
Csound6: old code renewed

John FITCH and Victor LAZZARINI and Steven YI
Department of Music

National University of Ireland
Maynooth,

Ireland,
{jpff@codemist.co.uk, victor.lazzarini@nuim.ie, stevenyi@gmail.com}

Abstract

This paper describes the current status of the de-
velopment of a new major version of Csound. We
begin by introducing the software and its historical
significance. We then detail the important aspects
of Csound 5 and the motivation for version 6. Fol-
lowing, this we discuss the changes to the software
that have already been implemented. The final sec-
tion explores the expected developments prior to the
first release and the planned additions that will be
coming on stream in later updates of the system.

Keywords

Music Programming Languages, Sound Synthesis,
Audio Signal Processing

1 Introduction

In March 2012, a decision was taken to move
the development of Csound from version 5 to
a new major version, 6. This meant that most
of the major changes and improvements to the
software would cease to be made in Csound
5, and while new versions would be released,
these will consist mainly of bug fixes and mi-
nor changes (possibly including new opcodes).
Moving to a new version allowed developers to
rethink key aspects of the system, without the
requirement of keeping ABI or API compatibil-
ity with earlier iterations. The only restriction,
which is a fundamental one for Csound, is to
provide backwards language compatibility, en-
suring that music composed with the software
will continue to be preserved.

This paper describes the motivation for the
changes, current state of development and
prospective plans for the system.

1.1 Short History of Csound

1.1.1 Early History

Csound has had a long history of development,
which can be traced back to Barry Vercoe’s
MUSIC 360[Vercoe, 1973] package for computer
music, which was itself a variant of Max Math-
ews’ and Joan Miller’s MUSIC IV[Mathews and

Miller, 1964]. Following the introduction of
the PDP-11 minicomputer, a modified version
of the software appeared as MUSIC 11[Vercoe,
1981]. Later, with the availability of C (and
UNIX), this program was re-written in that lan-
guage as Csound[Boulanger, 2000], allowing a
simpler cycle of development and portability, in
comparison to its predecessor.

The system, in its first released version, em-
bodied a largely successful attempt at provid-
ing a cross-platform program for sound syn-
thesis and signal processing. Csound was then
adopted by a large development community in
the mid 90s, after being translated into the
ANSI C standard by John ffitch in the early
half of the decade. In the early 2000s, the final
releases of version 4 attempted to retrofit an ap-
plication programming interface (API), so that
the system could be used as a library.

1.1.2 Csound 5

The need for the further development of the
Csound API, as well as other innovations,
prompted a code freeze and a complete overhaul
of the system into version 5[ffitch, 2005]. Much
of this development included updating 1970s
programming practices by applying more mod-
ern standards. One of the major aims was to
make the code reentrant, so that its use as a li-
brary could be made more robust. In 2006, ver-
sion 5.00 was released. The developments em-
bodied by this and subsequent releases allowed
a varied use of the software, with a number of
third-party projects benefitting from them.

1.2 Csound operation in a nutshell

As a MUSIC-N language, Csound incorporates
a compiler for instruments. During perfor-
mance, these can be activated (instantiated) by
various means, the traditional one being the
standard numeric score. In Csound 5, compi-
lation can only be done once per performance
run, so new instruments cannot be added to
an already running engine (for this performance



needs to be interrupted so the compilation can
take place).

The steps involved in the compiler can be
divided into two: parsing, and compilation
proper. The first creates an abstract syntax tree
(AST) representing the instruments. The com-
pilation then creates data structures in memory
that correspond to the AST. When an instru-
ment is instantiated, an init-pass loop is per-
formed, executing all the once-off operations for
that instance. This is then inserted in a list of
active instruments, and its performance code is
executed sequentially, processing vectors (audio
signals), scalars (control signals) or frames of
spectral data. The list orders instruments by
ascending number, so higher-order ones will al-
ways be executed last. All of the key aspects of
Csound operation are exposed by the API.

