4) 78 29 −0.2563(9) 78 0.028(1)
30 −0.0614(7) 79 30 0.208(1) 79 −0.027(1)
31 0.0631(3) 80 31 −0.166(2) 80 0.023(1)
32 −0.064(1) 81 32 0.121(1) 81 −0.021(2)
33 0.061(1) 82 33 −0.076(3) 82 0.017(2)
34 −0.054(1) 83 34 0.037(2) 83 −0.013(1)
35 0.053(2) 84 35 0.003(1) 84 0.0056(8)
36 −0.0453(9) 85 36 −0.038(2) 85 −0.002(1)
37 0.038(1) 86 37 0.061(3) 86 0.0004(−)
38 −0.0266(8) 87 38 −0.083(2) 87 0.007(1)
39 0.0180(5) 88 39 0.102(1) 88 −0.009(1)
40 −0.008(1) 89 40 −0.1193(9) 89 0.0093(9)
41 0.0015(7) 90 41 0.1352(8) 90 −0.009(1)
42 0.0007(−) 91 42 −0.142(1) 91 0.0135(6)
43 −0.006(2) 92 43 0.145(2) 92 −0.020(1)
44 0.015(2) 93 44 −0.143(2) 93 0.013(2)
45 −0.0126(7) 94 45 0.141(2) 94 −0.023(1)
46 0.0139(8) 95 46 −0.140(3) 95 0.018(1)
47 −0.0149(4) 96 47 0.128(2) 96 −0.027(2)
48 0.0163(7) 97 48 −0.121(4) 97 0.024(3)
49 −0.0187(6) 98 49 0.114(3) 98 −0.020(1)

Table 6.2: Expansion coefficients cn for the Laughlin wavefunction
at filling factors ν = 1/5 and 1/7.
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Figure 6.8: Pair correlation functions at finite sizes and in the thermodynamic limit for
the following trial wavefunctions and filling factors: Moore-Read at ν = 2 + 1/2 (6.8a),
composite fermions at ν = 2/5 (6.8b) and Laughlin at ν = 1/3 (6.8c), 1/5 (6.8d) and 1/7
(6.8e).
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Figure 6.9: Expansion coefficients of the Moore-Read ν = 2 + 1/2 wavefunction in the
orthogonal spherical decomposition, obtained using inner products, plotted against 1/Ne.
The first 15 coefficients are shown together with linear (red, dotted) and parabolic (green,
solid) least squares fits.

109



Chapter 7

Summary and outlook

The principal focus of this work has been the study of trial wavefunctions

describing the fractional quantum Hall effect. Our main contributions to this

field consist firstly of techniques for lowest Landau projection, which has been

problematic in the past although it is a feature of most proposed trial states.

Secondly we have developed a method for analysing pair correlation functions

which gives a unique characterisation and allows scaling to macroscopic sizes.

We have investigated the states known as reverse flux composite fermions,

whose numerical evaluation was prohibitely time consuming until the advent

of several improvements of the approximative Jain-Kamilla projection. These

wavefunctions were demonstrated to yield good descriptions of the exact states

also in contexts previously unexamined; notably, systems at higher excited

energies and at fluxes other than those of the incompressible ground state.

The results from the JK approximation were close but slightly less favourable

as compared to exact projection, obtained using the energy projection scheme

introduced by us.

It is still not fully settled which trial wavefunction gives the best description

of the quantum Hall plateau at filling factor ν = 12/5. This is an interesting

question as different proposals predict distinct topological excitations, includ-

ing several types of nonabelian quasiparticles. With this in mind we have

studied trial wavefunctions for excitations of the Bonderson-Slingerland state

at this filling. Similarly to previously published results on the ground states,

the variational energies are shown to be small, although not as close to the

exact results as is the case for many trial states on different fillings (this tends

to be true of second Landau level states as compared to those in the first Lan-

dau level). We also saw that the nonabelian excitations of the pfaffian sector

generally have lower energies than the abelian ones of the composite fermion
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sector. The results using Jain-Kamilla and energy projection are comparable,

with no consistent preference for either.

Next we turned to a set of modifications of any FQHE trial wavefunction,

termed modified states and parametrised by a real number d. Positive d raise

the exponents of polynomials in relative coordinates; increasing the correla-

tions before projection, after which their action is harder to predict. Before

now these have been difficult to study numerically due to the effect of the

projection operator, which can now be handled using the energy projection.

