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Abstract

The Modal Distribution (MD) is a time-frequency distribution 
specifically designed to model the quasi-harmonic, multi-
sinusoidal, nature of music signals and belongs to the Cohen 
general class of time-frequency distributions. Signal synthesis 
from bilinear time-frequency representations such as the 
Wigner distribution has been based on methods which exploit 
an outer-product interpretation of these distributions [1, 2]. 
Methods of synthesis from the MD based on a sinusoidal-
analysis-synthesis procedure using estimates of instantaneous 
frequency and amplitude only have been investigated in [3, 4, 
5]. However, the modal distribution is basically a subsampled 
version of the smoothed pseudo Wigner distribution and thus 
does not lend itself easily to direct inversion such as in the 
outer product methods mentioned above. Furthermore, the 
modal distribution is real, and the above sinusoidal-analysis-
synthesis methods rely on phase estimated as the integral of 
instantaneous frequency. In this paper, we show that in some 
cases, this synthesis results in a roughness or phasiness in the 
synthesized signal and demonstrate that using minimum 
phase derived from the magnitude spectrum of the 
distribution produces a timbre closer to the original in the 
case of certain brass sounds. Suggestions for future work are 
also given. 

1 Introduction 

The MD was introduced by Pielemeier and Wakefield [3] as a 
member of the Cohen general class of time-frequency 
distribu-tions for the analysis of music signals. It is primarily 
a Wigner distribution, or more specifically, a subsampled 
smoothed pseudo-Wigner distribution (SPWD), with a kernel 
that takes account of the modes present in quasi-harmonic, 
multi-sinusoidal, music signals. Based on the Wigner 
distribution, it allows for accurate measurement of 
instantaneous amplitude and frequency estimates calculated 
as local averages in the neighbourhood of each partial’s 
bandwidth. Furthermore, it does not suffer from the time-

bandwidth trade-off inherent in the spectrogram, one of the 
key advantages attributed to the Wigner distribution.  

  One drawback of the Wigner distribution in relation to the 
analysis of quasi-harmonic signals is the existence of both 
inner and outer cross terms [6] that amount to beats between 
partials (outer cross terms) which do not exist in the original 
signal, and artifacts due to non-linear frequency modulations 
(inner cross terms). To counteract this drawback, the SPWD 
and MD utilize both a one-dimensional frequency-smoothing 
kernel and one-dimensional time-smoothing kernel. The 
frequency smoothing kernel determines the suppression of 
artifacts along the frequency axis while the time-smoothing 
kernel reduces the effect of the outer cross terms. This time 
smoothing also reduces the bandwidth of the distribution in 
the time direction and so facilitates the subsampling. This 
greatly reduces the number of output frames and the number 
of DFTs that need to be computed. This is a key advantage of 
the MD over the Wigner distribution.  

 Based on this innovation, the MD has been utilized as an 
analysis tool for estimating the detailed amplitude and 
frequency variations of musical instrument sounds. It has 
been used to identify phenomenon such as the frequency 
modulation of attack transients or 'rogue' piano partials [5], 
whereas under normal spectrogram smoothing such detailed 
characteristics would be obfuscated. In previous work [7], we 
have proposed a novel frequency smoothing kernel which 
provides better noise suppression in the MD while conserving 
the accuracy of parameter estimates in the distribution. A key 
issue is now that once the analysis is completed it is often 
desired to resynthesise the signal displayed in the MD, 
particularly if post-processing of the MD is enacted to alter 
the signal’s properties. However, this procedure is not 
straightforward as the MD is not directly invertible so signal 
approximation approaches must be used. It is the perceptual 
quality of the output that establishes the differences between 
these. This goal of this paper is to examine an enhancement 
ap-plied to one of these approaches, specifically one that 
involves a minimum phase assumption for the phase 
trajectories of the signal’s harmonics. This paper is organized 
as follows. Section 2 gives the theoretical background to the 



MD. Part 3 describes the proposed method of using a 
minimum phase approach for resynthesis from the MD. Part 4 
gives test results, which then lead to conclusions and 
suggestions for future work in Section 5.  