2 Motivation

In the six years since its release, Csound 5 con-
tinued to develop in many ways, mostly in re-
sponse to user needs, as well as providing fur-
ther processing capabilities in the form of new
opcodes. After a long gestation, early in 2012,
the new flex-bison parser was completed and
added as a standard option. This was the final
major step of development for Csound, where
the last big chunk of 1970s code, the old ad-
hoc parser, was replaced by a modern, main-
tainable, and extendable parser. Following the
2011 Csound Conference in Hannover, it was
clear that there were a number of user requests
that would be more easily achievable with a re-
think of the system. Such suggestions included:

• the capacity of new orchestra code,
ie. instruments and user-defined opcodes
(UDOs), to be added to a running instance
of the engine

• additions to the orchestra language, for in-
stance, generic arrays

• rationalisation of the API to allow further
features in frontends

• loadable binary formats, API construction
of instruments

• further development of parallelism

• facilities for live coding

The time was ripe for major changes to be
made. User suggestions prompted developers to
begin an internal cleanup of code, the removal

of older components (such as the old parser),
and a reorganisation of the API. It was also an
opportunity to code-walk, and with that find
inconsistencies and bugs that would normally
be hidden. In particular, changes related to re-
peated loading and compilation of new instru-
ments would require (and indeed force) a wel-
come separation of language and synthesis en-
gine, which is well underway at present.

3 Developments to date

3.1 Build System and Tests

In Csound 5, the official build system is SCons1.
Over time, a CMake-based2 build was intro-
duced and used for local developer use, as well
as later for Debian packaging and iOS builds.
In Csound 6, the official build system is now
the CMake-based build. Moving to CMake in-
troduced some hurdles and changes in workflow,
but it also brought with it generation of build
system files, such as Makefiles, XCode projects,
and Eclipse projects. This solved a problem of
IDE-based projects for building Csound becom-
ing out of sync with changes in the SConstruct
file for SCons, as well as brought more ways
for developers to approach building and working
with Csound code, particularly through IDE’s.

Using the CTest feature in CMake, unit and
functional tests have been added to Csound 6’s
codebase. CTest is the test running utility used
to execute the individual C-code tests. In ad-
dition, CUnit3 is employed to create the indi-
vidual tests and test-suites within the test code
files. In addition to C-code testing, the suite
of CSD’s used for application/integration test-
ing continues to grow, and a new set of Python
tests has also been added for testing API usage
from a host language.

3.2 Code reorganisation

The Csound code base is passing through a sig-
nificant reorganisation. Firstly, parts of it that
are now obsolete, such as the old parser, have
been removed. Some opcodes with special li-
censing conditions that have been deemed not
to be conducive to further development have
been completely rewritten (also with some ef-
ficiency and generality improvements). The
CSOUND struct has been rationalised and re-
organised, with many modifications due to the
various changes outlined in the next sections.

1http://www.scons.org
2http://www.cmake.org
3http://cunit.sourceforge.net



Finally, the public API is going through a re-
design process (details of which are discussed
below).

3.3 Type system

The Csound Orchestra language uses strongly
typed variables and enforces these at compile-
time. This type information is used to deter-
mine the size of memory to allocate for a vari-
able as well as for specifying the in- and out-
arg types for opcodes. The system of types
used prior to Csound 6 was hard-coded into the
parser and compiler. Adding new types would
require adding code in many places.

In Csound 6, a generic type system was imple-
mented as well as tracking of variable names to
types. The new system provides a mechanism
to create and handle types, such that new types
can be easily added to the language. The sys-
tem also helps clarify how types are used during
compilation. Another feature is that variable
definitions and types were previously discarded
after compile-time; in Csound 6, this informa-
tion is kept after compilation. This allows the
possibility of inspecting variables found in in-
struments or in the global memory space.

3.4 Generic Arrays

In Csound 5, a ‘t’ type was added that provided
a user-definable length, single-dimension array
of floating-point numbers. In Csound 6, with
the introduction of the generic type system, the
code for t-types was extended to allow creation
of homogenous, multi-dimensional arrays of any
type. Additionally, the argument list specifica-
tion for opcodes was extended to allow denoting
arrays as arguments.

3.5 On-the-fly Compilation

The steps necessary for the replacement or ad-
dition of new instruments or UDOs to a running
Csound engine, or, more concisely, on-the-fly
compilation, started to be taken in the latter
versions of Csound 5. It was, of course, sine-
qua-non to have a properly structured parser,
which we did in 5.17. Also, as a side-effect
from the Csound for Android project, compila-
tion from text files was replaced by a new core
(memory) file subsystem, so now strings con-
taining Csound code could be presented directly
to the parser.