The modification yields significant improvement to the Laughlin wavefunc-

tion, removing a large fraction of the excess variational energy and giving an

impressive overlap with exact eigenstates also for the largest systems that were

studied. Investigations of the pair correlation function revealed that the mod-

ification increases the oscillations of the Laughlin state so as to better match

those of the exact Coulomb states. The value of d corresponding to the min-

imal energy was seen to have a slight increase with the number of particles,

and we also saw that the optimal d is larger for lower density systems.

We gave extra attention to the parameter value d = 1, whose corresponding

wavefunction can be interpreted as a special case of the reverse flux composite

fermion states. Thus the Jain-Kamilla projection is also available, facilitating

treatment of larger system sizes. With this we remove any doubt that the

improvement of the ground state is stable also in the thermodynamic limit.

The case is not so clear for a direct translation of the modification to the

first band of excited states, however, where the regular d = 0 states yield

lower energies than the modified d = 1 states for some values of the angular

momentum. The minimal gaps to neutral excitations are the same in the

thermodynamic limit up to statistical error.

Applying the modification in the same form to various composite fermion

states also gave reductions in the variational energy, but not as dramatic as in

the Laughlin case. In line with this the behaviour of the Coulomb state pair

correlations was not as readily duplicated. A qualitative difference between

the energy projected regular and reverse flux composite fermions was observed

in that the latter had a better fit with the exact system when using negative

parameters d < 0, whereas the former benefited from positive values.

In the final section the pair correlation function was the quantity of inter-

est. We constructed an orthogonal decomposition motivated by the lack of a

consistent and quantitative parametrisation in the literature, and showed that

it has advantages over the preexisting decomposition introduced by Girvin.
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Specifically, the coefficients of the new decomposition were demonstrated to

be considerably more stable with the number of basis functions and particles,

when obtained using standard techniques.

The new expansion makes it possible to scale the correlation functions to

the thermodynamic limit, and this was done for a number of states. A smooth

convergence with system size up to the limit was observed for lowest Landau

level wavefunctions, while the behavour was more complicated for the second

Landau level Moore-Read state. The exact behaviour could be illuminated by

studying larger system sizes.

Several avenues of further research are suggested by the investigations in

this work. One may construct other excitations of the Bonderson-Slingerland

state than those studied here; notably the quasielectrons. Including higher

energy excitations should also improve the lower energies when diagonalising

the Hamiltonian in the trial state space.

Different implementations of the projection of the BS state would also be

possible by multiplication in momentum space, and a more thorough investi-

gation of the effect of varying the Hamiltonian would be pertinent. The same

goes for pair optimisations of the wavefunctions. Finally it is possible to mix

the excitations in the composite fermion and pfaffian sector by diagonalising

the Hamiltonian in the shared space.

The form of the modified states that has been studied is only one possibility.

It is not difficult to conceive of natural extensions, involving more parameters,

appropriate for various wavefunctions. Considering Laughlin quasiholes one

can have different modification factors for the ground state and excitation

components. Composite fermion wavefunctions might be improved by using

different factors associated with each CF Landau level; this concept is yet

clearer when considering the hierarchical forms. Finally pfaffian factors, being

constituents of both the Moore-Read and Bonderson-Slingerland states, can be

written as antisymmetrised two-layer composite fermion states with separate

intra-layer and inter-layer modification factors. It is also possible to alter

the form of the modification itself, e.g. using an exponential rather than a

polynomial form as suggested by Girvin and Jach.

It would also be interesting to investigate in more detail the effect of the

modified Laughlin wavefunctions on the plasma analogy, and see if they can

throw some light on the transition from an incompressible electron liquid to

a Wigner crystal. In addition the energy projection could be useful for many

other states, including hierarchy wavefunctions on the torus, and potentially
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other purposes than projection such as explicit symmetrisation and antisym-

metrisation.

We have computed the thermodynamic limit of the pair correlation func-

tions of several prominent trial wavefunctions, but there are many more open

to the same treatment. Pair correlations of exact eigenstates of the Hamilto-

nian could also be extrapolated in the same manner. These results can be used

to compute additional quantities, notably the single mode approximation for

neutral excitations. Furthermore, the density profile of a quasihole is analo-

gous to the pair correlation function, and would presumably also yield a well

defined macroscopic limit.

The coefficients can potentially be used to compare different trial wavefunc-

tions at the same filling fraction, and also it would be interesting to compare

their limits to computations performed on the disk. It might also be possible

to generalise the expansion to the torus geometry. Finally an analytic proof

showing that the Gram-Schmidt procedure results in the expansion basis is

desirable.