2 Theoretical background 

Leon Cohen [10] proposed a general class of time-frequency 
distributions which are related through linear transformations.  The 
set of all linear transformations of the Wigner distribution has come 
to be known as the Cohen general class.  A two-dimensional kernel 
determines the linear transformation involved. The Wigner 
distribution, Eq. 1, in terms of the signal ts  and the spectrum 
S  is given by: 
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Here the kernel is 1. The autocorrelation with the lag 
variable, , produces the time-relative-time or instantaneous 
temporal autocorrelation function: 
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An important property of the Wigner distribution is that it is real 
with ,,* tWtW .

2.1 The discrete pseudo-Wigner Distribution 

The discrete implementation of the pseudo-Wigner 
distribution with a frequency smoothing kernel kw , with 
length 12LM , Lkkw for0  is then defined as: 
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where the discrete instantaneous autocorrelation function is: 
knfknfkng *,   (4) 

and the ‘pseudo’ window  is given by: 

kwkwkp *   (5) 

Eq. 3 can be interpreted as the discrete Fourier transform of 
the autocorrelation function kng ,  with respect to n for each 
value of k. Note that the frequency smoothing kernel in Eq. 5 
is squared in order to maintain the quadratic nature of the 
distribution defined in Eq. 4. As autocorrelation samples are 
only specified at each discrete integer point k in Eq. 4, 
compared with the continuous lag variable 2  in Eq 2. The 
discrete version requires the input signal to be either 
oversampled by 2, or band-limited to half the Nyquist rate in 
order to avoid aliasing [5]. This is significant for the analysis 
of music signals where partials may exist beyond 4sf
unless band-limiting is applied prior to the analysis. 

2.2 Cross terms 

Given a music signal model as follows: 
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with each partial indexed by k , specified uniquely by partial 
amplitude 

kA , frequency 
k
, and phase 

k
, the Wigner distribution 

can be expanded to: 
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The auto terms of ts  are given by the first term in Eq. 7. The 
second double summation indicates the cross terms, arising from 
products between auto terms, which lie between any pair of auto 
terms. The magnitude of the cross terms is the product 

lk AA of the 
amplitudes of auto terms k  and l  and they oscillate at a frequency, 

/k
 equal to the difference between the frequencies of the two 

auto terms.  For strictly harmonic signals, the cross terms form a 
partial series an octave below the fundamental, with the consequence 
that some  cross terms fall at the same frequency location as the auto 
terms. This phenomenon gives rise to amplitude modulated partials 
and the possibility of additional artefacts and cross terms appearing 
at the partial frequencies. 

Figure 1: MD of attack of a synthetic monocomponent signal at 
185Hz. The wideband onset and widening of the auto terms 
mainlobe at points of amplitude discontinuity around 240msecs is 
clearly evident. 

2.3 The Modal Distribution (MD) 

The MD was designed to minimise these cross terms in Eq. 7. 
The MD kernel consists of two different filter functions.  The 
time-smoothing window, phLP

, has the effect of smoothing 
the cross terms in the time direction, and the frequency-
smoothing window, lgLP

, implements cross term 



suppression in cases of frequency modulation as well as 
defining the frequency resolution of the distribution. The 
discrete form of the MD is defined by 
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where phlpnRlnR LPsls ,,,
 is the time-smoothed 

temporal autocorrelation function. Both phLP  and lgLP

form a separable kernel, however, they are interdependent for 
parameter choice [7]. phLP