The first step in Csound 6 was
made by breaking down the mono-
lithic API call to compile Csound
(csoundCompile()) into csoundParseOrc()

and csoundCompileTree(), as well as by the
addition of a general csoundStart() function
to get the engine going. The parsing function
creates an abstract syntax tree (AST) from a
string containing Csound code. The compi-
lation function then creates the internal data
structures that the AST represents, ready for
engine instantiation(see figure 1).

Figure 1: Csound compilation and engineState.

These modifications provided the infrastruc-
ture for changes in the code to allow repeated
compilation. For this, we have abstracted the
data objects relating to instrument definition
into an engineState structure. On first com-
pilation, Csound creates its global instrument
0, which is made up of the header statements,
global variables declared outside instruments
and their initialisation. It then proceeds to com-
pile any other instruments defined in the orches-
tra (including UDOs, which are a special kind of
instrument). On any subsequent compilations,
instruments other than 0 are added to a newly-
created engineState. After compilation, the new
engineState is merged into the current one be-



longing to the running Csound object.
Instrument definitions with the same name

or number will replace previously existing ones,
but any instances of the old definitions that are
active are not touched. New instances will use
the new definition, and replaced instruments get
added to a deadpool for future memory recov-
ery (which will happen once all old instances
are deallocated). A similar process applies to
UDOs.

Currently, no built-in thread-safety mecha-
nisms have been placed in the API, so hosts are
left to make sure compilation calls are not made
concurrently to audio processing calls. How-
ever, it is envisaged that the final API will pro-
vide functions with built-in thread safe as well
as ordinary calls.

3.6 Sample-level accuracy

Csound has always allowed sample-level accu-
racy, a feature present since its MUSIC 11 in-
carnation. However, a performance penalty was
incurred, since the requirement for this was to
set the size of the processing block (ksmps) to 1
sample. Code can become very inefficient, since
there is a single call of an opcode performance
function for each sample of output and this is
in conflict with caching.

In Csound 6, an alternative sample accuracy
method has been introduced. This involves set-
ting an offset into the processing block, which
will round the start time of an event to a sin-
gle sample. Similarly, event durations are also
made to be sample accurate, as the last it-
eration of each processing loop is limited to
the correct number of samples (see figure 2).
This option is provided with the non-default
--sample-accurate flag, to preserve backward
compatibility.

Tied events4 are not subject to sample accu-
rate processing as they involve state reuse and
are, in its current form, incompatible with the
mechanism. Real-time events are also not af-
fect by the process, as event sensing works on a
ksmps-to-ksmps basis. Events scheduled to at
least one control-cycle ahead can be made to be
sample accurate through this mechanism.

The changes needed for this mechanism to
work were significant. Each opcode had to be
modified to take account of the offset and end

4In Csound, it is possible to have instrument in-
stances that take up a previously-used memory space,
which allows the ‘tieing’ of events, in analogy to slurs in
instrumental music

position. The scheduler had to be altered so
the start of all events was truncated, instead of
rounded, to ksmps boundaries, and the calcula-
tion of event duration had to be modified. The
offset and end position had to be properly de-
fined for each event, as well as set and reset at
specific times for each instrument instance.

3.7 Realtime priority mode

Csound has been a realtime audio synthesis en-
gine since 1990. However, it was never pro-
vided with strict realtime-safe behaviour, even
though in practice, it has been used success-
fully in many realtime applications. Given the
multiple applications of Csound, it makes sense
to provide separate operation modes for its en-
gine. In Csound 6, we introduce the realtime
priority mode, set by the --realtime option,
which aims to provide better support for real-
time safety, with complete asynchronous file ac-
cess and a separate thread for unit generator
initialisation.