Graphene represents another intriguing two dimensional topological con-

densed matter system [116, 117]. In addition to other interesting features it

has been shown to exchibit both the integer [118] and fractional [119] quan-

tum Hall effects, the latter also at even denominator filling fractions [120].

Variational trial wavefunctions have been useful in describing phases also of

this system [121], some of which are related to the fractional quantum Hall

effect trial states described in this work. Therefore we expect that techniques

introduced here can also be useful in studies of graphene.
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Appendix A

The ν = 1 pair correlation

function on the sphere

This proof was done in collaboration with Niall Moran.

We want to find an expression for the pair correlation function (2.39)

g(r12) =
Ne(Ne − 1)

Aρ2

∫ ∏
i>1

dSi |Ψ(r2 − r12, r2, . . . , rN)|2 , (A.1)

for a system on the sphere.

In general, when the wavefunction Ψ in question is a single determinant,

we have 〈rj|Ψ〉 = Ψ(rj) = 1√
Ne!

Det
[
φi(rj)

]
where φi are the occupied single

particle orbitals. Removing state k, in this case the one corresponding to r1,

gives

〈rj>1|ak|Ψ〉 =
1√

Ne − 1
Det
[
φi 6=k(rj>1)

]
, (A.2)

where ak is the annihilation operator.

We will use the decomposition of a determinant into its minors,

Det[Mij] =
n∑
k=1

(−1)k+tMktDet[Mi 6=k,j 6=t] , (A.3)

the following identity in the space of Ne − 1 particles,∫ ∏
j>1

dSj |rj>1〉〈rj>1| = 1 , (A.4)

and the fact that Ψ with one state removed yields an orthonormal set:

〈Ψ|a†kal|Ψ〉 = δkl . (A.5)
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Choosing t = 1, we first find an expression for the expectation value of the

density:

ρ(r1) = Ne

∫ ∏
i>1

dSi |Ψ|2 =
Ne

Ne!

∫ ∏
i>1

dSi Det
[
φ∗i (rj)

]
Det
[
φi(rj)

]
=

Ne

Ne!

∫ ∏
i>1

dSi

Ne∑
k=1

φ∗k(r1)(−1)k+1Det
[
φi 6=k(rj>1)

]
×

Ne∑
l=1

φl(r1)(−1)l+1Det
[
φi 6=l(rj>1)

]
=
Ne(Ne − 1)!

Ne!

Ne∑
k,l=1

φ∗k(r1)φl(r1)(−1)k+l ×

〈Ψ| a†k
(∫ ∏

i>1

dSi |rj>1〉〈rj>1|
)
al|Ψ〉

=
Ne∑
k,l=1

φ∗k(r1)φl(r1)(−1)k+l〈Ψ| a†kal|Ψ〉 =
Ne∑
k=1

|φk(r1)|2 . (A.6)

In a similar manner we can find an expression for the pair correlation

function:

g
(
|r1 − r2|

)
=
Ne(Ne − 1)

ρ2

∫ ∏
i>2

dSi |Ψ(r1, r2, . . . , rNe)|2

=
1

ρ2

Ne∑
k,l=1

(
|φk(r1)|2|φl(r2)|2 − φ∗k(r1)φl(r1)φ∗l (r2)φk(r2)

)
.

(A.7)

At this point we turn to the state ν = 1, i.e. a determinant consisting of

all the lowest Landau level functions for the chosen NΦ. According to (2.25)

these are, in terms of spinor coordinates,

φk(u, v) =

√
2Q+ 1

4πQ

(
2Q

k

)
(−1)kukv2Q−k , (A.8)

with k ∈ {0, 1, . . . , 2Q} and 2Q = NΦ. As a consistency check we find using

(A.6) that the density is ρ = Ne/A. Following (A.7) this yields for the pair

correlation function, in terms of the chord distance r = 2R|u1v2 − u2v1|,

g1(r) = 1−
(

1− |u1v2 − u2v1|2
)2Q

= 1−
(

1− r2/2

2Q

)2Q

. (A.9)

In terms of the unit distance (2.34) we find g1(η) = 1− (1− η2)2Q. Note that
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expressions for the pair correlation functions of all the excited states of ν = 1

can be obtained in the same manner, due to the fact that they all consist of a

single Slater determinant.
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Appendix B

Proof of spherical basis

orthonormality

We want to prove that the following functions are orthonormal:

Gn(η) = Nnη2(1− η2)2Q−nJ
(2,4Q+1−2n)
n−1 (1− 2η2)

Nn =

√
(4Q+ 2− n)(4Q+ 1− n)(4Q− 2n+ 1)

4πQn(n+ 1)
, (B.1)

where 1 ≤ n ≤ 2Q, under the integration measure dS = 4πQηdη.