, is chosen to be a low pass filter 
with an upper cut-off just below the minimum frequency 
spacing between auto terms, 

minf , this being set to slightly 
less than the fundamental frequency for quasi-harmonic 
signals. This allows for any modulation in the input signal 
which would narrow the minimum separation between auto 
terms. The frequency resolution of 

minf  is, in turn, defined by 
the length of lgLP , chosen so as to avoid overlapping auto 
term main lobes. The main lobe width of lgLP  determines 
the estimation limits for these auto terms. However, the width 
of the auto terms characteristically exhibits variations due to 
large amplitude changes or discontinuities. The result is the 
creation of broadband artefacts in the distribution. Fig 1 
shows the attack of a monocomponent synthetic signal 
illustrating the signature wideband MD onset and the 
widening of the auto term near the peak of attack around 
240msecs where the amplitude is discontinuous. Typically, 
the wideband onset lasts for the duration of the impulse 
response of phLP

 called the ‘end-effect’ region in [5] where 
the estimates have been shown to be extremely biased [8]. 
Inner interference cross terms are also visible between the 
broadband artefacts along the contour of the auto term main 
lobe. 

2.4 MD Synthesis Parameters 

Signal synthesis parameters of amplitude and frequency are 
calculated as local averages of the MD that are centred around 
the local instantaneous frequency of the auto terms or partials. 
The bandwidth for these moments is determined by the main 
lobe width of lgLP

. These local moments can be written as 
follows. Given: 

L

Ll
lnMnp ,   (9) 

where np  is the instantaneous power estimate given lgLP

with  the main lobe width being L2 , the amplitude estimate is 
then given by: 

npnA 4   (10) 

and the instantaneous frequency by: 
L

Ll np
lnlMnF ,   (11) 

3 Signal synthesis from Modal analysis 
Methods of analysis and synthesis from time-frequency 
distributions are well documented [12, 13, 14, 15] and have 

been com-pared in [16]. In the case of the MD, partials can be 
interpreted as time-varying salient ridges in the MD surface 
from which the synthesis parameters of instantaneous 
amplitude and frequency are estimated. We use the well 
established McCauley-Quatieri procedure [9] for peak 
identification and track formation from the MD surface. 
Interpolation of amplitude and frequency estimates is 
replaced by the MD parameter estimates defined in Eqs. 10 & 
11, and calculated around the bandwidth of each candidate 
peak this bandwidth being determined by the main lobe width 
of the frequency smoothing kernel lgLP .. However, because 
the MD is real, no phase information is available from the 
MD parameters. As already explained, a difficulty with the 
MD is the existence of noise terms. To facilitate partial 
extraction from the MD, we employ a novel frequency 
smoothing window described in [7], the squared 
autocorrelated frequency smoothing kernel. This significantly 
reduces the number of possible candidate artifacts/peaks in 
partial tracking. One approach to phase estimation is to 
calculate phase as the integral of the instantaneous frequency 
values over time.  Subsequent synthesis using this cumulative 
phase produces, for certain instrumental sounds, a rough and 
‘phasey’ characteristic timbre while other instrumental sounds 
appear much less affected. We therefore explore a method to 
re-cover coherence in the phase as explained in the following 
section. 

3.1 Minimum-Phase from Magnitude 

It is well known that phase information can be extracted from 
the magnitude of the Fourier transform [17]. Creating a 
minimum-phase desired frequency-response from a given 
magnitude response can be achieved by reflecting all the 
zeros of zeros of iz  for which 1iz , back inside the unit 

circle, i.e., replacing iz  by iz1  [10]. In practice this is 
achieved by implementing a simple matlab function given in 
[10]. Given a magnitude spectrum consisting of partial 
magnitudes, s, the minimum phase spectrum, sm, is given by: 

sm=exp(fft(fold(ifft(log(clipdb(s,-100))))));

where fold converts non-minimum-phase spectral zeros to 
minimum-phase spectral zeros. This function works well as 
long as the desired frequency re-sponse is smooth which is 
partially guaranteed by clipping mag-nitude response below 
its maximum (clipdb) [10]. The minimum phase is 
extracted as, angle(sm), and then the phase shift for each 
partial is calculated as the difference between the original 
fundamental phase and the corresponding first value of 
angle(sm). The resulting phases are then used in the sum-
of-sinusoids synthesis. 