3.7.1 Asynchronous file access

For Csound 6, a new lock-free mechanism has
been introduced and some key opcodes have
been modified to use it when operating in re-
altime. It uses a circular buffer, employing
an interface which had been already present
in Csound (used previously only for lock-free
realtime audio). It shares the common file
IO structure adopted throughout Csound, with
a similar, but dedicated interface. For spe-
cific file reading/writing requirements, though,
as required for instance by diskin, diskin2 or
pvsfwrite, the general interface is not suitable.
For this case, special opcode-level asynchronous
code has been designed.

3.7.2 Unit generator initialisation

Another important modification of the engine in
realtime priority mode is the spawning of a sep-
arate thread that is responsible for running all
of the unit generator initialisation code. This is
more commonly known as the ‘init-pass’, which
is separate from synthesis performance (‘perf-
pass’). In this mode, when an instrument is
instantiated, the init-pass code is immediately
run in a separate thread. Once this is done,
an instrument is allowed to perform. What this
does is to prevent any interruption in the syn-
thesis performance due to non-realtime-safe op-
erations in the initialisation code (memory allo-
cation, file opening, etc.). A side-effect of this is
that in some situations, an instrument may be
prevented to start performing straight away, as



Cycle n

Start in cycle Early end

Cycle 1 Cycle 2 Cycle 3

silent silent

Figure 2: Sample accurate scheme.

the initialisation has not been done. However,
this is balanced with the gains in uninterrupted
performance.

3.8 Multicore operation

In 2009 an experimental system for using mul-
tiple cores for parallel rendering of instruments
was written [Wilson, 2009], and this was later
incorporated in the standard Csound [ffitch,
2009]. While the design was generally seman-
tically correct it only delivered a performance
gains in the case of low control rate and compu-
tationally heavy unit generators. Profiling the
code showed that the overheads in creating and
consuming the directed acyclic graph (DAG) of
dependencies, and especially in memory alloca-
tion activity.

For Csound 6 we are developing a different
approach, that while maintaining the semantic
analysis only needs to rebuild the DAG when a
score event starts or stops, and in use does not
call for changes in the structure. The clue is in
the use of watch-lists as found in SAT-solvers
[Brown and Purdom Jr, 1982; ?]. For each task
we only need to watch for the completion of one
of the dependencies; when a task finishes it can
release any task that is waiting for it, and for
which all other precursors have already finished.
This strategy is also possible with no locking
of critical sections, and can use atomic swap
primitives instead.

At the same time some simplification of
the semantics-gathering has been achieved.
This scheme preserves the order-semantics that
Csound has always had, but offers efficient util-
isation of multiple cores with threads with-
out user intervention beyond saying how many
threads to use for the performance stage. Ini-
tial measurements (see table 3.8) are very en-
couraging, in most cases providing significant
speed-up. We are continuing to work on possi-
ble optimisations.

4 Further work

4.1 Pre-release prospective
development (i.e. the “todo list”)

The final feature set of Csound 6 is still not
finalised. There are a number of possible en-
hancements that we are considering; some grow
from the changes we have described above, and
some are long-standing desires.

The introduction of separate compilation and
replaceable instruments naturally suggests that
we could add a fast loadable format for instru-
ments, building on for example LISP FASL for-
mats, and API and opcode access to loading.
It remains to be seen if the source version is
sufficiently fast, and whether we can solve the
semantic issues that arise, such as f-table inde-
pendence. What is needed is to document the
abstract syntax tree that the parser produces,
and thus allow advocates of alternative orches-
tra languages to provide them.

A restriction in Csound than has long been
an irritation is the limit of one string in a score
statement. Previous work in this area has at-
tempted to allow up to four strings, but this is
both limiting and still buggy. The radical solu-
tion would be to introduce a flex/bison parser
for the score language and take the opportunity
for rethinking the score area. A small start has
been made, but the need to support users and
the amount of effort needed here has relegated
this work to a later release. Until then a simpler
scheme will have to be tried for the interim.

The Csound suite of software include a num-
ber of analysis programs, most dating from an
early time, and written without regard of float-
ing point formats or byte order. From time to
time this has caused problems. The task here
is to redefine these formats to indicate at least
their formats, or even to make the readers ca-
pable of format transformations. This needs to
be done at some stage and this break seems like
a good moment.