Orthogonality

We begin by showing that they are orthogonal. For this the normalisation is

irrelevant, and we ignore all constants. Note that although the inner product

〈Gn, Gm〉 is reminiscient of that in the orthogonality relation between two

Jacobi polynomials J
(α,β)
k [30] we cannot use this relation directly. This is

because the relation assumes that the parameters (α, β) are equal in the two

polynomials, which is not the case for Gn and Gm when n 6= m.

As a first step we substitute the variable x = 1 − 2η2 for η. This leads to

dS = −πQdx and gives the integration limits x(η = 0) = 1 and x(η = 1) = −1.

Thus (B.1) yields the following inner product:

〈Gn, Gm〉 ∝
∫ 1

−1

dx
(1− x

2

)2(1 + x

2

)4Q−n−m
×

J
(2,4Q+1−2n)
n−1 (x)J

(2,4Q+1−2m)
m−1 (x) . (B.2)
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At this point it is convenient to introduce the shorthand

A(x) = 1− x ,
B(x) = 1 + x . (B.3)

We note that A(−1)B(−1) = A(1)B(1) = 0. With this convention Rodrigues’

formula [30] reads

J
(α,β)
k (x) =

(−1)k

2kk!
A−αB−β

dk

dxk
(
Aα+kBβ+k

)
. (B.4)

Using this (B.2) can be written as

〈Gn, Gm〉 ∝
∫ 1

−1

dx A−2Bn+m−2−4Q dn−1

dxn−1

(
An+1B4Q−n) dm−1

dxm−1

(
Am+1B4Q−m) .

(B.5)

We will show that this equals zero when n 6= m using repeated integration by

parts. In preparation we observe that

The polynomial
dk

dxk
(
ApBq

)
has a factor AB when p > k < q . (B.6)

Without loss of generality we assume n < m. A first integration by parts

leaves (B.5) as

〈Gn, Gm〉 ∝
[{
A−2Bn+m−2−4Q dn−1

dxn−1

(
An+1B4Q−n)}{ dm−2

dxm−2

(
Am+1B4Q−m)}]1

−1

−
∫ 1

−1

dx
d

dx

{
A−2Bn+m−2−4Q dn−1

dxn−1

(
An+1B4Q−n)} dm−2

dxm−2

(
Am+1B4Q−m) .

(B.7)

First we show that the boundary term is zero. We note that the first factor

A−2Bn+m−4Q dn−1

dxn−1

(
An+1B4Q−n) is zero or a polynomial of order m − 2, and

therefore regular.

Next we examine the second factor: dm−2

dxm−2

(
Am+1B4Q−m). Looking at the

derivative and the polynomial powers we have that m − 2 < m + 1 and that

m− 2 < 4Q−m (since m ≤ 2Q). (B.6) therefore implies that it has a factor

AB. Thus the boundary term is a product of regular terms and a factor AB,

and therefore equals zero when evaluated at both boundaries x = −1 and

x = 1.

Applying further integrations by parts will produce boundary terms similar
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to that in (B.7) but with derivatives acting on the whole of the first factor, in

increasing order, while the derivative in the second factor decreases in order.

This does not change the reasoning in the previous paragraph, and we see that

all boundary terms vanish. Thus the result after k integrations by parts is

〈Gn, Gm〉 ∝
∫ 1

−1

dx
dk

dxk

{
A−2Bn+m−2−4Q dn−1

dxn−1

(
An+1B4Q−n)}×

dm−1−k

dxm−1−k

(
Am+1B4Q−m) . (B.8)

We see that the first factor in (B.8) will have order zero, i.e. be a constant,

when k = m− 2. At this point the integrand is a pure differential:

〈Gn, Gm〉 ∝
∫ 1

−1

dx
d

dx

(
Am+1B4Q−m) =

[
Am+1B4Q−m

]1

−1
= 0 , (B.9)

concluding our proof of orthogonality.

Orthonormality

To prove that the functions are orthonormal it only remains to show that

〈Gn, Gn〉 = 1. In this case the caveat no longer holds, however, that we

cannot use the Jacobi polynomial orthogonality relation directly, since the two

functions now have the same parameters. With some algebra this relation

shows that the functions are orthonormal.
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[19] Gunnar Möller and Steven H. Simon. Composite fermions in a negative

effective magnetic field: A monte carlo study. Phys. Rev. B, 72:045344,

Jul 2005, arXiv:cond-mat/0502514.