4. Results 
We used instrumental samples from the McGill University 
Master Samples, sampled at 44.1 kHz to evaluate the various 
synthesis approaches. From informal listening tests, we found 
that for a number of instrumental sounds (trumpet, trombone 



and saxo-phone) exhibit a roughness in timbre when 
synthesized from the Modal distribution using the McCauley-
Quatieri sum of sinusoids approach based on the MD 
estimates with the instantaneous phase simply calculated as 
the integral of the instantaneous fre-quency, i.e. a cumulative 
phase approach. In contrast for the clarinet the results were 
somewhat better with this cumulative phase approach.  
   Applying the minimum phase approach was found to 
produce more perceptually pleasing results for the three brass 
instruments, overcoming some of the roughness of the 
previous examples. The results are first illustrated by the 
waveform plots, shown in figures 2 to 5, and then by the 
phase spectrograms shown in figures 6 to 9 for each 
instrument sound respectively. The spectrograms were 
computed using a 512-point Hanning window with a 50% 
overlap and then zero-padded to 2048 points before the FFT 
is taken and its phase found at each frame. Examining the 
wave-form plots first: In figures 2 to 5 the top panel is the 
original waveform, the middle panel is the waveform using 
the cumulative phase method while the lower panel is for the 
minimum phase approach. It can be seen that the minimum 
phase approach produces a waveform that is a closer visual 
match to the original waveform than the cumulative phase 
method. Only for the clarinet sound does the cumulative 
phase method seem to give a waveform that more resembles 
the original. The appearance of the phase spectrograms in 
figures 6 to 9 support these observations as for the cases of 
the trumpet, trombone and saxophone that phase spectrogram 
for the minimum phase approach is more close to the phase 
spectrogram of the original signal. Distinctive patterns can be 
seen in those spectrograms that match each other well. Only 
in the case of the clarinet is the cumulative phase spectrogram 
more like that of the original. These plots thus tend to support 
the aural observations. 

5. Conclusions 
In this paper we have presented a minimum phase solution for 
the recovery of phase in Modal Distribution synthesis. We 
have described how certain sounds exhibit roughness when 
synthesized with a McCauley-Quatieri sum-of-sinusoids 
synthesis technique using a cumulative phase method. Use of 
phase calculated from a minimum phase approach instead 
appears to recover the original timbre of brass sounds more 
faithfully. In contrast, for the clarinet the distinction is less 
obvious. These preliminary results suggest that the 
assumption of minimum phase can be applied successfully to 
certain instrumental signals when resynthesizing from the 
Modal Distribution.  
   Of immediate interest for future work is an extension of this 
method to include a mixture of both minimum and maximum 
phase elements as described in [11] that may give better and 
more consistent results across a broader range of musical 
instruments. Furthermore, a more comprehensive suite of 
perceptual tests would help to set the boundaries on where the 
minimum phase works best as opposed to any alternative 
technique.

Figure 2: Plots for trumpet tone 185Hz for (a) original (b) 
syntheized using the cumulative phase (the integral of the 
instantaneous frequency) and (c) synthesized using minimum 
phase.

Figure 3: Plots for clarinet tone 146Hz for (a) original (b) 
syntheized using cumulative phase and (c) synthesized using 
minimum phase.

Figure 4: Plots for Trombone tone 146Hz for (a) original (b) 
syntheized using cumulative phase and (c) synthesized using 
minimum phase.



Figure 5: Plots for TenorSax tone 261Hz for (a) original (b) 
syntheized using cumulative phase and (c) synthesized using 
minimum phase.
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Figure 6: Phase Spectrogram for Trumpet tone for (a) original 
(b) syntheized using cumulative phase and (c) synthesized 
using minimum phase.
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Figure 7: Phase Plots for Trombone tone for (a) original (b) 
syntheized using cumulative phase and (c) synthesized using 
minimum phase.
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Figure 8: Phase Plots for TenorSax tone for (a) original (b) 
syntheized using cumulative phase and (c) synthesized using 
minimum phase.
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Figure 9: Phase Plots for Clarinet tone for (a) original (b) 
syntheized using cumulative phase and (c) synthesized using 
minimum phase 
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