With the introduction of on-the-fly compila-
tion one can consider that a user might main-



-j CloudStrata Xanadu Trapped...
ksmps=500 (sr=96000) ksmps=10 ksmps=100 ksmps=10 ksmps=100 ksmps=1000

1 1 1 1 1 1 1
2 0.54 0.57 0.55 0.75 0.79 0.78
3 0.39 0.40 0.40 0.66 0.76 0.73
4 0.32 0.39 0.33 0.61 0.72 0.70

Table 1: Relative performance with multiple threads in three existing Csound code examples, -j
indicates the number of threads used.

tain a long-running Csound binary and use it
for different tasks at different times. This sug-
gests that the current command-line options or
API equivalents may need to change at some
time after the initialisation. Some changes may
be easy, but some may require re-engineering of
parts of the engine. We have not yet realised
to use-changes that the compilation change will
engender.

The new API still needs to be refined. In
response to what has been discussed above,
we plan, for instance, to expose the configura-
tion parameters in some form (currently held
in the OPARMS data structure). At the mo-
ment, there is a simple provision for setting sep-
arately specific configuration items in the API
(as flags). This is to be substituted by a more
flexible form, via the exposing of the OPARMS
or an OPARMS-like struct to API users.

A number of other changes are planned, some
of which are already present in an early form.
For instance, the various stages of parsing, com-
pilation, and engine start are now exposed in
the provisional API (as detailed for instance in
3.4). There is a plan to provide built-in thread-
safety, so some functions can be used directly in
a multi-threading environment without further
synchronisation or resource protection. The
software bus, which now exists in three forms,
will be unified to a single mechanism.

4.2 Future developments

A number of ideas have also been put forward,
which will be tackled in due course. These in-
clude for instance:

• support for alternative orchestra languages
(through access to the parse tree format or
some sort of intermediary representation)

• further language features (e.g. namespaces,
functions with more than one argument,
tuples)

• a system for streaming linear predictive

coding processing (in similar fashion to
PVOC)

• decoupling of widget opcodes from FLTK
dependency (and exposure through API)

• input / output buffer reorganisation (out-
put buffers added to instruments)

5 Conclusions

In this paper, we have sought to examine the
current development status of Csound 6, as
well as the motivations for the fundamental re-
engineering of the code that has been under-
way. We hope to have demonstrated how the
technology embodied in this software package
has been renovated continuously in response to
developments in Computer Science and Music.
Our aim is to continue to support a variety of
styles of computer music composition and per-
formance, as well as the various ways in which
Csound can be used for application develop-
ment. It is also important to note, for read-
ers, that the re-engineering of Csound is taking
place quite publicly in the Csound 6 git reposi-
tory on Sourceforge (git://git.code.sf.net/
p/csound/csound6-git). Anyone is welcome
to check out and examine our struggles with
computer technology and the solutions we are
putting forward in this paper.

6 Acknowledgements

Our thanks go to the Csound community for
their indulgence, suggestions and support. In
addition Martin Brain introduced the idea of
watch-lists and co-developed the detailed per-
formance algorithm. We also acknowledge the
implicit support from Sourceforge hosting

References

Richard J. Boulanger, editor. 2000. The
Csound Book: Tutorials in Software Synthe-
sis and Sound Design. MIT Press, February.



Cynthia A. Brown and Paul Walton Purdom
Jr. 1982. An Empirical Comparison of Back-
tracking Algorithms. IEEE Trans. Pattern
Anal. Mach. Intell., 4(3).

John ffitch. 2005. The Design of Csound5. In
LAC2005, pages 37–41, Karlsruhe, Germany,
April. Zentrum für Kunst und Medientech-
nologie.

John ffitch. 2009. Parallel Execution of
Csound. In Proceedings of ICMC 2009, Mon-
treal. ICMA.

M. Mathews and J. E. Miller. 1964. MUSIC
IV Programmer’s Manual. Bell Telephone
Labs.

B. Vercoe. 1973. Reference manual for the
MUSIC 360 language for digital sound syn-
thesis. Studio for Experimental Music, MIT.

B. Vercoe. 1981. MUSIC 11 Reference Man-
ual. Studio for Experimental Music, MIT.

Christopher Wilson. 2009. Csound Paral-
lelism. Technical Report CSBU-2009-07, De-
partment of Computer Science, University of
Bath.