[20] Simon C. Davenport and Steven H. Simon. Spinful composite fermions

in a negative effective field. Phys. Rev. B, 85:245303, Jun 2012,

arXiv:1203.0004.

[21] Sutirtha Mukherjee and Sudhansu S. Mandal. Incompressible states of

the interacting composite fermions in negative effective magnetic fields

at ν = 4/13, 5/17, and 3/10. Phys. Rev. B, 92:235302, Dec 2015,

arXiv:1510.03555.

121



BIBLIOGRAPHY

[22] M. Fremling, J. Fulsebakke, N. Moran, and J. K. Slingerland. Energy

projection and modified Laughlin states. Phys. Rev. B, 93:235149, Jun

2016, arXiv:1601.06736.

[23] S. M. Girvin and Terrence Jach. Formalism for the quantum Hall effect:

Hilbert space of analytic functions. Phys. Rev. B, 29:5617–5625, May

1984.

[24] S. M. Girvin, A. H. MacDonald, and P. M. Platzman. Magneto-roton

theory of collective excitations in the fractional quantum Hall effect.

Phys. Rev. B, 33:2481–2494, Feb 1986.

[25] Theodore G Northrop. The guiding center approximation to charged

particle motion. Annals of Physics, 15(1):79 – 101, 1961.

[26] F. D. M. Haldane. Fractional quantization of the Hall effect: A hierarchy

of incompressible quantum fluid states. Phys. Rev. Lett., 51:605–608,

Aug 1983.

[27] Steven H. Simon, E. H. Rezayi, and Nigel R. Cooper. Pseudopotentials

for multiparticle interactions in the quantum Hall regime. Phys. Rev. B,

75:195306, May 2007, arXiv:cond-mat/0701260.

[28] E. J. Bergholtz and A. Karlhede. Quantum hall system in Tao-Thouless

limit. Phys. Rev. B, 77:155308, Apr 2008, arXiv:0712.1927.

[29] Rachel Wooten and Joseph Macek. Configuration interaction matrix

elements for the quantum Hall effect. Aug 2014, arXiv:1408.5379.

[30] Milton Abramowitz and Irene A. Stegun. Handbook of Mathematical

Functions. United States National Bureau of Standards, 1964.

[31] Tai Tsun Wu and Chen Ning Yang. Dirac monopole without strings:

Monopole harmonics. Nuclear Physics B, 107(3):365 – 380, 1976.

[32] J. E. Avron, R. Seiler, and P. G. Zograf. Viscosity of quantum Hall

fluids. Phys. Rev. Lett., 75:697–700, Jul 1995.

[33] N. Read. Non-abelian adiabatic statistics and hall viscosity in quantum

Hall states and px+ ipy paired superfluids. Phys. Rev. B, 79:045308, Jan

2009, arXiv:0805.2507.

122



BIBLIOGRAPHY

[34] M. Fremling. Coherent state wave functions on a torus with a con-

stant magnetic field. J. Phys. A: Math. Theor, 46:275302, Jun 2013,

arXiv:1302.6471.

[35] D. Yoshioka, B. I. Halperin, and P. A. Lee. Ground state of two-

dimensional electrons in strong magnetic fields and 1
3

quantized Hall

effect. Phys. Rev. Lett., 50:1219–1222, Apr 1983.

[36] F. D. M. Haldane and E. H. Rezayi. Periodic Laughlin-Jastrow wave

functions for the fractional quantized Hall effect. Phys. Rev. B, 31:2529–

2531, Feb 1985.

[37] J. Shabani, T. Gokmen, Y. T. Chiu, and M. Shayegan. Evidence for de-

veloping fractional quantum Hall states at even denominator 1/2 and 1/4

fillings in asymmetric wide quantum wells. Phys. Rev. Lett., 103:256802,

Dec 2009.

[38] D. R. Luhman, W. Pan, D. C. Tsui, L. N. Pfeiffer, K. W. Baldwin, and

K. W. West. Observation of a fractional quantum Hall state at ν = 1/4

in a wide gaas quantum well. Phys. Rev. Lett., 101:266804, Dec 2008,

arXiv:0810.2274.

[39] K. Park, V. Melik-Alaverdian, N. E. Bonesteel, and J. K. Jain. Possi-

bility of p-wave pairing of composite fermions at ν = 1
2
. Phys. Rev. B,

58:R10167–R10170, Oct 1998, arXiv:cond-mat/9806271.
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